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Figure 1: We introduce ICEdit, a novel method that achieves state-of-the-art instruction-based image
editing with only 0.1% training data required by previous SOTA methods, demonstrating exceptional
generalization. The first row illustrates a series of multi-turn edits, executed with high precision, while
the second and third rows highlight diverse, visually impressive editing results from our method.

Abstract

Instruction-based image editing enables precise modifications via natural language
prompts, but existing methods face a precision-efficiency tradeoff: fine-tuning
demands massive datasets (>10M) and computational resources, while training-
free approaches suffer from weak instruction comprehension. We address this by
proposing ICEdit, which leverages the inherent comprehension and generation
abilities of large-scale Diffusion Transformers (DiTs) through three key innovations:
(1) An in-context editing paradigm without architectural modifications; (2) Minimal
parameter-efficient fine-tuning for quality improvement; (3) Early Filter Inference-
Time Scaling, which uses VLMs to select high-quality noise samples for efficiency.
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Experiments show that ICEdit achieves state-of-the-art editing performance with
only 0.1% of the training data and 1% trainable parameters compared to previous
methods. Our approach establishes a new paradigm for balancing precision and
efficiency in instructional image editing.

1 Introduction

In recent years, instruction-based image editing has gained considerable attention for its ability to
transform and manipulate images using natural language prompts. The main advantage of instruction-
based editing is its ability to generate precise modifications with minimal textual instructions, thereby
opening new possibilities for both automated image processing and user-driven content creation.

Instruction-based image editing methods are divided into finetuning-based [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
and training-free approaches [11, 12, 13, 14, 15, 16, 17, 18, 19]. Finetuning-based methods achieve
precise instruction-following by fully finetuning pretrained diffusion models on large-scale datasets
(450K to 10M samples [1, 3]) with structural modifications like condition embedding [9, 5] or channel
adjustments [1, 2, 4], but demand significant computational resources. In contrast, training-free
methods avoid retraining through techniques like image inversion, or attention manipulation, offering
efficiency but struggling with complex instructions, which reduces precision and practical utility.
This highlights a critical trade-off between precision and efficiency in current methods.

Despite the dilemma above, recent advances in diffusion transformers (DiT) [20, 21, 22] suggest
a promising pathway. DiT architectures exhibit two critical properties: (1) Scalable Generation
Fidelity: Larger DiT variants (e.g., FLUX [23]), trained on vast amounts of image-text data, possess
unprecedented text-to-image alignment capabilities. (2) Intrinsic Contextual Awareness. Diffusion
Transformers (DiTs) leverage attention mechanisms to enable bidirectional interactions between
reference and generated content, processing source and target images concurrently. This facilitates
tasks like reference-guided synthesis [24, 25] and identity-preserved editing [26], while supporting
conditional image generation without specialized alignment networks [27, 7, 28].

Although these works achieve promising results, they are unsuitable for instruction-guided image
editing due to their limited ability to comprehend explicit editing instructions and preserve the layout
of non-editable regions. This raises a critical question: Can large scale DiT’s generation capacity
and contextual awareness directly address instruction-based image editing, while balancing
precision and efficiency through intrinsic capabilities rather than external complexity?

Our experiments reveal two fundamental limitations in using DiTs for instructional image editing: (1)
Poor instruction comprehension: while the model can interpret descriptive input/target prompts, it
struggles with direct editing instructions (e.g., "make it..." or "change it..."); (2) Layout instability:
the model often alters unchanged regions when regenerating scenes, leading to poor editing success.

To address these limitations, we suggest a two-part solution. First, we recommend turning direct
editing commands into descriptive prompts that match how DiTs naturally understand information.
Second, the editing challenges mainly arise from the model’s unlearned image-to-image editing priors,
which can potentially be addressed through lightweight fine-tuning with editing pairs or test-time
adaptation [29, 30] strategies. This approach offers the potential to simultaneously resolve DiTs’ two
fundamental limitations in instructional editing while maintaining precision-efficiency balance.

In this paper, we propose ICEdit, an efficient and effective framework for instructional image
editing that directly exploits the inherent comprehension and generative capabilities of large-scale
DiT priors for instructional image editing. Our approach employs in-context prompts—a fixed-format
prefix embedding editing instructions in a format DiT can effectively interpret (§3.1). Given a
source image (left panel), the model generates edited outputs (right panel) by jointly processing these
prompts and the input (see fig. 2(a) and fig. 5). Moreover, minimal parameter-efficient fine-tuning
significantly improves editing success and quality, while adopting a Mixture-of-Experts (MoE) [31]
further enhances performance (§3.2). Finally, we introduce Early Filter Inference-Time Scaling,
which uses vision-language models (VLMs) to evaluate noise quality during early denoising stages
in rectified flow models (§3.3). This method rapidly identifies and filters out noises congruent with
textual instructions, enhancing robustness and output fidelity.

We evaluate our method on the Emu Edit [3] and MagicBrush [2] benchmarks, demonstrating three
key advancements: Significant Data Efficiency and Editing Quality: Achieving state-of-the-art
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(a) An Illustration of In-Context Edit Concept (b) A Brief Comparison between Our Method and Others (c) Precision and Efficiency of Our Method
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Figure 2: (a) Our concept: The original DiT model is conceptualized as a painter who generates
edited images (right panel) by interpreting the reference image (left panel) and the instruction, similar
to finishing an artwork based on a provided sketch. (b) Comparison of model structures: Unlike
prior DiT methods, our approach avoids extra position/condition encoders, easily and effectively
preserving the original model structure. (c) Our method leverages minimal training data and achieves
comparable performance with SOTA models.

results with minimal training data (0.1% of prior requirements). Validation of Proposed Paradigm:
Outperforming recent DiT-based editing models (both T2I and inpainting variants), confirming the
effectiveness of our in-context editing approach. Practical Applicability: Attaining a competitive
VIE score of 78.2 (compared to SeedEdit’s 75.7), demonstrating real-world viability comparable to
commercial systems. These results establish a novel perspective on balancing precision and efficiency
(fig. 2(c)) by leveraging large-scale DiTs as priors. Our contributions include:

• We explore the editing ability of large pretrained DiTs and propose an in-context editing paradigm,
ICEdit, that enables instructive image editing by leveraging the model’s inherent understanding
and generation abilities, without requiring architectural modifications or extensive fine-tuning.

