

000 CAN LLMS DESIGN REAL HARDWARE? A NEW 001 BENCHMARK FOR RTL DESIGN AND VERIFICATION 002 TASKS 003

004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 We present the XYZ benchmark [note to reviewers: name withheld in accordance
014 with ICLR double-blind policy], a new dataset and infrastructure to advance LLM
015 and agent research in hardware design and verification. XYZ includes 783 prob-
016 lems across 13 task categories, covering RTL generation, verification, debugging,
017 specification alignment, and technical Q&A authored by experienced hardware
018 engineers. Problems are offered in both non-agentic and agentic formats. The
019 benchmark introduces more realistic and challenging contexts than prior work, with
020 state-of-the-art models achieving no more than 34% pass@1 on code generation.
021 Agentic tasks—especially those involving RTL reuse and verification—are particu-
022 larly difficult. Evaluation uses open-source tools and model scoring infrastructure,
023 with comprehension tasks assessed via BLEU and LLM-based judging. XYZ
024 reveals substantial gaps in current model capabilities, underscoring the need for
025 continued research toward robust, real-world hardware design automation.
026

027 1 INTRODUCTION 028

029 Large language models (LLMs) have seen widespread adoption in software development for code
030 generation, bug fixing, question answering, test generation, and related tasks. Recently, agentic
031 assistants such as Cursor (Anysphere Inc. (2025))—an AI-powered IDE based on Visual Studio
032 Code—have gained traction for their ability to not only answer questions but also perform complex
033 code edits and execute commands.

034 By contrast, semiconductor hardware design has not benefited as significantly from LLMs. Generating
035 Verilog RTL (Register-Transfer Level—the textual code used to design digital logic chips) with LLMs
036 presents unique challenges, including the limited availability of high-quality training data (Wang
037 et al. (2025); Liu et al. (2025a)) and the relative recency of domain-specific benchmarks. Two widely
038 used datasets are VerilogEval (Liu et al. (2023); Ho et al. (2025)) and RTLLM (Lu et al. (2024); Liu
039 et al. (2025b)), which report pass rates as high as 63% on GPT-4 and 94% for agentic approaches
040 (Pinckney et al. (2025); Ho et al. (2025)). However, these benchmarks are narrow in scope and do not
041 reflect the full complexity of hardware development workflows. Moreover, their high pass rates leave
042 little headroom for measuring future improvements, limiting their usefulness as research drivers.

043 VerilogEval and RTLLM rely on hand-crafted prompts and evaluate on small, self-contained problems.
044 RTL-Repo (Allam and Shalan (2024)) introduces more realistic GitHub-derived contexts, prompting
045 LLMs to complete redacted code regions. While it captures real-world structure, RTL-Repo focuses
046 solely on code completion and does not test broader challenges like specification-to-RTL generation,
047 debugging, or verification. Related benchmarks cover testbench stimuli (Zhang et al. (2025)), though
048 close to 100% coverage of their benchmark is achievable by Claude 3.5 Sonnet, and formal assertions
049 (Liu et al. (2025b)).

050 We introduce the XYZ benchmark [note to reviewers: name withheld in accordance with ICLR
051 double-blind policy], which expands on prior work with broader task coverage and greater depth.
052 XYZ includes 783 human-authored problems across 13 categories, including RTL generation, design
053 verification, debugging, assertion creation, and technical comprehension. Tasks are provided in both
Non-Agentic (single-turn) and Agentic (multi-turn, tool-using) formats. Previous benchmarks focus

on single-turn prompts and evaluation infrastructure, while XYZ is designed to evaluate agents, with support for tool interaction, iterative workflows, and complex reasoning.

XYZ addresses the growing need for benchmarks that reflect real-world hardware development. Problem categories cover tasks such as RTL/testbench generation, debugging, assertions, code modification, power and area optimization, question answering, and code-spec alignment. The dataset is intended to expand over time, evolving alongside improvements in LLM and agent capabilities, while continuing to offer meaningful challenge and headroom for future research.

This work makes four key contributions:

1. **The first agentic-oriented benchmark** for Verilog RTL code generation, verification, and related tasks. The benchmark’s prompts and infrastructure are designed to evaluate Dockerized LLM-based agents on real-world problems with EDA tool use.
2. **A broader benchmark** that encompasses a wider range of hardware design and verification tasks. The benchmark is intended to support both model and agent research. Initial Non-Agentic categories were selected with greater agent workflows in mind, representing useful subtasks within larger design processes.
3. **A more challenging benchmark**, featuring tasks significantly more difficult than those in VerilogEval (Liu et al. (2023); Pinckney et al. (2025)) and RTLLM (Lu et al. (2024)). Prior benchmarks largely drew from public repositories and are increasingly saturated, with high pass rates from both models and agents. In contrast, the current benchmark offers data points crafted and QA’ed by experienced hardware engineers with more than 4 years of experience from scratch. As a result, we show that state-of-the-art models—including Claude 3.7 Sonnet, GPT-4.1, and LLaMA 3.1 405B—achieve no more than a 34% pass rate on code generation questions in our benchmark, providing substantial headroom for future research in LLM-driven hardware design.
4. **Analysis of model failures** examines why state-of-the-art models frequently fail across specific categories and offers insights into the key capabilities LLMs must develop before they can be reliably deployed for real-world hardware design and verification.

