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ABSTRACT

Insertion, deletion, and substitution (IDS) error-correcting codes have garnered
increased attention with recent advancements in DNA storage technology. How-
ever, a universal method for designing IDS-correcting codes across varying chan-
nel settings remains underexplored. We present an autoencoder-based method,
THEA-code, aimed at efficiently generating IDS-correcting codes for complex
IDS channels. In the work, a Gumbel-Softmax discretization constraint is pro-
posed to discretize the features of the autoencoder, and a simulated differentiable
IDS channel is developed as a differentiable alternative for IDS operations. These
innovations facilitate the successful convergence of the autoencoder, resulting in
channel-customized IDS-correcting codes with commendable performance across
complex IDS channels.

1 INTRODUCTION

DNA storage, a method that utilizes the synthesis and sequencing of DNA molecules for information
storage and retrieval, has attracted significant attention (Church et al., 2012; Goldman et al., 2013;
Grass et al., 2015; Erlich & Zielinski, 2017; Organick et al., 2018; Dong et al., 2020; Chen et al.,
2021; El-Shaikh et al., 2022; Welzel et al., 2023).

Due to the involvement of biochemical procedures, the DNA storage pipeline can be viewed as an
insertions, deletions, or substitutions (IDS) channel (Blawat et al., 2016) over 4-ary sequences with
the alphabet {A,T,G,C}. Consequently, an IDS-correcting encoding/decoding method plays a key
role in DNA storage.

However, despite the existence of excellent combinatorial IDS-correcting codes (Varshamov &
Tenenholtz, 1965; Levenshtein, 1965; Sloane, 2000; Mitzenmacher, 2009; Cai et al., 2021; Gabrys
et al., 2023; Bar-Lev et al., 2023), applying them in DNA storage remains challenging. The IDS
channel in DNA storage is more complex than those studied in previous works, with factors such as
inhomogeneous error probabilities across error types, base indices, and even sequence patterns (Hi-
rao et al., 1992; Press et al., 2020; Blawat et al., 2016; Cai et al., 2021; Hamoum et al., 2021).
Additionally, most of the aforementioned combinatorial codes focus on correcting either a single
error or a burst of errors, whereas multiple independent errors within the same DNA sequence are
common in DNA storage.

Given the complexity of the IDS channel, we leverage the universality of deep learning methods by
employing a heuristic end-to-end autoencoder (Baldi, 2012) as the foundation for an IDS-correcting
code. This approach allows researchers to train customized codes tailored to different IDS channels
through the same training procedure, rather than to design specific combinatorial codes for each IDS
channel setting, many of which have not yet been explored.

To realize this approach, two novel techniques are developed, which we believe offer greater contri-
butions to the communities than the code itself.

Firstly, the discretization effect of applying Gumbel-Softmax in a non-generative model is inves-
tigated in this work. Originally proposed as a differentiable approximation for categorical sam-
pling (Jang et al., 2017; Maddison et al., 2017; Huijben et al., 2023), Gumbel-Softmax has been
widely used as a reparameterization trick, particularly in variational autoencoders. It is found that
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applying Gumbel-Softmax in a non-generative model induces discretized features, which align with
the discrete codewords of an error-correcting code (ECC). This discovery may offer an alternative
method for bridging the gap between continuous deep models and discrete applications.

Secondly, a differentiable IDS channel using a transformer-based model (Vaswani et al., 2017) is
developed. The non-differentiable nature of IDS operations presents a key challenge for deploying
deep learning models that rely on gradient descent training. To tackle this, a model is trained in
advance to mimic the IDS operations according to a given error profile. It can serve as a plug-in
module for the IDS channel and is backpropagable within the network. This differentiable IDS
channel has the potential to act as a general module for addressing IDS or DNA-related problems
using deep learning methods. For instance, researchers could build generative models on this module
to simulate the biochemical processes involved in manipulating biosequences.

Overall, this work implements a heuristic end-to-end autoencoder as an IDS-correcting code, re-
ferred to as THEA-Code. The encoder maps the source DNA sequence into a longer codeword
sequence. After introducing IDS errors to the codeword, a decoder network is employed to recon-
struct the original source sequence from the codeword. During the training of this autoencoder, the
Gumbel-Softmax discretization constraint is applied to the codeword sequence to produce one-hot-
like vectors, and the differentiable IDS channel serves as a substitute for conventional IDS channel,
enabling gradient backpropagation.

To the best of our knowledge, this work introduces the first end-to-end autoencoder solution for an
IDS-correcting code. Additionally, it marks the first application of Gumbel-Softmax as a discretiza-
tion constraint, and the first proposal of a differentiable IDS channel.

2 RELATED WORKS

Many established IDS-correcting codes are rooted in the Varshamov-Tenengolts (VT) code (Var-
shamov & Tenenholtz, 1965; Levenshtein, 1965), including (Calabi & Hartnett, 1969; Tanaka &
Kasai, 1976; Sloane, 2000; Cai et al., 2021; Gabrys et al., 2023). These codes often rely on rigorous
mathematical deduction and provide firm proofs for their coding schemes. However, the stringent
hypotheses they use tend to restrict their practical applications. Heuristic IDS-correcting codes for
DNA storage, such as those proposed in (Pfister & Tal, 2021; Yan et al., 2022; Maarouf et al., 2022;
Welzel et al., 2023), usually incorporate synchronization markers (Sellers, 1962; Srinivasavarad-
han et al., 2021; Haeupler & Shahrasbi, 2021), watermarks (Davey & Mackay, 2001), or positional
information (Press et al., 2020) within their encoded sequences. Recently, directly correcting er-
rors in retrieved DNA reads without sequence reconstruction has been investigated, demonstrating
promising performance (Welter et al., 2024).

