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ABSTRACT

Weight space learning aims to extract information about a neural network, such as
its training dataset or generalization error. Recent approaches learn directly from
model weights, but this presents many challenges as weights are high-dimensional
and include permutation symmetries between neurons. An alternative approach,
Probing, represents a model by passing a set of learned inputs (probes) through
the model, and training a predictor on top of the corresponding outputs. Although
probing is typically not used as a stand alone approach, our preliminary experi-
ment found that a vanilla probing baseline worked surprisingly well. However,
we discover that current probe learning strategies are ineffective. We therefore
propose Deep Linear Probe Generators (ProbeGen), a simple and effective mod-
ification to probing approaches. ProbeGen adds a shared generator module with
a deep linear architecture, providing an inductive bias towards structured probes
thus reducing overfitting. While simple, ProbeGen performs significantly better
than the state-of-the-art and is very efficient, requiring between 30 to 1000 times
fewer FLOPs than other top approaches.

1 INTRODUCTION

The growing importance and popularity of neural networks has led to the development of several
model hubs (e.g. HuggingFace, CivitAI), where more than a million models are now publicly avail-
able. Treating them as a new data modality presents new opportunities for machine learning. Specif-
ically, as not all neural networks include information about their training, developing methods to au-
tomatically learn from weights is becoming important. For instance, given an undocumented model,
it is interesting to know its generalization error (Unterthiner et al., 2020) or its training dataset
(Dupont et al., 2022). While some of these questions could be answered by evaluating the model on
many labelled samples, this is often impractical as the data may be unavailable or unknown. Here,
we want to answer these questions without access to the models true data distribution and under
minimal computational effort.

Learning from weights is essentially similar to the well studied problem of binary code analysis
Shoshitaishvili et al. (2016), where the goal is to predict the function of an unknown software using
its binary code. In both cases, the task is to understand an unknown complex function specified
by many parameters. Binary code analysis approaches generally fall into two categories: static and
dynamic. Static methods Shoshitaishvili et al. (2016) aim to understand a function without running
the binary code. Dynamic code analysis Egele et al. (2008); Bayer et al. (2006) runs the code on
inputs provided by the user and analyzes its outputs to understand what the code does. Similarly,
in weight space learning, there are two main types of methods: mechanistic approaches Unterthiner
et al. (2020); Navon et al. (2023a); Zhou et al. (2024a); Lim et al. (2023); Kalogeropoulos et al.
(2024) aim to understand model weights without running the model, while probing approaches
Herrmann et al. (2024); Kofinas et al. (2024) represent models by their responses to a set of well
selected inputs. Despite dynamic methods often performing better for binary code analysis, in the
context of weight space learning, probing is still under utilized.

Motivated by the success of dynamic code analysis, in this paper we focus on advancing probing
methods for learning from weights. First, we support this intuition by showing that a simple prob-
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Figure 1: Overview of Our Method. We optimize a deep linear probe generator to create suitable
probes for the model. Meaning, our generator includes no activations between its linear layers, yet
the addition of linear layers reinforces a desired structure for the probes. We then gather the models
responses over all probes, and train a classifier to predict some attribute of interest about the model.

ing baseline, with no bells-and-whistles, achieves comparable or better results than state-of-the-art
mechanistic approaches. However, we discover that despite the good performance, current probing
methods learn probes that perform comparably to random probes sampled from simple, unlearned
statistical distributions. This suggests that current learned probes are suboptimal.

To this end, we propose Deep Linear Probe Generators (ProbeGen) as a simple and effective so-
lution. ProbeGen factorizes its probes into two parts, a per-probe latent code and a global probe
generator. The generator offers two key benefits: (i) It helps sharing information across multiple
probes, and (ii) can implicitly introduce an inductive bias into the probes. For example, in im-
ages, hierarchical and convolutional layers create a local structure. Finally, by observing the learned
probes we hypothesize they are not necessarily semantic, and owe some of their expression to low-
level structures. We then find that the non-linear activation functions, which increase expressivity,
actually degrade the learned probes. Our final approach therefore consists of a deep linear network
(Arora et al., 2019), with data-dependent biases. Our linear generators produce probes that achieve
state-of-the-art performance on common weight space learning tasks.

