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Abstract

Pruning is one of the classical methods for network compression and model accel-
eration. There are two main ways pruning can be implemented: iterative pruning
and one-shot pruning. In the literature, iterative pruning appears to have more
proponents; however, the support for this method is often taken for granted without
any substantial justification. Conversely, other approaches favour one-shot pruning.
Despite the long history of pruning, there has been no thorough comparison of these
two techniques. In this work, we conduct a broad and comprehensive benchmark
to evaluate the regimes in both structured and unstructured pruning setting. Our
findings indicate that we cannot conclusively determine which method is superior,
but present scenarios where one-shot pruning is preferable for lower pruning ratios
while iterative methods in higher pruning rates. This study also proposes a hybrid
approach that outperforms both one-shot and traditional iterative pruning.

1 Introduction

Pruning is a crucial technique used to reduce the size of these networks without significantly compro-
mising their performance [39, 2, 14, 20, 28, 27, 6, 31]. By cutting down the excess parts of a network,
we can achieve results comparable to those obtained with fully trained networks, with a reduced
size of the model, which improved efficiency and reduces the cost of inference. Pruning techniques
can be broadly classified into two categories: one-shot pruning and iterative pruning. Despite the
prevalence of these methods, a systematic comparison of these two approaches under various regimes
is lacking in the literature. Previous investigation is centred around either the pruning criteria [39, 21]
or the pruning methods [28, 3, 37] themselves. This lack of comparative analysis leaves a gap in
understanding how different pruning regimes perform under varying conditions and configurations.

In this work, we thoroughly examine and compare the performance of one-shot and iterative pruning.
This work organizes and synthesizes various pruning regimes found in the literature, providing a
clearer framework for future research. A key contribution is the introduction of a geometric pruning
ratio scheduler, which prunes a fixed percentage of remaining weights at each step, demonstrating
its effectiveness in iterative pruning. The work also proposes hybrid pruning methods, highlighting
their potential advantages in specific contexts. Finally, it emphasizes the importance of retraining and
iterative pruning rates in pruning algorithms, advocating for a patience-based fine-tuning approach.

We summarize the key findings of this work: 1. One-shot pruning can perform better than iterative
pruning for lower pruning rates, and iterative pruning is better for higher rates. 2. Iterative geometric
pruning is superior to iterative pruning constant in most cases. 3. Using early stopping allows for a
more suitable fine-tuning time. 4. Number of retraining iterations matter. 5. One-shot pruning in
many cases requires less overall retraining time compared to iterative pruning, as it avoids the need
for multiple cycles of pruning and retraining. This can be beneficial when computational resources
are limited.
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2 Pruning regimes

In the context of neural network optimization, pruning regimes can be split into categories based
on the following question:Should we prune all the weight at once, or should we divide the pruning
between different iterations that are separated by modifying the structure of the network and weight
updates?

For the purpose of the comparison of the pruning regimes, assume that W is the total number of
weights in the neural network and p is the desired pruning percentage. E.g. p = 0.8 means a pruning
of 80% of weights.

• One-shot Pruning: One-shot pruning involves removing a specified percentage of weights
(or neurons) in a single step. The least significant weights are eliminated based on a
predetermined importance criterion. The final number of weights remaining after one-shot
pruning is given by:

(1− p)×W

• Iterative Pruning: Iterative pruning is a process where weights are pruned over multiple
iterations, allowing the network to gradually retrain and recover some performance loss.
In each iteration the ranking, pruning, and fine-tuning occurs. We define two common
approaches to iterative pruning and name them differently to avoid confusion.

– Iterative Constant: A constant number of parameters is pruned at each step. Let steps
be the number of iterations, then p×W

steps weights are pruned at each stage. The pruned
percentage per step is fixed in relation to the initial number of weights.

