Value-Evolutionary-Based Reinforcement Learning

Pengyi Li! Jianye Hao !

Abstract

Combining Evolutionary Algorithms (EAs) and
Reinforcement Learning (RL) for policy search
has been proven to improve RL performance.
However, previous works largely overlook value-
based RL in favor of merging EAs with
policy-based RL. This paper introduces Value-
Evolutionary-Based Reinforcement Learning
(VEB-RL) that focuses on the integration of EAs
with value-based RL. The framework maintains a
population of value functions instead of policies
and leverages negative Temporal Difference error
as the fitness metric for evolution. The metric is
more sample-efficient for population evaluation
than cumulative rewards and is closely associated
with the accuracy of the value function approxi-
mation. Additionally, VEB-RL enables elites of
the population to interact with the environment to
offer high-quality samples for RL optimization,
whereas the RL value function participates in the
population’s evolution in each generation. Ex-
periments on MinAtar and Atari demonstrate the
superiority of VEB-RL in significantly improving
DQN, Rainbow, and SPR. Our code is available
on https://github.com/yeshenpy/VEB-RL.

1. Introduction

Reinforcement Learning (RL) (Sutton & Barto, 1998) has
witnessed growing success in various practical tasks such
as game Al (Vinyals et al., 2019), robot control (Johannink
et al., 2019), and automatic driving (Zhou et al., 2010; Li
et al., 2015). The combination of RL and deep neural net-
works, known as Deep Reinforcement Learning (DRL), has
been instrumental in achieving impressive results. Thanks
to the strong approximation capability of neural networks,
DRL can efficiently learn using gradient information. How-

!College of Intelligence and Computing, Tianjin University,
China *Edinburgh Centre for Robotics *University of Oxford
“Centre for the Study of Existential Risk, University of Cambridge
. Correspondence to: Jianye Hao <jianye.hao@tju.edu.cn>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Hongyao Tang' Yan Zheng' Fazl Barez?3

4

ever, DRL has limitations, including poor exploration ca-
pability (Hao et al., 2023b; Liu et al., 2024b), convergence,
and susceptibility to suboptimal policies (Khadka & Tumer,
2018; Li et al., 2024). Moreover, it is highly reliant on the ac-
curacy of the reward signal, low-quality rewards (e.g. sparse,
noisy, or deceptive) can drastically reduce performance (Li
et al., 2022). Evolutionary Algorithms (EAs) (Bick &
Schwefel, 1993) can be used as an alternative to RL (Such
et al., 2017; Salimans et al., 2017) for gradient-free opti-
mization. In contrast to RL, EAs maintain a population
instead of a single individual and introduce perturbations
to the individuals to produce offspring for better solutions.
EAs have shown to be more efficient for exploration, con-
vergence, and robustness compared to RL (Li et al., 2024).
Despite these advantages, EAs suffer from low sample ef-
ficiency, often requiring several orders of magnitude more
samples than RL (Sigaud, 2022; Li et al., 2024).

Many methods are proposed to combine EAs and RL to
leverage their complementary strengths for more efficient
policy search (Sigaud, 2022; Li et al., 2024). ERL (Khadka
& Tumer, 2018) combines Genetic Algorithm (GA) (Katoch
et al., 2021) with DDPG (Lillicrap et al., 2016). In ERL, EA
and RL are concurrently optimized. EA provides samples
generated during the population evaluation process to RL
for optimization, aiming to enhance sample efficiency. In
turn, RL injects the optimized RL policy into the popula-
tion to participate in the evolutionary process. ERL defines
the fitness of policies in the population as the averaged cu-
mulative reward for several episodes of interaction with
the environment, which subsequently became a commonly
adopted fitness metric for ERL-related works (Pourchot &
Sigaud, 2019; Bodnar et al., 2020; Marchesini et al., 2020;
Hao et al., 2023a). Despite the success of ERL and its exten-
sions, previous methods for combining EAs with RL mainly
focus on policy-based RL, which employs policies to build
the population and ranks individuals based on cumulative
rewards obtained from interactions with the environment (Li
et al., 2024). However, the value-based RL and its properties
are often overlooked in the ERL field.

Applying existing frameworks to value-based RL faces two
problems: (i) Value-based algorithms optimize the value
function. It is feasible to directly view value functions as
policies for evolution through the cumulative rewards, but
this ignores the principle of value iteration (Sutton & Barto,

https://github.com/yeshenpy/VEB-RL

Value-Evolutionary-Based Reinforcement Learning

1998; Mnih et al., 2013), and (ii) low-quality samples gen-
erated by the population can potentially lead to suboptimal
RL optimization (Zhang et al., 2022; Liu et al., 2021) and
reduce sample efficiency. To address the problems, we pro-
pose a new framework called Value-Evolutionary-Based
Reinforcement Learning (VEB-RL) that combines EAs
with value-based RL. VEB-RL maintains a population of Q
networks (action value networks) and their corresponding
target networks. Instead of using cumulative rewards as
the fitness metric for population evaluation, we tailor a new
fitness metric, the negative Temporal Difference (TD) error,
which quantifies the difference between the Q-network’s
estimations and the target values. The tailored fitness metric
aligns with the goal of value iteration and does not require
interaction with the environment, making it more sample-
efficient. With the tailored fitness metric, we can evaluate
individual fitness and rank individuals without interaction.
To offer high-quality samples and avoid the potential nega-
tive impacts of low-quality samples on RL optimization, we
propose a new mechanism Elite Interaction, which restricts
interaction with the environment to only the elite individuals
of the population. Our main contributions are three-fold:

* First, we propose a simple yet efficient framework VEB-
RL to enhance Value-Based RL. Considering the proper-
ties of value-based RL, we propose to use the negative
TD error as the fitness. To the best of our knowledge, we
are the first to use the negative TD error as the fitness for
population evolution.

* Second, we propose Elite Interaction to guarantee the
quality of the data samples and improve sample efficiency.

 Last but not least, we propose two variants of VEB-RL
and integrate them with DQN, Rainbow, and SPR. The
experiments on MinAtar, Atari, and Atari 100k show that
VEB-RL significantly improves the RL algorithms and
outperforms other strong ERL baselines. Additionally,
VEB-RL can improve non-value-based RL and demon-
strate its effectiveness on MUJOCO tasks.

2. Preliminaries

Reinforcement Learning Consider a Markov decision
process (MDP) (Puterman, 1990), defined by a tuple
(S, A, P,R,v,T). At each step t, the agent uses a pol-
icy to select an action a; ~ w(s;) € A according to
the state s; € S and the environment transits to the next
state sy11 according to transition function P(s¢, a;) and the
agent receives a reward r, = R(s;, at). The return is de-
fined as the discounted cumulative reward, denoted by R; =
S, ~4i~tr; where v € [0,1) is the discount factor and
T is the maximum episode horizon. Value-based RL first
learns optimal value function Q) (s, a) and then gets optimal
policy according to Q} (s, a), i.e., 7" = arg max Q*(s,a).