• Our framework demonstrates significant improvements through minimal fine-tuning, significantly
enhancing editing quality and robustness. We further propose an Early Filter Inference-Time
Scaling approach that uses VLM to select high-quality noise samples. This integrated strategy
improves editing precision while maintaining computational efficiency.

• Experimental results show that our method achieves state-of-the-art editing performance while
requiring only 0.1% of the training data compared to previous approaches, establishing a
novel perspective on balancing precision and efficiency.

2 Related Work

Training-free editing techniques. Since the emergence of Diffusion Models, numerous training-free
image editing methods [11, 32, 19, 33, 15, 17, 16, 13] have gained attention. Recently, RF-Solver [13]
improves inversion precision in Rectified-flow models by mitigating ODE-solving errors and leverages
MasaCtrl [19] for image editing. StableFlow [14] identifies critical MM-DiT Blocks through ablation
studies, injecting features only into these blocks to enhance editing capabilities. However, these
methods face two key limitations: 1) manually designed modules restrict generation ability, hindering
complex instruction understanding and reducing success rates; 2) editing requires carefully crafted
prompts, limiting generalizability and scalability.

Finetuning-based editing methods. Most current editing models modify architectures and fine-
tune on high-quality datasets [1, 2, 34, 4, 35, 10, 8]. InstructPix2Pix [1], MagicBrush [2], and
UltraEdit [4] fine-tune diffusion UNet using original images as input. MGIE [5] and SmartEdit [9]
enhance instruction understanding by integrating a Multimodal Large Language Model (MLLM)
to encode and inject instructions into the diffusion model. However, a gap exists between the
embedding spaces of generative prompts and editing instructions, reducing the generalization
ability of Diffusion Models and necessitating large datasets to bridge it. For instance, InstructPix2Pix
generated 450K pairs, Emu Edit [3] collected nearly 10M pairs, and FluxEdit [36] used 1.2M pairs
from [34] based on FLUX [23], yet the editing results remain suboptimal.

3



Direct Edit Instruction In-Context Edit Prompt Global Descriptive Prompt

Add a rainbow to the sky

Make it snow 

A diptych with two side-by-side 
images … same as on the left but {Add a 

rainbow to the sky}.

A diptych with two side-by-side … same 
as on the left but {make it snow}.

Input caption: 
Some palm trees 
and other plants are 
sitting on a highway 
overpass on a 
cloudy day.

Output Caption: 
Some palm trees and 
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sitting on … on a 
cloudy day with a 
rainbow in the sky.

Input caption: 
Two boys play with 
a yellow frisbee 
outdoors.

Output Caption: 
Two boys play with 
a yellow frisbee 
outdoors on a 
snowy day.

Figure 3: Input Prompt Variants for Image Editing. We evaluate three prompt formats: (1)
Direct Instruction - explicit editing commands provided directly; (2) In-context Prompt - instructions
embedded in structure "A diptych with... On the right, the same scene but {instruction}"; (3) Global
Descriptive Prompt - uses full input/output captions ("On the left {input} On the right {output}").

T2I In-context Editing Framework Results (based on Flux.1 dev)

Inpainting In-context Editing Framework Results (based on Flux.1 Fill)

Change the color of the 
plant pot to blue. Change the dog to a poodle. Add text ‘mirror’ to the mirror Alter the car color from 

red to blue.

Figure 4: Training-Free Methods Show Limited Performance. Both T2I and inpainting DiT
frameworks (fig. 5) yield suboptimal results. The T2I DiT struggles to preserve the original layout,
while the inpainting framework may inadvertently perform outpainting. Despite these shortcomings,
both demonstrate potential in following instructions and modifying edited regions.

3 Method

In this section, we first explore in-context editing capabilities within original DiT generative models
and propose our in-context edit framework for instruction-based image editing (§3.1). After
thorough analysis, we perform minimal fine-tuning to significantly improve editing quality and
robustness of our editing paradigm (§3.2). Finally, we present early filter inference-time scaling
(§3.3) to optimize initialization noise for better generation quality.

3.1 Exploration of DiT’s In-context Edit Ability

In-Context Edit Framework. Inspired by recent advances in large-scale Diffusion Transformer
(DiT) models [27, 26, 37, 24], which demonstrate robust contextual capabilities, we investigate image
editing via in-context generation. As illustrated in fig. 2(a), our approach mimics an AI painter
that generates edited images (right panel) by interpreting a reference image (left panel) and an edit
instruction. By leveraging DiT’s strong generation fidelity and inherent contextual awareness, we
aim to enable direct image editing without requiring module modifications or extensive finetuning.

We propose two training-free frameworks based on text-to-image (T2I) DiT and inpainting DiT,
respectively, as shown in fig. 5(a). For the T2I DiT framework, we introduce an implicit reference
image injection method. We perform image inversion [38, 13, 14, 19, 18] on the reference image,
preserving attention values across layers and steps. These values are injected into tokens representing
the left side of a diptych for image reconstruction, while the right side is generated based on the edit
instruction within a predefined prompt during in-context generation.

Conversely, the inpainting DiT framework offers a more straightforward approach. By accepting a
reference image, we construct a side-by-side image, where the left-hand side is reconstructed as a
reference image, and the right-hand side is the "edited" result. The whole process is guided by a fixed
mask and an edit prompt to produce the edited output.
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（a) Training-free Structure of ICEdit （b) Finetuning Strategy for ICEdit

Figure 5: Model Structure. (a) We propose two training-free architectures for in-context editing
using large-scale DiTs, adapted from (a) T2I-DiT and (b) inpainting-DiT. Both adopt a diptych
framework: left panel = source image, right panel = editing output, consistent with Fig. 2. (b) While
both show limited performance, we adopt the inpainting paradigm for further fine-tuning due to its
simplicity (no image inversion required). Our method integrates parameter-efficient adaptation with
dynamic expert routing for specialized feature processing.