In recent years, deep learning methods have found increasing applications in coding the-
ory (Ibnkahla, 2000; Simeone, 2018; Akrout et al., 2023). Several architectures have been em-
ployed as decoders or sub-modules of conventional codes on the AWGN channel. In (Cammerer
et al., 2017), the authors applied neural networks to replace sub-blocks in the conventional iterative
decoding algorithm for polar codes. Recurrent neural networks (RNN) were used for decoding con-
volutional and turbo codes (Kim et al., 2018). Both RNNs and transformer-based models have served
as belief propagation decoders for linear codes (Nachmani et al., 2018; Choukroun & Wolf, 2022;
2023; 2024b;a;c). Hypergraph networks were also utilized as decoders for block codes in (Nachmani
& Wolf, 2019). Despite these advancements, end-to-end deep learning solutions remain relatively
less explored. As mentioned in (Jiang et al., 2019), direct applications of multi-layer perceptron
(MLP) and convolutional neural network (CNN) are not comparable to conventional methods. To
address this, the authors in (Jiang et al., 2019) used deep models to replace sub-modules of a turbo
code skeleton, and trained an end-to-end encoder-decoder model. Similarly, in (Makkuva et al.,
2021), neural networks were employed to replace the Plotkin mapping for the Reed-Muller code.
Both of these works inherit frameworks from conventional codes and utilize neural networks as
replacements for key modules. In (Balevi & Andrews, 2020), researchers proposed an autoencoder-
based inner code with one-bit quantization for the AWGN channel. Confronting challenges arising
from quantization, they utilized interleaved training on the encoder and decoder.
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3 GUMBEL-SOFTMAX DISCRETIZATION CONSTRAINT

The Gumbel-Softmax method was introduced as a differentiable approximation for sampling from
categorical distributions. Let x be the logits that produce the probabilities π = {π1, π2, . . . , πk} via
the softmax function,

πi =
expxi∑k
j=1 expxj

, i = 1, 2, . . . , k. (1)

The Gumbel-Softmax is the softmax variant of the Gumbel-Max trick (Gumbel, 1954)

GS(x)i =
exp ((xi + gi)/τ)∑k
j=1 exp ((xj + gj)/τ)

, i = 1, 2, . . . , k, (2)

where g1, g2, . . . , gk are i.i.d. samples drawn from the Gumbel distribution G(0, 1) and τ is the
temperature that controls the entropy. The Gumbel-Softmax is commonly applied in generative
models, such as variational autoencoders (VAE), to sample from a categorical distribution of latent
variables while retaining the ability to compute gradient.

In this work, it is found that applying Gumbel-Softmax in a non-generative model induces the cat-
egorical distribution to resemble a one-hot vector. Intuitively, Gumbel-Softmax introduces indeter-
minacy in its output GS(x) by sampling from the Gumbel distribution. In a non-generative model,
the network may attempt to eliminate this indeterminacy by producing more confident logits x.

For simplicity, the binary case is considered as an example, with the temperature set to τ = 1. Let
x = (x1, x2) represent the logits outputted by the upstream model, and let y = GS(x) denote the
Gumbel-Softmax of x, where

yi =
exp(xi + gi)

exp(x1 + g1) + exp(x2 + g2)
, i = 1, 2. (3)

Let L = f(y1, y2) be the optimization target of the model, which represents the composite function
of the downstream model and the loss function.

The partial derivative of the optimization target with respect to x1 is calculated using the chain rule:

∂L
∂x1

=
∂f

∂y1

∂y1
∂x1

+
∂f

∂y2

∂y2
∂x1

= y1y2

(
∂f

∂y1
− ∂f

∂y2

)
. (4)

The calculations for x2, y2 are analogous to those for x1, y1 and are omitted here and in the following
text. It is known that a model converges to a local minimum has a zero gradient, thus according to
Equation (4), when the model converges, either y1, y2 or

∣∣∣ ∂f∂y1 − ∂f
∂y2

∣∣∣ should be zero or less than a
minimal value ϵ.

Consider the case where
∣∣∣ ∂f∂y1 − ∂f

∂y2

∣∣∣ < ϵ. Noting that y2 = 1− y1, the partial derivative of L with
respect to y1 is given by ∣∣∣∣ ∂L∂y1

∣∣∣∣ = ∣∣∣∣ ∂f∂y1 +
∂f

∂y2

∂y2
∂y1

∣∣∣∣ = ∣∣∣∣ ∂f∂y1 − ∂f

∂y2

∣∣∣∣ < ϵ. (5)

Since y1 is calculated by sampling a random variable as described in Equation (3), either y1 remains
constant with respect to different gi, or Equation (5) holds for a variable yi, in which case the
downstream model degenerates into a trivial model, as its optimization target becomes insensitive to
different inputs. The partial derivative of y1 with respect to g1 is

∂y1
∂g1

= y1y2. (6)

If y1 is not sensitive to g1, either y1 or y2 should be zero or less than a minimal value ϵ.