DQN (Mnih et al., 2013) is a representative off-policy value-
based algorithm consisting of a Q network Q¢ and a tar-
get network Qg with the parameters 6 and ¢’ respectively.
The Q network is optimized with the Temporal Difference
(TD) (Sutton & Barto, 1998) loss, which is defined as:
L(0) = Ep[(r+maxyQu (s',a') — Qu(s, a))?], where the
experiences (s, a,r, s") are sampled from the replay buffer
D. Rainbow (Hessel et al., 2018) incorporates different vari-
ants of DQN, i.e., double DQN (van Hasselt et al., 2016),
Prioritised Experience Replay (Schaul et al., 2016), Dueling
Network Architecture (Wang et al., 2016), Multi-step Re-
turns (Sutton & Barto, 1998), Distributional RL (Bellemare
et al., 2017) and Noisy Net (Fortunato et al., 2018), which
achieves a quantum jump in performance. Besides, some
works further improve the sample efficiency through repre-
sentation or model-based approaches (Kaiser et al., 2019;
Kielak, 2019; Laskin et al., 2020).

Evolutionary Algorithm Evolutionary Algorithms
(EAs) (Biack & Schwefel, 1993; Bick, 1996; Vikhar, 2016;
Zhou et al., 2019) are a class of gradient-free optimization
methods. EAs maintain a limited population of individuals
and generate new individuals randomly centered around the
elite individuals of the previous generation. The individuals
in the population are typically defined as policies (i.e., actor
networks) P = {7, 72, ..., m, }. The individuals are evalu-
ated by the fitness metric, and those with higher fitness are
more likely to be selected as elite individuals. The fitness
metric to evaluate the individuals is typically defined as the
cumulative total reward of an individual’s interaction with
the environment for e episodes {f(m1), f(72), ..., f(7n)}
where f(m;) = 137, [Z;‘FZO r¢ | m;]. EAs encompass
various methods. Here, we primarily introduce two
widely used methods in the ERL-related works: Genetic
Algorithm (GA) (Mitchell, 1998) and Cross-Entropy
Method (CEM) (Pourchot & Sigaud, 2019).

GA (Lambora et al., 2019; Katoch et al., 2021) is the clas-
sical evolutionary algorithm that consists of three primary
steps: Evaluation, Selection, Variation. First, GA evaluates
the population and ranks the individuals in the population
by fitness. Subsequently, GA selects the parents accord-
ing to the selection mechanism such as tournament selec-
tion (Khadka & Tumer, 2018). Finally, the parents 7; and 7;
are selected to produce offspring 7} and 77;- by performing
the crossover operator, i.e., 7, 7r3» = Crossover(m;, ;)
or the mutation operator 7, = Mutation(m;). The
crossover and mutation usually operate at the parameters
of the networks. Typically, k-point crossover randomly
exchanges segment-wise (network) parameters of parents
while Gaussian mutation adds Gaussian noise to the param-
eters to randomly generate offspring.

CEM (Boer et al., 2005) is an evolutionary strategy

Value-Evolutionary-Based Reinforcement Learning

(ES) (Beyer & Schwefel, 2002) based on the Estimation of
Distribution Algorithm (EDA) (Larrafiaga & Lozano, 2001).
In CEM, the population is represented as a distribution us-
ing a covariance matrix 3. It retains a single individual
from one generation to the next, serving as the mean y of
the distribution from which new individuals are drawn. As
the optimization iterates, the distribution 3 progressively
shifts towards the local optimum. Specifically, CEM ini-
tially samples the population by adding Gaussian noise to
the mean of the distribution, denoted as x; ~ N (p1, X). The
individuals within the population are then evaluated for the
fitness {f(x1), f(x2), ..., f(x,)}, and the top half of the
best-performing individuals {zq, ..., zzy are employed to
update the CEM distribution as outlined below:

[P|/2
HUnew = Z)\121,
i=1
[P|/2
Yhew = Z Ni (25 = piota) (2i — pota)” + €Z,
i=1

ey

where \; represents the weight assigned to individual :.

3. Related Work

The emerging research field that explores the synergy
between EA and RL has gained significant attention re-
cently (Sigaud, 2022; Zhu et al., 2023; Li et al., 2024).
Several notable works have been proposed in this context.
ERL (Khadka & Tumer, 2018) first proposes a novel hy-
brid framework, where an actor-critic RL agent and a GA
population are optimized concurrently. The RL agent and
GA population benefit from each other in a manner where
the diverse experiences generated by the population eval-
uation are provided to the RL replay buffer for gradient
optimization. Simultaneously, the evolution of the popu-
lation is accelerated by injecting the optimized RL actor.
PDERL (Bodnar et al., 2020) follows the framework of
ERL and improves the genetic operators to solve the catas-
trophic forgetting problems. Supe-RL (Marchesini et al.,
2020) periodically searches around the current RL actor
in parameter space and evaluates the generated policies.
Then, the RL actor performs a soft update toward the best-
performing policy. CEM-RL (Pourchot & Sigaud, 2019)
combines CEM and TD3 algorithms. It uses the gradient
information of RL critic to update half of the individuals in
the population, thereby influencing the distribution of CEM.
ERL-Re? (Hao et al., 2023a) decouples the policies into the
shared non-linear state representations and individual linear
policy representations, aiming to share knowledge and re-
duce the exploration space. RACE (Li et al., 2023) employs
the same idea as ERL-Re?, combining EAs with multi-agent
RL to facilitate collaboration through the construction of
efficient shared observation representations. CCQD (Xue

et al., 2023) maintains multiple shared state representations
to improve the sample efficiency of quality diversity algo-
rithms. These algorithms leverage the cumulative rewards
for interaction with the environment as the fitness metric to
evaluate the population, ignoring the value function approx-
imation. Besides, these algorithms require all individuals in
the population to interact with the environment and gener-
ate experiences. However, experiences of low quality may
negatively impact the optimization of RL (Nikishin et al.,
2022). These limitations make it difficult to further enhance
value-based RL, which constitutes the primary focus of our
work. If readers want to learn more about the integration
of EAs and RL, please refer to surveys (Sigaud, 2022; Zhu
et al., 2023; Li et al., 2024) for more details.

4. Value-Evolutionary-Based RL

This section presents VEB-RL, a hybrid framework leverag-
ing EAs to enhance Value-based RL. VEB-RL comprises
two fundamental components: 1) A tailored fitness metric
designed for integration with Value-based RL. 2) Elite Inter-
action mechanism utilized to enhance the quality of samples
generated by the population. We first detail these compo-
nents, following which we introduce two distinct variants:
GA-based VEB-RL and CEM-based VEB-RL.

4.1. Tailored Fitness Metric

Previous methods that integrate EAs and Policy-Based RL
have two main characteristics. Firstly, populations are com-
posed of policy networks (i.e., actors), and secondly, the
cumulative reward interaction with the environment is used
as the fitness metric to evaluate the population. However,
when combining EAs with value-based RL, the evolving
individuals become value networks. In this context, uti-
lizing the fitness metric based on cumulative rewards for
population evolution might not be an optimal choice, as
value-based RL involves the explicit modeling of expected
values. Utilizing cumulative rewards as the fitness metric
disregards the approximation of the value function, poten-
tially resulting in inaccurate value approximations.