Unlike prior DiT-based approaches [27, 26, 24], our method eliminates the need for intricate position
and condition encoding designs or retraining, as illustrated in fig. 2. Instead, it purely leverages the
diptych image structure and the inherent processing capabilities of DiT.

In-Context Edit Prompt. Diffusion models typically struggle to interpret editing instructions
due to a mismatch between the embedding spaces of descriptive prompts and editing instructions.
Previous approaches [1, 2, 3, 4, 36], rely on extensive training with large-scale editing datasets
to enable generative diffusion models to understand editing instructions. In contrast, we propose
leveraging the inherent contextual understanding of powerful Diffusion Transformers (DiTs) to
perform instruction-based image editing without heavy training.

We experimented with three prompt types to enable a DiT model (e.g., FLUX) to edit a given image,
as shown in fig. 3. First, directly inputting the editing instruction into the model often fails to produce
accurate results, frequently altering the entire image layout. Second, we designed an in-context
edit prompt (IC prompt) that embeds the instruction within a descriptive structure: “A diptych
with two side-by-side images of the same scene. On the right, the scene is identical to the left but
{instruction}.” This IC prompt significantly improves the model’s ability to interpret instructions,
yielding approximately a 70% increase in editing success rate, as reported in table 3. Finally, we tested
a training-free approach using global descriptive captions for both source and target images, similar
to prior methods [38, 14, 16, 13]. While achieving better quality and instruction adherence, this
method relies on impractical, detailed image descriptions, undermining seamless instruction-based
editing. Thus, we adopt the IC prompt in our framework and further refine it through fine-tuning.

Discussion of the Training-Free Framework: Figure 4 presents the editing outcomes of the T2I
and inpainting frameworks on the Emu Testset, guided by the IC prompt. While both frameworks
demonstrate some editing capability, their zero-shot performance is unsatisfactory, particularly
in preserving unedited regions, which limits their practical utility (quantitative eval in table 3). We
attribute this to the lack of learned image-to-image editing priors. This limitation could be mitigated
through lightweight adjustments, such as finetuning or test-time scaling. Given that the T2I DiT
framework requires time-consuming image inversion, we favor the inpainting-based framework
for its straightforward operation, which facilitates further finetuning.
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Figure 6: Illustration of Inference-Time Scaling Strategy (§3.3). The upper rows demonstrate
that edit success can be assessed within a few initial steps. These early results are used to filter the
optimal initial noise with VLM judges.

3.2 Efficient Fine-tuning for Enhanced Editing

We define our inpainting-based editing method as a function E mapping a source image Is and edit
instruction Te to the edited output It:

It = E(Is, Te) = D(IIC ,M, TIC), (1)
where D is the inpainting DiT, IIC is the in-context image with Is on the left, M is a fixed binary mask
to reconstruct Is, and TIC is the in-context edit prompt derived from Te.

To boost performance, we curate a compact dataset (50K samples) from public sources (§4) and apply
LoRA fine-tuning [39, 27] to multi-modal DiT blocks, achieving a 150% improvement in editing
success (table 3) despite the small dataset. However, tasks like style transfer and object removal
remain challenging, as a single LoRA structure struggles to handle diverse editing tasks requiring
distinct latent feature manipulations.

Mixture of LoRAs. To overcome these limitations, we propose a Mixture-of-Experts (MoE) inspired
LoRA structure within the DiT block (fig. 5(b)), inspired by MoE architectures [40, 41, 31]. We
integrate N parallel LoRA experts into the multi-modal attention block’s output projection layer,
using standard LoRA elsewhere. A routing classifier selects experts based on visual tokens and text
embeddings. Each expert, a LoRA module with rank r and scaling factor α, contributes to the output:

Output = BaseLayer(x) +
α

r

N∑
i=1

G(x)i ·Bi ·Ai · x, (2)

where Bi ∈ Rd×r, Ai ∈ Rr×k, x ∈ Rk, and G(x)i is the routing probability. We use a sparse MoE
setup, selecting the top-k experts: G(x)i = softmax(TopK(g(x), k))i, where TopK(·, k) retains the
top-k entries, setting others to −∞, ensuring efficiency and versatility for diverse editing tasks.

3.3 Early Filter Inference Time Scaling

During inference, we find that initial noise significantly shapes editing outcomes, with some inputs
producing results better aligned with human preferences (see fig. 9), a pattern supported by recent
studies [30, 29]. This variability drives us to investigate inference-time scaling to improve editing con-
sistency and quality. In instruction-based editing, we observe that success in instruction alignment
often become evident in few inference steps (see fig. 6), a characteristic compatible with rectified
flow DiT models [42, 43]. These models traverse latent space efficiently, delivering high-quality
outputs with few denoising steps—sometimes as few as one [44]. Thus, unlike generation tasks that
demand more steps for detail and quality, we can evaluate edit success with only a few steps.

Based on this insight, we propose an Early Filter Inference Time Scaling strategy. We start by
sampling M initial noise candidates and generating a preliminary m-step edit for each, where m ≪ n
(the full denoising steps). A visual large language model (VLM) then assesses these M early outputs
for instruction compliance, using a bubble sort-inspired pairwise comparison to iteratively pinpoint
the top candidate, akin to selecting the maximum value (see fig. 6). This optimal seed is subsequently
refined with n-step denoising to produce the final image. Our approach quickly identifies good noise
early, while VLM selection ensures the output aligns with human preferences. Further details are
provided in the supplementary materials (Sup. Mat.).
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Table 1: Quantitative results on Emu Test set (§4.1). Following [4, 3], we compute CLIP-I and
DINO scores between the source and edited image, while CLIP-out measures the distance between
output caption and edited image. We also employ GPT-4o to evaluate the edited results. The Train.
Pa. means parameters finetuned for the editing task. * indicates methods that rely on output captions.