2 RELATED WORK

Weight Space Learning. A recent line of works have focused on training models to process the
weights of diverse model populations (known as Model Zoos, e.g., (Schürholt et al., 2022)) to predict
undocumented properties of a model. These properties include classifying the training dataset (e.g.,
the class of an image used to train an Implicit Neural Representation) or predicting the generalization
error. Mechanistic methods (Lim et al., 2023; Navon et al., 2023a; Schürholt et al., 2024; Eilertsen
et al., 2020; Unterthiner et al., 2020) represent models using the mechanics of their inner workings.
One approach (De Luigi et al., 2023; Schürholt et al., 2024; 2021) is to learn standard architectures
over raw weights. However, weights exhibit permutation symmetries between neurons (Navon et al.,
2023a) which these architectures do not explicitly account for, although some of these methods use
augmentations (Schürholt et al., 2024; 2021) to encourage permutation invariance. Other methods
proposed specialized augmentations (Shamsian et al., 2024) which can be applied to aligned net-
works (Shamsian et al., 2024; Navon et al., 2023b; Peña et al., 2023; Ainsworth et al., 2022) or to
already aligned weight spaces (Lim et al., 2024b;a). Another approach (Unterthiner et al., 2020;
Dupont et al., 2022; Salama et al., 2024) maps the weights to a low dimensional embedding by a set
of weight statistics, which are completely invariant to permutations, but have limited expressivity
as they ignore the inner relations between neurons. Recently, a line of works (Navon et al., 2023a;
Zhou et al., 2024a;b; Kofinas et al., 2024; Lim et al., 2023; Tran et al., 2024; Kalogeropoulos et al.,
2024) focus on specially designing permutation equivariant architectures for processing neural net-
works. A dominant approach uses graph based architectures (Kofinas et al., 2024; Lim et al., 2023;
Kalogeropoulos et al., 2024) modeling a neural network as a computational graph, where every neu-
ron is a node. They then train Graph Neural Network (GNN) (Gilmer et al., 2017; Kipf & Welling,
2016) or Transformer (Vaswani, 2017; Diao & Loynd, 2022) modules, which are equivariant by
design, to analyze the computational graph. Most recently, some equivariant approaches (Kofinas
et al., 2024; Herrmann et al., 2024) also included learned probes. In this work we take a deep look
into probing methods, and their failure points.
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Another research thrust developed new applications for weight space learning. Some works (Ha
et al., 2016; Ashkenazi et al., 2022; Peebles et al., 2022) encode the parameters of neural networks,
mainly for generating, modifying or compressing weights matrices. Others (Erkoç et al., 2023;
Dravid et al., 2024; Shah et al., 2023) use weights for advanced image generation capabilities. More
recently, Carlini et al. (2024) proposed recovering the exact black-boxed weights of a neural net-
work layer, and Horwitz et al. (2024a) demonstrated recovering entire pre-trained models when the
weights of multiple fine-tuned models of the same Model Tree Horwitz et al. (2024b) are available.

Implicit Neural Representations (INRs). In recent years, INRs (Sitzmann et al., 2020; Tan-
cik et al., 2020) have emerged as a new paradigm for representing data points with neural net-
works. These networks are used in various data modalities such as images (Ha, 2016), 3D shapes
(Mescheder et al., 2019; Chen & Zhang, 2019), 3D scenes (Mildenhall et al., 2021), video (Li et al.,
2021), audio (Sitzmann et al., 2020), etc. Specifically, in the context of images, INRs are neural
networks trained on a single image, which given a pixel location (x, y) return the value of that pixel
in the training image. In this work, we classify the class of a training image an INR network was
trained on, using only the INR’s weights.

3 BACKGROUND

Definition: Weight Classification. The learner receives as input a set of n models f1, f2, · · · , fn
where each has a corresponding label y1, y2, · · · , yn. Each model takes as input some tensor x and
outputs f(x), where the output can be a vector of logits, probabilities or other variables. Each model
is fully specified by its weights and architecture. The task of the learner is to train a classifier C, that
takes as input the model f and predicts its label y.

The Challenge. While a naive solution would be to apply a standard neural architecture directly
to the weights, this idea encounters serious setbacks. The dimension of the weight vector is very
high, but more fundamentally, the ordering of the neurons in each layer is arbitrary. Hence, different
permutations of the neurons result in functionally identical models. Standard architectures such
as MLPs and CNNs do not respect such symmetries. One popular approach by Unterthiner et al.
(2020) computes permutation-invariant statistics for the flattened weights and biases of each layer,
then trains a standard classifier on them. These statistics lose much of the information contained in
the weights, limiting the potential of this approach. Another direction is learning with equivariant
architectures (Navon et al., 2023a; Zhou et al., 2024a) which respect the permutation invariance, e.g.,
graph neural networks Kofinas et al. (2024); Lim et al. (2023). However, these methods (Kofinas
et al., 2024) treat each neuron of the model as a token, and scaling them to large architectures is
challenging (see Sec. 5.1).

Probing. Probing represents a model by running it on several fixed inputs and noting the responses
received on them. The learner can then train a classifier to map the model responses to the label. This
approach avoids the issue of weight permutation invariance as both the orders of input dimensions
(e.g., image pixels) and output dimensions (e.g., class logits) are consistent across models.

Assuming that we want to predict an attribute y of a network f , probing methods (Herrmann et al.,
2024; Kofinas et al., 2024) optimize a set of k probes (p1, ..., pk), and feed them into the network.
They then train a classifier C on the concatenation of the outputs. The prediction ŷ is:

ŷ = C(f(p1), f(p2), · · · , f(pk)) (1)

Probing methods learn the parameters of each probe p directly by latent optimization (Bojanowski
et al., 2017). Each probe provides some information about the model attributes, and learning diverse
and discriminative probes is key for obtaining a useful representation. The classifier C leverages
information from all probes, and is typically trained by cross-entropy for classification and mean
squared error for regression.

