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ABSTRACT

In this paper, we address catastrophic forgetting in fine-tuning Large Language
Models (LLMs), a process where LLMs lose knowledge and capabilities upon
learning new information. Traditional solutions mostly rely on reusing old train-
ing data. Such methods are often limited by knowledge about previously used
data and possibly limited access to it. In contrast to these approaches, we pro-
pose a new strategy focusing on the model’s weight matrices. Using Singular
Value Decomposition (SVD), we seek to identify and preserve key components
within these matrices, particularly the highest magnitude directions, to preserve
the most sensitive characteristics. Our approach thus uniquely focuses updates on
the space spanned by lower-impact directions. This methodology efficiently mit-
igates catastrophic forgetting and does not require access to the original training
data, offering a more practical solution for LLM fine-tuning applications as it is
simpler and more training data efficient. We show the benefit of our approach
by fine-tuning an LLM and reducing the performance drop on benchmark tasks
induced by fine-tuning.

1 INTRODUCTION

In the evolving landscape of Large Language Models (LLMs), fine-tuning has emerged as a criti-
cal process, substantially enhancing their specificity and effectiveness across diverse applications.
However, the fine-tuning process often encounters a significant impediment known as catastrophic
forgetting. In this phenomenon, the model, upon learning new tasks, tends to lose its grip on previ-
ously acquired knowledge, alignment, or reasoning capabilities (Kirkpatrick et al., 2017; Zhai et al.,
2023). This issue poses a substantial challenge, especially considering the dynamic nature of tasks
that LLMs are expected to perform. Traditionally, methods to counteract catastrophic forgetting
have relied heavily on utilizing old training data (Parisi et al., 2019; Wang et al., 2021). Similarly,
the continuous learning literature offers some respite by suggesting the incorporation of data from
previous tasks (Kirkpatrick et al., 2017; Parisi et al., 2019; Saha et al., 2021; Kong et al., 2022).
Such approaches, while effective to an extent, face practical limitations. Selecting an appropriate
surrogate dataset becomes a complex task, as it requires an understanding of the original training
set’s distribution, which is typically unknown (Peng et al., 2023). Especially, in the context of fine-
tuning recently published LLMs like Mistral7B (Jiang et al., 2023) or LLaMA2 (Touvron et al.,
2023) further limitations emerge. Here, access to original training data is either restricted or en-
tirely unavailable. This unavailability is not just a matter of access but also concerns privacy and
proprietary information. Additionally, preserving the nuances of instruction tuning, especially in
models trained with reinforcement learning from human feedback (RLHF), adds another layer of
complexity.

In this paper, we propose Principal Subspace Preserving (PSP), a novel approach to address catas-
trophic forgetting, pivoting away from the conventional reliance on previously used data. Our
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method focuses on the weight matrices intrinsic to the model. By employing Singular Value De-
composition (SVD), we identify critical components within these matrices - the high magnitude
directions. We hypothesize that, by preserving significant subspaces and focussing updates on sub-
spaces with lower impact, we can mitigate the effects of catastrophic forgetting. This approach does
not require access to old training data, making it more practical and applicable in various settings.
We show the benefit of PSP by fine-tuning an LLM and evaluating the performance before and after
the fine-tuning on a set of benchmark tasks (Section 3).

2 METHODOLOGY

2.1 THE SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) is one of the fundamental decompositions of a matrix. It
decomposes a matrix W ∈ Rn×m in the following way:

W = UΣV ⊤, with U⊤U = In and V ⊤V = Im.

Here, Σ is a diagonal matrix with entries σk, k = 1, · · · ,K where K = min{m,n}. The values
σk are referred to as singular values and U and V are arranged such that the singular values display
a descending order, with σk > σk+1. One fact underlining the importance of the SVD is its close
connection to eigenvalues and eigenvectors. Specifically, the columns of V are the eigenvectors
of W⊤W and the columns of U are the eigenvectors of WW⊤. Consequently, the respective
(nonzero) eigenvalues of both are given by the σ2

k. The SVD can thus be used similar to the eigen-
value decomposition (or PCA) while also being applicable to nonsquare matrices.