RTL code represents only a small fraction of public GitHub repositories compared to software code, and much design knowledge remains proprietary within industry. Consequently, there is a strong need for an advanced, human-written, publicly available benchmark dataset—composed of real-world design problems authored by design and verification experts. We created XYZ to address this critical gap.

2 XYZ DATASET

The XYZ dataset and infrastructure build on methodologies from software LLM benchmarks such as SWE-bench (Jimenez et al. (2024)) and Microsoft’s Copilot evaluation harness (Agarwal et al. (2024)). Whereas SWE-bench had access to a wide range of high-quality, open-source, software code repositories and well-documented resolved GitHub issues to pull from, similar high-quality RTL repositories are not as available in the open-source domain. Instead, we engaged a team of approximately 35 hardware engineers with more than 4 years of Verilog and verification experience to author problems across 13 task categories and difficulty levels, in both *Non-Agentic* and *Agentic* formats.

In addition, subject matter experts with doctoral degrees in hardware design and/or engineering management experiences also reviewed each problem for accuracy, task fit, and appropriate scope, with intensive manual review during initial *calibration* batches to ensure data quality and task alignment. Once categories stabilized, LLM-based filtering was used to catch errors, such as missing context or incorrect category, and score ambiguity and consistency of the prompt. Sanity checks ensured all reference solutions passed and incomplete contexts failed as expected. Of the 1,313 problems written, 783 were retained after quality filtering described in Section 3. As with any codebase, a benchmark cannot be entirely bug-free (Ho et al. (2025)). Errors may cap maximum achievable scores, and updated benchmark versions will be released as needed.

Each datapoint, or “problem,” represents a multi-file repository extracted at evaluation time. A test harness—typically a CocoTB (CocoTB (2025)) simulation script—assesses correctness based on

task type. CocoTB is a Python verification framework for testing RTL, and helps to automate the test harness. BLEU (Papineni et al. (2002)) scoring is used where code or natural language snippets are expected verbatim, while technical natural language answers are scored using LLM-based subjective judging.

We distinguish between the *testbench* (SystemVerilog provided in-context) and the *test harness* (used only for evaluation). Models or agents may generate or use a testbench but never see the test harness or reference solution.

2.1 TASK CATEGORIES

Categories in the initial XYZ release (Table 1) are grouped into two main areas: *Code Generation* and *Code Comprehension*. Code Generation covers RTL-focused tasks such as code completion, transforming natural language specifications to RTL, modifying or reusing existing modules, and improving code for linting or quality-of-results (QoR). It also includes design verification tasks like testbench stimulus and checker generation, assertion creation, and debugging. Code Comprehension includes matching specifications to RTL or testbench code (and vice versa), as well as technical question answering on both RTL and testbench content. These categories reflect common subtasks in real-world hardware design and verification workflows.

Non-Agentic problems are evaluated in a single-turn setting where the prompt and context are fully provided to the model. In contrast, *Agentic* problems run inside a Docker container, allowing an agent to inspect a mini-repository and invoke tools (e.g., simulators). For both Non-Agentic and Agentic problems we limited datapoint creation to *oracle contexts*, where models are provided only the minimal, relevant information needed to complete the task, bypassing the need for retrieval or broader context understanding. However, this is not a technical limitation of the benchmark infrastructure and a full-repository context could be added to future datapoints.

Category volumes were based on likely deployment scenarios. Most task categories include both Non-Agentic and Agentic datapoints, but some were designed as Non-Agentic-only or Agentic-only based on their expected use case—e.g., simpler tasks for single-turn model inference, and more complex tasks requiring tool use for agentic evaluation.

Each datapoint includes the context and a *golden* reference solution. Supporting materials—such as related module documentation, testbenches, or editable starter code—were included as needed. The benchmark is packaged as two JSONL files: one for Non-Agentic and one for Agentic datapoints. The table shows the mean and maximum prompt and context token counts for each category, as estimated using the `tiktoken cl100k_base` encoding.

ID	Category Description	Volume		Tokens Mean/Max (k)	
		Non-Agentic	Agentic	Non-Agentic	Agentic
Code Generation					
cid02	RTL - Code Completion	94	0	1.5/4.5	—
cid03	RTL - Natural Language Spec to Code	78	37	1.2/6.9	2.7/7.9
cid04	RTL - Code Modification	56	26	2.0/4.6	5.7/19.5
cid05	RTL - Spec to RTL (Module Reuse)	0	26	—	7.4/28.5
cid07	RTL - Code Improvement (Linting/QoR)	41	0	1.9/5.9	—
cid12	Design Verification - Testbench Stimulus Gen.	68	18	1.4/6.2	2.1/4.6
cid13	Design Verification - Testbench Checker Gen.	53	18	2.8/7.3	4.5/10.7
cid14	Design Verification - Assertion Generation	68	30	2.6/7.5	4.8/14.6
cid16	Design Verification - Debugging / Bug Fixing	36	11	2.3/6.5	3.9/14.5
Code Comprehension					
cid06	Correspondence - RTL to/from Specification	34	0	1.6/5.5	—
cid08	Correspondence - Testbench to/from Test Plan	29	0	3.1/6.1	—
cid09	Question & Answer - RTL	34	0	1.1/5.0	—
cid10	Question & Answer - Testbench	26	0	3.6/4.8	—
Total # of Problems		617	166		

Table 1: Comparison of Non-Agentic and Agentic problem counts by task category.