Taking Deep Q Network (DQN) as a representative, the
optimization objective is to get the optimal Q network (); to
accurately estimate the state-action values by value iteration
through the Bellman Equation. The loss function of () is
defined as:

L(0)=Eqsy aup [(r +max Qo (s'a') = Qo (s, a))? ;
2)

where s, s’, a are sampled from the replay buffer D, Qg is
the target () network. The optimal policy is to take a set
of actions a that maximizes the expected value of Q* (s, a).
It is evident that the optimization objective of value-based
RL is to acquire an accurate value function, whereas the

Value-Evolutionary-Based Reinforcement Learning

> Environment

Execution Order

DE@e®

T % Elite Interaction

Rank according to fitness @

®
< m——
Population
| Evaluation
1
1
1
. ® ____
v 1
1
Value Evolution, Update :
e.g. Crossover | - ------ > 1
and Mutation Population |
1

A -ﬁ-
RL Optimization Process

@ —_—

EA Optimization Process

Gradient
Optimization

-————>

Interaction of EA and RL

s

@ RL Individual

| * RL Injection &

|

| ¢

1 Population Individual
|

|

1

Population

Figure 1. The conceptual illustration of Value-Evolutionary-Based RL. In VEB-RL, a population of value function networks and an RL
individual are maintained. Each generation follows the execution sequence indicated by the pink numbers, including: 1) Evaluating and
evolving the population. 2) Performing Elite Interaction and storing samples in the replay buffer. 3) Conducting RL interaction and
optimizing based on the replay buffer. 4) Injecting the optimized RL individual into the population.

optimization objective of the fitness function based on cu-
mulative rewards is to enhance the policy derived from the
value function, which is inconsistent with the optimization
objective of value functions. This misalignment could po-
tentially make it difficult to attain a sufficiently accurate
value function. We experimentally validate this point in
Section 5.3.

To solve the problem, we propose a new population compo-
sition and a tailored fitness metric for population evaluation.
To be concrete, VEB-RL maintains a population of Q net-
works and their corresponding target networks, denoted as
P = {Qs,, Qo }7—,, which provide the foundation for the
fitness calculation. To steer population evolution toward
more accurate value functions, the fitness metric for eval-
uating individuals within the population is defined as the
negative Temporal Difference error.

(000 = B | (- maxQy () - Qn, (5.0)) .
(3)

where s,a,s’ are sampled from the replay buffer D,
Qo;, Qo are sampled from the population P. When the
samples cover all possible transitions, the smaller the TD
error, the more accurate the value function approximation be-
comes. Since we can not access all state transitions, we sam-
ple a sufficiently large number of instances, sized M, from
the replay buffer to approximate the true error. The ()-value
approximation becomes more accurate as f(6;, 6;) increases.
Specifically, the state-action value functions {Qp, }7_; in
the population are optimized by EAs, namely GA and CEM.

Space Invaders 08 Freeway
Fo7 s
28" g 800
505 5305
S R
Sln g=™
oo Qo
A E s o g 03
S 0.3 S
O Co2
i 2 3 4 05 10 15 20 25 30

Environment Steps (x1e®) Environment Steps (x1e°)

Figure 2. The Spearman rank correlation analysis. The results
indicate that the individual rankings based on our fitness metric
are highly similar to the rankings obtained through interactions.

The target networks Dy, is hard updated by its correspond-
ing @ network Qy, every H generations. Moreover, we
maintain the RL injection mechanism: (), optimized by
RL, and its target network ()y/ are injected into the popula-
tion every generation. If the RL individual obtains a higher
f(0r1,6.,) value and is selected as the elite, it will guide the
population and facilitate the evolution of the population.;
otherwise, Qp,, and Qg/rl are eliminated.

To demonstrate the effectiveness of this tailored fitness
metric, we conduct the Spearman rank correlation anal-
ysis (Sedgwick, 2014) on Space Invader and Freeway tasks
to compare the rankings of individuals based on the negative
TD error fitness and the rankings derived from cumulative
total rewards over 5 episodes of interaction with the environ-
ment. The Spearman rank correlation coefficient disregards
specific values and focuses solely on the relative order of
values. It ranges from -1 to 1, where a value closer to 1

Value-Evolutionary-Based Reinforcement Learning

Selective Interaction

Uniform Interaction !

1
i
I

i

'

1 Store

'

'

1

'

'

Select according
to fitness

Samples

Replay
E

Figure 3. Uniform Interaction vs. Selective Interaction. Uniform
Interaction refers to all individuals interacting with the environ-
ment to obtain fitness. Selective Interaction refers to actively
choosing individuals to interact with the environment based on
their fitness.

Samples for

" Store Samples
fitness

signifies a higher degree of similarity in rankings, while a
value closer to -1 indicates a greater disparity in rankings.
The results depicted in Figure 2 illustrate a notable and in-
creasing correlation between the population rankings based
on the two fitness metrics throughout the training process.
The results highlight that utilizing negative TD error as a
fitness metric can relatively accurately reflect the quality of
individuals without sample cost, which enhances sample
efficiency.

4.2. Elite Interaction

Previous ERL works require all individuals in the population
to interact with the environment for fitness (Li et al., 2024)
and we refer to this process as Uniform Interaction. In these
works, a crucial mechanism for enhancing RL is incorporat-
ing the samples generated through Uniform Interaction into
a shared replay buffer for RL optimization. This mechanism
mitigates the problem of RL’s poor exploration capabilities
and avoids the wastage of evaluation samples. However, this
introduces new problems: only samples of high-quality in-
dividuals contribute to RL policy optimization, while those
generated by individuals with low fitness may be invalid and
could potentially lead RL into suboptimal solutions (Zhang
et al., 2022; Liu et al., 2021).

Thanks to the new fitness metric, individuals in the popula-
tion no longer need to interact directly with the environment
for fitness. Instead, they calculate fitness based on samples
from the replay buffer. As a result, we can actively select
which individuals interact with the environment to generate
samples. We refer to this way as Selective Interaction. The
illustration of Uniform Interaction versus Selective Interac-
tion is shown in Figure 3. To resolve the aforementioned
problem of Uniform Interaction, we propose a new way of
interaction according to the concept of Selective Interaction
called Elite Interaction that allows only elite individuals
to interact with the environment to generate high-quality
samples. To be concrete, we can first obtain the fitness
of individuals in the population {f(6;,0;)}?_, according
to Eq. 3. Subsequently, we choose the top N individuals

Algorithm 1 Value-Evolutionary-Based RL

Option: Select GA or CEM
Initialize: a shared replay buffer D, The RL Q network Qg,, and
its target network Q%, the population P = {Qs,, QQ; Yoy with
size n, if select CEM, define the covariance matrix ¥ = oinit Z
repeat
(D EA Optimization: Population Evaluation and Evolution
if Select CEM then
Draw the current population P from N (i,) to replace

L the old IP except the injected RL individual.
Population Evaluation: Sample data with size M from D to
compute the fitness { f(0;,0;)};—1 by Eq. 3.
Elite Identification: Select the top N individuals with the
highest fitness as the elites.
if Select CEM then

| Update 7, and X with the top half of P by Eq. 1.

else

Perform Crossover Operator:

(1): Select the winners by Tournament Selection and oth-
ers who are not selected as elites or winners are recorded
as abandoners.

(2): Select two individuals from elites and winners as
parents respectively.

(3): The two parents generate offspring by crossover oper-
ator to replace abandoners.

Repeat the above process until all abandoners are re-
placed.

Perform Mutation Operator:

All non-elite individuals mutate (Add Gaussian noise to
| the parameters) according to a certain probability.

(2 Elite Interaction:

The elites interact with the environment and store the experi-
ences generated to D.

@ RL Optimization: Interaction and Gradient Optimization
RL Interaction: The RL agent interacts with the environment
and stores the experiences generated to D.

Optimize the RL Agent: Update Q,, by Eq. 2.

@ RL Injection:

Inject the optimized Qy,, and ler . into the population P.
Update Qg/r . periodically.

Update Qeg in P with Qg, every H generations.

until reaches maximum training steps;

to interact with the environment. Intuitively, Elite Inter-
action enables well-performing individuals to contribute
high-quality samples to the replay buffer D, while poorly
performing individuals do not waste resources for interac-
tion and avoid the potential negative impact of low-quality
samples on the RL optimization process.