Methods Base Model Train. Pa. Data Usage CLIP-I ↑ CLIP-Out ↑ DINO ↑ GPT ↑
InstructP2P [CVPR23] SD 1.5 0.9B 0.45M 0.856 0.292 0.773 0.36

MagicBrush [NeurIPS23] SD 1.5 0.9B 0.47M 0.877 0.298 0.807 0.48
EmuEdit [CVPR24] Close Source 2.8B 10M 0.877 0.306 0.844 0.72

UltraEdit [NeurIPS24] SD 3 2.5B 3M 0.880 0.304 0.847 0.54
FluxEdit [huggingface] Flux.1 dev 12B 1.2M 0.852 0.282 0.760 0.22

FLUX.1 Fill [huggingface] Flux.1 Fill - - 0.794 0.273 0.659 0.24
RF-Solver Edit* [ICML25] Flux.1 dev - - 0.797 0.309 0.683 0.32

ACE++ [arXiv25] Flux.1 Fill 12B 54M 0.791 0.280 0.687 0.24

ICEdit (ours) Flux.1 Fill 0.2B 0.05M 0.907 0.305 0.866 0.68

Ours UltraEditEmuEdit MagicBrush InstructP2P

Add the word "EXIT" 
over the patio doors

Input

Change the color of 
the plant pot to blue

Make the background 
severe lightning storm

Convert the image into 
an anime illustration

RF-Solver Edit

Figure 7: Comparison with baseline models on the Emu Edit test set (§4.1). Our method
demonstrates superior performance in both edit-instruction accuracy and preservation of non-edited
regions compared to the baseline models. ü Zoom in for detailed view.

4 Experiment

Implementation Details. We use FLUX.1 Fill, Table 2: Quantitative results on MagicBrush
test set. Following [4], all metrics are calculated
between the edited image and GT edited image
provided by MagicBrush [2].

Methods L1 ↓ CLIP-I ↑ DINO ↑

InstructP2P 0.114 0.851 0.744
MagicBrush 0.074 0.908 0.847

UltraEdit 0.066 0.904 0.852
FluxEdit 0.114 0.779 0.663

FLUX.1 Fill 0.192 0.795 0.669
RF-Solver Edit* 0.112 0.766 0.675

ACE++ 0.195 0.741 0.591

ICEdit (ours) 0.060 0.928 0.853

a leading open-source DiT-based inpainting
model, as our backbone. For fine-tuning our
hybrid LoRA-MoE module, we curated a 50K-
sample editing dataset, combining 9K sam-
ples from MagicBrush [2] and 40K from Om-
niEdit [34] to address MagicBrush’s limitations
in edit type balance, style-focused data, and do-
main diversity. The model employs a LoRA
rank of 32, four MoE experts, and a TopK value
of 1. For inference-time scaling, we use Qwen-
VL-72B [45] to evaluate image outputs.

Evaluation Settings. We evaluated our model
on Emu [3] and MagicBrush [2] test sets. For
MagicBrush, which provides ground truth (GT)
edited images, we follow [4, 2] to compute CLIP [46, 47], DINO [48, 49], and L1 metrics, measuring
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Make the girl wear red robe and black jeans.

Make the man grab a basketball with both hands.

Source UltraEdit SeedEdit OursMagicBrush

Figure 8: We employ the VIE-score to evaluate human preference alignment and quantify improve-
ments from our inference-time scaling strategy (w/ Inf. Sca.) (§4.1 and §4.2).

Table 3: Ablation study on model structure configuration and inference time scaling settings.

(a) Ablation study on model structure (§4.2).
Settings Params CLIP-I ↑ CLIP-T ↑ GPT ↑

Training-free w/o IC prompt - 0.681 0.258 0.14
Training-free w/ IC prompt - 0.794 0.273 0.24

Only MoE module 130M 0.929 0.300 0.51
LoRA (r=64) w/ IC prompt 240M 0.911 0.301 0.60

Ours w/o IC prompt 214M 0.896 0.300 0.62
Ours 214M 0.907 0.305 0.68

(b) Ablation of inference time scaling (§4.2).

Verifier Noise Num Inf. Step NFE ↓ GPT ↑
- 1 - 50 0.68

VLM 6 10 110 0.78
VLM 6 4 74 0.72
VLM 12 10 170 0.79
VLM 6 50 350 0.80
CLIP 6 50 350 0.65

divergence from GT. For the Emu test set, lacking GT, we adopt baseline assessments from [4, 3] and
use GPT-4o [50], same as [34], to assess editing success (see Sup. Mat.). All models use a single
default noise input, excluding our Early Filter Inference Time Scaling for fair comparison.

Conventional metrics like CLIP [46, 47] and DINO [48, 49] often misalign with human prefer-
ences [51, 34, 10]. We thus employ VIE-Score [51], combining SC (instruction adherence and
unedited region preservation) and PQ (visual quality) scores, computed as Overall =

√
SC × PQ.

This metric evaluates the improvement brought about by our inference-time scaling strategy and
benchmarks our model against SeedEdit [52], a leading close-source model.

4.1 Comparisons with State-of-the-Art

Results on Emu Edit and MagicBrush Test Sets. We compare our model against UNet-based [1,
2, 3] and DiT-based [4, 36, 13, 7] methods (tables 1 and 2). Our model achieves SOTA-comparable
performance, with MagicBrush outputs (table 2) closely matching GT and showing strong editing
proficiency. On Emu (table 1), it aligns well with instructions while preserving image fidelity better
than SOTA. GPT-based scores surpass open-source models and rival closed-source Emu Edit, despite
using 0.5% training data. Compared to DiT-based models, our approach excels with fewer samples
and parameters, demonstrating high efficiency. Qualitative results are in fig. 7 and Sup. Mat.

VIE-Score Eval. As shown in fig. 8, our model significantly outperforms open-source SOTA methods
in editing accuracy and visual quality. Random seed testing shows performance nearing SeedEdit, and
with our inference scaling strategy, it surpasses SeedEdit in overall VIE-Score. Although SeedEdit
achieves higher PQ scores due to its polished outputs, it struggles with identity preservation in
unedited regions. Our method, however, excels in maintaining fidelity in these areas (fig. 8).