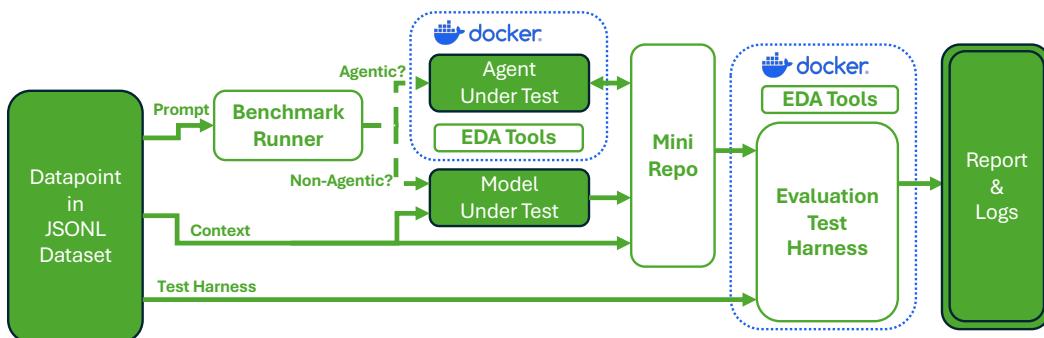
162 2.2 DATAPPOINT AUTHOR GUIDELINES
163

164 Datapoint writers were instructed to cover a range of human-tagged difficulty levels—easy, medium,
165 and hard. Since proxies like lines of code or gate count poorly capture true complexity (e.g., a 32-bit
166 16:1 multiplexer may be written succinctly or verbosely), writers were told to prioritize clarity and
167 best coding practices over artificial complexity.

168 Non-Agentic problems include only easy and medium tasks, while Agentic problems span all
169 difficulty levels, as hard problems are too complex for single-turn evaluation. Writers were also
170 asked to diversify topical coverage within each category, including: (1) FSM and control logic (e.g.,
171 Mealy/Moore, arbitration, counters); (2) Arithmetic and datapath (e.g., adders, multipliers, shifters);
172 (3) Interconnects (e.g., crossbars, routers, FIFOs); (4) Memory systems (e.g., caches, CAMs); and (5)
173 Architecture (e.g., CPUs, accelerators).

174
175 3 BENCHMARK INFRASTRUCTURE
176

177 The benchmark infrastructure is implemented in Python and includes callback interfaces to evaluate
178 custom models or agents. An overview of the evaluation flow is shown in Figure 1. Each datapoint
179 can be run with either the initial context or the reference solution, enabling self-checking of harness
180 validity. Harnesses use open-source tools where possible, including Icarus Verilog simulation
181 (Williams (2025)), Yosys logic synthesis (Wolf and the YosysHQ contributors (2025)), and Verilator
182 linting (Snyder and Contributors (2025)). Some tasks (cid12–14) require commercial tools, currently
183 Cadence Xcelium (Cadence Design Systems, Inc. (2025)). All agents and harnesses run inside
184 Docker containers to isolate evaluation artifacts, ensure tool consistency, and maintain security. Users
185 populate tool and agent images using provided templates. Configurable timeouts and retry counts
186 accommodate varying compute access.

199 200 Figure 1: Benchmark Evaluation Flow.
201

202 The infrastructure includes a *map* feature for querying models across datapoints with custom
203 prompts—useful for prompt refinement or batch evaluation. The map feature also supports au-
204 tomated quality filtering using an LLM judge to score datapoints and remove low-quality examples.
205 Lastly, Agentic and Non-Agentic formats can be converted between to allow single-turn evaluation
206 on Agentic problems or multi-turn agent evaluation on Non-Agentic problems.

207
208 4 LLM BENCHMARK RESULTS
209

210 We evaluated state-of-the-art models on the XYZ dataset, including both Non-Agentic and Agentic
211 problems. Models evaluated include Anthropic Claude 3.7 Sonnet with and without Extended
212 Thinking (Anthropic (2025)), Claude 3.5 Haiku, OpenAI GPT 4.1 (OpenAI (2025a)), GPT o1
213 (OpenAI (2024)), o4-mini OpenAI (2025b), Meta Llama 3.1 405B (Meta AI (2024a)), and Llama 3.1
214 70B (Meta AI (2024b)). We report a pass@1 with $n = 5$ samples as the pass rate. The pass@ k metric
215 is the probability that at least one sample passes among k samples, we estimate the expected value
of pass@1 across $n = 5$ samples. For Llama 3.1 405B and 70B, we set the decoding parameters to

216 $T = 0.2$ and $\text{top-}p = 0.7$. For the other models we used the default temperature and $\text{top-}p$ supported
 217 by the API endpoint.

218 Tables 2 and 3 provide pass rates for the code generation tasks across models. Prior Verilog code
 219 generation benchmarks, such as VerilogEval v2 (Pinckney et al. (2025)), reported that LLaMA 3.1 405B
 220 achieved a pass rate of 57% on specification-to-RTL tasks, with GPT-4o achieving a pass@1 of 63%,
 221 the best result in that benchmark.

222 In contrast, the tables shows that XYZ presents a substantially greater challenge to state-of-the-art
 223 models. The highest aggregate pass@1 rate observed was 34% (Claude 3.7 Sonnet), followed by
 224 GPT-4.1—the successor to GPT-4o—at 29%, and LLaMA 3.1 405B at 23%.