4.3. The Algorithm Framework of VEB-RL

Thanks to the new fitness metric and Elite Interaction, EA
and RL in VEB-RL are better fused for value function search
with high sample efficiency. Figure 1 depicts the VEB-RL
architecture. For the evolutionary process, the population
obtains fitness based on the samples in the replay buffer D
(Eq. 3). The top N individuals are selected as elite indi-
viduals and interact with the environments to provide high-

Value-Evolutionary-Based Reinforcement Learning

quality samples to the replay buffer D for RL optimization.
Subsequently, we evolve the population with EA to find bet-
ter Q networks and construct the new population. Regarding
the reinforcement process, the RL individual interacts with
the environment and stores the experiences in the replay
buffer D. Then RL optimizes its Q network based on the
shared replay buffer by Eq. 2. The RL target network is
hard updated periodically. To promote population evolution,
the optimized Qy,, and its target network @y are injected
into the population every generation. The target networks
in the population are updated by their corresponding Q net-
works every H generations for stable improvement, which
is similar to what conventional RL does.

In principle, VEB-RL is a general framework that can com-
bine with arbitrary EAs. We implement the evolutionary
process using two distinct EAs: GA and CEM. The pseudo-
code of VEB-RL is shown in Algorithm 1. In the case of
GA-based VEB-RL, evolution involves the select, crossover,
and mutation operators. The top NV individuals are selected
as elites. Next, we employ Tournament Selection to select
winners, which involves picking the best individual from a
set of three randomly selected individuals in each iteration
and repeating this process a certain number of times. The
individuals not chosen as elites or winners are recorded as
abandoners. For the crossover operator, we randomly select
two individuals from elites and winners as the parents to
produce offspring using k-point crossover. The offspring
replaces the abandoners until all abandoners are replaced.
For the mutation operator, all non-elite individuals are added
with Gaussian noise according to a certain probability. The
population is updated through crossover and mutation. For
CEM-based VEB-RL, evolution mainly involves the dis-
tribution update. the top half of the population update the
m, and ¥ acorrding to Eq. 1. Besides, the new population
draws form A (1, 3) at the beginning of each generation.

Overall, we provide the technical details of GA-based VEB-
RL and CEM-based VEB-RL, along with how to combine
VEB-RL with value-based RL algorithms. We then empiri-
cally evaluate these approaches in the following section.

5. Experiments

This section empirically evaluates VEB-RL on a range of
tasks. Then, we provide analysis for a better understanding
of VEB-RL. Moreover, a detailed ablation study is con-
ducted to verify the effectiveness of each component.

5.1. Benchmarks & Baselines

We first consider MinAtar benchmark (Young & Tian, 2019)
which is a testbed of miniaturized versions of several Atari
games. We build GA-based VEB-RL, CEM-based VEB-
RL on DQN and evaluate them on all five tasks in Mi-

Freeway Breakout

S
3 3
2
3

w
3

= VEB-RL(CEM)
VEB-RL(GA)
= ERL-Re?
~—— CEM-RL
—— ERL
DQN

S

)

Row & Q
s S

S

>
Undiscounted Return

Undiscounted Return

1 2 3 4 0 1 2 3 4
Environment Steps (x1e%) Environment Steps (x1e°)

Space Invaders Asterix

Undiscounted Return
% 2 D
3 8
Undiscounted Return

w

1 2 3 4 1 2 3 4

Environment Steps (x1¢°) Environment Steps (x1¢°)

EA Elite Rate

- 0.7

[N

—— Asterix
0.6 —— Breakout

=)

© 05 Freeway
5

04

Space_Invaders
8
o N ———

0.2

—— Seaquest

Nk o

Undiscounted Return

0.1
0 i 2 3 4 i 2 3 4
Environment Steps (x1¢°) Environment Steps (x1¢°)

Figure 4. Performance comparison of GA-based VEB-RL, CEM-
based VEB-RL and baselines (all in DQN version) in MinAtar and
the EA elite rate in all tasks.

nAtar benchmark, comparing VEB-RL with three advanced
ERL baselines in DQN version: ERL (Khadka & Tumer,
2018), CEM-RL (Pourchot & Sigaud, 2019), ERL-Re? (Hao
etal., 2023a) where ERL-Re? is currently the state-of-the-art
(SOTA) algorithm in the field of ERL. For a comprehen-
sive study, we also consider Atari benchmark (Mnih et al.,
2013) which is a demanding testbed: not only are the inputs
high-dimensional, but the game visuals and game mechanics
also vary substantially between games. We build GA-based
VEB-RL, CEM-based VEB-RL on Rainbow that combines
the improvements of various DQN variants. We evaluate
them on six popular tasks in Atari to verify whether VEB-
RL can further enhance Rainbow. Besides, we also integrate
VEB-RL (GA) with SPR (Schwarzer et al., 2021) and eval-
uate them on nine tasks in Atari 100k. For all baselines, we
use the official codes. For a fair comparison, the network
architecture (i.e., DQN and Rainbow) used in associated
baselines are the same. For all experiments, we give each
baseline the same environment steps. Hyperparameters are
fine-tuned on all environments.

All statistics are obtained based on five independent runs
with the same seeds. We report the average with 95% confi-
dence regions. For the hyperparameters specific to VEB-RL,
N is selected from {1, 2,3,5}. We set the population size
to 10 in all tasks for all algorithms, which is consistent with
the setting of the previous methods (Khadka & Tumer, 2018;
Pourchot & Sigaud, 2019). All implementation details are
provided in Appendix A.

Value-Evolutionary-Based Reinforcement Learning

‘ Qbert Pong Breakout Boxing Alien Freeway Seaquest Asterix Battle Zone
CURL 10424 -16.5 4.9 1.2 558.2 26.7 384.5 734.5 14870.0
OTRainbow | 509.3 1.3 9.8 2.5 824.7 25.0 286.9 628.5 4060.6
SimPLe 1288.8 12.8 16.4 9.1 616.9 20.3 683.3 1128.3 5184.4
SPR 36784 4.2 13.8 255 7833 255 541.7 882 9190.0
VEB-SPR | 4099.1 10.3 22.2 431 882.7 30.6 677.5 1201 15505.0

Table 1. Average Performance comparison of GA-based VEB-SPR and other strong methods on Atari 100k.

Battle Zone

/

i 2 3 1 15 20 25 30 35 40 45
Environment Steps (x1¢°)

Pong

40000

= VEB-RL(CEM)
VEB-RL(GA)
= Rainbow

Undiscounted Return
>
Undiscounted Return

Environment Steps (x1¢°)

Breakout Name This Game

200
150 /
100

7

Ul
g
S

Undiscounted Return
Undiscounted Return
o
8
8

i 2 3 4 i 2 3
Environment Steps (x1¢®) Environment Steps (x1¢%)

Space Invaders Qbert

1400

25000

1200 20000

1000 15000

®
3
3

10000

Undiscounted Return
Undiscounted Return

Y
2
3
o
2
5
3

400
1.0

15 20 25 30 35 40 45 i 2 3
Environment Steps (x1e®) Environment Steps (x1e®)

Figure 5. Performance comparison of GA-VEB-RL (Rainbow),
CEM-VEB-RL (Rainbow) and Rainbow in Atari.