The SVD provides a set of orthogonal basis vectors for the row and column space of W in the form
of U and V , respectively. Through these bases, the impact of a right (or left) multiplication of a x
with the matrix W can be analyzed and bounded: σK · ∥x∥2 ≤ ∥Wx∥2 ≤ σ1 · ∥x∥2. The upper
bound is tight for x = v1, while the lower bound is tight for x = vK . For a normed x ∈ Rm,
∥Wx∥2 depends on its dot product similarity with the columns of V (basis vectors). The same
analysis can be carried out for a vector y ∈ Rn with ∥y⊤W ∥2 using the columns of U .

2.2 PRESERVING PRINCIPAL SUBSPACES

In the following, we seek to leverage the SVD to preserve key characteristics of the map Wx of an
input vector x with a weight matrix W . Specifically, we want to preserve directions (subspaces)
relating to singular values of the highest magnitude.

This is motivated by the following hypothesis: To limit the performance loss on previous tasks,
the output magnitude along directions that lead to comparably large effects on outputs should be
preserved, as these carry the most defining features.

Following this idea, we limit the updates of weight matrices to act only on the subspace spanned
by directions of lower output magnitude. In the scope of this work, the concrete selection of these
may be based on certain heuristics. For example, direction U and V relating to the p% largest
singular values may be excluded. Let k̄ with 1 < k̄ < K, denote the lowest index associated
with the remaining components. Since the singular values are given in descending order, the first
index points to the singular value with the highest impact. For brevity, we use V̄ = V [:, k̄ :] and
Ū = U [:, k̄ :] in the following. Given an update ∆W for a weight matrix W in step t, we can
modify it to only act on the specified directions by

Wt+1 ←Wt + ŪŪ⊤∆WV̄ V̄ ⊤.

Hence, the effect of W on vectors lying in the subspace spanned by the excluded components is
preserved, as they are orthogonal to the update direction. For the purpose of fine-tuning, we refer
to this idea as principal subspace preserving (PSP) fine-tuning. Since fine-tuning of large language
models is often done using low-rank approximations of the form BA (LoRA) (Hu et al., 2021), we
present an adaptation of this idea for LoRA in Algorithm 1.
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Algorithm 1 Principal Subspace Preserving fine-tuning with LoRA

Require: Pre-trained parameters θj , trainable parameters Bj and Aj j = 1, · · · , J , loss function
L(B,A,X,y) and a fine-tuning dataset D = {(Xt,yt)}Tt=0.

Require: Hyperparameters: Learning rate η ∈ R+ and index k̄ for component selection.
Require: Optimizer Opt(·) for minimization.

1: # Initialization
2: for each pre-trained parameter θj in θ do
3: Bj , Aj ← Initialize(·)
4: U jΣjV j⊤ ← SVD(θj) ▷ Calculating SVD for each pre-trained, trainable parameters

5: Ū j , V̄ j ← U j [:, k̄ :],V j [:, k̄ :] ▷ Select lower impact directions to be modified

6: Bj , Aj ← Ū jŪ j⊤Bj , AjV̄ jV̄ j⊤ ▷ Project initialization
7: end for
8:
9: # fine-tuning

10: t← 0
11: for Xt,yt ∼ D do
12: for trainable parameters Bj , Aj in B,A do
13: ∇Aj

t
L(·),∇Bj

t
L(·)← Backward(L(·)) ▷ Calculate gradients for LoRA parameters

14: ∇Bj
t
L(·)← Ū jŪ j⊤∇Bj

t
L(·) ▷ Project update direction (including regularization)