225 Agentic problems, when evaluated in single-turn format using a model, were even more challenging
 226 overall—particularly for the OpenAI models. GPT-4.1 achieved a 21% pass@1 on Agentic tasks, 8%
 227 lower than its Non-Agentic score. Claude 3.7 Sonnet’s pass rate dropped by 4% between Non-Agentic
 228 and Agentic problems, while LLaMA 3.1 405B showed only a 2% drop, likely reflecting its inability
 229 to solve many of the harder problems in either setting.

230 All reported results reflect the filtered dataset after automated quality control, as described in Section 2.
 231 Prior to filtering, pass rates were lower by approximately 3% and 1.5% on average for Non-Agentic
 232 and Agentic problems, respectively. These results highlight the difficulty of the XYZ benchmark
 233 and the significant advancements still required before LLMs can be reliably deployed in complex,
 234 real-world hardware design and verification workflows.

235 Generation pass rates vary significantly across categories, as shown in Table 2. Categories cid02–
 236 04 correspond to RTL code generation and modification, cid07 covers code improvement tasks
 237 (e.g., linting and QoR-focused modifications), and cid12–14 correspond to design verification tasks.
 238 Category cid16 is also included in the generation evaluation.

239 Design verification categories—specifically testbench stimulus and checker generation (cid12–13)
 240 and assertion generation (cid14)—exhibit substantially lower pass rates compared to other code
 241 generation categories. This is examined in more detail in Section 5. Notably, state-of-the-art LLMs
 242 consistently struggle to generate even syntactically valid testbench code, despite it being written in
 243 the same hardware description language (SystemVerilog) as the RTL code generation tasks. This
 244 discrepancy may stem from the more procedural and imperative nature of testbench code, as opposed
 245 to the declarative structure typical of RTL logic.

Model	Overall	cid02	cid03	cid04	cid07	cid12	cid13	cid14	cid16
Claude 3.7 Sonnet	33.56%	34.0%	48.0%	45.0%	44.0%	25.0%	6.0%	19.0%	53.0%
“ Thinking	33.04%	35.0%	44.0%	44.0%	45.0%	24.0%	7.0%	23.0%	51.0%
Claude 3.5 Haiku	23.93%	28.0%	40.0%	32.0%	28.0%	16.0%	3.0%	11.0%	31.0%
GPT 4.1	28.91%	37.0%	44.0%	37.0%	32.0%	16.0%	10.0%	12.0%	45.0%
GPT o1	20.12%	20.0%	31.0%	30.0%	23.0%	15.0%	9.0%	5.0%	33.0%
GPT o4-mini	28.74%	35.0%	47.0%	44.0%	27.0%	13.0%	11.0%	10.0%	43.0%
Llama 3.1 405B	22.79%	24.0%	31.0%	36.0%	20.0%	21.0%	5.0%	13.0%	32.0%
Llama 3.1 70B	17.53%	18.0%	20.0%	33.0%	21.0%	16.0%	4.0%	7.0%	26.0%

250 Table 2: Non-Agentic Code Generation Problems: Pass Rates Across Categories and Models.
 251 Categories are grouped into RTL generation and modification, code improvement, testbench or
 252 assertion generation, and debugging. Results are reported as pass@1 with $n = 5$ samples.

253 Agentic datapoints were converted to Non-Agentic format for evaluation, as no open-source, general-
 254 purpose hardware design agent currently exists. Agentic generation pass@1 rates across categories,
 255 shown in Table 3, follow similar trends to those observed in Table 2. Code Completion (cid02) and
 256 Code Improvement (cid07) tasks are exclusive to the Non-Agentic dataset, while the Agentic dataset
 257 introduces Spec-to-RTL Module Reuse tasks (cid05). These problems require composing multiple
 258 existing RTL modules into a new top-level module, often with additional glue logic, to satisfy the
 259 specified behavioral requirements.

260 As in the Non-Agentic results, Claude 3.7 Sonnet performs notably well compared to other models on
 261 most RTL code generation and debugging categories (cid03–04, cid16). However, Claude 3.7 Sonnet
 262 does not exhibit a significant advantage over other models on Spec-to-RTL Component Reuse (cid05),

270 suggesting that while it excels at generating or modifying RTL code, it struggles with the more
 271 complex task of composing existing RTL components to implement new functionality.
 272

Model	Overall	cid03	cid04	cid05	cid12	cid13	cid14	cid16
Claude 3.7 Sonnet	29.0%	49.0%	42.0%	24.0%	7.0%	0.0%	19.0%	53.0%
“Thinking”	29.0%	39.0%	44.0%	24.0%	7.0%	1.0%	28.0%	56.0%
Claude 3.5 Haiku	20.0%	31.0%	24.0%	21.0%	2.0%	2.0%	10.0%	55.0%
GPT 4.1	21.0%	31.0%	24.0%	21.0%	4.0%	13.0%	13.0%	45.0%
GPT o1	14.0%	22.0%	8.0%	18.0%	8.0%	3.0%	10.0%	36.0%
GPT o4-mini	20.0%	32.0%	16.0%	20.0%	6.0%	7.0%	16.0%	38.0%
Llama 3.1 405B	21.0%	30.0%	23.0%	25.0%	8.0%	6.0%	14.0%	45.0%
Llama 3.1 70B	15.0%	23.0%	13.0%	18.0%	6.0%	6.0%	6.0%	45.0%