All the above cases indicate that the converged model should have either y1 or y2 less than ϵ. Taking
y1 < ϵ1 as an example, it can be reformulated as

1

y1
= 1 + exp(x2 − x1 + g2 − g1) > M1, (7)
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where M1 = 1/ϵ1. Since g1, g2 independently follow the Gumbel distribution G(0, 1), whose
probability density function (PDF) is

fG(0,1)(x) = exp(−x) exp(− exp(−x)), (8)

the distribution of g2 − g1 can be calculated by convolution, resulting in a logistic distribution
Logistic(0, 1) with PDF

fLogistic(0,1)(x) =
exp(−x)

(1 + exp(−x))2
. (9)

Thus, the probability of 1/y1 being greater than M1 = 1/ϵ1 is

Pg2−g1

(
1

y1
> M1

)
= 1− M1 − 1

exp(x2 − x1) + (M1 − 1)
. (10)

Letting this probability be greater than 1− ϵ2, the x1, x2 should follow the restriction

exp(x2 − x1) > (M1 − 1)(M2 − 1), (11)

where M2 = 1/ϵ2. This indicates that the upstream network should produce confident logits x, as
applying softmax to x results in

π1 =
expx1

expx1 + expx2
<

1

(M1 − 1)(M2 − 1) + 1
<

2

M1M2
= 2ϵ1ϵ2, (12)

when ϵ1 + ϵ2 < 0.5.

Based on the above analysis, it can be inferred that a converged model using the Gumbel-Softmax
on its feature x instead of the vanilla softmax will constrain the logits x to produce one-hot-like
probability vectors.

4 DIFFERENTIABLE IDS CHANNEL ON 3-SIMPLEX ∆3

It is evident that the operations of insertion and deletion are not differentiable. Consequently, a
conventional IDS channel, which modifies a sequence by directly applying IDS operations, hinders
gradient propagation and cannot be seamlessly integrated into deep learning-based methods.

Leveraging the logical capabilities inherent in transformer-based models, a sequence-to-sequence
model is employed to simulate the conventional IDS channel. Built on deep models, this simulated
IDS channel is differentiable. In the following discussion, we use the notation CIDS(·, ·) to repre-
sent the Conventional IDS channel, and DIDS(·, ·; θ) for the simulated Differentiable IDS channel.
The simulated channel is trained independently before being integrated into the autoencoder, whose
learned parameters remain fixed during the optimization of the autoencoder.

As the model utilizes probability vectors rather than discrete letters, we need to promote conven-
tional IDS operations onto the 3-simplex ∆3, where ∆3 is defined as the collection 4-dimentional
probability vectors

∆3 = {π|πi ≥ 0,

4∑
i=1

πi = 1, i = 1, 2, 3, 4}. (13)

For a sequence of probability vectors C = (π1,π2, . . . ,πk), where each πi is an element from the
simplex ∆3, the IDS operations are promoted as follows.

Insertion at index i involves adding a one-hot vector representing the inserted symbol from the al-
phabet {A,T,G,C} before index i. Deletion at index i simply removes the vector πi from C. For
substitution, the probability vector πi is rolled by corresponding offsets for the three types of substi-
tutions (type-1, 2, 3). For example, applying a type-1 substitution at index i rolls the original vector
πi = (πi1, πi2, πi3, πi4) into (πi4, πi1, πi2, πi3). It is straightforward to verify that the promoted
IDS operations degenerate to standard IDS operations when the probability vectors are constrained
to a one-hot representation.

As illustrated in Figure 1, both the conventional IDS channel CIDS and the simulated IDS channel
DIDS take the sequence C of probability vectors and an error profile p as their inputs. The error
profile consists of a sequence of letters that record the types of errors encountered while processing

4
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C

p

differentiable
DIDS(·, ·; θ)

conventional
CIDS(·, ·)

ĈDIDS

ĈCIDS

Figure 1: The differentiable IDS channel. The ĈDIDS and ĈCIDS are generated by the differentiable
and conventional IDS channels, respectively. Optimizing the difference between ĈDIDS and ĈCIDS

trains the differentiable IDS channel.

C. Complicated IDS channels can be deduced by specifying the rules for generating error profiles.
The probability sequence C is expected to be modified by the simulated IDS channel to ĈDIDS =
DIDS(C,p; θ) according to the error profile p in the upper stream of Figure 1. In the lower stream,
the sequence C is modified as ĈCIDS = CIDS(C,p) with respect to the error profile p using the
previously defined promoted IDS operations.

To train the model DIDS(·, ·; θ), the Kullback–Leibler divergence (Kullback, 1997) of ĈDIDS from
ĈCIDS can be utilized as the optimization target

LKLD(ĈDIDS, ĈCIDS) =
1

k

∑
i

π̂TiCIDS log
π̂iCIDS

π̂iDIDS
. (14)

By optimizing Equation (14) on randomly generated probability vector sequences C and error pro-
files p, the parameters θ of the differentiable IDS channel are trained to θ̂. Following this, the model
DIDS(·, ·; θ̂) simulates the conventional IDS channel CIDS(·, ·). The significance of such an IDS
channel lies in its differentiability. Once optimized independently, the parameters of the IDS chan-
nel are fixed for downstream applications. In the following text, we use DIDS(·, ·) to refer to the
trained IDS channel for simplicity.

In practice, the differentiable IDS channel is implemented as a sequence-to-sequence model, em-
ploying one-layer transformers for both its encoder and decoder1. The model takes a padded vector
sequence and error profile, whose embeddings are concatenated along the feature dimension as its
input. To generate the output, that represents the sequence with errors, learnable position embedding
vectors are utilized as the queries (omitted from Figure 1).

