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Abstract

Zero-shot inference is a powerful paradigm that enables the use of large pretrained1

models for downstream classification tasks without further training. However,2

these models are vulnerable to inherited biases that can impact their performance.3

The traditional solution is fine-tuning, but this undermines the key advantage of4

pretrained models, which is their ability to be used out-of-the-box. We propose5

ROBOSHOT, a method that improves the robustness of pretrained model embed-6

dings in a fully zero-shot fashion. First, we use language models (LMs) to obtain7

useful insights from task descriptions. These insights are embedded and used8

to remove harmful and boost useful components in embeddings—without any9

supervision. Theoretically, we provide a simple and tractable model for biases in10

zero-shot embeddings and give a result characterizing under what conditions our11

approach can boost performance. Empirically, we evaluate ROBOSHOT on nine12

image and NLP classification tasks and show an average improvement of 15.98%13

over several zero-shot baselines. Additionally, we demonstrate that ROBOSHOT is14

compatible with a variety of pretrained and language models.15

1 Introduction16

Zero-shot prediction is among the most exciting paradigms in machine learning. Zero-shot models17

obviate the need for data collection and training loops by simply asking for a prediction on any18

set of classes. Unfortunately, such models inherit biases or undesirable correlations from their19

large-scale training data [DLS+18, TE11]. In a now-canonical example [KSM+21], they often20

associate waterbirds with water background. This behavior leads to decreased performance,21

often exacerbated on rare data slices that break in-distribution correlations.22

A growing body of literature [YNPM23, GKG+22, ZR22] seeks to improve robustness in zero-shot23

models. While promising, these works require labeled data to train or fine-tune models, and so do24

not tackle the zero-shot setting. A parallel line of research seeking to debias word embeddings25

[AZS+, BCZ+16, DP19, LGPV20] often sidesteps the need for labeled data. Unfortunately, these26

works often require domain expertise and painstaking manual specification in order to identify27

particular concepts that embeddings must be invariant to. As a result, out-of-the-box word embedding28

debiasing methods also cannot be applied to zero-shot robustification.29

Can we robustify zero-shot models without (i) labeled data, (ii) training or fine-tuning, or (iii) manual30

identification? Surprisingly, despite this seemingly impoverished setting, it is often possible to do31

so. Our key observation is that language models contain actionable insights that can be exploited32

to improve themselves or other models. These insights are noisy but cheaply available at scale and33

can be easily translated into means of refinement for zero-shot representations. These refinements34

improve performance, particularly on underperforming slices, at nearly no cost.35
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Figure 1: ROBOSHOT pipeline (right) vs. vanilla zero-shot classification (left).

Figure 2: Visualization on CelebA (100 random samples from each class). L-R: (i) original embedding (ii)
harmful concept removal (iii) helpful concept addition (iv) full ROBOSHOT.

We propose ROBOSHOT, a system that robustifies zero-shot models via language model-based insights36

without labels, training, or manual specification. Using just the task description, ROBOSHOT obtains37

positive and negative insights from a language model (potentially the model to be improved itself).38

It uses embeddings of these noisy insights to recover harmful, beneficial, and benign subspaces of39

zero-shot latent representation spaces. Representations are then modified to neutralize and emphasize40

their harmful and beneficial components, respectively.41

Theoretically, we introduce a simple and tractable model to capture and quantify failures in zero-shot42

models. We provide a result that characterizes the quantity and quality of insights that are required43

as a function of the severity of harmful correlations. Empirically, ROBOSHOT achieves 15.98%44

improvement across nine image and NLP datasets and has sufficient versatility to apply to a various45

base models. Most excitingly, in certain cases, it reaches comparable or greater improvements even46

when compared to fine-tuned models that rely on labeled data. In summary, our contributions are:47

1. A simple theoretical model describing zero-shot failures along with a theoretical analysis of our48

approach that characterizes the amount of information required for obtaining improvements as a49

function of the most harmful unwanted correlation,50

2. ROBOSHOT, an algorithm that implements our core idea. It extracts insights from foundation51

models and uses them to improve zero-shot representations,52

3. Extensive experimental evidence on zero-shot language and multimodal models, showing improved53

worst-group accuracy of 15.98% across nine image and NLP datasets.54

2 RoboShot: Robustifying Zero-Shot Models55

We are ready to provide our setup and describe the ROBOSHOT algorithm. As mentioned before,56

we use embedding debiasing principles as building blocks. For our purpose, we utilize concepts57

obtained from language models and get their embeddings to build the beneficial and unwanted concept58

subspaces to work with. We call these embeddings the insight representations.59
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2.1 Modeling and setup60

Suppose that the zero-shot model’s latent space contains an (unknown) concept set; similar notions61

have been studied frequently in the literature [DKA+22]. For simplicity, we assume that this concept62

set is given by the orthonormal vectors {z1, . . . , zk}. The model’s encoder produces, for a particular63

input, a representation x that is a mixture of concepts
∑

i γizi, where γi are weights.64

We work with the following theoretical model for zero-shot classification. For simplicity, we assume65

that there are two classes. It is straightforward to extend the analysis below to multi-class. We take66 ∑
i αizi to be the embedding of a datapoint, while c0 =

∑
i βi,0zi is the embedding of the first class67

and c1 =
∑

i βi,1zi is that of the second. We assume that we have access to m answers v1, . . . , vm68

from a set of queries to the language model; we describe how these queries are used practically69

further on. These are given by vj =
∑

i γi,jzi for j ≤ m. We call these insight representations.70

In the standard approach, the prediction is made by ŷ = 1{(
∑

i αizi)
T (
∑

i βi,0zi) <71

(
∑

i αizi)
T (
∑

i βi,1zi)}, so that we predict the class that has the higher inner product with the72

datapoint’s embedding. Next, we assume that each input representation x can be represented by73

partitioning the mixture components into three groups,74

x =

S∑
s=1

αharmful
s zs +

S+R∑
r=S+1

αhelpful
r zr +

S+R+B∑
b=S+R+1

αbenign
b zb. (1)

In other words, representations comprise of mixture of embeddings pertaining to harmful, helpful,75

and benign or neutral concepts—this holds for class and insight representations. In Appendix G.5,76

we empirically show that this assumption holds in real scenarios.77

Example. We illustrate how harmful correlations produce errors on rare slices of data through78

a standard task setting, Waterbirds [KSM+21]. Here the goal is to classify landbirds versus79

waterbirds, and the background (land or water) is spurious. Suppose that we have these terms80

relate to concepts such that zwater = −zland and zwaterbird = −zlandbird. Consider a datapoint from81

a data slice rarely seen in the training set, for instance, an image of landbird over water. Its embedding82

might be x = 0.7zwater +0.3zlandbird. We may also have that cwaterbird = 0.4zwater +0.6zwaterbird83

and clandbird = 0.4zland + 0.6zlandbird. Then, xT cwaterbird = 0.1 > xT clandbird = −0.1, which84

results in incorrect prediction: waterbird. Our goal is to remove harmful components (zs’s) and boost85

helpful ones (zr’s)—without labels or training. Our approach follows.86

2.2 ROBOSHOT: Robustifying zero-shot inference87

Algorithm 1: ROBOSHOT

1: Parameters: Input embedding x, class embeddings
c0, c1, harmful insight representations v1, . . . , vS ,
helpful insight representations u1, . . . , uR

2: for j ∈ {1, 2, . . . , S} do
3: Remove harmful insight vj : set

x← x−
〈
x, vj

〉
/
〈
vj , vj

〉
vj

4: Renormalize x = x/ ||x||
5: end for
6: for k ∈ {1, 2, . . . , R} do
7: Amplify helpful insight uk: set

x← x+
〈
x, uk

〉
/
〈
uk, uk

〉
uk

8: end for
9: ŷ = 1{xT c0 < xT c1}

10: Returns: Robustified zero-shot prediction ŷ

We describe ROBOSHOT in Algorithm 1. It uses88

representations of insights from LMs to shape89

input and class embeddings to remove harmful90

components and boost helpful ones. Figure 291

illustrates the intuition behind these procedures.92

Note how unhelpful directions are neutralized93

while perpendicular directions are boosted.94

Obtaining insight representations from LMs.95

The first question is how to obtain insight rep-96

resentations in a zero-shot way– we use textual97

descriptions of harmful and helpful concepts98

by querying language models using only the99

task description. For example, in the Waterbirds100

dataset, we use the prompt “What are the bi-101

ased/spurious differences between waterbirds and landbirds?”. We list the details of the prompts102

used in Appendix F.2. Let s1, s2 be the text insights obtained from the answer (e.g., {‘water103

background,’ ‘land background’}). We obtain a spurious insight representation by taking the104

difference of their embedding v = (g(s1)− g(s2))/
∣∣∣∣g(s1)− g(s2)

∣∣∣∣, where g is the text encoder of105

our model. In addition to attempting to discover harmful correlations, we seek to discover helpful106

components in order to boost their magnitudes past the harmful ones. We obtain insight representa-107

tions using language models. For example, we ask “What are the true characteristics of waterbirds108
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and landbirds?” and get e.g., {‘short beak,’ ‘long beak’}. The rest of the procedure is identical109

to that of harmful components. Prompting a language model is typically inexpensive, which will110

enable obtaining multiple insight vectors ṽ1, . . . , ṽm. From these, we obtain an orthogonal basis111

v1, . . . , vm separately for harmful and helpful components using standard matrix decomposition112

methods. Thus we have access to recovered subspaces spanned by such components.113