281 Table 3: Agentic Code Generation Problems: Pass Rates Across Categories and Models. Categories
 282 are grouped into RTL generation and modification, testbench or assertion generation, and debugging.
 283 Results are reported as pass@1 with $n = 5$ samples.
 284

285 The Code Comprehension dataset is limited to Non-Agentic format and is scored differently from the
 286 Code Generation problems. RTL/Testbench Correspondence tasks (cid06, cid08) are evaluated using
 287 BLEU (Papineni et al. (2002)) scores, as the expected responses are code or natural language snippets
 288 that should match a reference verbatim. RTL/Testbench Question & Answer tasks (cid09–10) are
 289 scored using subjective, LLM-based evaluation: the model compares an actual response against the
 290 reference solution in the context of the original prompt. The scoring prompt instructs the model to
 291 emphasize information explicitly requested in the original question. For efficiency and availability,
 292 GPT o4-mini is used as the scoring model.

293 As shown in the results, all LLMs perform well on the Question & Answer tasks, with minimal gains
 294 observed from newer models over older ones. Since conversational QA has been a central application
 295 area for LLMs, this may reflect the models’ maturity in chatbot-style environments. However, further
 296 investigation is needed to assess the technical reliability of these scores.

Model	Average Rating	cid06	cid08	cid09	cid10
Claude 3.7 Sonnet	66.0%	63.0%	42.0%	78.0%	82.0%
“Thinking”	71.0%	70.0%	48.0%	83.0%	84.0%
Claude 3.5 Haiku	51.0%	25.0%	27.0%	73.0%	83.0%
GPT 4.1	47.0%	10.0%	10.0%	82.0%	89.0%
GPT o1	43.0%	8.0%	1.0%	82.0%	83.0%
GPT o4-mini	49.0%	8.0%	14.0%	88.0%	89.0%
Llama 3.1 405B	40.0%	10.0%	1.0%	75.0%	78.0%
Llama 3.1 70B	38.0%	8.0%	1.0%	68.0%	77.0%

306 Table 4: Non-Agentic Code Comprehension Problems: Overall and Per-Category Scores. Categories
 307 are grouped into Correspondence and Question & Answer problems. Results are reported with $n = 5$
 308 samples.
 309

310 5 FAILURE ANALYSIS AND INSIGHTS

311 We perform a systematic and detailed category-level analysis of the failed cases for each LLM to
 312 identify the critical areas that need improvement in state-of-the-art LLMs across various Verilog
 313 design categories (i.e., RTL coding, assertion generation, testbench generation, debugging, etc.).
 314

315 The category-level failure analysis flow is shown in Algorithm 1. First, we leverage a reasoning
 316 LLM (i.e., o1) to reflect on the failed data points and project the failure reflections into a vector
 317 space using SentenceTransformer (Line 2 to 5). Then, we apply the unsupervised K-means clustering
 318 methodology (Sinaga and Yang (2020)) to generate the optimal number of clusters based on the
 319 maximum silhouette score (Line 8 to 14). Finally, we use a reasoning LLM (i.e., o1) to interpret and
 320 summarize the category-level failures (CF), identifying the critical shortcomings of state-of-the-art
 321 LLMs in Verilog design and verification tasks (Line 15 to 18).
 322

323 We present category-level failure analysis results for Llama 3.1 405B, Claude 3.7 Sonnet, and GPT
 324 4.1 in Table 5. We report the number of failed cases, number of clusters, the failure entity of the

324 **Algorithm 1** Category-Level Failure Analysis

325

326 **Require:** Dataset $F_c = \{f_{c,1}, f_{c,2}, \dots, f_{c,n}\}$,

327 1: Set $F_e = []$ {Failed reason embeddings}

328 2: **for** each failed data point $f_{c,i} \in F_c$ **do**

329 3: $r_{c,i} = Reflect(f_{c,i})$ {LLM-based failure reflection}

330 4: $F_e.append(Embedding(r_{c,i}))$

331 5: **end for**

332 6: Set $s_{best} = 0; k_{best} = 0$

333 7: Set $L_{best} = zeros(n, 1)$

334 8: **for** $k \leftarrow 2$ to 11 **do** {Kmean clustering}

335 9: $L_k = Kmeans(F_e, k)$

336 10: $s_k = silhouette_score(F_e, L_k)$

337 11: **if** $s_k > s_{best}$ **then**

338 12: $s_{best} = s_k; k_{best} = k; L_{best} = L_k;$

339 13: **end if**

340 14: **end for**

341 15: **for** $g \leftarrow 0$ to k_{best} **do** {LLM-based Category-Level Reasoning of cluster g}