15: ∇Aj
t
L(·)← ∇Aj

t
L(·)V̄ jV̄ j⊤

16: Aj
t+1 ← Aj

t +Opt(∇Aj
t
L(·), η) ▷ Gradient-based update with projected gradients

17: Bj
t+1 ← Bj

t +Opt(∇Bj
t
L(·), η)

18: end for
19: t← t+ 1
20: end for

3 EXPERIMENTS

We evaluate PSP with fine-tuning Mistral7B Jiang et al. (2023) with the use of low-rank adaptation
Hu et al. (2021). We choose as a fine-tuning task to train on 50k artificially generated biomedi-
cal question-answering (QA) pairs from the PubMedQA dataset (Jin et al., 2019) and evaluate the
fine-tuning performance on the expert-annotated PubMedQA QA benchmark. The dataset is col-
lected from PubMed abstracts and the artificial QA pairs are generated by converting statement
titles into questions and labeled with yes/no answers through a simple heuristic. To access the catas-
trophic forgetting, we evaluate the LLM before and after the fine-tuning and report the change in
answer accuracy in Figure 1. We selected a diverse set of benchmark tasks from the literature. Be-
sides the expert-annotated PubMedQA QA instances, we use the Arithmetic dataset with 10 tests
that involve simple arithmetic problems in natural language (Brown et al., 2020), the comprehensive
MMLU benchmark (Hendrycks et al., 2020), the PiQA benchmark on reasoning about physical com-
monsense in natural language (Bisk et al., 2020), and the TruthfulQA benchmark, which evaluates
models’ abilities to mimic human falsehoods (Lin et al., 2022).

We optimize our training with the use of Adam (Kingma & Welling, 2014) and evaluate our method
using two regularization techniques, decoupled weight decay (AdamW) (Loshchilov & Hutter,
2019) and constrained parameter regularization (AdamCPR) (Franke et al., 2023). We performed a
hyperparameter optimization for the learning rate (0.001, 0.0005, 0.0001) with the AdamW setting,
decoupled weight decay for AdamW (1e-4, 1e-3, 1e-2, 1e-1), and warm start steps for AdamCPR
(50, 100, 200) and select the italic values for each parameter. In preliminary experiments, we pa-
rameterized PSP to preserve the subspace associated with 10% to 50% of the highest singular values
and select 40% for our experiments. We fine-tune all attention and feed-forward weights, using a
learning rate schedule with a learning rate warm-up of 50 or 100 steps (7%/14% of total training
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Basemodel 75.6

PubMedQA

86.7

Arithmetic

57.7

MMLU

77.1

PiQA

60.5

TruthfulQA

AdamW 3.8%± 1.07
78.5± 0.81

−1.2%± 0.92
85.9± 0.63

0.1%± 0.55
57.7± 0.21

3.8%± 0.44
80.1± 0.34

−19.4%± 0.28
49.1± 0.17

AdamW
+PSP

4.1%± 0.98
78.7± 0.74

−0.5%± 1.29
86.4± 0.83

0.4%± 0.29
58.0± 0.13

3.9%± 0.06
80.2± 0.04

−15.7%± 0.88
51.4± 0.51

AdamCPR 4.0%± 0.59
78.7± 0.44

−0.4%± 0.91
86.4± 0.60

0.5%± 0.55
57.8± 0.29

3.8%± 0.12
80.1± 0.09

−19.3%± 0.73
49.2± 0.43

AdamCPR
+PSP

3.7%± 0.57
78.4± 0.43

−1.0%± 0.62
86.0± 0.45

0.6%± 0.34
58.0± 0.17

3.9%± 0.35
80.2± 0.27

−15.7%± 1.55
51.4± 0.89
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Figure 1: The accuracy and percentage of performance change on different benchmarks before and
after fine-tuning Mistral 7B with PubMedQA artificial data with the use of AdamW and AdamCPR
in combination with PSP. We configure PSP to preserve the subspace associated with the 40% of the
highest singular values. We show the mean and standard deviation of the change across three seeds.

steps), followed by cosine annealing. We found a longer learning rate warm-up beneficial when
using PSP. The fine-tuning was performed on four A100 GPUs for about 1h. Each configuration is
trained across three random seeds and we report the mean change to the base model performance.