4 WEIGHT SPACE LEARNING WITH DEEP LINEAR PROBE GENERATORS

Our initial hypothesis is that probing methods, when done right, hold significant potential. Much like
binary code files, neural networks are unknown and highly complex functions. Drawing inspiration
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Table 1: Simple Probing vs. Other Approaches. We compare a simple probing approach to previous
graph based and mechanistic approaches. We average the results over 5 different seeds. For probing,
we experiment with different numbers of probes (in brackets).

Accuracy Kendall’s τ (↑)

Method MNIST FMNIST CIFAR10-GS CIFAR10 Wild Park
StatNN (0) 0.398 ±0.001 0.418 ±0.002 0.914 ±0.000 0.719 ±0.010

Neural Graphs (0) 0.923 ±0.003 0.727 ±0.006 0.935 ±0.000 0.817 ±0.007

Neural Graphs (64) 0.967 ±0.002 0.736 ±0.012 0.938 ±0.001 0.888 ±0.009

Neural Graphs (128) 0.976 ±0.001 0.745 ±0.008 0.938 ±0.000 0.885 ±0.005

Vanilla Probing (64) 0.873 ±0.026 0.784 ±0.017 0.933 ±0.001 0.885 ±0.008

Vanilla Probing (128) 0.955 ±0.005 0.808 ±0.006 0.936 ±0.001 0.889 ±0.008

Figure 2: A Few Examples from the Dead Leaves Dataset. We show these images are synthetic and
highly dissimilar to real images.

from binary code analysis, where dynamic approaches Egele et al. (2008); Bayer et al. (2006) are
more common than static ones Shoshitaishvili et al. (2016), we believe that running neural networks,
i.e., probing, is a promising approach for weight space learning. We begin with 2 preliminary
experiments to test the quality and potential of probing approaches.

4.1 A SIMPLE PROBING BASELINE

As we believe probing should be an effective way of analyzing neural networks, we begin by testing
its raw capabilities. We take a vanilla probing approach, without any enhancements or modifica-
tions, that optimizes all probes p1, p2, ..., pk with latent optimization (i.e., optimizing their values
directly) and uses a simple MLP classifier for C. We compare this vanilla probing to its top competi-
tors. First, a graph based approach (Neural Graphs) (Kofinas et al., 2024) which treats each neuron
of the network as a node and operates a transformer on the resulting computational graph. Second,
weight statistics (StatNN) (Unterthiner et al., 2020) which extracts simple statistics from the flat-
tened weights and biases of a network and trains a simple predictor over them. We test all approaches
on 4 popular benchmarks. For dataset classification, we measure the accuracy for MNIST LeCun
et al. (1998) INRs digit prediction and Fashion-MNIST Xiao et al. (2017) INRs class prediction,
both provided by Navon et al. (2023a). For generalization error prediction, we use the CIFAR10-GS
(Unterthiner et al., 2020) and CIFAR10-Wild-Park (Kofinas et al., 2024) benchmarks, measuring the
Kendall’s τ metric as common in weight-space learning evaluation. The Kendall’s τ is a statistic
used to measure the correlation agreement between two rankings, where 1 indicates perfect correla-
tion, and −1 indicates perfect negative correlation. The results are presented in Tab. 1. It is clear
that (i) with enough probes, vanilla probing is able to perform better than a graph based approach
that does not use probing. (ii) Graph based approaches become comparable to vanilla probing only
when incorporating probing features. This shows the promise of probing methods. Additionally, in
Sec. 5.1 we demonstrate that probing also requires much less computational resources than graph
based methods.

4.2 LEARNED VS. UNLEARNED PROBES

Having shown the merit in probing approaches, it is interesting to understand the quality of the
probes themselves. To do so, we replace the learned probes by a set of unlearned inputs, training
only the classifier C. We test both: (i) probes with no knowledge about the training data, selected
from random synthetic data, and (ii) probes from in-distribution data, selected from the training set
of the networks. We fix the number of probes k in all cases. In the MNIST and FMNIST INRs
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Table 2: Learned vs. Out of Distribution Probes. Comparison of learned probes, in-distribution
data probes and probes from randomly selected data. We average the results over 5 different seeds.