5 THEA-CODE

5.1 FRAMEWORK

The flowchart of the proposed code is illustrated in Figure 2. Based on the principles of DNA
storage, which synthesizes DNA molecules of fixed length, the proposed model is designed to handle
source sequences and codewords of constant lengths. Essentially, the proposed method encodes
source sequences into codewords; the IDS channel introduces IDS errors to these codewords; and a
decoder is employed to reconstruct the sink sequences according to the corrupted codewords.

Let fen(·;ϕ) denote the encoder, where ϕ represents the encoder’s parameters. The source sequence
s is first encoded into the codeword c = fen(s;ϕ) by the encoder2, where the codeword c is obtained
using Gumbel-Softmax during the training phase and argmax during the testing phase. Next, a
random error profile p is generated, which records the positions and types of errors that will occur on
codeword c. Given the error profile p, the codeword c is transformed into the corrupted codeword
ĉ = DIDS(c,p; θ̂) by the simulated differentiable IDS channel, implemented as a sequence-to-

1Here, the encoder and decoder refer specifically to the modules of the sequence-to-sequence model, not
the modules of the autoencoder. We trust that readers will be able to distinguish between them based on the
context.

2For simplicity, we do not distinguish between notations for sequences represented as letters, one-hot vec-
tors, or probability vectors in the following text.
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sequence model with trained parameters θ̂. Finally, a decoder fde(·;ψ) with parameters ψ decodes
the corrupted codeword ĉ back into the sink sequence ŝ = fde(ĉ;ψ).

s

source

Encoder

r

auxiliary reconstruction

c

codeword

GS

p
random error profile

Differentiable
IDS

Channel

ĉ

corrupted
codeword

Decoder
ŝ

sink

Figure 2: The flowchart of THEA-Code, including the deep learning-based encoder, the pretrained
IDS channel, and the decoder.

Following this pipeline, a natural optimization target is the cross-entropy loss

LCE(ŝ, s) = −
∑
i

∑
j

1j=si log ŝij , (15)

which evaluates the reconstruction disparity of the source sequence s by the sink sequence ŝ.

However, merely optimizing such a loss function will not yield the desired outcomes. While the
encoder and decoder of an autoencoder typically collaborate on a unified task in most applications,
in this work, we expect them to follow distinct underlying logic. Particularly, when imposing con-
straints to enforce greater discreteness in the codeword, the joint training of the encoder and decoder
resembles a chicken-and-egg dilemma, where the optimization of each relies on the other during the
training phase.

5.2 AUXILIARY RECONSTRUCTION OF SOURCE SEQUENCE BY THE ENCODER

To address the aforementioned issue, we introduce a supplementary task exclusively for the encoder,
aimed at initializing it with some foundational logical capabilities. Inspired by the systematic code
which embed the input message within the codeword, a straightforward task for the encoder is to
replicate the input sequence at the output, ensuring that the model preserves all information from its
input without reduction. With this in mind, we incorporate a reconstruction task into the encoder’s
training process.

In practice, the encoder is designed to output a longer sequence, which is subsequently split into two
parts: the codeword representation c and a auxiliary reconstruction r of the input source sequence,
as shown in Figure 2. The auxiliary reconstruction loss is calculated using the cross-entropy loss as

LAux(r, s) = −
∑
i

∑
j

1j=si log rij , (16)

which quantifies the difference between the reconstruction r and the input sequence s.

Considering that the auxiliary loss may not have negative effects on the encoder for its simple logic,
we don’t use a separate training stage for optimizing the LAux. The auxiliary loss defined in Equa-
tion (16) is incorporated into the overall loss function and applied consistently throughout the entire
training phase.

5.3 THE ENCODER AND DECODER

In this approach, both the encoder and decoder are implemented using transformer-based sequence-
to-sequence models. Each consists of (3+3)-layer transformers with sinusoidal positional encoding.
The embedding of the DNA bases is implemented through a fully connected layer without bias to
ensure compatibility with probability vectors. Learnable position index embeddings are employed
to query the outputs.
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5.4 TRAINING PHASE

The training process is divided into two phases. Firstly, the differentiable IDS channel is fully trained
by optimizing

θ̂ = argmin
θ

LKLD(ĈDIDS, ĈCIDS) (17)

on randomly generated codewords c and profiles p. Once the differentiable IDS channel is trained,
its parameters are fixed. The remaining components of the autoencoder are then trained by optimiz-
ing a weighted sum of Equation (15) and Equation (16),

ϕ̂, ψ̂ = argmin
ϕ,ψ

LCE(ŝ, s) + µLAux(r, s), (18)

where µ is a hyperparameter representing the weight of the auxiliary reconstruction loss. The au-
toencoder is trained on randomly generated input sequences s and profiles p.

5.5 TESTING PHASE

In the testing phase, the differentiable IDS channel is replaced with the conventional IDS channel.
The process begins with the encoder mapping the source sequence s to the codeword c in the form of
probability vectors. An argmax function is then applied to convert c into a discrete letter sequence,
removing any extra information from the probability vectors. Next, the conventional IDS operations
are performed on ĉ = CIDS(c,p) according to a randomly generated error profile p. The one-hot
representation of ĉ is then passed into the decoder, which reconstructs the sink sequence ŝ. Finally,
metrics are computed to measure the differences between the original source sequence s and the
reconstructed sink sequence ŝ, providing an evaluation of the method’s performance.