– Iterative Geometric Pruning: A fixed percentage p of the remaining weights is
pruned at each step, meaning that as the pruning process progresses, progressively
fewer weights are pruned.
The number of weights at step n is given by the following formula: W × (1− p

steps )
n

• Hybrid pruning: We propose a new pruning regime, hybrid (few-shot) pruning, which is a
combination of the idea of one-shot and geometric regimes. The majority of the weights are
removed at the first one-shot like step and the model is retrained for a longer time. Then for
the remaining weights, we perform a more fine-grained geometric-like pruning over several
iterations.
The hybrid pruning approach can be summarized as follows:

1. One-shot pruning to a given pruning percentage pk with a longer fine-tuning.
2. Iterative geometric pruning from pk to a desired final pruning percentage p.

3 Pruning regime factors

Pruning regimes, both one-shot and iterative, come with parameters that have decisive impact on their
performance. Therefore, to properly evaluate the regimes, we shall take them into account. Besides,
see Appendix for an analysis of these factors in pruning methods in literature.

3.1 Fine-tuning

Fine-tuning is a crucial step in the pruning process, serving to recover the performance of a neural
network after portions of its weights have been removed. The necessity of retraining arises because
the initial pruning can degrade the model’s accuracy by eliminating parameters that the network had
previously relied on for making predictions.

Retraining is necessary both in case of one-shot and iterative pruning but can vary in length. The
larger the drop in accuracy, the longer the fine-tuning should last, and the drop in accuracy correlates
with the number of parameters that are pruned and their utility. Consequently, the fine-tuning phase
is longer for one-shot and shorter for each iteration in case of iterative pruning.

The length of the update in both one-shot and iterative has not, however, been properly researched,
with each method selecting its own value. For example, [33] performs fine-tuning for the original
training time, which may be computationally wasteful as the network is not trained from scratch. On
the other hand, in [30, 4] the model is fine-tuned for one epoch after pruning in each iteration.
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(a) ResNet-18 / CIFAR-10
(Unstructured) (b) EfficientNet / CIFAR-10

(Unstructured) (c) ViT / CIFAR-10
(Unstructured)

(d) ResNet-18 / CIFAR-100
(Unstructured) (e) EfficientNet / CIFAR-100

(Unstructured) (f) ViT / CIFAR-100
(Unstructured)

(g) ResNet-18 / Imagenet
(Unstructured) (h) ResNet-18 / CIFAR-10

(Structured) (i) ResNet-18 / CIFAR-100
(Structured)

Figure 1: Comparison of one-shot pruning and iterative pruning across various network architectures
and datasets. The iterative pruning comes in two types: constant and geometric. The plots show the
benefits of patience-based pruning (Pat) (see Appendix for more details on patience)

3.2 Iteration pruning rate.

In pruning, the inherent parameter is final pruning percentage, additionally we need to set the number
of iterations or the pruning rate per iteration. Given the values from literature, we look at a range
of pruning rates from single to double-digit iterative pruning rates for both constant and geometric
iterative pruning. In case of the constant pruning, the iterative rate should divide the final pruning
rate the without a remainder. In case of the geometric pruning rate, the amount of pruned weights are
each iteration decreases and the rate is determined so that the geometric sum of the pruning rates at
each iteration sum up to perform a whole number of iterations.

4 Empirical evaluation

We perform experiments on several datasets and model architectures. The datasets include CIFAR-10
[17], CIFAR-100 and Imagenet1K [5]. The experiments are performed both on convolutional neural
networks and transformers, in particular ResNet [12], EfficientNet [34] and Visual Transformer [7].
As recommended in [10], we use 1/10th of the original learning rate for the fine-tuning phase.

4.1 One-shot patience, fixed iterative retraining and Iterative patience

In this experiment, we show that one-shot pruning can be effective when provided with an appropriate
retraining length, and may outperform iterative pruning. In one-shot pruning, we apply patience-
based retraining, which allows the pruned model to terminate when no improvements are seen over
a specified number of epochs. Patience-based retraining is a more natural way than setting a fixed
number of epochs, which can turn out to be too little or too much and avoids more than one retraining
to find the optimal number of epochs.
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This is in contrast with iterative pruning that is often given a fixed fine-tuning phase, with sometimes
as little as one fine-tuning epoch [4]. Here, we look through a set of fixed values for both iterative
pruning regimes, and select the best result, which is plotted in Figure 1. The experimental results show
that short fixed fine-tuning phase in case of iterative pruning underperforms patience-based pruning.
The experimental results show that one-shot pruning outperforms iterative pruning, especially for
pruning rates lower than 80%. This consistent result across datasets shows that when the pruning
level is lower (that is, less than 80%), performing iterations is unnecessary and all the weights can be
removed at one shot. The geometric iterative pruning performs better for higher pruning ratios and in
case of transformers and structured pruning.