Accuracy Kendall’s τ (↑)

# Probes Method MNIST FMNIST CIFAR10-GS CIFAR10 Wild Park

64
Learned Probes 0.873 ±0.026 0.784 ±0.017 0.933 ±0.001 0.885 ±0.008

Synthetic Probes 0.899 ±0.022 0.832 ±0.010 0.918 ±0.001 0.882 ±0.007

In-Dist. Probes 0.899 ±0.022 0.832 ±0.010 0.939 ±0.000 0.922 ±0.008

128
Learned Probes 0.955 ±0.005 0.808 ±0.006 0.936 ±0.001 0.889 ±0.008

Synthetic Probes 0.959 ±0.006 0.856 ±0.007 0.917 ±0.001 0.893 ±0.014

In-Dist. Probes 0.959 ±0.006 0.856 ±0.007 0.941 ±0.001 0.930 ±0.011

(a) Latent Optimization (b) ProbeGen

Figure 3: Learned Probes. Optimized probes by (a) Latent Optimization and (b) ProbeGen for the
CIFAR10 Wild Park benchmark. We show the same probes for identical runs (including the seed),
except the generator module.

tasks, synthetic and in-distribution probes are the same, where we choose points from a uniform
distribution between [[−1, 1], [−1, 1]]. In the CIFAR10 cases, we select k random synthetic images
from the Dead Leaves (Baradad Jurjo et al., 2021; Lee et al., 2001) dataset as synthetic probes, and
k random images from CIFAR10 as in-distribution probes. As seen in Fig. 2, Dead Leaves images
are synthetic, unlearned and highly dissimilar to real images. We therefore choose these images as
our synthetic probes as they include some structure, yet are still far from being realistic. The results
are presented in Tab. 2. It is clear that random probes are comparable to learned ones. We conclude
that current probing techniques find suboptimal probes. To understand why these learned probes
perform worse, we first observe them in Fig. 3a. The probes show low-level, almost adversarial
patterns, which can be highly expressive (Goodfellow et al., 2014). We therefore hypothesize vanilla
probing tends to overfit. In Sec. 5.2 we demonstrate that our final method indeed overfits less than
vanilla probing, and that more expressive methods hurt performance in these tasks.

4.3 DEEP LINEAR PROBE GENERATORS

We propose Deep Linear Probe Generators (ProbeGen) for learning better probes. ProbeGen op-
timizes a deep generator module limited to linear expressivity, that shares information between the
different probes. It then observes the responses from all probes, and trains an MLP classifier on
them. While simple, in Sec. 5.1 we show it greatly enhances probing methods, and also outperforms
other approaches by a large margin.

Shared Deep Generator. Learning the probes through latent optimization prevents them from
sharing useful patterns, as they do not have any shared parameters. A straightforward way for
overcoming this is by factorizing each probe pi into two parts: (i) a latent code zi learned using
latent optimization and (ii) a deep generator network G that all probes share. Formally,

pi = G(zi) (2)
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where the latent code zi can have either a higher or a lower dimension than pi. This factorization
introduces a dependence between the probes as they all share G. It also reduces their expressivity,
as G may not be able to express all possible outputs.

Deep Linear Networks. Non-linear activations such as ReLU are the engine that makes deep
networks very expressive. However, in this case, we would like to add regularization (see Sec.
4.2) rather than increasing expressivity. We therefore remove the activations from our generator,
keeping only stacked linear layers. Work by Arora et al. (2019) showed that when using SGD, deep
linear networks have an implicit regularization effect. We therefore use deep linear networks in our
approach, i.e., stacked linear layers but without the non-linear activations between them. In Sec. 5.2,
we show that removing the activations reduces overfitting and therefore also enhances performance.

Data-Specfic Inductive Bias. In the case that our target model f takes structured inputs such as
images, we hypothesize that presenting probes from a similar distribution will achieve higher accu-
racy and reduce overfitting. As we do not know the data distribution, we cannot learn an accurate
generative model for it. Still, we can introduce data-specific inductive biases into the generator. For
example, we present a generator for images, where we simply stack 2D convolutional layers, simi-
larly to DCGAN (Radford et al., 2015). While this does not guarantee natural image statistics, it at
least encourages some local structure and multi-scale hierarchy, both of which are some of the most
important image characteristics.

5 EXPERIMENTS

Our evaluation follows the standard protocol for weight space learning. We evaluate on two tasks:
(i) CNNs generalization error prediction and (ii) detecting the training classes of images based on
INR networks trained on them. We include experiments on small-scale established benchmarks as
well as a new larger-scale Model Zoo which we present, using ResNet18(He et al., 2016) models.

Baselines. We compare our method, ProbeGen, with StatNN (Unterthiner et al., 2020),
DWS(Navon et al., 2023a), NFN (Zhou et al., 2024a), ScaleGMN (Kalogeropoulos et al., 2024)
and Neural Graphs (Kofinas et al., 2024). StatNN computes 7 statistics for the weights and biases of
each layer, concatenates them and trains a gradient boosted tree method on this representation. DWS
(Navon et al., 2023a) and NFN (Zhou et al., 2024a) train linear, permutation equivariant layers with
non-linearities between them, but DWS is not applicable for CNNs. ScaleGMN (Kalogeropoulos
et al., 2024) treats neural networks as computational graphs, accounting for permutation symme-
tries and scaling symmetries. Neural Graphs (Kofinas et al., 2024) is another graph-based approach,
where each bias is a node and the weights are the matching edges between these nodes. This method
then trains a transformer on the created graph, so the attention score between a pair of neurons de-
pends on the weight that connects them. While Neural-Graphs do not account for scaling symmetries
like the ScaleGMN baseline, it enriches each neuron’s representation by using probing features.