Removing and boosting components. ROBOSHOT applies simple vector rejection to mitigate114

harmful components (lines 2-5 of Algorithm 1) and boosts helpful ones (lines 6-9). To see the115

impact of doing so, we return to our earlier example. Suppose that we have a single harmful insight116

vharmful = 0.9zwater + 0.1zlandbird and a single helpful insight vhelpful = 0.1zwater + 0.9zlandbird.117

Note that even these insights can be imperfect — they have non-zero weights on other components.118

From removing the harmful component (ignoring normalization for ease of calculation), we obtain119

x̂ ← x −
〈
x, vharmful

〉
/
〈
vharmful, vharmful

〉
vharmful = −0.0244zwater + 0.2195zlandbird. We already120

we have that xT cwaterbird = −0.1415 < xT clandbird = 0.1415, thus the correct class is obtained.121

From a single insight we have neutralized a harmful correlation and corrected what had been an122

error. Adding in the helpful component further helps. Using vector addition equation in Algorithm123

1 line 7, we obtain −0.0006zwater + 0.4337zlandbird. This further increases our margin. Note that124

it is not necessary to be fully invariant to spurious or harmful components in our embeddings. The125

only goal is to ensure, as much as possible, that their magnitudes are reduced when compared to126

helpful components (and to benign components). In Section 3, we provide a theoretical model for127

the magnitudes of such components and characterize the conditions under which it will be possible128

to correct zero-shot errors. We provide ablation experiments of each ROBOSHOT components (i.e.,129

removing and boosting components) in Appendix B.2.130

3 Theoretical Analysis131

We provide an analysis that characterizes under what conditions ROBOSHOT can correct zero-shot132

errors. First, we consider the following error model on the weights of the representations. For all133

benign representations, we assume αb, βb, γb ∼ N (0, σ2
benign). The value of σbenign is a function of134

the amount of data and the training procedure for the zero-shot model. Appendix G.5 empirically135

shows that in real scenarios, benign components can be canceled out.136

Next, we assume that the insight embedding vs =
∑k

i=1 γi,szi (where 1 ≤ s ≤ S) satisfies the137

property that for i ̸= s, γi,s ∼ N (0, σ2
insight), while γs,s is a constant. In other words, the vectors138

v1, . . . , vS spanning the harmful component subspace are well-aligned with genuinely harmful139

concepts, but are also affected by noise. Similarly, we assume that helpful insights vr =
∑k

i=1 γi,rzi140

(where S + 1 ≤ r ≤ S +R) satisfy the same property. We seek to understand the interplay between141

this noise, benign noise, and the coefficients of the other vectors (i.e., helpful components). Let the142

result of ROBOSHOT with insight representations v1, . . . , vS+R be143

x̂ = x−
S∑

s=1

xT vs

||vs||2
vs +

S+R∑
r=S+1

xT vr

||vr||2
vr =

S+R+B∑
i=1

Aizi.

We first provide a bound on As, the targeted harmful concept coefficient after applying ROBOSHOT.144

Theorem 3.1 Under the noise model described above, the post-ROBOSHOT coefficient for harmful145

concept s (1 ≤ s ≤ S) satisfies146

|EAs| ≤

∣∣∣∣∣ (k − 1)αsσ
2
insight

γ2
s,s

∣∣∣∣∣+
∣∣∣∣∣∣

S+R∑
t=1,t̸=s

αsσ
2
insight

γ2
t,t

∣∣∣∣∣∣ ,
where k is the number of concepts (k = S +R+B).147

The proof is included in Appendix E.3. The theorem illustrates how and when the rejection component148

of ROBOSHOT works—it scales down harmful coefficients at a rate inversely proportional to the149

harmful coefficients of the insight embeddings. As we would hope, when insight embeddings have150

larger coefficients for harmful vectors (i.e., more precise in specifying non-useful terms), ROBOSHOT151
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Table 1: Main results. Best WG and Gap performance bolded, second best underlined.

Dataset Model ZS GroupPrompt ZS ROBOSHOT

AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓)

Waterbirds CLIP (ViT-B-32) 80.7 27.9 52.8 81.6 43.5 38.1 82.0 54.4 28.6
CLIP (ViT-L-14) 88.7 27.3 61.4 70.7 10.4 60.3 79.9 45.2 34.7

CelebA CLIP (ViT-B-32) 80.1 72.7 7.4 80.4 74.9 5.5 84.8 80.5 4.3
CLIP (ViT-L-14) 80.6 74.3 6.3 77.9 68.9 9.0 85.5 82.6 2.9

PACS CLIP (ViT-B-32) 96.7 82.1 14.6 97.9 82.7 15.2 97.0 86.3 10.7
CLIP (ViT-L-14) 98.1 79.8 18.3 98.2 86.6 11.6 98.1 83.9 14.2

VLCS CLIP (ViT-B-32) 75.6 20.5 55.1 - 76.5 33.0 43.5
CLIP (ViT-L-14) 72.6 4.20 68.4 - 71.1 12.6 58.5

CXR14 BiomedCLIP 55.3 28.9 26.4 - 56.2 41.6 14.6

yields better outcomes. In addition, we observe that the harmful coefficients decrease when the152

insight embeddings have less noise. In fact, we have that limσinsight→0 As = 0 — the case of153

perfectly identifying harmful, helpful concepts. In Appendix D, we provide a bound on Ar, the154

post-ROBOSHOT coefficient of a targeted helpful concept.155

4 Experimental Results156

This section evaluates the following claims:157

• Improving multimodal models (Section 4.1): ROBOSHOT improves zero-shot classification158

robustness of various multimodal models, even outperforming prompting techniques that include159

spurious insight descriptions (which we do not have access to) in the label prompts.160

• Improving language models (Section 4.2): ROBOSHOT improves zero-shot robustness using LM161

embeddings for text zero-shot classification, outperforming direct prompting to get predictions.162

• Extracting concepts from LM with varying capacities (Section 4.3): ROBOSHOT can extract163

insights from language models with varying capacities. Improvements persist with weaker LMs.164

Metrics. We use three metrics: average accuracy % (AVG), worst-group accuracy % (WG), and the165

gap between the two (Gap). While a model that relies on harmful correlations may achieve high166

AVG when such correlations are present in the majority of the test data, it may fail in settings where167

the correlation is absent. A robust model should have high AVG and WG, with a small gap between.168

Baselines. We compare against the following sets of baselines:169

1. Multimodal baselines: (i) vanilla zero-shot classification (ZS) and (ii) ZS with group in-170

formation (Group Prompt ZS). We use a variety of models: CLIP (ViT-B-32 and ViT-L-171

14) [RKH+21], ALIGN [JYX+21], and AltCLIP [CLZ+22]. Group Prompt ZS assumes172

access to spurious or harmful insight annotations and includes them in the label prompt.173

For instance, the label prompts for waterbirds dataset become [waterbird with water174

background, waterbird with land background, landbird with water background,175

landbird with land background]. We only report Group Prompt ZS results on datasets176

where spurious insight annotations are available.177

2. Language model baselines: (i) zero-shot classification using language model embeddings,178

namely BERT [RG19] and Ada [NXP+22] (ZS), (ii) direct prompting to LMs, namely BART-179

MNLI [LLG+19, WNB18] and ChatGPT [ZSW+19] (Direct prompting). We also compare with180

calibration methods for zero-shot text classification [HWS+21], results in Appendix G.1.181

4.1 Improving multimodal models182

Setup. We experimented on 5 binary and multi-class datasets with spurious correlations and distri-183

bution shifts: Waterbirds [SKHL19], CelebA [LLWT15], CXR14 [WPL+17], PACS [LYSH17],184

and VLCS [FXR13]. Appendix F.1 provides dataset details. For CXR14, we use BiomedCLIP185

[ZXU+23]– CLIP finetuned on biomedical data. We evaluate on two models: CLIP (ViT-B-32 and186

ViT-L-14). Additional results with CLIP variants (ALIGN, and AltCLIP) are given in Appendix B.1.187
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Table 2: ROBOSHOT text zero-shot classification. We use BERT embedding model Ada embedding model.