Since the sequences are randomly generated from an enormous pool of possible terms, we do not
distinguish between a training set and a testing set. For example, in the context of this work, the
source sequence is a 100-long 4-ary sequence, approximately providing 1.6 × 1060 possible se-
quences. Given this vast space, sets of randomly generated sequences using different seeds are
highly unlikely to overlap.

6 EXPERIMENTS AND ABLATION STUDY

Commonly used methods for synthesizing DNA molecules in DNA storage pipelines typically yield
sequences of lengths ranging from 100 to 200. In this study, we choose the number 150 as the
codeword length, aligning with these established practices. Unless explicitly stated otherwise, all
the following experiments adhere to the default setting: source sequence length ℓs = 100, codeword
length ℓc = 150, auxiliary loss weight µ = 1, and the error profile is generated with a 1% probability
of errors occurring at each position, with insertion, deletion, and substitution errors equally likely.

To evaluate performance, the nucleobase error rate (NER) is employed as a metric, analogous to the
bit error rate (BER), but replacing bits with nucleobases. For a DNA sequence s and its decoded
counterpart ŝ, the NER is defined as

NER(s, ŝ) =
#{si ̸= ŝi}

#{si}
. (19)

The NER represents the proportion of nucleobase errors corresponding to base substitutions in the
source DNA sequence. It’s worth noting that these errors can be post-corrected using a mature
conventional outer code.

The source code is uploaded at https://anonymous.4open.science/r/THEA-Code,
and will be made publicly accessible upon the manuscript’s publication.

6.1 EFFECTS OF THE GUMBEL-SOFTMAX DISCRETIZATION CONSTRAINT

The ablation study on utilizing the Gumbel-Softmax discretization constraint was conducted to ob-
serve its impact on the codeword discreteness. During training, the entropy of the codewords

H(π) = −
k∑
i=1

πi log πi (20)
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was recorded. This entropy measures the level of discreteness in the codewords. Lower entropy
implies a distribution that is closer to a one-hot style probability vector, which indicates greater dis-
creteness. In addition to entropy, two other metrics were also recorded, as they are the reconstruction
loss LCE and the NER. The results, plotted in Figure 3, compare the default Gumbel-Softmax setting
against a vanilla softmax approach.

(a) Gumbel-Softmax

(b) vanilla softmax

Figure 3: The reconstruction loss, codeword entropy, and validation NER comparing the Gumbel-
Softmax setting against a vanilla softmax approach. Each subfigure shows 5 experiment runs.

The first column of Figure 3 indicates that using Gumbel-Softmax marginally increases the recon-
struction loss LCE in the continuous mode, which is expected since Gumbel-Softmax introduces
additional noise into the system. When comparing the average entropy H of the learned codeword,
applying Gumbel-Softmax significantly reduces the entropy, suggesting that the codewords behave
more like one-hot vectors. This lower entropy reflects increased discreteness in the codewords.
The NER is calculated in the discrete mode by replacing the Gumbel-Softmax or softmax with an
argmax operation on the codewords. The third column clearly shows that when codewords are
closer to a one-hot style, the model is more consistent between the continuous and discrete modes,
leading to better performance during the testing phase.

6.2 GRADIENTS TO THE DIFFERENTIABLE IDS CHANNEL

Figure 4: The averaged absolute gradients with respect to the input c over 100 runs. The corre-
sponding IDS operations were performed at an aligned index = 0 by the simulated differentiable
IDS channel, the gradients were back-propagated from position +k of the channel output ĉ. It is
suggested that the gradients identify their corresponding position in the input: +k − 1 for insertion,
+k for substitution, and +k + 1 for deletion.

To investigate whether the simulated IDS channel back-propagates the gradient reasonably, the chan-
nel output ĉ = DIDS(c) is modified by altering one base to produce ĉ′. The absolute values of the
gradients of L(ĉ, ĉ′) with respect to the input c after back-propagation are presented in Figure 4. For
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instance, subfigure del(+3) indicates that the IDS channel modifies c to ĉ by performing a deletion
at index 0. The output ĉ is then manually modified by applying a substitution at position +3. The
gradients of L(ĉ, ĉ′) with respect to c are plotted over the window [−2,+6].

It is suggested in Figure 4 that the proposed differentiable IDS channel back-propagates gradients
reasonably. The gradients shift by one base to the left (resp. right) when the IDS channel performs
an insertion (resp. deletion) on c. When the IDS channel operates c with a substitution, the gradients
stay at the same index. This behavior demonstrates that the channel is able to trace the gradients
through the IDS operations. Specifically, in the case ins(+0), the channel-inserted base in ĉ at idx
is manually modified. As a result, no specific base in c has a connection to the manually modified
base, leading to a diminished gradient in this scenario.

Additionally, we have also conducted experiments on gradients with respect to codewords and empty
profiles, presented in Appendix B.

6.3 PERFORMANCE WITH DIFFERENT CHANNEL SETTINGS

Table 1: The testing NER for different source lengths ℓs. The source length ℓs ranges from 50
to 125. Best NER among 5 runs are reported in row NER*, while the average NER and standard
derivative are reported in row NER in format mean± std.

ℓs 50 75 100 125
coderate 0.33 0.50 0.67 0.83

NER*(%) 0.09 0.46 1.06 2.81
NER(%) 0.12 ± 0.03 0.51 ± 0.03 1.15 ± 0.08 3.71 ± 0.59

The coderate is the proportion of non-redundant data in the codeword, calculated by dividing the
source length ℓs by the codeword length ℓc. We explored variable source lengths ℓs while keeping
the codeword length ℓc fixed. For each source length ℓs, the experiments were conducted 5 times,
with results reported in Table 1. The results reveal a trend where the NER increases from 0.09% to
2.81% as the coderate increases from 0.33 to 0.83.