5.2. Performance Evaluation

We first evaluate the performance on all five tasks of Mi-
nAtar: Breakout, Asterix, Freeway, Space Invaders and
Seaquest. All comparison algorithms are built on DQN.
Comparisons on the averaged undiscounted return in Fig-
ure 4 show that both GA-based VEB-RL and CEM-based
VEB-RL significantly improve DQN and outperform other
methods across all tasks. Specifically, VEB-RL brings
about 100% the performance improvement on Asterix and
Seaquest, about 50% on Breakout and Space Invaders.

We further verify whether CEM-VEB-RL and GA-VEB-RL
can further improve Rainbow on six popular tasks of Atari:
Breakout, Space Invaders, Qbert, Pong, Battle Zone and
Name This Game, in which agents need to take the high-
dimensional pixel images as inputs. The results in Figure 5
show that both GA-VEB-RL and CEM-VEB-RL can sig-
nificantly improve Rainbow in terms of sample efficiency,
which demonstrates the benefits of VEB-RL in challenging

Breakout Breakout

DQN
—— ERL-Re’
=~ VEB-RL

0.4
0.2

0 i 2 3 4 i 2 3
Environment Steps (x1¢°) Environment Steps (x1¢°)

TD Error
Undiscounted Return

(a) The curves of the TD error vs. performance

120 Breakout 140
DQN
100 —— ERL 120
= ERL-Re’
= VEB-RL

Space Invaders

100

True Error
2

True Error
g &

40

0 1 2 3 4 E 0 1 2 3 4
Environment Steps (x1e%) Environment Steps (x1e%)

(b) Comparison of true error

Figure 6. Analysis on the new fitness metric.

high-dimensional control tasks.

To further demonstrate the efficiency of VEB-RL, we con-
duct additional experiments that combine VEB-RL with
SPR (Schwarzer et al., 2021), a SOTA algorithm that
achieves superior performance on Atari using data augmen-
tation and representation learning within a 100,000 envi-
ronment step limit. We implement GA-Based VEB-RL on
the official codebase of SPR and evaluate the framework on
nine popular tasks with five runs each. Our experimental
results presented in Table 1 indicate that GA-based VEB-RL
significantly improves SPR by approximately 40% and out-
performs other strong baselines (Kaiser et al., 2019; Kielak,
2019; Laskin et al., 2020) on seven out of the nine tasks.

Overall, the experiments show that VEB-RL is an efficient
framework that can be integrated with different value-based
RL algorithms and provides significant improvement.

5.3. Analysis of VEB-RL

We further analyze VEB-RL from two aspects: 1) Does the
new fitness metric adopted in VEB-RL accurately reflect an
individual’s performance? 2) Can VEB-RL achieve a more
accurate value function?

Value-Evolutionary-Based Reinforcement Learning

To verify whether the fitness metric is related to the perfor-
mance, i.e., the cumulative rewards, we plot the curves of
the TD error calculated by 5120 samples vs. performance
during the training process. The trends in TD error and
corresponding performance are shown in Fig. 6(a) with the
same color curves. The different color curves represent the
training results with different methods. We observe that
TD error grows at the beginning of training, and then the
TD error and performance show a negative correlation. The
growth in the beginning stage is mainly due to incomplete
state coverage. When the state cover is relatively compre-
hensive, two laws can be observed: (1) The lower the TD
error, the higher the performance obtained in the same color
curves. (2) The lower the TD error curve, the better the
performance obtained (Comparison of different methods).
These phenomena demonstrate that using the negative TD
error as the fitness can be an alternative to the performance
obtained by interacting with the environment.

To verify whether VEB-RL can obtain a more accurate value
function, we measure the difference between the ground
truth values and the estimates of Q networks optimized by
different methods. The ground truth values are obtained
by running the current learned policies for 1000 episodes
and computing the cumulative discounted rewards for all
states. The estimates are the maximum Q value estimated by
the current learned Q network based on the states collected
from 1000 episodes. We take the mean squared difference
of the truth values and estimates to reflect the accuracy of
the approximation. We select two tasks Breakout and Space
Invaders for verification. The results in Fig. 6(b) show that
VEB-RL can obtain smaller errors on both tasks, which
demonstrates VEB-RL can help to obtain a more accurate
value function than other methods.

Furthermore, we analyze the contributions of EA, i.e., the
probability of EA being selected as the elite. The elite rates
demonstrate the role of EA in finding more accurate value
functions. We show the elite rate of GA-based VEB-RL on
the last figure of Fig. 4. We observe that RL has an elite
rate of approximately 70% while EA 30% on four of five
tasks, where VEB-RL brings significant performance im-
provements. This demonstrates that EA plays an important
role in value function search.

In addition, we compare VEB-RL with a population-based
pure RL algorithm in Appendix A.3. The results show that
VEB-RL significantly outperforms the population-based
pure RL algorithm, indicating that VEB-RL’s advantages
are not due to simply the introduction of the population. For
more details, please refer to Appendix A.3.

5.4. Hyperparameter Analysis

In this section, we analyze the hyperparameters specific to
VEB-RL, while keeping the other hyperparameters consis-

Breakout Asterix

=
=

—— VEB-RL w/N=0
= VEB-RL w/N=1

= VEB-RL w/ N=2

VEB-RL w/ N=3

e VEB-RL w/N=5
3 4

30

PPN
s 3 3
2

DON

v

1)

wow
S &

- = o
ER=]

Undiscounted Return
Undiscounted Return

3
w

4
Environment Steps (x1e°)

)

Environment Steps (x1e°)

(a) Hyperparameter analysis on N

Breakout
=== VEB-RL w/ M=10240
—— VEB-RLw/M=5120
—— VEB-RLw/M=512
s DQN

Space Invaders

S
s}
S

o
S

= 5
3

S

Y
3

8
Undiscounted Return
%

8

Undiscounted Return
SRS

S

IS
S

0 i 2 3 3 0 i 2 3 1
Environment Steps (x1e®) Environment Steps (x1e°)

(b) Hyperparameter analysis on M for the fitness

Figure 7. Analysis of the Hyperparameter in MinAtar.

tent with those of ERL and CEM-RL. More details can be
found in Appendix A.2.

We analyze the hyperparameter [V to investigate how the
number of the top individuals interacting with the environ-
ment in Elite Interaction affects performance. The results in
Figure 7(a) demonstrate that performance gradually declines
as N increases. This phenomenon is primarily attributed
to the fact that, with larger IV, poor-performing individu-
als in the population generate samples for RL optimization.
These low-quality samples do not contribute positively to
RL optimization; instead, they result in additional sample
overhead and may potentially lead RL into suboptimal so-
lutions. Hence, smaller values of N are favored in most
tasks. Additionally, it is noticeable that VEB-RL, without
utilizing EA to provide elite experiences for RL optimiza-
tion (i.e., when N = 0), slightly outperforms DQN but
falls significantly behind VEB-RL with Elite Interaction.
The performance improvement with N = 0 primarily arises
from EA’s capability to search for better value functions,
thus providing better performance. This highlights the effi-
ciency of EA in value function search. However, this hinders
the path for EA to facilitate RL improvement, making it in-
efficient. In contrast, incorporating Elite Interaction can
provide high-quality experiences to RL, leading to a signifi-
cant improvement in performance. This further highlights
the importance of Elite Interaction.

In VEB-RL, it should be noted that RL requires interaction
with the environment. When RL is prohibited from interact-
ing with the environment, the distributional shift issue may
arise during the training process, resulting in performance
collapse. We support this statement with experimental evi-
dence and delve into the underlying reasons through detailed
analysis in Appendix A.3.