342 16: $CF_g = Reason(F_{g,e})$

343 17: **end for**

344 18: Return CF

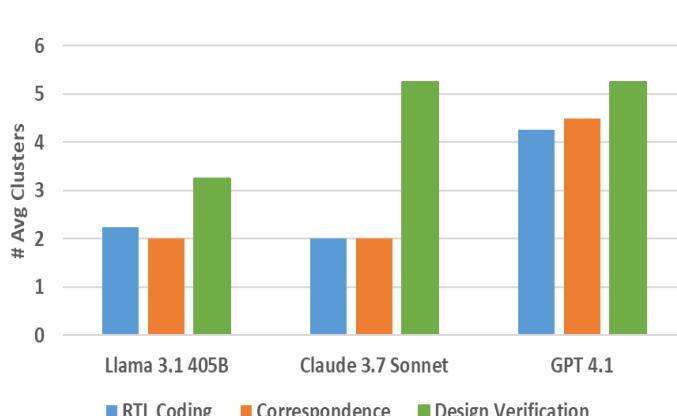
345

346 largest cluster, and its percentage share of the total failed cases within each category. We observe
 347 that state-of-the-art LLMs particularly struggle with testbench stimulus generation (cid12), testbench
 348 checker generation (cid13), and assertion generation (cid14). Compared to RTL coding (cid02–cid04,
 349 cid07), the average number of clusters for design verification and debug problems (cid12–cid14,
 350 cid16) is consistently higher across all three models—Llama 3.1 405B, Claude 3.7 Sonnet, and GPT
 351 4.1 as shown in Figure 2a. In the design verification categories, in addition to syntax and functional
 352 errors, failure entities include issues like "Misplaced SVA" and "Insufficient Coverage." To illustrate
 353 the diversity of failure types within design verification problems, we present a cluster visualization
 354 plot for Claude 3.7 Sonnet on Testbench Checker generat (cid13) using the PaCMAP graph reduction
 355 method (Wang et al. (2021)) in Figure 2b, which preserves both local and global distances.

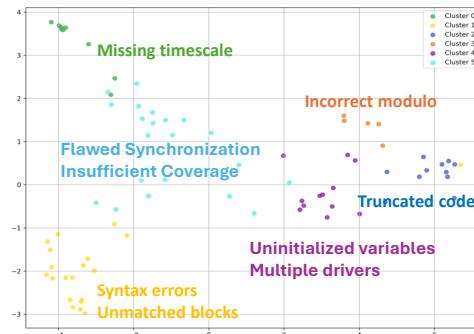
356

Cat.	Model Name	Pass Rate (%)	Category-Level Failure Analysis			
			# Failed	# Clusters	Failed Entity of Max Cluster Size	Max Cluster Size (%)
cid02	Llama 3.1 405B	28.43%	73	2	Arbiter meltdown;Metastability hazards	90.41%
	Claude 3.7 Sonnet	42.16%	59	2	Data misalignment;Syntax errors	55.93%
	GPT 4.1	37.25%	64	10	Encoding failures;Timing violations	18.75%
cid03	Llama 3.1 405B	29.29%	70	2	Missing functionality	57.14%
	Claude 3.7 Sonnet	48.48%	51	2	Clock Domain;Protocol Violations	54.90%
	GPT 4.1	39.39%	60	3	Reversed indexing; Module mismatch	53.33%
cid04	Llama 3.1 405B	34.26%	71	2	Protocol Handling;Datapath Logic	52.11%
	Claude 3.7 Sonnet	45.37%	59	2	bit-slicing errors; missing states	59.32%
	GPT 4.1	37.96%	67	2	Parameter Mismatch;Architecture Deviation	52.24%
cid07	Llama 3.1 405B	17.31%	86	3	Logical Errors;Incomplete Implementation	40.70%
	Claude 3.7 Sonnet	36.54%	66	2	Structural Breakage;Area Shortfall	54.55%
	GPT 4.1	23.08%	80	2	New mismatches;Unrequested signals	56.25%
cid12	Llama 3.1 405B	20.00%	80	3	Missing coverage;Incorrect naming	52.50%
	Claude 3.7 Sonnet	25.00%	75	4	Missing timescale;Module mismatch	56.00%
	GPT 4.1	12.00%	88	3	Truncated Implementation;Missing Tasks	69.32%
cid13	Llama 3.1 405B	9.90%	91	4	Incorrect synchronization;Insufficient coverage	35.16%
	Claude 3.7 Sonnet	22.77%	78	6	Syntax errors;Unmatched blocks	26.92%
	GPT 4.1	8.91%	92	6	Overhauled Testbench;Parameter Mismatch	28.26%
cid14	Llama 3.1 405B	11.00%	89	2	Misplaced SVA;Operator Errors	60.67%
	Claude 3.7 Sonnet	25.00%	75	2	Flawed Timing;Syntax Mismatch	58.67%
	GPT 4.1	13.00%	87	2	Procedural Blocks;Syntax Deviations	58.62%
cid16	Llama 3.1 405B	34.65%	66	2	Datapath flaw;Protocol mismatch	57.58%
	Claude 3.7 Sonnet	58.42%	42	9	Faulty Reset Handling;Boundary Check Errors	30.95%
	GPT 4.1	44.55%	56	10	Timer guard;Reset Logic	23.21%

375 Table 5: Failure analysis of Non-Agentic Generation, pass@1 ($n=1$). For each category, we show
 376 #failures, #clusters, top failure entity, and max cluster share (#failed cases of max cluster/#failed
 377 cases).



(a) # Average Clusters on different problem categories.



(b) Testbench Checker (cid13) Claude 3.7 failure cluster visualization.

Figure 2: Failure Analysis on different problem categories. Visualization plot uses PaCMAP graph reduction method (Wang et al. (2021)).