4.2 Ablation Study

Model Structure. We validate our approach through experiments (table 3). The in-context edit
prompt (IC prompt) significantly outperforms direct instructions in training-free models (70% GPT
score increase) and enhances editing after fine-tuning. Our LoRA-MoE design outperforms standard
LoRA, boosting quality and success rates (13% GPT score increase) with fewer parameters. Limiting
adaptation to the output projection layer (“Only MoE”) reduces performance, highlighting the need
for comprehensive fine-tuning across all modules.
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Make the sky night instead of day

Add the word "Elegance" above 
the towels on the wall to the left.

Add a double rainbow to the sky

Get rid of the helmet on the head 
of the skateboarder

Change the image so it appears 
to be snowing.

Convert the image into an
anime illustration

Figure 9: Ablation on Inference-Time Scaling (§4.2). Our strategy significantly enhances edit
quality. For example, with the instruction “get rid of the helmet,” default fixed seed incorrectly
removes the character’s head—a flawed outcome prevented by VLM filtering.

SeedEdit（Doubao）

Ours

Change the background 
to Hawaii scenery

Add the alphabet 
NeurIPS 2025 on bottom. Remove the dog. Change black car top 

with a shiny blue one.

Clear alphabet and caseShadow Effect and ID Consist Both entity and mirror Realistic Reflection
Watermark Removal RelightingHand Refinement Stylization

Image-to-Image Applications

Figure 10: Applications (§4.3). Our method leverages DiT’s original generation ability, producing
harmonious results. Without additional tuning, it shows robust generalization across diverse tasks.

Inference-Time Scaling. As shown in figs. 8 and 9, our strategy markedly improves editing perfor-
mance, achieving a 19% increase in SC score and a 16% boost in overall VIE-Score. Quantitative
experiments across various settings (table 3) demonstrate that our approach significantly reduces
computational cost (number of function evaluation, NFE) while substantially enhancing performance.

Data Efficiency. As shown in fig. 2 and table 1, our method yields significant improvements with
only 0.05M training samples, achieving a 180% GPT-score increase over our training-free framework
while using just 0.1% of samples required by prior models. This highlights the efficiency and
effectiveness of our fine-tuning strategy.

4.3 Application

Harmonious and Versatile Editing. Our method leverages the powerful generative prior of large-
scale Diffusion Transformers (DiTs) to create seamless, context-aware edits that blend naturally with
the original image, automatically incorporating shadow effects and style alignment as shown in figs. 1
and 10. As a versatile image-to-image framework, it excels in tasks such as hand refinement and
relighting (fig. 10) and holds potential for broader applications through task-specific fine-tuning.

5 Conclusion

In this paper, we present ICEdit, a novel DiT-based instruction editing method that delivers state-of-
the-art performance with minimal fine-tuning data, achieving an unmatched balance of efficiency
and precision. We first explore the inherent editing potential of generative DiTs in a training-free
context, proposing our in-context edit paradigm. We then enhance its editing quality and robustness
through minimal fine-tuning with the mixture of expert structure. Additionally, we introduce an early
filter inference-time scaling strategy, using VLMs to select optimal early-stage outputs from multiple
seeds, enhancing edit outcomes. Extensive experiments confirm our method’s effectiveness and
showcase superior results. We believe this efficient, precise framework establishes a new paradigm
for balancing precision and efficiency in instructional image editing
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A Preliminary

Diffusion Transformer (DiT) Model [20], employed in architectures such as FLUX.1 [23], Stable
Diffusion 3 [53], and PixArt [21], utilizes a transformer as a denoising network to iteratively refine
noisy image tokens. A DiT model processes two types of tokens: text condition tokens CT ∈ RM×d

and noisy image tokens X ∈ RN×d, where d is the embedding dimension, and M and N represent
the number of text and image tokens, respectively. These tokens maintain consistent shapes as they
pass through multiple transformer blocks within the network.

FLUX and FLUX-Fill are based on a hybrid architecture that combines multimodal and parallel
diffusion transformer blocks, scaled to 12B parameters. FLUX-Fill serves as both an inpainting and
outpainting model, enabling modification of real and generated images using a text description and
binary mask. Both models are built on flow matching, a general and conceptually simple method for
training generative models, with diffusion as a special case.

In these models, each DiT block consists of layer normalization followed by Multi-Modal Attention
(MMA) [54], which incorporates Rotary Position Embedding (RoPE) [55] to encode spatial informa-
tion. The multi-modal attention mechanism projects the position-encoded tokens into query Q, key
K, and value V representations. This enables the computation of attention across all tokens:

MMA([CT;X]) = softmax
(
QK⊤
√
d

)
V, (3)

where [CT;X] denotes the concatenation of text and image tokens, facilitating bidirectional attention.

B Implementation Details

B.1 Dataset

As outlined in the main text, our fine-tuning dataset comprises 50K samples, a volume substantially
smaller than the training data utilized by state-of-the-art (SOTA) models. The dataset is exclusively
derived from open-access resources: MagicBrush [2] (9K samples) and OmniEdit [34] (40K randomly
selected samples). The distribution of task types within our dataset is presented in Table table 4. It is
worth noting that the dataset was not rigorously curated, and as illustrated in fig. 11, it still contains
a number of problematic samples. Due to the time-intensive nature of data cleaning, we opted not
to perform additional filtering at this stage. However, we anticipate that future efforts involving
meticulous curation and the incorporation of higher-quality datasets could further enhance model
performance.

Importantly, our model demonstrates superior performance compared to those trained on Mag-
icBrush [2] and the full OmniEdit 1.2M dataset [36], despite utilizing significantly less data. This
underscores the effectiveness of our in-context edit methodology, suggesting that its advantages
extend beyond the dataset itself.