Subsequently, we compare one-shot pruning with iterative pruning when both regimes utilize the
patience-based retraining. We proposed patience-based iterative pruning as a more effective alternative
of iterative pruning fine-tuning. Since at every iteration a smaller fraction of weights is pruned, we
also set the patience relatively smaller compared to the one-shot to make complete retraining length
manageable. As seen in Figure 1, patience-based iterative pruning leverages iterative pruning to
higher accuracies, in particular for high-pruning ratios. In Appendix we also take into account the
retraining budget in addition to the pruning rate and pruning accuracy

4.2 Hybrid (Few-Shot)

The observations from this benchmark study have led us to conclude that for lower pruning ratios,
performing pruning in one-shot is more beneficial than iterative pruning. Inspired by this finding, we
propose a hybrid few-shot regime. Hybrid pruning combines the two modes of training to prune a
large part of the network in a one-shot-like manner, and then follows with a more tuned approach
that used geometric pruning. This combination leads to results that outperform all the benchmarks
regimes and provides insights into a better way of pruning.

The results are presented in Figure 2 and shows that the hybrid approach is the preferable choice
across almost all pruning rates. Hybrid pruning carries the benefits of both one-shot and iterative
pruning. It removes the majority of weights in the first iteration, avoiding redundant iteration in the
early stage of the pruning process. At the same time, the hybrid approach retains the sensibility of
geometric iterations, where at the higher pruning rates the remaining weights carry more importance
and require more fine-grained consideration.

(a) ResNet-18 / CIFAR-10 (b) ResNet-18 / CIFAR-100

Figure 2: Hybrid approach in comparison with one-shot and iterative pruning.

5 Conclusions

One-shot pruning can perform better than iterative pruning for lower pruning rates, and iterative
pruning is better for higher rates, especially considering the fine-tuning length and computational cost.
Iterative geometric pruning is superior to iterative pruning constant in most cases. Using patience
allows for higher accuracy recovery than small fixed-epoch iterative pruning and is more efficient
than setting up a very high number of epochs, it is also a more natural and easier way to set the length
of fine-tuning. One-shot pruning in many cases requires less overall retraining time compared to
iterative pruning, as it avoids the need for multiple cycles of pruning and retraining.
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Appendix

A Pruning regimes in literature

Pruning is widely regarded as one of the oldest and most established techniques for compressing
neural networks. Historical research has shown that training large networks and subsequently
removing weights can significantly enhance computational and parameter size efficiency [18, 11].
Despite this, the literature does not present a unified procedure for network pruning, with two main
approaches identified: one-shot pruning and iterative pruning. These methods typically focus more
on the criterion for pruning, such as magnitude or derivative-based methods, and less on the specifics
of how pruning is implemented. Often, descriptions of pruning procedures do not include details
like the exact percentage of weights removed in each iteration. However, as argued in Section 4, the
pruning percentage is a critical aspect that influences the number of pruning epochs and ultimately
affects performance.

We provide a summary of common pruning methods and their training protocols in Table 1

One-shot pruning. One-shot pruning requires one cycle of pruning and retraining and is appreciated
in literature due to its computational efficiency. One-shot pruning requires computing node ranking
only once, leading to the final shape of the network in one step.

One-shot pruning is often applied in methods for which the cost of pruning is high. [13] removes
filters near the geometric median, claiming that they can be represented by the remaining filters. The
geometric median is a non-trivial problem in computational geometry and is acknowledged to be
computationally expensive. On the other hand, Dirichlet pruning [1] requires a phase of training to
compute the parameters of Dirichlet distribution, which are importance weights. Then CURL [29]
removes all unimportant filters of all layers at once via KL-divergence based criterion.

Once the pruning phase is done, the retraining follows. The length of retraining has not been properly
research before, either. The methods often fix the number of retraining epochs to an arbitrary number.
For example, the above-mentioned CURL fine-tunes the model for 100 epochs.