By applying an outer conventional ECC to address the remaining NER, which is a common tech-
nique in DNA storage (Press et al., 2020; Pfister & Tal, 2021; Yan et al., 2022; Welzel et al., 2023),
a complete solution for DNA storage is achieved. Here, we focus specifically on the IDS-correcting
code.

Results on complex IDS channels. By controlling the generation process of the error profile p
for different channel settings, we can evaluate whether THEA-Code learns channels’ attributes and
produces customized codes based on the models’ performance.

Along with the default setting, where error rates are position-insensitive (denoted as Hom), two
other IDS channels parameterized by ascending (Asc) and descending (Des) error rates along the
sequence are considered3. The Asc channel has error rates increasing from 0% to 2% along the
sequence, with the average error rate matching that of the default setting Hom. The Des channel
follows a similar pattern but has decreasing error rates along the sequence.

To verify that the proposed method customizes codes for different channels, cross-channel testing
was conducted, with the results shown in Table 2. The numbers in the matrix represent the NER of
a model trained with the channel of the row and tested on the channel of the column.

The diagonal of Table 2 shows the results of the model trained and tested with a consistent channel,
suggesting that the learned THEA-Code exhibits varying performance depending on the specific
channel configuration. The columns of Table 2 suggest that, for each testing channel, models trained
with the channel configuration consistently achieve the best performance among the three channel
settings. Considering the Hom channel is a midway setting between Asc and Des, the first and third
columns (and rows) show that the more dissimilar the training and testing channels are, the worse
the model’s performance becomes, even though the overall error rates are the same across the three

3These settings simplify DNA storage channels, as a DNA sequence is marked with a 3’ end and a 5’ end.
Some researchers believe that the error rate accumulates towards the sequence end during synthesis (Meiser
et al., 2020).
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Table 2: The testing NER across different channels. Each number represents the NER of a code
tested with its column channel, while trained with its row channel. The average NER and standard
derivative are reported in format mean± std over 5 training runs of each channel.

NER(%) Asc Hom Des

Asc 0.90 ± 0.09 1.46 ± 0.08 2.09 ± 0.44
Hom 1.03 ± 0.20 1.15 ± 0.08 1.30 ± 0.03
Des 1.72 ± 0.12 1.32 ± 0.07 1.01 ± 0.05

channels. These findings verify that the deep learning-based method effectively customizes codes
for specific channels, which could advance IDS-correcting code design into a more fine-grained
area.

IDS channels with larger error probabilities were also tested. The experiments were extended to
include channels with error probabilities in {0.5%, 1%, 2%, 4%, 8%, 16%}, with results listed in
Table 3. It is suggested that models trained on channels with higher error probabilities exhibit
compatibility with channels with lower error probabilities. In most cases, models trained and tested
on similar channels achieve better performance.

Table 3: The testing NER across different channels error probabilities. The row and column headers
correspond to channels configured with respective probabilities of errors. Each number in the matrix
represents the NER of a model trained (resp. tested) on the channel specified by the row (resp.
column) header.

Ch-Error 0.5% 1% 2% 4% 8% 16%

0.5% 0.68 1.59 4.26 11.67 26.87 45.61
1% 0.52 1.15 2.9 8.12 21.19 41.03
2% 0.67 1.43 3.16 7.79 18.7 36.89
4% 1.25 1.76 2.88 5.53 12.39 28.31
8% 2.74 3.24 4.30 6.62 12.2 25.41

16% 11.57 11.93 12.61 14.4 17.22 25.51

6.4 COMPARISON EXPERIMENTS

Comparison experiments were conducted against prior works include: the combinatorial code
from (Cai et al., 2021), the segmented code method DNA-LM from (Yan et al., 2022), and the
efficient heuristic method HEDGES from (Press et al., 2020).

Such methods are typically designed to operate under discrete, fixed configurations, making it chal-
lenging to align them within the same setting. We present a subset of the comparison results in
Table 4, with detailed configurations and results across multiple channels provided in Appendix A.

Table 4: The testing error rates compared with different established codes. The coderates are not
fully aligned, as HEDGES supports only a limited set of fixed coderates. The experiments on Cai
have only the coderates matched, with the code length determined according to the coderate. The
experiments on DNA-LM have code length around 150, and the coderates were tuned by varying
the number of segments.

coderate 0.33 0.50 0.6 0.67 0.75 0.83

Cai 0.44 1.00 - 2.53 - 8.65
DNA-LM 0.70 1.32 - 3.11 - 9.10
HEDGES 0.28 0.25 0.65 - 3.43 -

THEA-Code 0.09 0.46 - 1.06 - 2.81

Table 4 demonstrates the effectiveness of the proposed method. The performance of THEA-Code
and HEDGES outperforms the other methods by a large margin. At lower code rates, THEA-Code
achieves a comparable error rate to HEDGES. At higher code rates, the proposed method outper-
forms HEDGES, achieving a lower error rate at a higher code rate, specifically 2.81% error rate at
0.83 coderate for THEA-Code v.s. 3.43% error rate at 0.75 coderate for HEDGES.
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A COMPARISON EXPERIMENTS

To evaluate the effectiveness of the proposed methods, we conducted comparison experiments
against three prior works, which are:

• a combinatorial code that can correct single IDS errors over a 4-ary alphabet from Cai (Cai
et al., 2021);

• a segmented method for correcting multiple IDS errors, called DNA-LM from (Yan et al.,
2022);

• a well-known, efficient heuristic method, called HEDGES, from a DNA storage re-
search (Press et al., 2020).