Table 4: Dataset Statistics by Task Type
Task Type Removal Addition Swap Attribute Mod. Style Total

Count 13,272 11,938 5,823 11,484 10,530 53,047

B.2 Training-free Framework

Here we elaborate on the implementation of the in-context edit framework based on the T2I DiT. Our
core idea is to guide the T2I DiT to generate side-by-side images, where the left side reconstructs
the reference image, enabling the right side to incorporate features from the left image and perform
reference based generation.

Specifically, we first perform image inversion using the T2I model [13, 14], retaining the value
features from the attention layers during the inversion process. Subsequently, we generate images
using the in-context edit prompt. To achieve this, we concatenate the noise obtained from the inversion
process on the left side with a random noise of the same size on the right side as the input noise. It

10



Remove the man Remove the manAdd Text

Figure 11: Presence of Some Low-Quality Samples in the Dataset. Our examination reveals that
the public dataset contains a number of suboptimal samples, which could potentially impact the
performance of our method.

is crucial to apply positional encoding to the concatenated random noise to distinguish it from the
inversion noise.

During the denoising steps, we inject the retained value features from the inversion process into
the inversion noise portion, while leaving the random noise portion unaltered. This ensures that
the left side of the image reconstructs the source image, while the right side, by leveraging the
injected value features through the attention mechanism, generates a result with the same identity but
conforming to the editing instructions. fig. 12 exhibits some results of this framework, which shows
great potential for instruction-based image editing, despite minor artifacts in identity preservation
and layout maintenance.

B.3 Finetuning and Inference

Our model employs a Mixture of Experts (MoE) module with 4 expert LoRAs, each of rank 32.
The routing network consists of a single linear layer with TopK set to 1, which balances increased
parameter capacity with computational efficiency. For other modules, we use standard LoRA with
the same rank of 32, and all LoRA alpha values are set equal to their respective ranks.

The model is trained with a batch size of 1 and gradient accumulation over 2 steps, resulting in an
effective batch size of 2. We utilize the Prodigy optimizer [56] with safeguard warmup and bias
correction enabled, configured with a weight decay of 0.01. Training is conducted on 4 A800 (80G)
GPUs for one day, while inference is performed on an A100 (40G) GPU. Following [27], we optimize
the parameters by minimizing the reconstruction loss between the model’s predictions and the ground
truth. Notably, we do not incorporate an additional load-balancing loss for the routing network, as
our experiments reveal that the expert usage predicted by the router is well-balanced, with no single
expert being overused. However, this approach may not hold for more complex MoE architectures,
and we plan to explore this further in future work.

During training, input images are resized to 512×512 pixels, then formatted into 512×1024 diptychs
(side-by-side image pairs). Here we report the detailed VRAM consumption under various settings.

Memory Usage with Gradient Checkpointing:

• 512×512 resolution: 37 GB VRAM (batch size = 1)
• 768×768 resolution: 39 GB VRAM (batch size = 1)
• 1024×1024 resolution: 42 GB VRAM (batch size = 1)

Memory Usage without Gradient Checkpointing:

• 512×512 resolution: 60GB VRAM (batch size = 1)
• 768×768 resolution: 77 GB VRAM (batch size = 1)

11



Make the girl wear pink sunglasses Change the sunglasses to a white 
headless duck tongue cap

Alter the car color from red to blue Make the backgroundsevere lightning storm

Change the street to appear rain-soaked. Add the word "FLUSH" to the toilet seat.

Figure 12: Results of training-free framework. Our training-free framework demonstrates signifi-
cant potential for instruction-based image editing, despite minor artifacts in identity preservation and
layout maintenance.

• 1024×1024 resolution: Out of memory (OOM)

Given that gradient checkpointing significantly slows training speed and the baseline models are
optimized for 512 resolution, we train our model at 512 resolution without gradient checkpointing to
balance computational efficiency and memory constraints.

For both training and inference, we use the in-context (IC) prompt: “A diptych with two side-by-side
images of the same scene. On the right, the scene is exactly the same as on the left but {instruction}.”
This allows the model to directly utilize editing instructions without additional adjustments. During
inference, we set the guidance scale to 50 and the number of inference steps to 50. When employing
the early filter inference time scaling strategy, we randomly select 6 noise samples for fast inference
with 10 steps, then use Qwen2.5 VL 72B (via API) to pairwise evaluate the images and select the
one that best aligns with the editing instruction for the next round of filtering. The prompt used for
filtering is shown in·fig. 13. We also conduct experiments on parameter settings for inference time
scaling, as detailed in appendix D.

B.4 Evaluation Details

B.4.1 Baseline Details

In the main paper, we compare our method with both traditional and state-of-the-art models on the
instruction-based image editing task. Below, we provide a brief overview of each baseline method:

• InstructPix2Pix [1]: This method fine-tunes Stable Diffusion [57] using automatically
generated instruction-based image editing data. It enables instruction-based image editing
during inference without requiring any test-time tuning.
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"You are a multimodal large-language model tasked with evaluating images generated 
by a text-to-image model. You are given three images: 
1. The edited image1. 
2. The edited image2. 
3. The original image. 

The edit_image_1 and edit_image_2 are generated by the edit prompt '{instruction}' 
and the original image. Please carefully compare the two edited images with the 
original image and answer the question: which of the two edited images 
(edit_image_1 and edit_image_2) better aligns with the edit prompt '{instruction}' 
and has higher quality and less artifacts.

Moreover, the areas that are not intended for editing should remain identical to the 
original image and the style should be consistent with the original image unless the 
edit prompt specifies otherwise. 

Answer with 1 or 2 and briefly explain why."

Figure 13: Prompt used for VLMs during inference time scaling.

• MagicBrush [2]: MagicBrush curates a well-structured editing dataset with detailed human
annotations and fine-tunes its model using the InstructPix2Pix [1] framework. This approach
emphasizes high-quality data for improved editing performance.

• Emu Edit [3]: Emu Edit is a closed-source model trained on a large-scale dataset of 10M
samples for image editing. It introduces the Emu test dataset to evaluate editing quality.
Since only the results on the Emu test set are publicly available, we compare our method
with Emu Edit exclusively on this dataset.