Datasets. We evaluate on 4 established datasets. For training data prediction we choose the
MNIST and FMNIST implicit neural representation (INR) benchmarks (Navon et al., 2023a). Both
datasets were formed by training an INR Sitzmann et al. (2020) model for each image of the origi-
nal dataset. The goal is predicting the class of an image given its INR network. For generalization
error prediction, we used the CIFAR10-GS (Unterthiner et al., 2020) and CIFAR10 Wild Park tasks
Kofinas et al. (2024). These datasets consists of thousands of small CNN models (3−5 layers), each
trained separately on CIFAR10 (Krizhevsky et al., 2009). We use accuracy for weight classification
and Kendall’s τ for regression.

Metrics. For INR class prediction, we use simple accuracy to measure performance. For predict-
ing the generalization error of CNNs, we follow standard evaluation protocol and use the Kendall’s
τ metric, which measures the agreement between two rankings. Similar to Pearson’s correlation,
with Kendall’s τ , values near 1 indicate strong positive correlation, values near −1 indicate strong
negative correlation, and values near 0 indicate no correlation.
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Table 3: Results for Small Scale Benchmarks. Comparison of ProbeGen, to graph based, mecha-
nistic approaches and latent optimized probes. We average the results over 5 different seeds.

Accuracy Kendall’s τ (↑)

# Probes Method MNIST FMNIST CIFAR10-GS CIFAR10 Wild Park

0

StatNN 0.398 ±0.001 0.418 ±0.002 0.914 ±0.000 0.719 ±0.010

DWS 0.857 ±0.006 0.671 ±0.003 - -
NFNHNP 0.791 ±0.008 0.689 ±0.006 0.934 ±0.001 -

ScaleGMNB 0.966 ±0.002 0.808 ±0.001 0.941 ±0.000 -
Neural Graphs 0.923 ±0.003 0.727 ±0.006 0.935 ±0.000 0.817 ±0.007

64
Neural Graphs 0.967 ±0.002 0.736 ±0.012 0.938 ±0.001 0.888 ±0.009

Vanilla Probing 0.873 ±0.026 0.784 ±0.017 0.933 ±0.001 0.885 ±0.008

ProbeGen 0.980 ±0.001 0.861 ±0.004 0.956 ±0.000 0.933 ±0.005

128
Neural Graphs 0.976 ±0.001 0.745 ±0.008 0.938 ±0.000 0.885 ±0.005

Vanilla Probing 0.955 ±0.005 0.808 ±0.006 0.936 ±0.001 0.889 ±0.008

ProbeGen 0.984 ±0.001 0.877 ±0.003 0.957 ±0.001 0.932 ±0.006

Table 4: FLOPs Comparison. Using 128
probes and a batch size of 64. ProbeGen is much
more efficient than graph approaches.

Billion FLOPs (↓)

Method MNIST CIFAR10-GS
Neural Graphs 63.40 94.56
ProbeGen 0.02 3.41

Table 5: Results for ResNet Scale. ProbeGen
can successfully scale to larger sized architec-
tures, and outperforms both baselines.

Kendall’s τ (↑)

# Probes Method ResNet18 Zoo
0 StatNN 0.856

128 Vanilla Probing 0.843
128 ProbeGen 0.910

5.1 MAIN RESULTS

Small-Scale Performance. Tab. 3 summarizes the results on the standard benchmarks. On INR
dataset prediction tasks, ProbeGen outperforms all benchmarks significantly, even when the base-
lines use the same number of probes. E.g., in the FMNIST class prediction task, ProbeGen out-
performs all other approaches by more than 6%, reaching an accuracy of 87.7%. ProbeGen also
outperforms the baselines on predicting the generalization error of CNNs. While vanilla probing
performs similarly to graph approaches on CIFAR10-GS, ProbeGen is clearly able to improve the
quuality of the probes, and achieves the highest result. On CIFAR10 Wild Park ProbeGen also
outperforms all previous approaches significantly, improving Kendall’s τ from 0.889 to 0.933.

Computational Cost. We compare the computational cost of ProbeGen and Neural-Graphs in
terms of floating point operations (FLOPs). We test on the MNIST INRs and CIFAR10-GS datasets,
with 128 probes and a batch size of 64 for both approaches in Tab. 4. We see that probing is a much
more efficient approach, requiring between 1.5− 3 orders of magnitude fewer FLOPs.