Value-Evolutionary-Based Reinforcement Learning

TD3 ERL CEM-RL PDERL VEB

Ant 6219 6242 5331 5331 7356
Humanoid | 6362 6252 213 6733 6940
Walker 4806 4774 5015 5015 5490

Table 2. Average Performance comparison of GA-based VEB-TD3
and other baselines on MUJOCO tasks.

To ensure accurate fitness evaluation, the sample size M for
the fitness should be sufficiently large. However, utilizing
samples from the entire replay buffer would lead to exces-
sive computational overhead. Thus we set M to 5120 for all
MinAtar tasks. We offer an analysis of the sample size M in
the MinAtar tasks. The results depicted in Fig. 7(b) demon-
strate that 5120 samples prove to be sufficient, and in certain
tasks, a larger sample size could potentially lead to addi-
tional performance gains. Conversely, when the sample size
is small, there is a risk of performance degradation. This
stems from the challenge that the fitness calculations based
on small samples might not accurately reflect the ranking of
individuals. Due to the more complex visual nature of Atari
tasks and the larger network architecture (e.g., Rainbow),
we set a smaller M of 1024 for Atari tasks to reduce the
computational burden.

5.5. Integration with Actor-Critic methods

The above experiments primarily involve integrating with
value-based methods. However, if VEB-RL is restricted to
integrating solely with value-based RL methods, it could
limit its applications. Thus we combine VEB-RL with actor-
critic methods to validate the generalization of VEB-RL.
Specifically, we combine VEB-RL with TD3 (Fujimoto
et al., 2018). In this setting, VEB maintains a population
of Double Q networks and their corresponding target Q net-
works. Each individual in the population is paired with an
actor. Only individuals with small TD errors can optimize
their corresponding actors using the Q network. As for elite
interaction, only actors corresponding to the top N ranked
individuals are allowed to interact with the environment,
providing high-quality samples. We evaluate VEB-TD3,
TD3, and other ERL-related methods on the Ant, Walker,
and Humanoid tasks, which are well-known in ERL-related
research. Each experiment is repeated with five runs and
3 million environment steps. The results in Figure 2 show
that VEB-RL outperforms TD3 and CEM-RL, ERL, and
PDERL, which further demonstrates the efficiency and gen-
eralization of VEB-RL.

6. Conclusion

Our work primarily strives to address the research gap in
combining EAs with value-based RL within the ERL do-

main. We present a simple yet efficient framework known as
VEB-RL. VEB-RL tailors a new fitness metric, the negative
Temporal Difference error, and introduces the Elite Inter-
action to improve sample efficiency. Experimental results
demonstrate the effectiveness of using TD error as an alterna-
tive to cumulative rewards and highlight the benefits of Elite
Interaction. We integrate VEB-RL with various value-based
RL algorithms. Extensive evaluations on challenging bench-
marks, including MinAtar, Atari, and Atari 100k, show that
VEB-RL significantly outperforms other baseline methods.
Additionally, we demonstrate that VEB-RL can be com-
bined with other non-value-based RL algorithms, leading to
significant improvements on MUJOCO tasks. This further
illustrates the efficiency and generalization of VEB-RL.

7. Limitations & Future Work

For limitations and future works, VEB-RL introduces addi-
tional time and resource costs, we provide detailed analysis
in Appendix A.3. Moreover, VEB-RL lacks theoretical
support, as we only demonstrate its efficiency through ex-
periments without providing optimal theoretical guarantees.
This is a challenge that needs to be addressed in future
research. Additionally, VEB-RL is an initial solution for
value-based RL, but there is room for improvement in the
current architecture design (where each individual maintains
a Q network and target network) and fitness metric design
(sampling a sufficiently large sample for evaluation). For in-
stance, we discover some alternative structural designs that
could lead to better performance, as illustrated in Table 8.
Furthermore, new mechanisms could be devised to ensure
a more comprehensive sample coverage for the current fit-
ness evaluation, rather than random sampling (Liu et al.,
2024a), or to design a fitness metric that is more conducive
to enhancing value-based RL.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine learning. There are many potential social con-
sequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (Grant Nos. 92370132, 62106172),
the National Key R&D Program of China (Grant No.
20227D0116402) and the Xiaomi Young Talents Program
of Xiaomi Foundation.

Value-Evolutionary-Based Reinforcement Learning

References

Biack, T. Evolutionary Algorithms in Theory and Prac-
tice: Evolution Strategies, Evolutionary Programming,
Genetic Algorithms. 1996.

Bick, T. and Schwefel, H. An overview of evolutionary
algorithms for parameter optimization. Evol. Comput.,
1993.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In /ICML,
2017.

Beyer, H. and Schwefel, H. Evolution strategies—a compre-
hensive introduction. Nat. Comput., 2002.

Bodnar, C., Day, B., and Lid, P. Proximal distilled evolu-
tionary reinforcement learning. In AAAI 2020.

Boer, P. D., Kroese, D. P., Mannor, S., and Rubinstein, R. Y.
A tutorial on the cross-entropy method. Ann Oper Res,
2005.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M.,
Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D.,
Pietquin, O., Blundell, C., and Legg, S. Noisy networks
for exploration. In ICLR, 2018.

Fujimoto, S., v. Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. In /CML,
2018.

Hao, J., Li, P,, Tang, H., Zheng, Y., Fu, X., and Meng, Z.
Erl-re$"2$: Efficient evolutionary reinforcement learning
with shared state representation and individual policy
representation. In /CLR, 2023a.

Hao, J., Yang, T., Tang, H., Bai, C., Liu, J., Meng, Z., Liu, P,
and Wang, Z. Exploration in deep reinforcement learning:
From single-agent to multiagent domain. TNNLS, 2023b.

Hessel, M., Modayil, J., Hasselt, H. V., Schaul, T., Ostro-
vski, G., W.Dabney, Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep
reinforcement learning. In AAAI, 2018.

Johannink, T., Bahl, S., Nair, A., Luo, J., Kumar, A.,
Loskyll, M., Ojea, J. A., Solowjow, E., and Levine, S.
Residual reinforcement learning for robot control. In
ICRA, 2019.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model-based reinforcement
learning for atari. /CLR, 2019.

Katoch, S., Chauhan, S. S., and Kumar, V. A review on
genetic algorithm: past, present, and future. Multim.
Tools Appl., 2021.

10

Khadka, S. and Tumer, K. Evolution-guided policy gradient
in reinforcement learning. In NeurlIPS, 2018.

Kielak, K. P. Do recent advancements in model-based deep
reinforcement learning really improve data efficiency?
2019.

Lambora, A., Gupta, K., and Chopra, K. Genetic algorithm-
a literature review. In COMITCon. IEEE, 2019.

Larrafiaga, P. and Lozano, J. A. Estimation of distribution
algorithms: A new tool for evolutionary computation.
Springer Science & Business Media, 2001.

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
In ICML, 2020.

Li, P, Tang, H., Yang, T., Hao, X., Sang, T., Zheng, Y., Hao,
J., Taylor, M. E., Tao, W., and Wang, Z. PMIC: improv-
ing multi-agent reinforcement learning with progressive
mutual information collaboration. In /ICML, 2022.

Li, P, Hao, J., Tang, H., Zheng, Y., and Fu, X. Race: Im-
prove multi-agent reinforcement learning with represen-

tation asymmetry and collaborative evolution. In /CML,
2023.

Li, P, Hao, J., Tang, H., Fu, X., Zheng, Y., and Tang,
K. Bridging evolutionary algorithms and reinforcement
learning: A comprehensive survey. arXiv preprint, 2024.