These methods typically offer only a few discrete, fixed configurations. We made efforts to align
their settings as closely as possible. For Cai’s combinatorial code, the coderates are fixed based on
the code lengths. In our experiments on Cai, only the coderates are matched, with the code length
determined according to the coderate4. For DNA-LM, we maintained the codeword length around
150, adjusting the number of segments to match coderates. For HEDGES, only binary library is
publicly available, and it supports fixed coderates in {0.75, 0.6, 0.5, 1/3, 0.25, 1/6}. HEDGES’
inner code was tested independently for comparison. We list all the source lengths ℓs, codeword
lengths ℓc, and coderate r used in the experiments in Table 5.

Table 5: The testing configurations for the comparison experiments. Each cell includes the code rate,
message length, and code length. The settings are tried to be aligned, except the Cai configuration
has a code length that does not align with 150, and HEDGES uses fixed coderates of 0.60 and 0.75,
which are not aligned.

r1 = ℓs1/ℓc1 r2 = ℓs2/ℓc2 r3 = ℓs3/ℓc3 r4 = ℓs4/ℓc4

Cai 0.33=7/21 0.50=16/32 0.67=32/48 0.83=85/102
DNA-LM 0.34=50/148 0.51=77/152 0.68=96/142 0.84=124/148
HEDGES 0.34=52/155 0.50=76/152 0.60=92/153 0.75=115/155

THEA-Code 0.33=50/150 0.50=75/150 0.67=100/150 0.83=125/150

The experiments were conducted on the default IDS channel with 1% error probability, as well as
its variations, Asc and Des, introduced in Section 6.3. The results is illustrated in Figure 5. The
experiments handled failed corrections by directly using the corrupted codeword as the decoded
message.

4It is important to note that code length plays a critical role in these experiments, as longer codewords
are more likely to encounter multiple errors that cannot be corrected. Thus, Cai’s performance here is just a
baseline statistic of multi-errors with respect to the length, and performance may degrade with increased length.
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Figure 5: The error rates of the comparison experiments. Results for Cai, DNA-LM, HEDGES, and
THEA-Code are shown across Hom, Asc, and Des channels, with respect to their coderates.

The results for Cai’s method indicate that directly applying classical combinatorial codes to a 1%
IDS error probability channel with a codeword length of 150 is impractical. The observed error
rates are high, even though these values were obtained with shorter code lengths than 150. The seg-
mented method with sync markers in DNA-LM supports a codeword length of 150 and can correct
multiple errors across different segments. However, it also exhibits a high error rate, indicating a
nonnegligible likelihood of multi-errors occurring within the same segment. For HEDGES, while
the results are commendable, the coderate is restricted to a limited set of fixed values. The results
of THEA-Code demonstrate the effectiveness of the proposed method. At lower code rates, THEA-
Code achieves a comparable error rate to HEDGES. At higher code rates, the proposed method
outperforms HEDGES, achieving a lower error rate at a higher code rate, specifically 2.81% error
rate at 0.83 coderate for THEA-Code v.s. 3.43% error rate at 0.75 coderate for HEDGES.

B MORE ON THE GRADIENTS TO DIFFERENTIABLE IDS CHANNEL

In Section 6.2, we illustrated that the differentiable IDS channel can effectively trace gradients
through the IDS operations. In this section, we focus on evaluating the channel’s capability to
recover the error profile through gradient-based optimization.

Given a codeword c, an empty profile p0 which defines the identity transformation of the IDS chan-
nel such that ĉ = c = DIDS(c,p0), and a modified codeword ĉ′ which is produced by manually
modifying c through an insertion, deletion, or substitution at position idx, the gradients of L(ĉ, ĉ′)
are computed with respect to both the input codeword c and the empty profile p0. The average
gradients, calculated over 100 runs, are plotted in Figure 6 with position idx aligned to 0.

In Figure 6, it is suggested that, when performing an insertion or deletion, the gradients with respect
to the codeword are distributed after the error position idx. This aligns with the fact that synchro-
nization errors (insertions or deletions) can be interpreted as successive substitutions starting from
the error position, especially when the actual error profile is unknown. When performing a substitu-
tion, the gradients naturally concentrate at the error position idx.

Regarding the empty profile, p0 = 0, the gradients also exhibit meaningful patterns. For an inser-
tion, the substitution area after idx is lighted by the gradients, supporting the view that an insertion
can be seen as a sequence of substitutions if error constraints are absent. Additionally, the insertion
area of the profile is also lighted, which makes sense since an insertion may also be interpreted as
a series of substitutions followed by an ending insertion. For deletion errors, similar patterns are
observed: the gradients are distributed in the areas of substitutions and deletions after the error posi-
tion idx, since the deletion can also be viewed as a series of substitutions, or as several substitutions
and an ending deletion. For substitution errors, the gradients again concentrate at the error position
idx, as substitutions do not cause sequence mismatches.