Dataset Model ZS Direct prompting ROBOSHOT

AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓)

CivilComments BERT 48.1 33.3 14.8 32.5 15.7 16.8 49.7 42.3 7.4
Ada 56.2 43.2 13.0 85.6 19.2 66.4 56.6 44.9 11.7

HateXplain BERT 60.4 0.0 60.4 61.2 5.3 55.9 57.3 14.0 43.3
Ada 62.8 14.3 48.5 55.4 12.2 43.2 63.6 21.1 42.5

Amazon BERT 81.1 64.2 16.8 74.9 36.0 38.9 81.0 64.4 16.6
Ada 81.2 63.4 17.8 80.1 73.5 6.6 82.9 63.8 19.1

Gender Bias BERT 84.8 83.7 1.1 86.1 78.4 7.6 85.1 84.9 0.2
Ada 77.9 60.0 17.9 90.1 86.6 3.5 78.0 60.1 17.9

Table 3: ROBOSHOT with LMs of varying capacity. Best WG bolded, second best underlined

Dataset ZS Ours (ChatGPT) Ours (Flan-T5) Ours (GPT2) Ours (LLaMA)

AVG WG AVG WG AVG WG AVG WG AVG WG

Waterbirds 80.7 27.9 82.0 54.4 72.1 32.4 88.0 39.9 84.8 36.5

CelebA 80.1 72.7 84.8 80.5 77.5 68.2 80.3 74.1 84.2 82.0

PACS 96.7 82.1 97.0 86.3 96.2 80.3 97.2 74.0 94.8 71.9

VLCS 75.6 20.5 76.5 33.0 69.6 20.5 75.5 26.1 72.0 18.2

Results. Table 1 shows that ROBOSHOT significantly improves the worst group performance188

(WG) and maintains (and sometimes also improves) the overall average (AVG) without any auxiliary189

information (in contrast to Group Prompt, which requires access to spurious insight annotation).190

Improved robustness nearly across-the-board suggests that both the insights extracted from LMs and191

the representation modifications are useful.192

4.2 Improving language models193

Setup. We experimented on four text classification datasets: CivilComments-WILDS [BDS+19,194

KSM+21], HateXplain [MSY+21], Amazon-WILDS [NLM19, KSM+21] and Gender Bias clas-195

sification dataset [DFW+20, MFB+17]. In text experiments, the distinctions between harmful and196

helpful insights are less clear than for images– so here we only use harmful vector rejection (line 3 in197

ROBOSHOT). Appendix F.1 and F.3 provides details on datasets and prompts.198

Results. Table 2 shows that ROBOSHOT also improves zero-shot text classification, as shown by199

our consistent boost over the baselines across all datasets on BERT embedding model and BART-200

MNLI direct prompting. In the Gender Bias and Amazon experiments, RoboShot lifts weaker/older201

model performance to a level comparable to modern LLMs (ChatGPT).202

4.3 Extracting concepts from LMs with varying capacities203

Setup. We use ChatGPT [OWJ+22], Flan-T5 [CHL+22], GPT2 [RWC+19], and LLaMA204

[TLI+23], to obtain insights. Results. Table 3 shows that even though the LM strength/sizes205

correlate with the performance, ROBOSHOT with weaker LMs still outperforms zero-shot baselines.206

We hypothesize, based on Theorem 3.1 and D.1, that insights from smaller LMs are still precise in207

specifying the useful and non-useful terms and thus ROBOSHOT is able to use the insight embeddings.208

5 Conclusion209

We introduced ROBOSHOT, a fine-tuning-free system that robustifies zero-shot pretrained models in210

a truly zero-shot way. Theoretically, we characterized the quantities required to obtain improvements211

over vanilla zero-shot classification. Empirically, we found that ROBOSHOT improves both multi-212

modal and language model zero-shot performance, has sufficient versatility to apply to various base213

models, and can use insights from less powerful language models.214
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Appendix385

The appendix contains related work (Appendix C), additional theoretical (Appendix D), and experi-386

mental results (Appendix B.2 and G), details, proofs. The glossary contains a convenient reminder of387

our terminology (Appendix A) Appendix E provides the proofs of theorems that appeared in Section388

3. In Appendix F, we give more details and analysis of the experiments and provide additional389

experiment results. Finally, Appendix G entails additional experiments combining ROBOSHOT with390

other methods to highlight its versatility.391

A Glossary392

The glossary is given in Table 4.

Symbol Definition

x input vector
X embedding matrix
Xproj ROBOSHOT projected embedding matrix
y, ŷ class label, prediction
ci embedding of class i
z1, . . . , zk The concept vectors consisting of orthonormal vectors
vi, uj insight representations
αj The coefficient of input x with respect to the concept zj (before ROBOSHOT)
Aj The coefficient of transformed input x̂ with respect to the concept zj (after ROBOSHOT)
βi,j The coefficient of j-th class embedding with respect to the concept zi
γi,j The coefficient of j-th insight vector with respect to the concept zi
S the number of harmful concepts
R the number of helpful concepts
B the number of benign concepts
g text encoder to get embeddings
si text string for insight vectors
σbenign, σinsight noise rates in the coefficients of benign/insight concepts

Table 4: Glossary of variables and symbols used in this paper.
393
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B Extended Experimental Result394

B.1 Full Main result395

We provide full experimental results, with additional multi-modal models, ALIGN and AltCLIP

Table 5: Extended results. Best WG and Gap performance bolded, second best underlined.

Dataset Model ZS GroupPrompt ZS ROBOSHOT

AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓)

Waterbirds
CLIP (ViT-B-32) 80.7 27.9 52.8 81.6 43.5 38.1 82.0 54.4 28.6
CLIP (ViT-L-14) 88.7 27.3 61.4 70.7 10.4 60.3 79.9 45.2 34.7
ALIGN 72.0 50.3 21.7 72.5 5.8 66.7 50.9 41.0 9.9
AltCLIP 90.1 35.8 54.3 82.4 29.4 53.0 78.5 54.8 23.7

CelebA
CLIP (ViT-B-32) 80.1 72.7 7.4 80.4 74.9 5.5 84.8 80.5 4.3
CLIP (ViT-L-14) 80.6 74.3 6.3 77.9 68.9 9.0 85.5 82.6 2.9
ALIGN 81.8 77.2 4.6 78.3 67.4 10.9 86.3 83.4 2.9
AltCLIP 82.3 79.7 2.6 82.3 79.0 3.3 86.0 77.2 8.8

PACS
CLIP (ViT-B-32) 96.7 82.1 14.6 97.9 82.7 15.2 97.0 86.3 10.7
CLIP (ViT-L-14) 98.1 79.8 18.3 98.2 86.6 11.6 98.1 83.9 14.2
ALIGN 95.8 77.1 18.7 96.5 65.0 31.5 95.0 73.8 21.2
AltCLIP 98.5 82.6 15.9 98.6 85.4 13.2 98.7 89.5 9.2

VLCS
CLIP (ViT-B-32) 75.6 20.5 55.1 - 76.5 33.0 43.5
CLIP (ViT-L-14) 72.6 4.20 68.4 - 71.1 12.6 58.5
ALIGN 78.8 33.0 45.8 - 77.6 39.8 37.8
AltCLIP 78.3 24.7 53.6 - 78.9 25.0 53.9

CXR14 BiomedCLIP 55.3 28.9 26.4 - 56.2 41.6 14.6

396

B.2 Ablation397

Table 6: Ablation. Best WG and Gap performance bolded, second best underlined.

Dataset Model ZS Ours (vj only) Ours (uk only) Ours (both)

AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓)

Waterbirds
CLIP (ViT-B-32) 80.7 27.9 52.8 82.0 50.4 31.6 82.6 30.2 52.4 83.0 54.4 28.6
CLIP (ViT-L-14) 88.7 27.3 61.4 82.7 35.8 46.9 88.3 29.8 58.5 79.9 45.2 34.7
ALIGN 72.0 50.3 21.7 56.4 41.6 14.8 62.8 56.4 6.4 50.9 41.0 9.9
AltCLIP 90.1 35.8 54.3 81.4 59.0 22.4 89.1 35.2 53.9 78.5 54.8 23.7

CelebA
CLIP (ViT-B-32) 80.1 72.7 7.4 85.2 81.5 3.7 79.6 71.3 8.3 84.8 80.5 4.3
CLIP (ViT-L-14) 80.6 74.3 6.3 85.9 82.8 3.1 80.0 73.1 6.9 85.5 82.6 2.9
ALIGN 81.8 77.2 4.6 83.9 78.0 5.7 83.9 81.4 2.5 86.3 83.4 2.9
AltCLIP 82.3 79.7 2.6 86.1 75.6 10.5 81.9 79.0 2.9 86.0 77.2 8.8

PACS
CLIP (ViT-B-32) 96.7 82.1 14.6 97.0 83.7 13.3 96.6 84.2 12.4 97.0 86.3 10.7
CLIP (ViT-L-14) 98.1 79.8 18.3 98.0 79.8 18.2 98.1 83.8 14.3 98.1 83.9 14.2
ALIGN 95.8 77.1 18.7 95.8 78.0 17.8 95.1 71.1 24.0 95.0 73.8 21.2
AltCLIP 98.5 82.6 15.9 98.4 83.0 15.4 98.6 88.8 9.8 98.7 89.5 9.2

VLCS
CLIP (ViT-B-32) 75.6 20.5 55.1 75.6 22.7 52.9 76.4 29.5 46.9 76.5 33.0 43.5
CLIP (ViT-L-14) 72.6 4.2 68.4 70.9 6.8 64.1 73.4 8.9 64.5 71.1 12.6 58.5
ALIGN 78.8 33.0 45.8 78.2 30.7 47.5 78.0 43.2 34.8 77.6 39.8 37.8
AltCLIP 78.3 24.7 53.6 77.5 24.4 53.1 79.0 20.5 58.5 78.9 25.0 53.9

CXR14 BiomedCLIP 55.3 28.9 26.4 55.7 41.8 13.9 54.8 21.8 33.0 56.2 41.6 14.6

Setup. We run ROBOSHOT with only harmful component mitigation (reject vj : ROBOSHOT line 3),398

only boosting helpful vectors (amplify uk: ROBOSHOT line 7), and both. Due to space constraint,399

we only include CLIP-based models ablations. Results on all models can be found in Appendix G.400
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Results. The combination of both projections often achieves the best performance, as shown in Table401