Iterative pruning. Iterative pruning has emerged as a method for optimizing neural network
architectures by gradually removing less important parameters or structures and fine-tuning the
network to maintain performance. Unlike one-shot pruning, which removes a significant portion
of weights or neurons in a single step, iterative pruning involves multiple cycles of pruning and
retraining.

For large networks and most of the methods, iterative pruning is prohibitive for unstructured pruning
due to the large number of single parameters. For small networks, the concept of iterative pruning
dates back to early works such as Optimal Brain Damage (OBD) [11] and Optimal Brain Surgeon
(OBS) [11], where unimportant connections are identified and removed based on second-order
derivatives of the loss function with respect to the weights. Due to computational costs of computing
pruning criterion that can be high and when the forward passes are required, either only one [36] or a
few [24] batches (iterations) are used to assess the parameter sensitivity.

In iterative pruning, many works select a constant pruning rate, that is a fixed percentage, that is
applied at each iteration. The pruning rate, however, varies across different methods. [31] uses first
and second-order Taylor expansions to approximate a filter’s contribution. The method removes
10 neurons every 30 mini-batches until the predefined number of pruned neurons is reached. Then
fine-tuning is done for a total of 25 epochs. In [33] the authors prune 20% lowest-magnitude weights
globally and then retrain the network using learning rate rewinding followed by retraining for the
original training time. [21] searches for optimal sub-architecture randomly. The method removes
10% of the weights, which is followed by fine-tuning phase.

The number of pruned elements can also be selected based on various criteria that are hyperparameters
of the method. In their work, [10] selects the number of pruned elements based on a custom threshold.
All the elements whose magnitude is smaller than the threshold are removed. For [26] in each
pruning iteration, the algorithm identifies and removes the least important channel(s) based on the
calculated Fisher Information scores. The number of channels can vary based on the importance
scores calculated. Then [24] describes that the pruning ratio follows a hyperharmonic sequence,
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Method structure regime step

HRank [25] structured iterative (custom)
ThiNet [30] structured iterative (custom)

SSS [16] structured iterative (unspecified)
Revisiting Random Pruning (RRCP) [21] structured iterative (constant) 10%

Fisher information [36] structured iterative
Learning rate rewinding [33] both iterative (constant) 20%
Optimal brain damage [18] unstructured iterative
Optimal brain surgeon [11] unstructured iterative

Learning weights and connections [10] unstructured iterative
Taylor Expansion [31] structured iterative (constant) 2%

Group Fisher Information [22] structured iterative (custom)
Empirical Sensitivity Analysis [24] structured iterative (custom)
CURL (KL-divergence metric) [29] structured one-shot

Dirichlet Pruning [1] structured one-shot
Geometric Median [13] structured one-shot

Table 1: A list of selected pruning methods and their corresponding training regimes

where the i-th pruning ratio is determined by 1 − 1
(i+1)α . [25] prunes the predefined number of

channels but does it layer-wise, fine-tuning the network after pruning each layer. Moreover, [30]
use the statistics from the next layer to prune the current layer. The network is pruned by layer with
different compression rates. The method fine-tunes one or two epochs after the pruning of one layer.

Pruning criteria. In this work, we perform all the experiments using magnitude-derived criteria
that include weight magnitude for unstructured pruning and L1 and L2-norms for structured pruning.
It should be noted that although magnitude-based pruning is not the only pruning technique, the
magnitude-based criteria are the most widespread pruning criteria applied across a variety of methods
[9, 10, 33]. Moreover, these approaches are the most frequently used and have consistently proven to
be reliable and effective, as highlighted in the results presented by [15]. Finally, due to the low cost
of computing parameter importance, magnitude-based criteria are essential for benchmarking as they
allow us to perform a wide range of experiments that would not be possible for other criteria.

Pruning at initialization and during training. While this work focuses on the post-train pruning
that uses the train-prune-retrain scheme, we acknowledge other types of pruning. Pruning at initial-
ization [8, 19, 35] does not prune a trained model, instead it looks to extracting a smaller model and
training it from scratch to achieve similar performance to the larger model.