Large models. Knowing that probing methods are more efficient, we now wish to test if probing
methods can really scale to larger size models. We create a new dataset of over 6, 000 ResNet18
He et al. (2016) models. Each ResNet model was trained on a a randomly selected subset of Tiny-
Imagenet Le & Yang (2015); Deng et al. (2009). We sampled the subset out of a closed list of
10 subsets, that we created in advance. For each model, we record its generalization (test) error,
and the objective is to predict this error given the model weights. Graph based methods were too
computationally expensive in this scale. Tab. 5 shows the results. ProbGen achieves the best results
reaching a 0.91 kendall’s τ , significantly outperforming both vanilla probing and statNN.
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Figure 4: Overfitting for Different Generators.
We compare ProbeGen to linear generators with
fully connected layers, and non-linear convolu-
tional generators. Overfit is measured by the
generalization gap of each method. Results are
averaged over 5 seeds.

Figure 5: Ablation Studies. We compare
the performance of ProbeGen, linear generators
with fully connected layers, and non-linear con-
volutional generators, for varying numbers of
layers. With less than 2, all versions are equiva-
lent to ProbeGen. We average over 5 seeds.

Table 6: Number of Probes. We compare ProbeGen to vanilla probing with different numbers of
learned probes. We average over 5 different seeds.

FMNIST (↑) CIFAR10 Wild Park (↑)

# Probes Vanilla ProbeGen Vanilla ProbeGen
16 0.686 ±0.043 0.805 ±0.006 0.882 ±0.010 0.926 ±0.007

32 0.764 ±0.013 0.844 ±0.006 0.884 ±0.008 0.930 ±0.005

64 0.784 ±0.017 0.861 ±0.004 0.885 ±0.008 0.933 ±0.005

128 0.808 ±0.006 0.877 ±0.003 0.889 ±0.008 0.932 ±0.006

5.2 ABLATION STUDIES

Linear Generators. By observing Fig. 3, we hypothesized that removing the activations between
the linear layers of the generator will reduce its overfitting. We therefore compare the results with
and without non-linear activations. Indeed, as seen in Fig. 4, using non-linear activations results in
a higher generalization gap, i.e., more overfitting. The amount of overfitting is even worse when not
using a generator at all. In Fig. 5 we see that these activations also harm the model’s performance,
suggesting they lead to probes with reduced generalization abilities. In App. A we provide ablations
demonstrating that, for these tasks, a deep linear generator outperforms other regularizations.

Structure of Probes. First, we show several probes optimized via latent optimization and the
same ones when optimized by ProbeGen (see Fig. 3). Although both not interpetable by humans,
it is clear that ProbeGen probes have much more structure than latent-optimized ones. In Fig. 4 we
demonstrate this has a regularizing effect, as ProbeGen significantly reduces the generalization gap
compared to vanilla probing.

Additionally, we also test the contribution of the local inductive bias. By replacing the convolutional
layers in our generator to fully-connected ones, we completely remove this bias from the generator.
Comparing the fully connected generator to our original ProbeGen helps isolate the effect of the
local bias, as: (i) Both versions are linear, meaning the fully-connected model is less restricted, and
(ii) the size of the feature maps is kept similar throughout the generation process in both versions.
Therefore, the primary difference is the inductive bias introduced by the convolutional layers. We
compare the results in Fig. 5 for different numbers of layers. Indeed, we see the generators inductive
bias is important, as ProbeGen consistently outperforms the fully connected version.

Number of Probes. We compare ProbeGen to vanilla probing for differing numbers of probes.
The results in Tab. 6, show that ProbeGen significantly improves over vanilla probing, even when
using only a fraction of the number of probes. In the FMNIST case, ProbeGen with 32 probes
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(a) ProbeGen (b) Vanilla Probing

Figure 6: MNIST Representations Extracted by ProbeGen vs. Vanilla Probing. We place the
INR prediction in the probe locations. Other pixels are in gray.

already surpasses vanilla probing with 128 probes by almost 4% accuracy. In the CIFAR10 case 16
ProbeGen probes are already significantly better than 128 latent optimized ones.

Representation Interpretability. ProbeGen represents each model as an ordered list of output
values based on carefully chosen probes. These representations often have semantic meanings as
the output space of the model (here, image pixels or logits) are semantic by design. For the MNIST
INRs dataset, we visualize the inputs and outputs together, showing the partial image created by
the probes. Fig. 6 displays several representations for a few randomly selected images, comparing
ProbeGen with vanilla probing. Vanilla probing chooses locations scattered around the image, in-
cluding pixels far out of the image, where the behaviour of the INR is unexpected. ProbeGen on the
other hand, chooses object centric locations, as suitable for this task. Indeed, one can easily identify
the digits in the images despite only observing less than 20% of their pixels, hinting that this probe
selection simplifies the task for the classifier module.

In Fig. 7 we visualize the representation (i.e., logits) of ProbeGen when trained on the CIFAR10
Wild Park dataset. We can see that the values become more uniform as the accuracy of the models
decreases, and sharper as it increases. This suggests that ProbeGen uses some form of prediction
entropy in its classifier. We further test this hypothesis by training a classifier that only takes the
entropy of each probe as its features. We find that while not as effective as ProbeGen, this classifier
is still able to achieve a Kendall’s τ of 0.877. Hence, even when taken alone, prediction entropy is
in fact highly discriminative for this task.