6. Figure 2 provides insights into the impact of each projection. Rejecting vj reduces variance in one402

direction, while increasing uk amplifies variance in the orthogonal direction. When both projections403

are applied, they create a balanced mixture.404

We note that when doing both projections does not improve the baseline, using only uk or vj still405

outperforms the baseline. For instance, the ALIGN model in the Waterbirds dataset achieves the406

best performance with only uk projection. This suggests that in certain cases, harmful and helpful407

concepts are intertwined in the embedding space, and using just one projection can be beneficial. We408

leave further investigation to future work.409

C Related Work410

We describe related work in zero-shot model robustness and debiasing embeddings, guiding multi-411

modal models using language and using LMs as prior information.412

Zero-shot inference robustness. Improving model robustness to unwanted correlations is a heavily413

studied area [SKHL19, ABGLP19, KCJ+21, KIW22, LHC+21, LCT+22]. Some methods require414

training from scratch and are less practical when applied to large pretrained architectures. Existing415

approaches to improve robustness post-pretraining predominantly focus on fine-tuning. [YNPM23]416

detects spurious attribute descriptions and fine-tunes using these descriptions. A specialized con-417

trastive loss is used to fine-tune a pretrained architecture in [GKG+22] and to train an adapter on the418

frozen embeddings in [ZR22]. While promising, fine-tuning recreates traditional machine learning419

pipelines (e.g., labeling, training, etc.), which sacrifices some of the promise of zero-shot models.420

In contrast, our goal is to avoid any training and any use of labeled data. Concurrent work seeks421

to robustify CLIP zero-shot predictions against spurious features by debiasing the classifier (i.e.,422

the labels embedding) against harmful concepts [CJL+23]—but does so via manual specification.423

In contrast, our work amplifies helpful concepts and automates the process of obtaining debiasing424

vectors.425

Debiasing embeddings. A parallel line of work seeks to debias text embeddings [AZS+] [BCZ+16]426

[DP19] [LGPV20] and multimodal embeddings [WZS22, BHB+22, WLW21] by removing sub-427

spaces that contain unwanted concepts. We use a similar procedure as a building block. However,428

these methods either target specific fixed concepts (such as, for example, gender in fairness contexts)429

or rely on concept annotations, which limits their applicability across a wide range of tasks. In430

contrast, our method automates getting both beneficial and unwanted concepts solely from the task431

descriptions. Moreover, our goal is simply to add robustness at low or zero-cost; we do not seek to432

produce fully-invariant representations as is often desired for word embeddings.433

Using language to improve visual tasks. A large body of work has shown the efficacy of using434

language to improve performance on vision tasks [RKH+21, FCS+13, LCLBC20]. Most relevant are435

those that focus on robustness, such as [YNPM23] that uses text descriptions of spurious attributes436

in a fine-tuning loss to improve robustness. In contrast to these works, we focus on using textual437

concepts to improve zero-shot model robustness—without fine-tuning. The most similar to our438

work is [MV22, MVM+23], where GPT-3 generated class descriptors are first generated, then CLIP439

predictions scores are grounded by additive decomposition of scores from the prompts with the440

descriptors. Similarly, this method also does not require fine-tuning. However, this method focuses441

mainly on grounding through prompting with class descriptors, while ours focuses on removing442

harmful concepts and increasing helpful concepts in the embedding space.443

Language models as priors. The basis of our work is the observation that language models contain444

information that can serve as a prior for other tasks. [KNST23] finds that LLMs can perform causal445

reasoning tasks, substantially outperforming existing methods. [CCSE22] prompts LLMs for task-446

specific priors, leading to substantial performance improvements in feature selection, reinforcement447

learning, and causal discovery. Our work shares the spirit of these approaches in using the insights448

embedded in language models to enhance zero-shot robustness. .449
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D Extended Theory Results450

Theorem D.1 With an additional assumption αs ≤ 0 (1 ≤ s ≤ S) under the described noise model,451

the post-ROBOSHOT coefficient for helpful concept r (S + 1 ≤ r ≤ S +R) satisfies452

EAr ≥

(
1 +

γ2
r,r

γ2
r,r + (k − 1)σ2

insight

)
αr.

Refer to Appendix E.3 for the proof. Theorem D.1 implies the helpful coefficients are scaled up at453

a rate inversely proportional to the noise rate σinsight. When concepts are perfectly identified, i.e.454

σinsight = 0, the coefficient αr is doubled, yielding more emphasis on the concept zr as desired.455

E Theory details456

E.1 Harmful concept removal457

As the simplest form of ROBOSHOT, we consider the case of ROBOSHOT the harmful concept458

removal only, without boosting helpful concepts. Recall our noise model:459

x =

S∑
s=1

αszs +

S+R∑
r=S+1

αrzr +

S+R+B∑
b=S+R+1

αbzb

460

vt =

S∑
s=1

γs,tzs +

S+R∑
r=S+1

γr,tzr +

S+R+B∑
b=S+R+1

γb,tzb (1 ≤ t ≤ S).

Again, we assume that benign coefficients are drawn from a zero-centered Gaussian distribution,461

i.e. αb, γb,t ∼ N (0, σbenign) and also helpful coefficients and non-target harmful coefficients are462

assumed to be drawn from a Gaussian distribution, i.e. γq,t ∼ N (0, σinsight), where 1 ≤ q ≤ R,463

q ̸= t so that only γt,t is a constant.464

E.1.1 Effects on harmful coefficients465

Now we prove the following theorem.466

Theorem E.1 Under the noise model described above, the post-removal coefficient As for harmful467

concept zs satisfies468

|EAs| ≤

∣∣∣∣∣ (k − 1)αsσ
2
insight

γ2
s,s

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
t̸=s

αsσ
2
insight

γ2
t,t

∣∣∣∣∣∣ ,
where k is the number of concepts (k = S +R+B).469

Let x̂ be the output of harmful concept removal procedure such that470

x̂ = x−
S∑

s=1

xT vs

||vs||2
vs

=

k∑
i=1

αizi −
S∑

s=1

∑k
i αiγi,s∑k
l=1 γ

2
l,s

(

k∑
j=1

γj,szj)
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As the first step, we sort out the coefficients of features. For notational convenience, let Ts =471 ∑k
l=1 γ

2
l,s. Then,472

x̂ =

k∑
i=1

αizi −
S∑

s=1

∑k
i=1 αiγi,s

Ts
(

k∑
j=1

γj,szj)

=

k∑
i=1

αizi −
S∑

s=1

k∑
i=1

k∑
j=1

αiγi,sγj,s

Ts
zj

=

k∑
j=1

αjzj −
k∑

j=1

S∑
s=1

k∑
i=1

αiγi,sγj,s

Ts
zj

=

k∑
j=1

(
αj −

S∑
s=1

k∑
i=1

αiγi,sγj,s

Ts

)
zj

Thus we can get the expression for the coefficient of the target feature zs (1 ≤ s ≤ S),473

As = αs −
S∑

t=1

k∑
i=1

αiγi,tγs,t

Tt

Next, we get the bound of the absolute expectation |EAs|.474

|EAs| =

∣∣∣∣∣Eαs −
S∑

t=1

k∑
i=1

αiγi,tγs,t∑k
l=1 γ

2
l,t

∣∣∣∣∣
≤

∣∣∣∣∣Eαs −
S∑

t=1

αsγ
2
s,t∑k

l=1 γ
2
l,t

∣∣∣∣∣+
∣∣∣∣∣

S∑
t=1

E
∑S

i=1,i̸=s αiγi,tγs,t∑k
l=1 γ

2
l,t

∣∣∣∣∣
Here, the second term on RHS is 0 by independence, i.e.475 ∣∣∣∣∣E

∑S
i=1,i̸=s αiγi,tγs,t∑k

l=1 γ
2
l,t

∣∣∣∣∣ ≤
∣∣∣∣∣E
∑k

i=1,i̸=s αiγi,tγs,t

γ2
t,t

∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

i=1,i̸=s

αi

γ2
t,t

Eγi,tγs,t

∣∣∣∣∣∣ = 0

since Eγs,tγj,t = 0 by independence. Now we split the first term and get the bounds separately.476

|EAs| ≤

∣∣∣∣∣Eαs −
S∑

t=1

αsγ
2
s,t∑k

l=1 γ
2
l,t

∣∣∣∣∣
≤

∣∣∣∣∣Eαs −
αsγ

2
s,s∑k

l=1 γ
2
l,s

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
t=1,t̸=s

E
αsγ

2
s,t∑k

l=1 γ
2
l,t

∣∣∣∣∣∣
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The upper bound for the first term can be obtained by477 ∣∣∣∣∣Eαs −
αsγ