Utilizing energy constraints on the profile may be helpful for specific profile applications. In this
work, only the gradients with respect to the codeword participate in the training phase, the existing
version of the simulated differentiable IDS channel is assumed to be adequate.
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(a) insertion (b) deletion (c) substitution

Figure 6: The gradient distribution with respect to the input codeword and the empty profile, when
the output codeword is manually modified. The figures display the averaged gradients over 100 runs,
visualizing how the gradients were back-propagated in different cases of insertions, deletions, and
substitutions in the output codeword.

C ABLATION STUDY ON THE AUXILIARY RECONSTRUCTION LOSS

C.1 EFFECTS OF THE AUXILIARY RECONSTRUCTION LOSS

(a) µ = 0 (b) µ = 0.5 (c) µ = 1 (d) µ = 1.5

Figure 7: The reconstruction loss LCE between the source and sink sequences, and the validation
NER for various choices of µ ∈ {0, 0.5, 1, 1.5}. Each curve in the subfigures represents one of the
5 runs conducted in the experiment and is plotted against the training epochs.

Experiments with different choices of the hyperparameter µ were conducted, which are µ = 0
indicating the absence of the auxiliary reconstruction loss, and µ ∈ {0.5, 1, 1.5} for different weights
for the auxiliary loss. The validation NER and the reconstruction loss between source and sink
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sequences are plotted against the training epochs. Additionally, we have also explored on different
types of auxiliary reconstruction sequences, results presented in Appendix C.2.

The first column of Figure 7 indicates that without the auxiliary loss, all 5 runs of the training fail,
producing random output. By comparing the first column with the other three, the effectiveness of
introducing the auxiliary loss can be inferred. In the subfigures corresponding to µ ∈ {0.5, 1, 1.5},
all the models converge well, and the NERs also exhibit a similar convergence. This suggests the
application of the auxiliary loss is essential, but the weight of this loss has minimum influence on
the final performance.

C.2 AUXILIARY LOSS ON PATTERNS BEYOND SEQUENCE RECONSTRUCTION

In Appendix C.1, the necessity of introducing a auxiliary reconstruction task to the encoder is ver-
ified. After these experiments, a natural question arises: How about imparting the encoder with
higher initial logical ability through a more complicated task rather than replication? Motivated by
this, we adopted commonly used operations from existing IDS-correcting codes and attempted to
recover the sequence from these operations using the encoder. In practice, we employed the forward
difference Diff(s), where

Diff(s)i = si − si+1 mod 4, (21)

the position information-encoded sequence Pos(s), where

Pos(s)i = si + i mod 4, (22)

and their combinations as the reconstructed sequences.

The evaluation NERs against training epochs are plotted in Figure 8 under different combinations
of the identity mapping I, Diff , and Pos. It is clear that the reconstruction of the identity mapping
I outperforms Diff and Pos. Introducing the identity mapping I to Diff and Pos helps improving
the convergence of the model, but final results have illustrated that they are still worse than simple
applying the identify mapping I as the auxiliary task. These variations may be attributed to the
capabilities of the transformers in our setting or the disordered implicit timings during training.

(a) I (b) Diff (c) Pos

(d) I + Diff (e) I + Pos

Figure 8: The validation NER against the training epochs with different choices of auxiliary recon-
struction. The reconstructed sequences are produced by combinations of the identity mapping I,
Diff , and Pos, where + denotes sequence concatenating.
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D OPTIMIZATION OF HYPERPARAMETER TEMPERATURE τ IN THE
GUMBEL-SOFTMAX FORMULA

To examine the impact of different temperature values τ in Equation (2), experiments were con-
ducted with various settings of τ ∈ {0.25, 0.5, 1, 2, 4, 8}. Since the Gumbel-Softmax Discretization
Constraint is designed to encourage greater discretization of the codeword, the codeword entropy
H, as defined in Equation (20), and the validation NER were tracked throughout the training phase

As shown in Figure 9, lower temperature (τ = 0.25) has an effect in discretization, but result in
unstable and poor model performance, while higher temperatures (τ ∈ {2, 4, 8}) lead to both poor
discretization and high NER.

(a) τ = 0.25 (b) τ = 0.5 (c) τ = 1

(d) τ = 2 (e) τ = 4 (f) τ = 8

Figure 9: The codeword entropy H and the validation NER for various choices of τ ∈
{0.25, 0.5, 1, 2, 4, 8}. Each curve in the subfigures represents one of the 3 runs conducted in the
experiment and is plotted against the training epochs.
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E TRANSFORMER, COMPLEXITY, AND TIME CONSUMPTION

Transformers (Vaswani et al., 2017), well-known deep learning architectures, rely on the attention
mechanism. Each head of a Transformer model processes features according to the following for-
mula:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V. (23)

In this work, each layer comprises 16 attention heads with an embedding dimension 512, and a total
of 3+3 attention layers are used for the sequence-to-sequence model. Both the encoder and decoder
are implemented as such sequence-to-sequence models. For the differentiable IDS channel, a 1 + 1
layered sequence-to-sequence model is employed.

Since attention is calculated globally over the sequence in Equation (23), it has a complexity of
O(n2). Without delving into the many efficient transformer architectures, the time consumption
was measured by decoding 1, 280, 000 codewords using an RTX3090. The encoder, which shares
the same structure, exhibits similar performance. The results are acceptable and are presented in
Table 6.

Table 6: Time consumption of decoding 1, 280, 000 codewords for each source length ℓs by an
RTX3090.

source length ℓs = 50 ℓs = 75 ℓs = 100 ℓs = 125

time (s) 521.94 573.87 623.92 687.76
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