Another group of methods performs pruning during training by introducing regularization that pushes
some parameters to zero [38, 32]. For example, [38] introduces scaling factors that scale the outputs
of certain structures in the CNNs. Sparse regularizations are applied to these scaling factors to phase
them out during training.

A.1 Unstructured and structured pruning

Pruning networks can be done for individual weights or for structures within the network. Each of
them is important in its own regard and broadly researched. Hence, this benchmark includes tests
where both unstructured and structured pruning are considered.

Unstructured pruning. Unstructured pruning involves selectively removing individual weights
from the neural network based on certain criteria, such as the magnitude of the weights or their impact
on the loss function [9, 8]. This method creates sparse weight matrices, where many elements are
zero. Although it can significantly reduce the number of parameters, it often requires specialized
hardware or software optimizations to achieve practical computational benefits because the remaining
weights are distributed irregularly throughout the network.

Structured pruning. Structured pruning, on the other hand, removes entire structures within the
neural network, such as filters, channels, neurons, or even layers [14, 39, 28, 22, 23]. This method
results in a more compact and regular network architecture that retains its original dense matrix
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structure, making it easier to implement and optimize on standard hardware. Structured pruning
can lead to significant reductions in both the model size and computational requirements, while
maintaining a more organized and efficient network. Applying structured pruning at high sparsity
ratios poses greater challenges compared to unstructured methods, as it involves eliminating entire
rows and columns instead of just individual elements within a weight matrix.

The presented regimes in the next section can apply to both types of pruning, unstructured and
structured. However, the implementation may differ as a result of constraints imposed by the structure
of the pruned entity.

B Retraining budget

In this section, we take into account the retraining budget in addition to the pruning rate and pruning
accuracy. We ask ourselves the question: For a given pruning rate and computational budget,
what is the method that provides us with the best performance? We present three plots for three
different pruning rates and compare the budgets used by one-shot and iterative pruning to achieve a
given accuracy. The presented results are for ResNet architecture trained on CIFAR-10. Please see
Appendix for more plots.

The budget is given in the number of retraining epochs. In the case of one-shot pruning, this is a
single sequence of epochs. In the case of iterative pruning, we sum the epochs trained over all the
iterations.

As Figure 3 shows, one-shot pruning is the most efficient regime for pruning rate, up to 80 percent
across all computational budgets. In both, it achieves higher accuracy across the range of the total
epochs. However, for higher pruning rates the iterative pruning performs improves and would be the
method of choice.

(a) Pruning rate 70% (b) Pruning rate 80% (c) Pruning rate 92%

Figure 3: The performance of training regimes for fixed computational budget, given in terms of total
number of epochs. One-shot is more efficient for pruning rates below 80% while iterative geometric
for higher pruning rates.

C Early-stopping

In this work, we advocate the use of patience or early-stopping to select the number of fine-tuning
epochs. We apply patience both for one-shot pruning and iterative pruning. Patience allows gauging
the number of required fine-tuning epochs. During fine-tuning, we keep the best checkpoint and keep
the training until the given criterion does not improve. Then we revert to the best checkpoint. The
advantage of patience over fixed number of epochs is that it is hard to predict the required number of
fine-tuning epochs to achieve a good result, patience allows gauging the length of the fine-tuning.
Instead of specifying the number of fine-tuning epochs as it is common in literature, we define the
patience, the number of epochs the fine-tuning continues before the given criteria does not improve.
The details of the proposed patience algorithm are given in Algorithm 1.
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Algorithm 1 Early Stopping Check
Note: This code assumes that a lower metric value indicates better performance (e.g., loss). Otherwise,
if a higher metric value is better (e.g., accuracy) the code is run with a reversed comparison.

1: procedure EARLYSTOP(metric_value : float)
2: if metric_value < self.best_metric_value then
3: self.best_metric_value← metric_value
4: self.counter ← 0
5: else if metric_value > (self.best_metric_value+ self.min_delta) then
6: self.counter ← self.counter + 1
7: end if
8: if self.counter ≥ self.patience then
9: return True

10: end if
11: return False
12: end procedure
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