2
s,s∑k

l=1 γ
2
l,s

∣∣∣∣∣ =
∣∣∣∣∣E−

∑k
i ̸=s αsγ

2
i,s∑k

l=1 γ
2
l,s

∣∣∣∣∣
≤

∣∣∣∣∣E
∑k

i ̸=s αsγ
2
i,s

γ2
s,s

∣∣∣∣∣
≤

∣∣∣∣∣∣ αs

γ2
s,s

k∑
i̸=s

Eγ2
i,s

∣∣∣∣∣∣
≤

∣∣∣∣∣ (k − 1)αsσ
2
insight

γ2
s,s

∣∣∣∣∣ .
And, for the second term,478

∣∣∣∣∣∣
S∑

t=1,t̸=s

E
αsγ

2
s,t∑k

i=1 γ
2
i,t

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

S∑
t=1,t̸=s

E
αsγ

2
s,t

γ2
t,t

∣∣∣∣∣∣
=

∣∣∣∣∣∣
S∑

t=1,t̸=s

αs

γ2
t,t

Eγ2
s,t

∣∣∣∣∣∣
=

∣∣∣∣∣∣
S∑

t̸=s

αsσ
2
insight

γ2
t,t

∣∣∣∣∣∣
Combining two bounds, we get the proposed result.479

|EAs| ≤

∣∣∣∣∣ (k − 1)αsσ
2
insight

γ2
s,s

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
t̸=s

αsσ
2
insight

γ2
t,t

∣∣∣∣∣∣ .
While the constant (k − 1) can look daunting since it actually increases as the number of concepts480

increases, a bound less affected by σ2
insight exists as well, scaling down the target coefficient αs.481

Corollary E.1.1 Under the noise model of Theorem E.1, the post-removal coefficient for harmful482

concept s satisfies483

|EAs| ≤

∣∣∣∣∣αs

(k − 1)σ2
insight

γ2
s,s + (k − 1)σ2

insight

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
t ̸=s

αsσ
2
insight

γ2
t,t

∣∣∣∣∣∣ ,
where k is the number of concepts (k = S +R+B).484

With the identical steps to the proof of Theorem E.1, we can obtain485

|EAs| ≤

∣∣∣∣∣Eαs −
S∑

t=1

αsγ
2
s,t∑k

l=1 γ
2
l,t

∣∣∣∣∣
≤

∣∣∣∣∣Eαs −
αsγ

2
s,s∑k

l=1 γ
2
l,s

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
t=1,t̸=s

E
αsγ

2
s,t∑k

l=1 γ
2
l,t

∣∣∣∣∣∣
≤

∣∣∣∣∣Eαs −
αsγ

2
s,s∑k

l=1 γ
2
l,s

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
t=1,t̸=s

αs

γ2
t,t

Eγ2
s,t

∣∣∣∣∣∣ .
15



We improve the first term as follows.486

∣∣∣∣∣Eαs −
αsγ

2
s,s∑k

l=1 γ
2
l,s

∣∣∣∣∣ =
∣∣∣∣∣αs − αsγ

2
s,sE

1∑k
l=1 γ

2
l,s

∣∣∣∣∣
≤

∣∣∣∣∣αs − αsγ
2
s,s

1

E
∑k

l=1 γ
2
l,s

∣∣∣∣∣ Jensen’s inequality E
1∑k

l=1 γ
2
l,s

≥
1

E
∑k

l=1 γ
2
l,s

=

∣∣∣∣∣αs

(
1−

γ2
s,s

E
∑k

l=1 γ
2
l,s

)∣∣∣∣∣
=

∣∣∣∣∣αs

(
1−

γ2
s,s

γ2
s,s + (k − 1)σ2

insight

)∣∣∣∣∣
=

∣∣∣∣∣αs

(
(k − 1)σ2

insight

γ2
s,s + (k − 1)σ2

insight

)∣∣∣∣∣ .
E.1.2 Effects on helpful, benign coefficients487

Based on the coefficient expression488

Aq = αq −
S∑

t=1

k∑
i=1

αiγi,tγq,t∑k
l=1 γ

2
l,t

,

we analyze the bound of |EAq| for S+1 ≤ q ≤ k. Essentially, the following theorem implies helpful,489

benign coefficients are less affected than harmful coefficients as long as the harmful coefficients of490

insight embeddings are significant and the noise is small.491

Theorem E.2 Under the same noise model described above, the post-removal coefficient for helpful492

or benign concept q satisfies493

|EAq − αq| ≤

∣∣∣∣∣
S∑

t=1

αqσ
2
insight

γ2
t,t

∣∣∣∣∣ .
The proof technique is essentially identical to Theorem E.1.494

|EAq − αq| =

∣∣∣∣∣αq − Eαq −
S∑

t=1

αqγ
2
q,t +

∑
j=1,j ̸=q αqγq,tγj,t∑k
l=1 γ

2
l,t

∣∣∣∣∣
≤

∣∣∣∣∣E
S∑

t=1

αqγ
2
q,t∑k

l=1 γ
2
l,t

∣∣∣∣∣+
∣∣∣∣∣E
∑

j=1,j ̸=q αqγq,tγj,t∑k
l=1 γ

2
l,t

∣∣∣∣∣
=

∣∣∣∣∣E
S∑

t=1

αqγ
2
q,t∑k

l=1 γ
2
l,t

∣∣∣∣∣
∣∣∣∣∣E
∑

j=1,j ̸=q αqγq,tγj,t∑k
l=1 γ

2
l,t

∣∣∣∣∣ = 0

≤

∣∣∣∣∣
S∑

t=1

αq

γ2
t,t

Eγ2
q,t

∣∣∣∣∣
=

∣∣∣∣∣
S∑

t=1

αqσ
2
insight

γ2
t,t

∣∣∣∣∣ .
This bound implies the differences of helpful or benign features by harmful concept removal are495

proportional to the noise of insight embeddings σ2
insight, and inversely proportional to the coefficients496

of harmful coefficients of insight embeddings.497
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E.2 Helpful concept addition498

With a similar fashion to the harmful concept removal, we consider the following noise model for the499

helpful concept addition.500

x =

S∑
s=1

αszs +

S+R∑
r=S+1

αrzr +

S+R+B∑
b=S+R+1

αbzb

501

vt =

S∑
s=1

γs,tzs +

S+R∑
r=S+1

γr,tzr +

S+R+B∑
b=S+R+1

γb,tzb (S + 1 ≤ t ≤ S +R)

. Again, we assume that benign coefficients are drawn from a zero-centered Gaussian distribution,502

i.e. αb, γb,t ∼ N (0, σbenign) and also harmful coefficients and non-target helpful coefficients503

are assumed to be drawn from another Gaussian distribution, i.e. γq,t ∼ N (0, σinsight), where504

1 ≤ q ≤ S +R, q ̸= t so that only γt,t are constants.505

E.2.1 Lower bound for the coefficient of helpful concept506

Theorem E.3 Under the described noise model, the post-addition coefficient for helpful concept r507

satisfies508

EAr ≥

(
1 +

γ2
r,r

γ2
r,r + (k − 1)σ2

insight

)
αr.

Let x̂ be the output of helpful concept addition procedure such that509

x̂ = x+

S+R∑
t=S+1

xT vt

||vt||2
vt

=

k∑
i=1

αizi +

S+R∑
t=S+1

∑k
i=1 αiγi,t∑k
l=1 γ

2
l,t

(

k∑
j=1

γj,tzj).

As the first step, we sort out the coefficients of concepts. For notational convenience, let Tt =510 ∑k
l=1 γ

2
l,t. Then,511

x̂ =

k∑
i=1

αizi +

S+R∑
t=S+1

∑k
i=1 αiγi,t

Tt
(

k∑
j=1

γj,tzj)

=

k∑
i=1

αizi +

S+R∑
t=S+1

k∑
i=1

k∑
j=1

αiγi,tγj,t

Tt
zj

=

k∑
j=1

αjzj +

k∑
j=1

S+R∑
t=S+1

k∑
i=1

αiγi,tγj,t

Tt
zj

=

k∑
j=1

(
αj +

S+R∑
t=S+1

k∑
i=1

αiγi,tγj,t

Tt

)
zj .

Thus we can get the expression for the coefficient of the target concept zr (S + 1 ≤ r ≤ S +R),512

Ar = αr +

S+R∑
t=S+1

k∑
i=1

αiγi,tγr,t

Tt
.
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Then,513

EAr = Eαr +

S+R∑
t=S+1

k∑
i=1

αiγi,tγr,t

Tt

= αr +

S+R∑
t=S+1

k∑
i=1

E
αiγi,tγr,t∑k

l=1 γ
2
l,t

= αr + E
αrγ

2
r,r∑k

l=1 γ
2
l,r

+

k∑
i=1,i̸=r

E
αiγi,rγr,r∑k

l=1 γ
2
l,r

+

S+R∑
t=S+1,t̸=r

k∑
i=1

E
αiγi,tγr,t∑k

l=1 γ
2
l,t

= αr + E
αrγ

2
r,r∑k

l=1 γ
2
l,r

+

k∑
i=1,i̸=r

γr,rE
αiγi,r∑k
l=1 γ

2
l,r

+

S+R∑
t=S+1,t̸=r

k∑
i=1

E
αiγi,tγr,t∑k

l=1 γ
2
l,t

= αr + E
αrγ

2
r,r∑k

l=1 γ
2
l,r

+

S+R∑
t=S+1,t̸=r

k∑
i=1

E
αiγi,tγr,t∑k

l=1 γ
2
l,t

by symmetry

= αr + E
αrγ

2
r,r∑k

l=1 γ
2
l,r

by law of total expectation and symmetry

≥ αr + αrγ
2
r,rE

1∑k
l=1 γ

2
l,r

≥ αr + αrγ
2
r,r

1

E
∑k

l=1 γ
2
l,r

Jensen’s inequality

= αr + αrγ
2
r,r

1

γ2
r,r + (k − 1)σ2

insight

.