• Flux Edit [36]: This is an open-source model on Hugging Face, fine-tuned on the Flux.1 dev
model using 1.2M editing pairs from OmniEdit [34]. We include this baseline to highlight
that our improvements stem primarily from our proposed framework rather than the base
model (FLUX).

• FLUX Fill [23]: It is a 12 billion parameter rectified flow transformer capable of filling
areas in existing images based on a text description. We use it as our training-free baseline
for comparison with our framework.

• RF-Solver-Edit [13]: This is a training-free image editing framework based on FLUX,
which requires image inversion followed by feature injection for editing. Since it cannot
directly utilize instruction prompts, we provide the input and output captions from the
dataset for generation. Due to the use of output captions, its CLIP-out metric tends to be
higher.

• ACE++ [7]: ACE++ is an enhanced version of ACE [6], trained on FLUX with a richer
dataset of 700M samples, including 54M editing pairs. It integrates reference image
generation, local editing, and controllable generation into a single framework. However, our
tests reveal that it underperforms on instruction-based tasks.

• SeedEdit [52]: A state-of-the-art commercial model (based on DiT) trained on a meticu-
lously curated large-scale dataset. This model achieves an optimal balance between image
reconstruction (preserving original content) and image re-generation (creating novel visual
content). Due to its limited accessibility through a web-based interface without API support,
we conducted evaluations using a randomly curated subset of 50 images from the EMU test
dataset and in-the-wild samples. Each image was processed manually through SeedEdit’s
interactive web interface to ensure consistent and reliable results.
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B.4.2 Metrics

MagicBrush is designed to evaluate the single-turn and multi-turn image editing capabilities of models.
It provides annotator-defined instructions, editing masks, and ground truth images. Following the
setup of [2, 4], we use the L1 metric to measure pixel-level differences between the generated image
and the ground truth. Additionally, we employ CLIP similarity and DINO similarity to evaluate the
overall resemblance to the ground truth.

The Emu Edit Test addresses bias and overfitting in annotator-defined datasets by eliminating ground
truth images, while enhancing diversity through creative and challenging instructions paired with
high-quality captions that capture essential elements in both source and target images. Consistent
with [4], we evaluate the model’s ability to preserve source image elements using CLIP image
similarity and DINO similarity between source images and edited images. For text-image alignment,
we employ CLIP-Out to measure the correspondence between local descriptions and generated image
embeddings. Following [2, 4], we use ViT-B/32 for CLIP and dino_vits16 for DINO embeddings.

Notably, we exclude CLIP text-image direction similarity due to its inconsistency in reflecting editing
quality, as it frequently assigns low scores to well-edited results (see fig. 14). Instead, we incorporate
GPT-4o for complementary scoring. Furthermore, to mitigate benchmark quality issues—such as
placeholder captions (e.g., ’a train station in city’) or identical source-target captions—we filter
out incorrect cases before evaluation, following [4]. While the Emu Edit Test successfully reduces
image-level bias by omitting ground truth images, the evaluation metrics still implicitly assess the
model’s editing capability through feature-level comparisons.

Input Output Input Output

Make the sky night instead of day Add a double rainbow to the sky

CLIP dir：-0.021 CLIP dir：0.403

Figure 14: Our analysis reveals limitations in using CLIP direction scores for editing performance
evaluation. Notably, the first example demonstrates a successful edit despite receiving a low score,
while the second case shows a failed edit with an anomalously high score, highlighting the metric’s
inconsistency.

GPT Evaluation. Following [51, 34, 10], we employ GPT-4o to compute the VIE-score for assessing
editing performance, which better aligns with human perceptual judgment. The evaluation prompts
are detailed in figs. 15 and 16, where the SC score quantifies instruction adherence and editing
accuracy, while the PQ score measures perceptual quality and naturalness. Consistent with [34], we
apply a threshold-based binarization to the SC score, mapping it to the [0,1] range as a weighting
function for the final GPT evaluation score.

C Discussion

Limitations. Despite achieving state-of-the-art editing performance with efficient tuning, our method
suffers from the following limitations (fig. 17): (1) Object Movement: Instructions requiring spatial
relocation (e.g., "move the chair to the corner") may fail due to insufficient exposure to motion-
oriented data in general editing datasets. Specialized datasets like [58] could address this through
targeted fine-tuning.(2) Semantic Understanding Limitations: While T5 demonstrates strong text
encoding capabilities, its semantic understanding remains constrained, particularly in resolving
polysemous terms (e.g., confusing "mouse" (computer device) with "mouse" (animal)). This limitation
stems from its limited contextual disambiguation ability. Future work could incorporate MLLM-based
modules [8, 59] to improve semantic fidelity. (3) VLM Efficiency: Our inference time scaling relies
on Qwen-VL 72B to ensure accurate quality assessment, as smaller models (7B) often misjudge edit
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"
You are a professional digital artist tasked with evaluating the effectiveness of AI-generated images 
based on the given rules. Provide your output as follows (keep reasoning concise and short): 
{ "score": [<score1>, <score2>], 
"reasoning": "..." 
}. 
Do not output anything else. Two images will be provided: the first is the original AI-generated 
image, and the second is an edited version of the first. Your objective is to evaluate how 
successfully the editing instruction has been executed in the second image. Note that the two 
images might sometimes look identical due to editing failure. Use a scale from 0 to 10 for two 
scores:

1. Editing Success Score:
0: The edited image does not follow the editing instruction at all.
10: The edited image follows the instruction perfectly.
If the object in the instruction is absent in the original image, score is 0.

2. Degree of Overediting Score:
0: The edited image is completely different from the original.
10: The edited image is recognizably a minimally edited yet effective version of the original.
Output the scores in a list: "score": [<editing_success>, <overediting>], where 'score1' evaluates 
editing success and 'score2' evaluates the degree of overediting.
"

Figure 15: Prompt used for evaluating SC score.