6 DISCUSSION

Black-box settings. We showed the potential of probing for learning from models. A side benefit
of probing, compared to other approaches, is that it is suitable for inference on black-box models
without any further adjustments. As probing only observes models responses, at inference time it
could simply probe a black-box model by its API, then make a prediction based on the outputs.

Other modalities. ProbeGen incorporates inductive biases into the probe generator module. We
tested it on images, showing its potential when having the right inductive bias, however, other modal-
ities could require different structural biases. E.g., in audio, a consistency term would probably be
helpful to simulate realistic recordings, and textual data may even require some pre-training for lin-
guistic priors of the probes. In App. B we present a preliminary experiment using INRs trained on
point clouds, demonstrating that ProbeGen’s success generalizes to other modalities as well.

Adaptive probing. One interesting future direction for improving probing is being able to adap-
tively choose the probes used to test each model. Probing models can than learn a policy for this
adaptive selection, which would potentially improve accuracy for a given certain probe budget. An
early work by Herrmann et al. (2024) showed this could be effective for sequential models.
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Figure 7: CIFAR10 Wild Park Representations Extracted by ProbeGen’s Learned Probes.
Each representation includes the 10 predicted probabilities (rows) given ProbeGen’s 128 probes
(columns), and above it are its true and predicted accuracies. Samples are sorted by true accuracy.

7 LIMITATIONS

Output space structure. While we demonstrated probing is a powerful tool for learning from
neural networks, it requires the input and output dimensions to retain the same meaning across mod-
els. There are important cases that do not satisfy this requirement, e.g., a repository of classification
models with different classes in each model. Here, the output space for each varies and even if
models share the same classes their order may still differ. Extending probing method to deal with
the above cases is an important direction for future work.

Weight generative tasks. Probing only looks at the input and output layers of each mode. There-
fore, it cannot be used to give layer or weight level predictions. That means that it is not suitable for
weight generation tasks, such as editing or creating new neural networks.

Scalability. In Sec. 5.1 we showed probing is much more computationally efficient than previous
graph based approaches. Still, it requires forwarding the entire model a few times and computing
the gradients through the model, with multiple models in each batch. This means that in order to
infer about a model using probing, one would need computational resources equivalent to training
such a model. This would require a non-trivial solution for learning from larger models, e.g. CLIP
(Radford et al., 2021) or Stable Diffusion (Rombach et al., 2022), under a limited compute budget.

8 CONCLUSIONS

This paper championed probing methods for weight space learning and improved them to achieve
better than state-of-the-art performance. We first showed that a vanilla probing approach, based
on latent optimization, outperforms previous methods. However, we found that the learned probes
are no better than randomly sampled synthetic data. To learn better probes, we proposed deep linear
generator networks that significantly reduce overfitting through a combination of implicit regulariza-
tion and data-specific inductive bias. Beside consistently achieving the highest performance, often
by a large margin, our method requires 30 to 1000 fewer FLOPs than other top methods.

9 SOCIAL IMPACT

The goal of this paper is to further our understanding of neural networks. We expect this increased
understanding to be helpful for reducing the social risks of AI such as bias and model safety.

10



Published as a conference paper at ICLR 2025

10 ACKNOWLEDGMENTS

This work was partially supported by the Israel Science Foundation (ISF), the Council for Higher
Education (Vatat), the Center for Interdisciplinary Data Science Research (CIDR), the Israeli Cyber
Authority, and KLA.
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Figure 8: Ablating the Number of Probes used for Point Cloud INRs Classification. We show that
ProbeGen exhibits a much better scaling law when classifying point clouds, compared to Vanilla
Probing. Notably, ProbeGen with 32 probes already outperforms Vanilla Probing with 2048 probes.

A OTHER REGULARIZATIONS

We compare deep linear generators to a range of ℓ2 weight decay regularization strengths. We
present the results in Tab. 7. Our results show that while adding some regularization might be help-
ful, it is not as good as a deep linear generator, and requires aggressive hyper-parameter tuning of the
regularization strength, including non-standard values (a weight decay of 10−7, 10−8), where a deep
linear generator does not. Moreover, these regularizations are not consistent between experiments,
and there is no single value that fits all experiments. We conclude that a deep linear generator, as
presented in ProbeGen, provides a stable and subtle regularization that fits weight-space analysis.

Table 7: Performance Comparison of Different Regularizations vs. ProbeGen.