Thus, we obtain the result.514

EAr ≥

(
1 +

γ2
r,r

γ2
r,r + (k − 1)σ2

insight

)
αr.

E.2.2 Effects on harmful, benign coefficients515

For notational convenience, let Ichelpful be the non-helpful concept index set such that Ichelpful =516

{i ∈ N|i ≤ S or S + R + 1 ≤ i ≤ S + R + B}. For q ∈ IcR, we obtain the bound of effects on517

harmful, benign coefficients with a similar fashion to the harmful concept removal case.518

Theorem E.4 Under the same noise model described above, the post-addition coefficient for helpful519

or benign concept q satisfies520

|EAq − αq| ≤

∣∣∣∣∣
S+R∑

t=S+1

αqσ
2
insight

γ2
t,t

∣∣∣∣∣ .
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|EAq − αq| =

∣∣∣∣∣αq − Eαq +

S∑
t=1

αqγ
2
q,t +

∑
j=1,j ̸=q αqγq,tγj,t∑k
l=1 γ

2
l,t

∣∣∣∣∣
≤

∣∣∣∣∣E
S+R∑

t=S+1

αqγ
2
q,t∑k

l=1 γ
2
l,t

∣∣∣∣∣+
∣∣∣∣∣E
∑

j=1,j ̸=q αqγq,tγj,t∑k
l=1 γ

2
l,t

∣∣∣∣∣
=

∣∣∣∣∣E
S+R∑

t=S+1

αqγ
2
q,t∑k

l=1 γ
2
l,t

∣∣∣∣∣
∣∣∣∣∣E
∑

j=1,j ̸=q αqγq,tγj,t∑k
l=1 γ

2
l,t

∣∣∣∣∣ = 0

≤

∣∣∣∣∣
S+R∑

t=S+1

αq

γ2
t,t

Eγ2
q,t

∣∣∣∣∣
=

∣∣∣∣∣
S+R∑

t=S+1

αqσ
2
insight

γ2
t,t

∣∣∣∣∣ .
Theorem 3.1 Theorem D.1521

E.3 Combined main results522

Now, we are ready to provide the combine main result, i.e. the coefficient bounds with harmful523

concept removal and helpful concept addition. The noise model can be described as follows.524

x =

S∑
s=1

αszs +

S+R∑
r=S+1

αrzr +

S+R+B∑
b=S+R+1

αbzb

525

vt =

S∑
s=1

γs,tzs +

S+R∑
r=S+1

γr,tzr +

S+R+B∑
b=S+R+1

γb,tzb (1 ≤ t ≤ S +R)

526

αb, γb,t ∼ N (0, σbenign)
527

γq,t ∼ N (0, σinsight),

where 1 ≤ q ≤ S +R, q ̸= s so that only γt,t is a constant. We can obtain the expression for each528

coefficient as before.529

x̂ =
∑
j=1

(
aj −

S∑
s=1

k∑
i=1

αiγi,sγj,s

Ts
+

S+R∑
r=S+1

k∑
i=1

αiγi,rγj,r

Tr

)
zj

530

Aq = aq −
S∑

s=1

k∑
i=1

αiγi,sγq,s

Ts
+

S+R∑
r=S+1

k∑
i=1

αiγi,rγq,r

Tr
,

where Aq is the coefficient of zq(1 ≤ q ≤ k) after (ignoring normalization) and Tt =
∑k

l=1 γ
2
l,t.531

Using the results from the previous subsections, we provide an upper bound on harmful coefficients,532

a lower bound on helpful coefficients, and an upper bound on the change in the benign coefficients.533

We restate Theorem 3.1, D.1 and provide proofs.534

Under the combined noise model described above, the post- coefficient for harmful concept q535

(1 ≤ q ≤ S) satisfies536

|EAq| ≤

∣∣∣∣∣ (k − 1)αqσ
2
insight

γ2
q,q

∣∣∣∣∣+
∣∣∣∣∣∣

S+R∑
t=1,t̸=q

αqσ
2
insight

γ2
t,t

∣∣∣∣∣∣ ,
where k is the number of concepts (k = S +R+B).537
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|EAq| =

∣∣∣∣∣Eaq −
S∑

s=1

k∑
i=1

αiγi,sγq,s

Ts
+

S+R∑
r=S+1

k∑
i=1

αiγi,rγq,r

Tr

∣∣∣∣∣
≤

∣∣∣∣∣ (k − 1)αqσ
2
insight

γ2
q,q

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
s=1,s ̸=q

αqσ
2
insight

γ2
s,s

∣∣∣∣∣∣+
∣∣∣∣∣
S+R∑

t=S+1

αqσ
2
insight

γ2
t,t

∣∣∣∣∣
=

∣∣∣∣∣ (k − 1)αqσ
2
insight

γ2
q,q

∣∣∣∣∣+
∣∣∣∣∣∣

S+R∑
t=1,t̸=q

αqσ
2
insight

γ2
t,t

∣∣∣∣∣∣ two terms have the same sign by aq

Next, we state the lower bound for the helpful features. We assume the signs of harmful concepts in538

input embeddings539

αs ≤ 0 (1 ≤ s ≤ S),

to keep the appearance of the result clear.540

With an additional assumptions αs ≤ 0 (1 ≤ s ≤ S) under the combined noise model, the post-541

coefficient for helpful concept q(S + 1 ≤ q ≤ S +R) satisfies542

EAq ≥

(
1 +

γ2
q,q

γ2
q,q + (k − 1)σ2

insight

)
αq.

EAq = Eaq −
S∑

s=1

k∑
i=1

αiγi,sγq,s

Ts
+

S+R∑
r=S+1

k∑
i=1

αiγi,rγq,r

Tr

= Eaq +
S+R∑

r=S+1

k∑
i=1

αiγi,rγq,r

Tr
− E

S∑
s=1

k∑
i=1

αiγi,sγq,s

Ts

= Eaq +
S+R∑

r=S+1

k∑
i=1

αiγi,rγq,r

Tr
− E

S∑
s=1

αsγ
2
q,s

Ts
− E

S∑
s=1

k∑
i=1,i̸=q

αiγi,sγq,s

Ts
.

Here, E
∑S

s=1

∑k
i=1,i̸=q

αiγi,sγq,s

Ts
= 0 by symmetry and law of total expectation, and543

−E
∑S

s=1

αsγ
2
q,s

Ts
≥ 0 since αs ≤ 0 by assumption, which can be dropped for a lower bound.544

EAq = Eaq +
S+R∑

r=S+1

k∑
i=1

αiγi,rγq,r

Tr
− E

S∑
s=1

αsγ
2
q,s

Ts
− E

S∑
s=1

k∑
i=1,i̸=q

αiγi,sγq,s

Ts

≥ Eaq +
S+R∑

r=S+1

k∑
i=1

αiγi,rγq,r

Tr

≥

(
1 +

γ2
q,q

γ2
q,q + (k − 1)σ2

insight

)
αq.

Now, we state the upper bound on the changes in benign concepts. The proof is straightforward from545

the previous ones in harmful concept removal and helpful concept addition.546

Corollary E.4.1 Under the same combined noise model, the post- coefficient for benign concept q547

satisfies548

|EAq − αq| ≤

∣∣∣∣∣
S+R∑
t=1

αqσ
2
insight

γ2
t,t

∣∣∣∣∣ .
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F Experiments details549

F.1 Datasets550

Table 7 provides details of the datasets used in our experiments. For Gender Bias dataset [DFW+20,551

MFB+17], we test using the train set to get more data. For all other datasets, we use the default test552

set. For Amazon-WILDS [NLM19] dataset, we convert the original 5-class rating classification into553

binary, by removing all samples with rating 3, and convert rating 1 and 2 into bad label, and 4 and 5554

into good label.

Dataset Groups Nall Nwg nclass classes

Waterbirds

{ landbird in land,

5794 642 2

{landbird,
landbird in water, waterbird }
waterbird on land,
waterbird on water }

CelebA

{ male & not blond,

19962 180 2

{not blond,
female & not blond, blond}
male & blond ,
female & blond }

PACS
{ art, cartoons,

9991 80 7
{dogs, elphant,

photos, sketches,} giraffe, guitar,
house, person }

VLCS

{ Caltech101,

10725 20 5

{bird, car,
LabelMe, chair, dog, person}
SUN09,
VOC2007 }

CXR14 { no-pneumothorax, 2661 20 2 {no-pneumothorax,
pneumothorax } pneumothorax}

CivilComments-WILDS
{male, female, LGBTQ,

133782 520 2
{non-toxic,

christian, muslim, toxic }
other religions, black, white }

HateXplain

{hindu, islam, minority,

1921 6 2

{normal,
refugee, indian, caucasian, offensive}
hispanic, women, disability,
homosexual, arab, christian,
jewish, men, african,
nonreligious, asian, indigenous,
heterosexual, buddhism,
bisexual, asexual}

Amazon-WILDS

{beauty, garden, books,

90078 25 2

{good,bad}
luxury beauty, kindle store,
movies and TV, pet supplies,
industrial and scientific,
office products,
CDs and vinyl, electronics,
cell phones, magazine,
clothing, groceries, music,
instruments, tools, sports,
automotive, toys, arts crafts,
kitchen, video games,
pantry, software, gift cards }

Gender Bias {male, female } 22750 3594 2 {female, male}

Table 7: Dataset details

555
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Dataset Model vharmful prompt vhelpful prompt

All

ChatGPT "List the biased/spurious differences "List the true visual differences
between [classes]." between [classes]."