Lastly, we further analyze the Testbench Checker Generation set (cid13) after applying quality filtering (as shown in Table 1), since state-of-the-art LLMs achieve the lowest pass rates in this category, and a larger number of data points are filtered during the quality screening process among the design verification categories. Figure 3 presents the cluster visualizations of Llama 3.1 405B, Claude 3.7 Sonnet, and GPT-4.1 on design verification categories before and after quality filtering. Compared to the unfiltered data, the number of failure clusters is reduced after quality filtering due to decreased ambiguity and increased consistency in the problem descriptions. For Claude 3.7 Sonnet specifically, the number of failure clusters drops from 6 to 2 after quality filtering, reflecting the improved clarity of the case descriptions. In summary, our failure analysis reveals key challenges and insights into where state-of-the-art LLMs struggle across RTL tasks—particularly in design verification—offering valuable and comprehensive benchmarks for advancing LLM research in hardware design and verification.

6 LIMITATIONS

The XYZ benchmark is designed to push the limits of existing LLMs and agents in solving real-world hardware code generation tasks. While considerably more challenging for current large language models than prior benchmarks—particularly in areas such as design verification and module reuse—it does have limitations. The contexts of the Agentic datapoints are, on average, larger than those of the Non-Agentic datapoints. However, the Agentic context remains an oracle context and does not include files referencing additional units. The Question & Answer Code Comprehension datapoints do not sufficiently challenge the LLMs, and a separate task category focused on specification creation from RTL code may be more informative and demanding while addressing similar comprehension

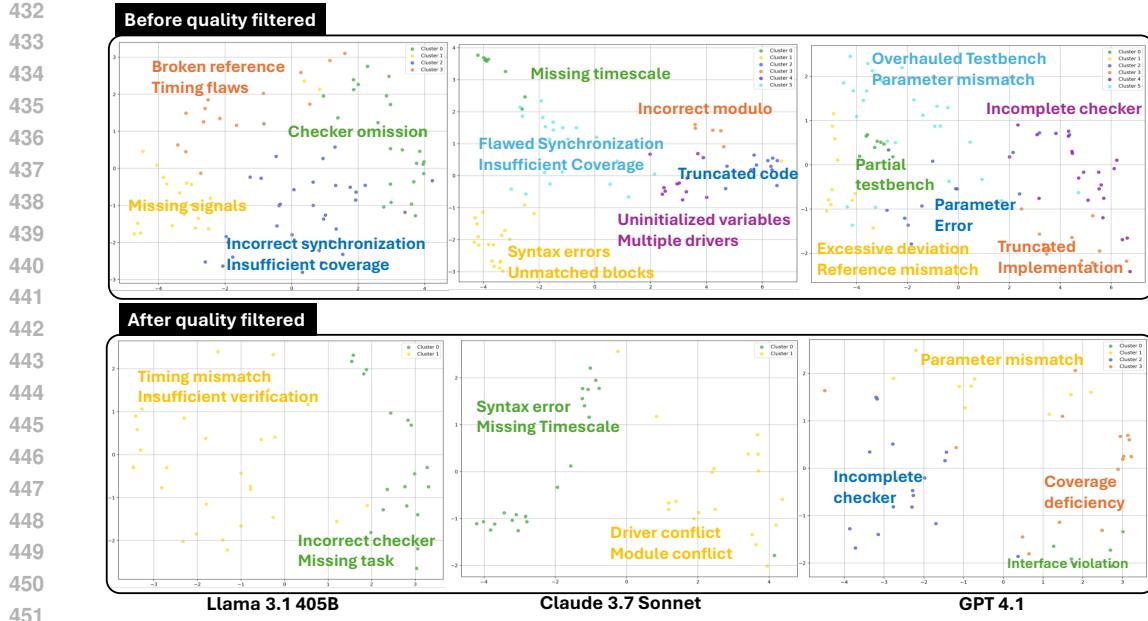


Figure 3: Failure cluster visualization of Testbench Checker set set (cid13) before/after quality filtered using the PaCMAP graph reduction method (Wang et al. (2021)). After quality filtered, the # of failure clusters is less because of improved ambiguity and consistency in prompt.

goals. Finally, the tasks in the benchmark are limited to standard hardware design and verification tasks and do not encompass the full range of challenges a design or verification engineer might face from project inception through fabrication. Specific academic and industry organizations may have additional requirements, custom tooling, or specialized needs not fully addressed by XYZ.

7 CONCLUSIONS

XYZ comprises 783 human expert-authored problems across 13 hardware design and verification task categories. The dataset spans Non-Agentic Code Generation, Non-Agentic Code Comprehension, and Agentic Code Generation tasks. State-of-the-art LLMs achieve no more than 34% pass@1 on Code Generation, revealing notable performance gaps—especially in design verification tasks such as SystemVerilog testbench generation. Given the tooling-intensive nature of hardware workflows, XYZ supports Dockerized agents and test harnesses for realistic tool interaction.

The Dockerized infrastructure not only enables sophisticated agent workflows, but also lowers the barrier to entry. Because the benchmark can be executed within portable container images, host system requirements are minimal and reproducibility across platforms is preserved. At the same time, the container-based approach is inherently extensible, allowing integration of additional commercial or open-source EDA tools, as well as future orchestration of full end-to-end flows.

While the current release focuses on common front-end design and verification tasks, semiconductor workflows span a much broader continuum that is often highly complex and institutionally specific. XYZ is designed with extensibility in mind, enabling incorporation of more advanced flows over time. For example, the infrastructure includes support for multiple tests per datapoint, yielding finer-grained diagnostic information about model performance and exposing more nuanced verification challenges.

Finally, the need for such infrastructure and datasets extends beyond the current benchmark. The long-term advancement of AI for semiconductor design and verification will depend on scalable and flexible evaluation environments that can evolve with the capabilities of both models and tools. By providing a rigorous yet adaptable foundation, XYZ aims to help drive this progress and catalyze continued research into AI-driven design flows.