Li, X., Xu, X., and Zuo, L. Reinforcement learning based
overtaking decision-making for highway autonomous
driving. In ICICIP, 2015.

Lillicrap, T. P,, Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In /CLR, 2016.

Liu,J., Ma, Y, Hao, J., Hu, Y., Zheng, Y., Lv, T., and Fan,
C. A trajectory perspective on the role of data sampling
techniques in offline reinforcement learning. In AAMAS,
2024a.

Liu, J., Wang, Z., Zheng, Y., Hao, J., Bai, C., Ye, Y., Wang,
Z., Piao, H., and Sun, Y. Ovd-explorer: Optimism should
not be the sole pursuit of exploration in noisy environ-
ments. In AAAI 2024b.

Liu, X., Xue, Z., Pang, J., Jiang, S., Xu, F.,, and Yu, Y.
Regret minimization experience replay in off-policy rein-
forcement learning. In NeurIPS, 2021.

Marchesini, E., Corsi, D., and Farinelli, A. Genetic soft up-
dates for policy evolution in deep reinforcement learning.
In ICLR, 2020.

Value-Evolutionary-Based Reinforcement Learning

Mitchell, M. An introduction to genetic algorithms. MIT
Press, 1998.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, ., Wierstra, D., and Riedmiller, M. A. Play-
ing atari with deep reinforcement learning. arXiv preprint,
2013.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P., and
Courville, A. C. The primacy bias in deep reinforcement
learning. In ICML, 2022.

Pourchot, A. and Sigaud, O. CEM-RL: combining evolu-
tionary and gradient-based methods for policy search. In
ICLR, 2019.

Puterman, M. L. Markov decision processes. HORMS,
1990.

Salimans, T., Ho, J., Chen, X., and Sutskever, I. Evolu-
tion strategies as a scalable alternative to reinforcement
learning. arXiv preprint, 2017.

Schaul, T., Quan, J., Antonoglou, 1., and Silver, D. Priori-
tized experience replay. In /CLR, 2016.

Schwarzer, A., Anand, A., Goel, R., Hjelm, R. D., Courville,
A. C., and Bachman, P. Data-efficient reinforcement
learning with self-predictive representations. In ICLR,
2021.

Sedgwick, P. Spearman’s rank correlation coefficient. Bmyj,
2014.

Sigaud, O. Combining evolution and deep reinforcement
learning for policy search: a survey. arXiv preprint
arXiv:2203.14009, 2022.

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley,
K. O., and Clune, J. Deep neuroevolution: Genetic algo-
rithms are a competitive alternative for training deep neu-

ral networks for reinforcement learning. arXiv preprint,
2017.

Sutton, R. S. and Barto, A. G. Reinforcement learning - an
introduction. MIT Press, 1998.

van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double g-learning. In AAAI 2016.

Vikhar, P. A. Evolutionary algorithms: A critical review and
its future prospects. In ICGTSPICC. IEEE, 2016.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, L.,
Huang, A., Sifre, L., Cai, T., Agapiou, J., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Giilgehre,

11

C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama,
D., Wiinsch, D., McKinney, K., Smith, O., Schaul, T.,
Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C.,
and Silver, D. Grandmaster level in starcraft II using
multi-agent reinforcement learning. Nat., 2019.

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot,
M., and de Freitas, N. Dueling network architectures for
deep reinforcement learning. In /CML, 2016.

Xue, K., Wang, R., Li, P, Li, D., Jianye, H., and Qian, C.
Sample-efficient quality-diversity by cooperative coevo-
lution. In ICLR, 2023.

Young, K. and Tian, T. Minatar: An atari-inspired testbed
for more efficient reinforcement learning experiments.
CoRR, 2019.

Zhang, H., Shao, J., Jiang, Y., He, S., Zhang, G., and Ji,
X. State deviation correction for offline reinforcement
learning. In AAAI, 2022.

Zhou, M., Luo, J., Villella, J., Yang, Y., Rusu, D., Miao, J.,
Zhang, W., et al. Smarts: Scalable multi-agent reinforce-
ment learning training school for autonomous driving,
2020. arXiv preprint, 2010.

Zhou, Z., Yu, Y., and Qian, C. Evolutionary learning: Ad-
vances in theories and algorithms. 2019.

Zhu, Q., Wu, X, Lin, Q., Ma, L., Li, J., Ming, Z., and
Chen, J. A survey on evolutionary reinforcement learning
algorithms. Neurocomputing, 2023.

Value-Evolutionary-Based Reinforcement Learning

A. Method Implementation Details
All experiments are carried out on NVIDIA GTX 2080 Ti GPU with Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz.

A.1. Network Architecture

This section provides a detailed description of the network architectures used in the experiments. For the GA and CEM
processes, we utilize the implementations from ERL! and CEM-RL?. All the processes remain the same, and readers can
refer to the source code for specific hyperparameter settings. Regarding the DQN architecture, the Q network consists of
one convolutional layer followed by two fully connected layers. The convolutional layer has 16 output channels, a 3 x 3
filter size, and a stride of 1. The fully connected layers have 1024 and 128 units, respectively. The activation function used
between layers is ReLU. Additional details can be found in Table 3. For Rainbow, we follow a popular Rainbow open
source project® and use the default settings. Readers can refer to the specific source code for more in-depth information. As
for SPR, our implementation is based on the official code of SPR*. We combine the GA-version VEB-RL with SPR and
enhance the population using GA every 1000 steps. In VEB-SPR, only the best individual interacts with the environment.

Table 3. Details of setting.

Parameter Value
Optimizer Adam
Learning rate 3e—4
Replay buffer size leb
Number of hidden layers for Q network 2
Number of hidden units per layer 1024, 128
Batch size 32
Number of the convolutional layer 1

Out channels of the convolutional layer 16
Kernel size of the convolutional layer 3x3
The stride of the convolutional layer 1
Discounted factor 0.99
Steps to update the target network 1000
Sample size for calculating the fitness N 5120 in MinAtar & 1024 in Atari
Population size 10
Update frequency of target network in the population /7 20

A.2. Hyperparameters

This section details the hyperparameter which is different across tasks. Only one hyperparameter /N needs to tune across
tasks. The specific values of IV for each task are listed in Table 4.

A.3. Further Experiments

Analysis of Hyperparameter H We conduct an analysis to examine the effect of the hyperparameter H on performance,
which determines the update frequency of target networks across all tasks. The results depicted in Figure 8 demonstrate
that different values of H yield similar performance. Notably, when H is set to 0 and the target network is not utilized, a
significant degradation in performance is observed. This finding aligns with the original DQN paper, which has consistently
shown that omitting target networks in DQN leads to unstable learning.

Time and Resource Consumption In terms of time consumption, VEB-RL optimizes the population once per generation,
with each generation consisting of at least 2 episodes (only one elite interaction with the environment). The main time
consumption comes from population evaluation. To investigate the time consumption, we conduct experiments comparing

Thttps://github.com/ShawK91/Evolutionary-Reinforcement-Learning
2https://github.com/apourchot/CEM-RL
3https://github.com/Kaixhin/Rainbow
*https://github.com/mila-igia/spr

12

Value-Evolutionary-Based Reinforcement Learning

Table 4. Details of the hyperparameter N across tasks.