Flan-T5 & GPT2 {"[class] typically", "[class] usually"} {"a characteristic of [class]: ",
"[class] are", ""a [class] is",
"Charactericstics of [class]"
"Stereotype of [class]"
"Typical characteristic of [class]"}

LLaMA "List the biased/spurious "List the visual characteristics of [class]"
characteristics of [class]"

Table 8: Image dataset prompt details

Dataset Model vharmful prompt

Amazon-WILDS ChatGPT "what are the biased differences between good and bad amazon reviews?"

Gender bias ChatGPT "what are the biased differences
between comments about female and comments about male?"

Table 9: NLP dataset prompt details

Dataset Class prompt

Waterbirds [ "a landbird", "a waterbird" ]

CelebA [ "person with dark hair", "person with blond hair" ]

PACS "an image of [class]"

VLCS "this object is [class]"

CXR14 [ "non-pneumothorax", "pneumothorax" ]

CivilComments-WILDS [ "non-toxic", "toxic" ]

HateXplain [ "normal", "offensive" ]

Amazon-WILDS [ "negative", "positive" ]

Gender Bias [ "female", "male" ]

Table 10: Class prompt details

F.2 Prompt templates556

We provide details on prompts used to get the vharmful and vhelpful on image datasets in Table557

8. As mentioned in the main body, for NLP datasets we only used vharmful. Additionally, we use558

the demographic mentions annotations to construct vharmful in CivilComments-WILDS [BDS+19,559

KSM+21] and HateXplain [MSY+21]. We provide prompt details to get vharmful for Amazon-560

WILDS [NLM19, KSM+21] and Gender Bias [DFW+20, MFB+17] datasets in Table 9. We also561

provide class prompts in Table 10.562

F.3 Direct Prompting Prompt templates563

Table 11 shows the prompts used for Direct Prompting ChatGPT baseline in Table 2. For BART-564

MNLI, we directly use the dataset labels as label input to the model.565
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Dataset Prompt

CivilComments-WILDS Is this a toxic comment? Answer with yes/no

HateXplain Is this a toxic comment? Answer with yes/no

Amazon-WILDS Is this a positive or negative product review? Answer with pos/neg

Gender Bias Is this text about male/female? Answer with male/female

Table 11: Direct prompting prompts for ChatGPT

F.4 ROBOSHOT Experiment Details566

All ROBOSHOT experiments are carried out using frozen weights and embeddings from huggingface567

(ALIGN, AltCLIP) and open-clip (CLIP ViT-B-32 and ViT-L-14, BiomedCLIP), and no training is568

involved. There is no randomness in the ROBOSHOT experiment results reported in the main body of569

the paper.570

F.5 LFA Experiment Details571

Dataset Batch size Learning rate

Waterbirds {1.5e−8, 2.5e−8, 5e−8, 2.5e−7} {16, 32, 64}

CelebA {7.5e−9, 1e−8, 2.5e−8} {16, 32, 64}

PACS {2.5e−9, 5e−9, 7.5e−9, 1.5e−8} {16, 32, 64}

VLCS {2.5e−9, 5e−9, 7.5e−9, 1.5e−8} {16, 32, 64}

Table 12: LFA hyperparameter choices

Table 12 shows the choices of hyperparameters we tune over for LFA experiments. We use SGD572

optimizer with fixed default momentum form PyTorch. All training are run for a fixed maximum573

epoch of 300, and we choose model based on validation performance.574
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Figure 3: Synthetic experiment with varying σnoise. As expected, the performance improves at a rate
inversely proportional to σnoise.

G Additional experiments575

G.1 Combination with the calibration methods576

Table 13: Additional baseline: text-classification calibration method [HWS+21]

Dataset Model Calibration ROBOSHOT Calibration + ROBOSHOT

AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓)

CivilComments BERT 51.0 37.3 13.7 49.7 42.3 7.4 53.4 36.9 16.5
Ada 73.3 31.2 42.1 56.6 44.9 11.7 68.3 35.0 33.3

HateXplain BERT 60.9 15.8 45.1 57.3 14.0 43.3 56.7 22.8 33.9
Ada 61.9 31.6 30.3 63.6 21.1 42.5 59.6 33.3 26.3

Amazon BERT 78.0 57.7 20.3 81.0 64.4 16.6 79.0 59.2 19.8
Ada 71.2 50.5 20.7 82.9 63.8 19.1 83.2 63.9 19.3

Gender Bias BERT 85.4 83.2 2.2 85.1 84.9 0.2 85.7 82.5 3.2
Ada 84.2 77.8 6.4 78.0 60.1 17.9 84.2 77.9 6.3

Table 13 shows that ROBOSHOT further benefits from the calibration methods. This further highlights577

the versatility of ROBOSHOT—we can combine it with such methods with no additional work. To578

showcase this, we show additional results from (1) applying the calibration method alone, (2) our579

method, (3) the combination.580

This result show that the best performing method across the board is either ROBOSHOT or the581

combination. The underlying reason for this is that as the two methods are orthogonal, adding582

calibration can further improve the results.583

G.2 Synthetic experiments584

Setup. We validate our theoretical claims by performing a synthetic experiment where we vary585

the noise level in the insight vectors (σinsight). Higher σinsight indicates more noise. We use the586

following basis vectors as concept vectors zcore = (1, 0, 0), zspurious = (0, 1, 0), zbenign = (0, 0, 1),587

and class embedding vectors c1 = zcore+zspurious+zbenign and c0 = −zcore−zspurious+zbenign.588

Experiments are repeated 100 times.589

• Synthetic data input distribution (s denotes spurious feature group)590

– x|y = 1, s = 0 ∼ N ([wcore, wspurious, wbenign], σinputI), n = 2500591

– x|y = 1, s = 1 ∼ N ([wcore,−wspurious, wbenign], σinputI), n = 2500592

– x|y = 0, s = 0 ∼ N ([−wcore,−wspurious, wbenign], σinputI), n = 2500593

– x|y = 0, s = 1 ∼ N ([−wcore, wspurious, wbenign], σinputI), n = 2500594
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Figure 4: (a) Original (green) and projected (red) input embeddings x, and label embeddings c0 and
c1. (b) label embeddings c0 and c1, harmful insight embeddings vk (black star) and helpful insight
embeddings uj (blue star)

• Insight vectors595

– vhelpful = γhelpfulzcore + γszspurious + γbzbenign, where γs ∼ N (0, σinisght),596

γb ∼ N (0, σbenign)597

– vharmful = γczcore + γharmfulzspurious + γbzbenign, where γc ∼ N (0, σinisght),598

γb ∼ N (0, σbenign)599

For the experiment reported in Figure 3, we used wcore = 1, wspurious = 1, wbenign =600

0.5, γhelpful = 1, γharmful = 1, σinput = 0.5, σbenign = 0.01601

Results. In Figure 3, we observe that up to 10 - 20% of noise level to signal (harmful, helpful602

coefficients = 1), our algorithm works well, recovering worst group accuracy and improving average603

group accuracy. This result supports our claims in Theorems 3.1 and D.1.604

G.3 Embedding analysis605

We provide insights into the case where our method does not improve the baseline (ALIGN model606

on Waterbirds) in Fig. 4. In Fig. ??, we visualize the original and projected input embeddings (x in607

green and red points, respectively), and the label embeddings (c0 and c1). Fig. ?? (left) shows the608

embeddings from the ALIGN model. We observe that the projected embeddings (red) still lie within609

the original embedding space, even with reduced variance. In contrast, when examining the CLIP610

model embeddings (Figure ?? (right)), we observe that the projected embeddings are significantly611

distant from the original ones. Unsurprisingly, Figure ?? (left) reveals that vj and uk (harmful and612

helpful insight embeddings in black and blue stars, respectively) are not distinguishable in the text613

embedding space of ALIGN, collapsing the input embeddings after ROBOSHOT is applied.614

G.4 Analysis on the robustness to spurious correlations.615

We provide in-depth result analysis to explain the performance changes in the average accuracy (AVG)616

and worst group accuracy (WG), especially with respect to spurious correlations. Concretely, consider617

the distribution of the margin M : X → R given by M(x) := ⟨c+, x⟩ − ⟨c−, x⟩, where c+, c−618

are the correct/incorrect class embeddings. Accuracy can be expressed as EI(M(x)). The margin619

distributions and the margin changes by roboshot are illustrated in Figure 5 (Waterbirds), 6. We620

denotes data with spurious features asDsp (i.e. waterbirds with land background, landbirds with water621

background), and data with non-spurious features as Dnsp (i.e. waterbirds with water background,622

25



[][ViT-B-

32]
1 0 1

M(x)
0

100

200

Co
un

t

0.0 0.5
M(xrm) M(x)

0.1 0.0 0.1
M(xad) M(xrm)

nsp

sp

ViT-B-32

[][ViT-L-

14]
1 0 1

M(x)
0

100

200

Co
un

t

0.5 0.0 0.5
M(xrm) M(x)