Accuracy Kendall’s τ (↑)

Method MNIST FMNIST CIFAR10-GS CIFAR10 Wild Park
Non-Linear Gen. + L2 Reg. (10−2) 0.942 0.531 0.758 0.442
Non-Linear Gen. + L2 Reg. (10−3) 0.979 0.858 0.824 0.547
Non-Linear Gen. + L2 Reg. (10−4) 0.981 0.867 0.861 0.737
Non-Linear Gen. + L2 Reg. (10−5) 0.982 0.869 0.911 0.871
Non-Linear Gen. + L2 Reg. (10−6) 0.982 0.870 0.941 0.905
Non-Linear Gen. + L2 Reg. (10−7) 0.982 0.869 0.947 0.922
Non-Linear Gen. + L2 Reg. (10−8) 0.981 0.870 0.948 0.928

ProbeGen 0.984 0.877 0.957 0.932

B ANOTHER DATA MODALITY: POINT CLOUDS

We extend our evaluation to include a more complex data modality: point clouds. Specifically, we
use the Neural-Field-Arena (Papa et al., 2024), to evaluate ProbeGen’s ability in classifying INRs
trained on point clouds from the ShapeNet (Chang et al., 2015) dataset. The goal is to detect the
class of the point cloud each INR was trained on, directly from the INR’s weights. As shown in
Table 8, ProbeGen consistently outperforms all prior approaches, including Vanilla Probing.

Figure 8 further examines the efficiency of probing methods with respect to the number of probes
used. We can see that even under a highly restrictive budget of 32 probes, ProbeGen is able to
surpass all baselines. Notably, this 32 probes version of ProbeGen outperforms Vanilla Probing
with 2048 probes, showing ProbeGen’s better scaling laws.
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Table 8: Point Cloud INRs Classification. We show that ProbeGen can successfully learn from
models trained on more complex data modelities, such as point clouds. Number of probes is in
parentheses.

Accuracy

Method Point Clouds INRs
DWS 0.911
Neural Graphs 0.903
Vanilla Probing (128) 0.913
ProbeGen 0.930

C IMPLEMENTATION DETAILS

Generator Architecture. For image generation, we use a transposed convolution based generator.
With each layer, the feature maps spatial sizes doubles in each axis (and 4 times overall), while
the number of neurons (channels) decrease by half. We choose a generator width multiplier of
16, i.e., our generators last layer has 16 input channels, and the channels multiply by 2 with each
previous layer. Our image generators has 6 transposed convolutional operators for experiments on
the CIFAR10-GS and ResNet18 cases, and 5 for experiments on the CIFAR10 Wild Park dataset.

For our INR coordinates generators we use Fully-connected layers, with a hidden size of 32. These
generators use 2 fully-connected layers for both FMNIST INRs and MNIST INRs.

Hyper-parameters. We use a learning rate of 3·10−4 and a batch size of 32 in all our experiments.
Our MLP classifier C, uses 6 layers with a hidden size of 256. The latent vectors of each probe are
of size 32. We trained all probing algorithms on the INR and CIFAR10 Wild Park experiments
for 30 epochs, all experiments on the CIFAR10-GS dataset for 150 epochs, and all experiments on
our ResNet18 Model Zoo dataset for 100 epochs. Additionally, we trained all baselines using their
default hyper-parameters.

(a) Vanilla Probing (Latent Optimization) (b) Single Layer Generator

(c) 3 Layers Generator (d) ProbeGen (5 Layers)

Figure 9: Learned Queries by Deep Linear Generators. Queries learned by deep linear generators
and vanilla probing, for the CIFAR10 Wild Park dataset.
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Fully-Connected Image Generators. We find that optimizing fully connected generators with
the exact same dimensions as ProbeGen leads to sever overfitting. Therefore, instead of having
C ×H ×W hidden dimensions (where H and W are the spatial sizes created by the convolutions)
in each layer, we choose 3×H ×W which empirically worked much better.

D QUERIES OF DIFFERENT PROBING APPROACHES

We qualitatively compare the learned queries by different probing algorithms. We visualize the same
random subset of the queries from each algorithm, learned for the CIFAR10 Wild Park dataset.

In Fig. 9, we provide queries learned by our ProbeGen using different numbers of layers. We see
the queries gradually develop structure as the number of layers increases. This goes in line with our
hypothesis from Sec. 4.3.

Next, we provide a visualization of the queries of ProbeGen with activations between its linear
layers. These queries are provided in Fig. 10. We see a more repetitive structure in these queries
than in the standard ProbeGen, indicating the information may reside to more local patterns, which
are not necessarily object centric as CIFAR10 tends to be.

Finally, we observe the queries from a fully-connected generator. Presented in Fig. 11, these queries
show very little structure even when the generator have 5 layers. The structure is of local patterns,
as there are no convolutions to present a hierarchical order. This shows the convolutional operators
indeed enforce the desired structure on its queries.

(a) 2 Layers with Activations (b) 3 Layers with Activations

(c) 4 Layers with Activations (d) ProbeGen (5 Layers) with Activations

Figure 10: Learned Queries by Non-Linear Generators. Queries learned by non-linear generators
for the CIFAR10 Wild Park dataset.
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(a) 2 Fully-Connected Layers (b) 3 Fully-Connected Layers

(c) 4 Fully-Connected Layers (d) 5 Fully-Connected Layers

Figure 11: Learned Queries by Fully-Connected Linear Generators. Queries learned by fully-
connected linear generators for the CIFAR10 Wild Park dataset.
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