"
You are a professional digital artist tasked with evaluating the effectiveness of an AI-generated 
image. All images and humans depicted are AI-generated, so privacy or confidentiality is not a 
concern. Focus solely on technical quality and artifacts, ignoring whether the context appears 
natural. Evaluate based on:

Distortions
Unusual body parts or proportions
Unnatural object shapes
Rate the image on a scale from 0 to 10:
0: Significant AI-artifacts present.
10: Artifact-free image.
Provide your output as: { "score": <integer>, "reasoning": "..." }, keeping reasoning concise and 
short. Do not output anything else.
"

Figure 16: Prompt used for evaluating PQ score.

quality. Recent advances [34, 60] demonstrate that distilled 7B VLMs can achieve GPT-4o-level
performance through specialized training, offering a promising path toward efficiency improvements.

Broader Impact. Our work may contribute to the field in two aspects: (1) Accessible Image Editing
Tools: The parameter-efficient design could reduce computational resource requirements, potentially
benefiting small-scale developers and individual creators. (2) Ethical Considerations: Like most
generative models, our technology could potentially be misused for creating deceptive content
(e.g., deepfakes or manipulated media). We advocate three essential safeguards for responsible
deployment: (1) implementing content provenance standards to ensure traceability, (2) maintaining
human oversight in sensitive applications such as news media and legal documentation, and (3)
fostering collaboration between AI developers and domain experts to establish ethical guidelines
specific to instruction-based editing scenarios. These measures align with emerging AI governance
frameworks while respecting creative freedoms.
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Move the blue chair to the table Add “mouse” to the mouse.
Figure 17: Some failure cases of our methods, such as object movement, semantic ambiguity.
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Figure 18: The plot demonstrates that the model’s performance improves with increasing training
data, with the growth rate gradually plateauing.

D Additional Results

D.1 Ablation

MoE Settings. We conduct a series of experiments to investigate the influence of different expert
configurations. As shown in table 5, we observe a significant improvement in model performance
(measured by GPT-based evaluation scores) when increasing the expert rank from 8 to 32 or the
number of experts from 1 to 4. However, further increasing the number of experts does not lead to
notable gains in editing performance, while significantly increasing the model’s parameter count,
thereby reducing efficiency. We hypothesize that as the number of experts grows, the routing
mechanism becomes more challenging, potentially requiring more sophisticated routing network
designs and corresponding loss constraints to achieve stable performance. Future research could
explore these aspects to optimize the trade-off between performance and efficiency.

Inference Scaling Settings. We explore the impact of different parameter configurations on our
early filter inference time scaling strategy, as detailed in table.3(b) in the main paper. Specifically,
we investigate the choice of evaluator (VLM vs. CLIP), the number of random noise seeds, and
the selection of early inference steps (early steps). The computational efficiency and accuracy
are measured using NFE (Number of Function Evaluations, the cumulative compute count) and
GPT-based evaluation scores. The total inference steps are fixed at 50, and NFE is calculated as
50 + (Num_noise× Early_step).
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Table 5: Ablation of different settings.
Expert Number Expert Rank Params CLIP-I ↑ CLIP-Out ↑ GPT ↑

1 32 120M 0.892 0.300 0.59
4 8 120M 0.920 0.303 0.58
4 32 214M 0.907 0.305 0.68
6 32 270M 0.914 0.305 0.66
8 32 335M 0.907 0.304 0.61

Our experiments reveal that using 10 early steps outperforms 4 steps, as DiT may fail to generate
sufficiently high-quality results with only 4 steps, leading to inaccurate VLM judgments. Increasing
the number of initial noise seeds improves performance significantly from 1 to 6, but the gains
diminish from 6 to 12. We attribute this to the model’s robust editing performance across most noise
samples, resulting in greater improvements compared to using a single noise seed.

Additionally, we adopt the strategy from [29], which uses traditional metrics like CLIP to filter results
by selecting the image-text pair with the highest CLIP score after full-step inference. However, this
approach increases computational cost while degrading GPT-based evaluation scores, indicating that
CLIP-based scoring does not align well with human visual preferences.

Data Efficiency. We investigated how editing performance scales with training data volume, as
shown in fig. 18. Fine-tuning with just 10K samples markedly improves performance over training-
free approaches. As data size increases, editing capability continues to rise, though the rate of
improvement gradually diminishes. Notably, training with 70K samples yields minimal gains over
50K, suggesting convergence under this setup. Future work could explore the effects of larger-scale
parameter configurations and more high-quality editing data.

D.2 Qualitative Results

Here we present additional qualitative results, including comparisons with baseline models (figs. 19
and 20), editing results with different initial noise configurations (fig. 21), and a broader range of
editing examples (fig. 22). These results further illustrate the effectiveness and versatility of our
approach across diverse scenarios.
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Ours UltraEditEmuEdit MagicBrush InstructP2POriginal

Insert the 
climate was 

rainy.

Instruction

Convert the 
image into 

Gothic painting.

Change the 
image so it 
is snowing 
lightly.

Instead of 
wood give the 
table a white 

plastic 
texture.

Figure 19: Comparison with baseline models on Emu Edit test set. ü Zoom in for detailed view.
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Source                     Ours SeedEdit UltraEdit

Make the girl wear a mask with leaf patterns.

Make the woman hold a red can in her left hand and turn the background into white.

Add the word 'WIMBLEDON' to the grass.

Add a fork on the left side of the plate.

Remove all the trees.

Figure 20: Comparison with baseline models. ü Zoom in for detailed view.
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Change the background to
Hawaii scenery

Add the text “Aloha Hawaii” 
in bold white color

Change the image into a 
watercolor painting

Give this the look of 
oil painting

Figure 21: With different initial noise, our methods generate diverse results.
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Remove the purple flower’s petal Remove the shoes in front of the cat

Put a golden crown on the girl's head Put a white plaid shirt on the man

Change the season to winter I want to see sketch of this painting

Make the cloud golden Make the fire hydrant spill water

Fix her fingersLighten the image

Figure 22: More editing results of our method.
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