The results of our experiment are presented in Figure 1. We see a performance increase on the
PubMedQA benchmark due to the fine-tuning. Surprisingly, we found that catastrophic forgetting
does not appear equally in all benchmark tasks. While the performance drops on TruthfulQA and
Arithmetic, it increases on PiQA and slightly on MMLU. When applying PSP, we found a less dras-
tic drop in performance on TruthfulQA and Arithmetic. CPR itself already provides a benefit in
terms of avoiding catastrophic forgetting. However, when combined with PSP, it reduces the perfor-
mance loss on TruthfulQA and improves the performance on other benchmarks too. We also see a
reduced variance across the three seeds when training with CPR. The downside is a slight drop in
performance in the target task.

4 DISCUSSION & CONCLUSION

We introduce principal subspace preserving (PSP) as a promising approach to migrate catastrophic
forgetting when fine-tuning a model, where the pre-train data is unknown or not accessible, like
in the case of fine-tuning an open-access but proprietary trained LLM. Through an SVD, we iden-
tify subspaces relating to the largest singular values of the parameters. We hypothesize that these
directions are the most important to preserve to limit the performance decrease when fine-tuning.
Consequently, we avoid modifications to these subspaces by projecting updates on spaces spanned
by the remaining singular vectors. We show the benefits of PSP, by measuring the performance of
an LLM on a set of benchmark tasks before and after fine-tuning. In both settings, when trained
with AdamW and AdamCPR, PSP reduces catastrophic forgetting. However, this improvement is
accompanied by a trade-off in terms of increased memory requirements due to the need to store the
projection matrices Ū and V̄ . The degree of memory increase is contingent upon the number of
components selected for preservation. For future work, the selection of the concrete subspaces or
the number of components to be preserved should be investigated further.

4



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

REFERENCES

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. 2020.

Jörg KH Franke, Michael Hefenbrock, Gregor Koehler, and Frank Hutter. Constrained parameter
regularization. arXiv preprint arXiv:2311.09058, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2020.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. PubMedQA: A dataset
for biomedical research question answering. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun
Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 2567–2577. Association for Computational Linguistics, Nov 2019.

D. Kingma and M. Welling. Auto-encoding variational bayes. In Proceedings of the International
Conference on Learning Representations (ICLR’14). CBLS, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

Yajing Kong, Liu Liu, Zhen Wang, and Dacheng Tao. Balancing stability and plasticity through
advanced null space in continual learning. In Shai Avidan, Gabriel Brostow, Moustapha Cissé,
Giovanni Maria Farinella, and Tal Hassner (eds.), Computer Vision – ECCV 2022, pp. 219–236,
Cham, 2022. Springer Nature Switzerland.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 3214–3252, Dublin, Ireland, May 2022. Association for Computational Linguistics.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR’19), 2019. Published online: iclr.cc.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54–71, 2019.

Baolin Peng, Linfeng Song, Ye Tian, Lifeng Jin, Haitao Mi, and Dong Yu. Stabilizing rlhf through
advantage model and selective rehearsal. arXiv preprint arXiv:2309.10202, 2023.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representations, 2021.

5

iclr.cc


Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of feature
covariance for continual learning. In Proceedings of the IEEE/CVF conference on Computer
Vision and Pattern Recognition, pp. 184–193, 2021.

Yuexiang Zhai, Shengbang Tong, Xiao Li, Mu Cai, Qing Qu, Yong Jae Lee, and Yi Ma. Investigating
the catastrophic forgetting in multimodal large language model fine-tuning. In Conference on
Parsimony and Learning (Proceedings Track), 2023.

6


	Introduction
	Methodology
	The Singular Value Decomposition
	Preserving Principal Subspaces

	Experiments
	Discussion & Conclusion