0.5 0.0 0.5
M(xad) M(xrm)

nsp

sp

ViT-L-14

[][ALIGN]
0.05 0.00 0.05 0.10

M(x)
0

100

200

Co
un

t

0.0250.000 0.025
M(xrm) M(x)

0.01 0.00 0.01
M(xad) M(xrm)

nsp

sp

ALIGN

[][AltCLIP]
0.05 0.00 0.05 0.10

M(x)
0

100

200

Co
un

t

0.05 0.00 0.05
M(xrm) M(x)

0.01 0.00 0.01
M(xad) M(xrm)

nsp

sp

ALT

Figure 5: Margin analysis in Waterbirds dataset. Typically, inputs with spurious features Dsp tend to
be closer to the decision boundary, inducing more errors. As expected, we can observe that harmful
insight removal procedure increases the margin of Dsp, but decreases the margin of inputs with
non-spurious features Dnsp. This can explain the potential tradeoff between the accuracy of Dsp and
Dnsp. If the gain in Dsp outweights the loss in Dnsp, the average accuracy increases as in most cases.
However, if the gain in Dsp is less the loss in Dnsp, the average accuracy decreases as in ALIGN. In
either case, the model performance in Dsp is improved by this procedure. In addition step, we expect
that margin improves in both of Dsp, Dnsp on average as in ViT-B-32. However, in most cases, the
margin changes are not that crucial, implying extracting helpful insights is not easy in Waterbirds
dataset.
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Figure 6: Margin analysis in CelebA dataset. Again, inputs with spurious features "blond" tend to
induce errors ("men"-"blond", "girl"-"non-blond"). As expected, we can observe that harmful insight
removal procedure increases the margin of Dsp, but decreases the margin of inputs with non-spurious
features Dnsp, which may lead to the potential tradeoff. However, in CelebA dataset, the helpful
insight addition step turns out to be helpful, increasing the margins of both distributions much. It can
be interpreted as helpful insights can be captured easily in images.
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landbirds with land background). In the first column, M(x) denotes the margin distribution of623

zeroshot prediction. In the second column, M(x̂rm)−M(x) represents the margin changes by the624

roboshot harmful concept removal procedure. In the third column, M(x̂ad)−M(x̂rm) represents625

the margin changes by the roboshot helpful concept addition. Typically, inputs with spurious features626

Dsp tend to be closer to the decision boundary, inducing more errors. As expected, we can observe627

that harmful insight removal procedure increases the margin of Dsp, but decreases the margin of628

inputs with non-spurious features Dnsp. This can explain the potential tradeoff between the accuracy629

of Dsp and Dnsp. If the gain in Dsp outweights the loss in Dnsp, the average accuracy increases as in630

most cases. However, if the gain in Dsp is less the loss in Dnsp, the average accuracy decreases as in631

ALIGN. In either case, the model performance in Dsp is improved by this procedure. In addition step,632

we expect that margins improve in both of Dsp, Dnsp on average. Helpful insight addition procedure633

turns out be quite effective in CelebA dataset, where visual features can be described more easily by634

language models.635

G.5 Isolating concepts by averaging relevant concepts636

Table 14: Left: Cosine similarity between concept images and original embedding vs. averaged
embedding. Right: ROBOSHOT on Waterbirds with original vs. averaged embedding

Concept Original Average

Green 0.237 0.241

Red 0.236 0.240

Blue 0.213 0.229

Yellow 0.237 0.246

Square 0.214 0.220

ZS ROBOSHOT Original ROBOSHOT Average

AVG WG Gap AVG WG Gap AVG WG Gap

86.6 29.6 57.0 87.1 31.5 55.6 78.8 55.1 23.7

We conduct experiments to test the viability of our concept modeling. Specifically, we want to find637

out if CLIP input representation x contains harmful, helpful, and benign components (zs, zr, and zb638

respectively in equation 1) and whether it is reasonable to assume benign components as noise.639

Can we partition CLIP input representation into harmful, helpful, and benign concepts? For640

a particular concept (e.g., “land”), we hypothesize that the true concept component is mixed with641

other concept components due to the signal in training data. For instance, land often co-occurs with642

sky, cattle, and other objects. Thus, the CLIP representation of “land” is entangled with these other643

concepts. To potentially isolate the helpful concept, we ask LM for an exhaustive list of concepts644

related to “land” and average the embedding of all related concepts. The intuition here is that a clean645

“land” component exists in each individual embedding, and the remaining is likely to be random,646

which can be averaged out and leave us with the true concept.647

To verify this intuition, we compare the original and averaged embeddings of concepts listed in Table648

14 (left). For each concept, we get 100 Google image search results and filter out noisy images (e.g.,649

images with large text and artifacts) by eyeballing. We then report the average cosine similarity650

between the images and original embedding vs. the embedding from our averaging procedure.651

Averaged embedding has higher cosine similarity across the board than original CLIP embedding. To652

some extent, this indicates that the averaging procedure isolates the true concept. And thus, benign653

components in embeddings can be canceled out.654

Does ROBOSHOT gain improvement with isolated concept? Table 14 (right) compares655

ROBOSHOT with removing harmful insights using original CLIP embedding vs. averaged em-656

bedding. We use Waterbirds dataset because the harmful insights are known in prior. To isolate the657

effect of our averaging procedure, we use “landbird” and “waterbird” as labels without additional658

prompts (e.g., “a picture of [label]”), and we only use “land” and “water” as the harmful insights to659

remove, which causes slight difference with the results reported in Table 1. Confirming our intuition,660

using the averaged embedding results in better WG performance and smaller Gap.661
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G.6 Roboshot without decomposition662

To see the effectiveness of QR decomposition of insight vectors, we conduct additional ablation663

experiment of decomposition method. In Table 15, w/o QR (vj only), w/o QR (uk only), and w/o664

QR (both) represents roboshot rejection only, addition only, both without QR decomposition step.665

Contrary to our expectation, in binary classification (Waterbirds, CelebA), Roboshot method works666

well without QR decomposition. This can be interpreted as insights from LLM provide almost667

orthogonal vectors. However, in multiclass classification, where rejection, addition vectors are668

generated by combinatorially paring insights for each class, Roboshot method get worse. Especially,669

addition step collapse. While rejection step wears off the subspace that the insight vectors span and670

there couldn’t be more difference, addition steps can push multiple times to the similar directions.671

From this ablation experiment, the benefits of obtaining subspace via decomposition can be explained672

by two ways. First, in removal step, it provides a clean way to remove the subspace that spurious673

features span. Secondly, int addition step, it prevents overemphasis on some helpful insight directions.674

Table 15: Ablation of QR decomposition

Dataset Model Roboshot w/ QR w/o QR (vj only) w/o QR (uk only) w/o QR (both)

AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓)

Waterbirds
CLIP (ViT-B-32) 83.0 54.4 28.6 79.5 58.3 21.2 83.0 31.2 51.8 79.6 62.5 17.1
CLIP (ViT-L-14) 79.9 45.2 34.7 79.3 36.3 43.0 88.8 31.6 57.2 75.0 45.8 29.2
ALIGN 50.9 41.0 9.9 53.3 36.6 16.7 62.0 50.9 11.1 38.2 36.5 1.7
AltCLIP 78.5 54.8 23.7 70.8 56.1 14.7 89.0 35.0 54.0 64.3 52.8 11.5

CelebA
CLIP (ViT-B-32) 84.8 80.5 4.3 85.3 81.6 3.7 80.5 73.2 7.3 86.5 83.5 3.0
CLIP (ViT-L-14) 85.5 82.6 2.9 86.1 81.7 4.4 79.7 72.5 7.2 85.8 80.0 5.8
ALIGN 86.3 83.4 2.9 84.4 78.9 5.5 83.9 81.5 2.4 86.8 84.5 2.3
AltCLIP 86.0 77.2 8.8 86.5 75.6 9.9 80.4 75.6 4.8 86.0 77.8 8.2

PACS
CLIP (ViT-B-32) 97.0 86.3 10.7 97.0 82.9 14.1 85.5 37.8 47.7 83.8 33.0 50.8
CLIP (ViT-L-14) 98.1 83.9 14.2 98.0 79.8 18.2 84.9 13.4 71.5 85.8 11.8 74.0
ALIGN 95.0 73.8 21.2 95.7 75.9 19.8 56.9 0.2 56.7 58.0 0.2 57.8
AltCLIP 98.7 89.5 9.2 98.4 83.1 15.3 67.8 4.0 63.8 65.0 2.8 62.2

VLCS
CLIP (ViT-B-32) 75.6 33.0 43.5 75.5 20.5 55.0 21.4 0.0 21.4 30.7 0.0 30.7
CLIP (ViT-L-14) 71.1 12.6 58.5 71.1 6.9 64.2 22.3 0.0 22.3 22.1 1.3 20.8
ALIGN 77.6 39.8 37.8 78.1 33.0 45.1 36.2 0.0 36.2 32.7 0.1 32.6
AltCLIP 78.9 25.0 53.9 77.5 25.1 52.4 31.4 0.0 31.4 30.6 2.0 28.6

CXR14 BiomedCLIP 56.2 41.6 14.6 55.9 36.6 19.3 55.2 23.9 31.3 56.1 37.2 18.9
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