Env name N (GA version) | N (CEM version)
MinAtar Freeway 1 1
MinAtar Space Invaders 1 1
MinAtar Breakout 2 1
MinAtar Seaquest 1 1
MinAtar Asterix 2 1
Atari Breakout 5 1
Atari Space Invaders 2 1
Atari Pong 2 3
Atari Battle Zone 2 5
Atari Name This Game 1 1
Atari Qbert 2 1
%0 Breakout Space Invaders
== VEB-RL w/ H=0
g 701 —— VEB-RL w/H=10 g 1207
> == VEB-RL w/ H=20 °
qu) 601 VEB-RL w/ H=50 52 100+
| 3
= :
030 S 60
A A
2 20 T 40
= 101 - |
‘ ‘ | | 20 ‘ | | |
0 1 2 3 4 1 2 3 4
Environment Steps (x1¢°) Environment Steps (x1e®)

Figure 8. Hyperparameter analysis on H. The experimental results indicate that VEB-RL is not sensitive to the size of the hyperparameter
H, but when H = 0 (indicating the absence of target networks), it leads to a significant performance decrease. This is consistent with the
conclusion in the RL literature that removing target networks results in a decrease in performance.

CEM-based VEB-RL (one elite interaction) and DQN on Breakout for 500 million steps (over five seeds). The results show
that VEB-RL takes 30.5 hours, while DQN takes 18.2 hours. The majority of the time overhead in VEB-RL arises from
population evaluation with the new fitness metric, resulting in an additional 67% time consumption compared to DQN.
Increasing the number of elites interacting with the environment can significantly reduce time consumption. For example,
VEB-RL (5 elites interaction) only takes 22.5 hours. However, this may lead to performance degradation.

In terms of computational and resource consumption, VEB-RL requires maintaining a population, which incurs overhead in
terms of population maintenance and optimization. The number of parameters in VEB-RL is linearly related to the size of
the population. We compare the memory overhead of VEB-RL and DQN when loaded onto the GPU for training. VEB-RL
incurs a memory overhead of 1221 MiB, while DQN incurs a memory overhead of 1051 MiB. Using VEB-RL does not
result in excessive graphics memory overhead. Furthermore, since VEB-RL and DQN share the replay buffer, no additional
memory overhead is required. The additional memory and computing overhead of VEB is small due to two factors: 1) the
frequency of population evaluation and optimization in VEB is low, occurring once per generation (i.e., on average every
1000 steps), while RL is updated once per time step, and 2) EA in VEB-RL uses random search, eliminating the need for
gradient optimization (gradient backpropagation and intermediate variable storage).

Comparison with A Pure RL Algorithm with Multiple Policies Readers might wonder how VEB-RL compares to a
population-based pure RL algorithm. This curiosity stems from the idea that the improvements in VEB-RL are due to the
introduction of the population rather than the various mechanisms within VEB-RL. To this end, we implement the DQN

13

Value-Evolutionary-Based Reinforcement Learning

‘ Breakout Asterix Space Invaders

CEM-Based VEB-RL | 63.1 £ 165 273 +7.8 119.1 £255
DQN (multiple) 244+£42 40x+12 553 £12.8

Table 5. Average Performance comparison of CEM-based VEB-RL and DQN (multiple) on MinAtar tasks.

w/ RL Interaction | VEB-RL(N=1) VEB-RL(N=2) VEB-RL(N=3) VEB-RL(N=5)

Breakout | 63.4 48.3 43.5 46.9

w/o RL Interaction | VEB-RL(N=1) VEB-RL(N=2) VEB-RL(N=3) VEB-RL(N=5)
Breakout | 43.7 36.6 33.0 359

w/ RL Interaction | VEB-RL(N=1) VEB-RL(N=2) VEB-RL(N=3) VEB-RL(N=5)
Asterix | 29.0 304 13.0 5.2

w/o RL Interaction | VEB-RL(N=1) VEB-RL(N=2) VEB-RL(N=3) VEB-RL(N=5)
Asterix | 4.9 7.7 4.4 5.5

Table 6. Average Performance comparison on Breakout and Asterix tasks.

based on the idea of multiple RL policies with a shared replay buffer, maintaining the same number of DQNs as VEB-RL.
We compared VEB-RL with DQN (multiple) on three tasks: Breakout, Asterix, and Space Invaders. All structures and
hyperparameters are kept consistent, and the experiments are repeated 5 times. The results in Table 5 demonstrate that
VEB-RL outperforms DQN (multiple) in terms of the final performance. Moreover, DQN (multiple) requires gradient
optimization for each individual in the population, resulting in significant resource overhead. In contrast, VEB-RL is
lightweight and more efficient.

The main reason DQN (multiple) performs worse than VEB-RL is that multiple Q networks are improved based on the
same experiences through gradient optimization, which tends to get similar solutions and lacks diversity. This leads to the
collection of redundant suboptimal experiences. Consequently, DQN (multiple) is prone to getting stuck in suboptimal
solutions. In contrast, VEB-RL utilizes EAs to optimize the Value Function with gradient-free optimization, providing
stronger global optimization and exploration capabilities. It is more adept at escaping local suboptimal points while
ensuring diversity. Additionally, VEB-RL maintains an elite interaction mechanism, preventing low-quality individuals from
interacting with the environment.

VEB-RL without RL Interaction In our study, we find that smaller values of N typically result in better performance.
An intuitive idea to potentially improve performance is to stop RL interaction and restrict environmental interactions to only
elite individuals from the population. However, this approach would result in performance collapse rather than improvement,
primarily due to distributional shift. To support the statement, we evaluate VEB w/o RL interaction on Breakout and Asterix
tasks, with N = 1,2, 3, and5. The results in Table 6 We observe that VEB-RL (w/ RL interaction) generally outperforms
VEB-RL (w/o RL interaction). This is primarily due to the following reasons: Maintaining RL interaction allows for the
stable preservation of the data distribution corresponding to the RL policy in the replay buffer, while also ensuring stable
exploration capabilities of RL. Excluding RL interaction can lead to compromised exploration capabilities of RL (which can
be mitigated by population injection but still exists), Besides, Out Of Distribution (OOD) issues may arise. For example,
in the case of Asterix, we can see that VEB-RL w/o RL interaction experiences a direct collapse in performance. This is
mainly because of the significant disparity between the true data distribution of RL and the data distribution collected in
the replay buffer, resulting in an exponential increase in approximation errors (as shown in Table 7). The excessively large
errors hinder RL from participating in the population evolution, leading to a vicious cycle and performance collapse.

Other Selection of Maintaining Q Target Network In our implementation, we initially considered maintaining a single
target network for the entire population but ultimately decided to maintain a separate target network for each individual in
the population. Through experiments, we verify that similar performance can be obtained for both designs. We conduct
experiments using a single target network that is hard updated by the best-performing individual selected by fitness every H

14

Value-Evolutionary-Based Reinforcement Learning

w/o RL Interaction | VEB-RL(N=1) VEB-RL(N=2) VEB-RL(N=3) VEB-RL(N=5)
Asterix | 449 (10'2) 6.39 (10'3) 1.03 (1014) 4.86 (1013)

Table 7. Value approximation errors of VEB-RL w/o RL Interaction on Asterix task.

Table 8. Experiments on different designs of target networks.

Env name ‘ Breakout Space Invaders Asterix

Use one target 68.3 £33.8 130.6 +23.4 28.7+10.0
Use multiple targets | 63.1 +16.5 119.1 +25.5 273+78

generations. We assess the performance using CEM-based VEB-RL in three tasks: Breakout, Space Invaders, and Asterix.
The results in Table 8 demonstrate that a similar level of performance can be achieved using a single target network, with
some improvement and less resource consumption.

15