486 REFERENCES
487

488 Anysphere Inc. Cursor: The ai code editor, 2025. URL <https://www.cursor.com/>. Version
489 1.0. Proprietary AI-powered IDE for Windows, macOS, and Linux.

490 Ning Wang, Bingkun Yao, Jie Zhou, Xi Wang, Zhe Jiang, and Nan Guan. Large language model
491 for verilog generation with code-structure-guided reinforcement learning, 2025. URL <https://arxiv.org/abs/2407.18271>.

492 Mingjie Liu, Yun-Da Tsai, Wenfei Zhou, and Haoxing Ren. CraftRTL: High-quality synthetic data
493 generation for verilog code models with correct-by-construction non-textual representations and
494 targeted code repair. In *The Thirteenth International Conference on Learning Representations*,
495 2025a. URL <https://openreview.net/forum?id=8KQz0D5XAr>.

496 Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
497 language models for verilog code generation. In *2023 IEEE/ACM International Conference on*
498 *Computer Aided Design (ICCAD)*, pages 1–8. IEEE, 2023.

499 Chia-Tung Ho, Haoxing Ren, and Brucek Khailany. Verilogcoder: Autonomous verilog coding
500 agents with graph-based planning and abstract syntax tree (ast)-based waveform tracing tool. In
501 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 300–307, 2025.

502 Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. Rtllm: An open-source benchmark for design rtl
503 generation with large language model. In *2024 29th Asia and South Pacific Design Automation*
504 *Conference (ASP-DAC)*, pages 722–727. IEEE, 2024.

505 Shang Liu, Yao Lu, Wenji Fang, Mengming Li, and Zhiyao Xie. Openllm-rtl: Open dataset
506 and benchmark for llm-aided design rtl generation. In *Proceedings of the 2025 IEEE/ACM*
507 *International Conference on Computer-Aided Design (ICCAD)*. IEEE, 2025b. URL <https://arxiv.org/abs/2503.15112>.

508 Nathaniel Pinckney, Christopher Batten, Mingjie Liu, Haoxing Ren, and Brucek Khailany. Revisiting
509 verilogeval: A year of improvements in large-language models for hardware code generation. *ACM*
510 *Transactions on Design Automation of Electronic Systems*, 2025.

511 Ahmed Allam and Mohamed Shalan. Rtl-repo: A benchmark for evaluating llms on large-scale rtl
512 design projects. In *2024 IEEE LLM Aided Design Workshop (LAD)*, pages 1–5. IEEE, 2024.

513 Zixi Zhang, Balint Szekely, Pedro Gimenes, Greg Chadwick, Hugo McNally, Jianyi Cheng, Robert
514 Mullins, and Yiren Zhao. Llm4dv: Using large language models for hardware test stimuli
515 generation. In *2025 IEEE 33rd Annual International Symposium on Field-Programmable Custom*
516 *Computing Machines (FCCM)*, pages 133–137. IEEE, 2025.

517 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
518 Narasimhan. SWE-bench: Can language models resolve real-world github issues? In *The Twelfth*
519 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=VTF8yNQM66>.

520 Anisha Agarwal, Aaron Chan, Shubham Chandel, Jinu Jang, Shaun Miller, Roshanak Zilouchian
521 Moghaddam, Yevhen Mohylevskyy, Neel Sundaresan, and Michele Tufano. Copilot evaluation
522 harness: Evaluating LLM-guided software programming, 2024. URL <http://arxiv.org/abs/2402.14261>.

523 CocoTB. Cocotb: Coroutine-based cosimulation testbench for vhdl and systemverilog, 2025. URL
524 <https://www.cocotb.org/>. Version 1.9.2. Open-source under the BSD License.

525 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
526 evaluation of machine translation. In *Proceedings of the 40th Annual Meeting on Association for*
527 *Computational Linguistics, ACL '02*, page 311–318, USA, 2002. Association for Computational
528 Linguistics. doi: 10.3115/1073083.1073135. URL <https://doi.org/10.3115/1073083.1073135>.

529 Stephen Williams. Icarus verilog, 2025. URL <https://steveicarus.github.io/iverilog/>. Open-source Verilog simulation and synthesis tool.

540 Claire Wolf and the YosysHQ contributors. Yosys open synthesis suite, 2025. URL <https://github.com/YosysHQ/yosys>. Version 0.17. Open-source under the ISC License.
 541
 542

543 Wilson Snyder and Verilator Contributors. Verilator: Open-source systemverilog simulator, 2025.
 544 URL <https://github.com/verilator/verilator>. Version 5.031. Licensed under
 545 LGPL-3.0-only or Artistic-2.0.

546 Cadence Design Systems, Inc. Xcelium logic simulator, 2025. URL https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html.
 547 Commercial logic simulation tool supporting SystemVerilog, VHDL, SystemC, and UVM.
 548
 549

550 Anthropic. Claude 3.7 sonnet, 2025. URL <https://www.anthropic.com/news/claude-3-7-sonnet>. Hybrid reasoning language model with standard and extended thinking
 551 modes.
 552
 553

554 OpenAI. Gpt-4.1, 2025a. URL <https://openai.com/index/gpt-4-1/>. Released April
 555 14, 2025. Enhanced performance in coding, instruction following, and long-context comprehension
 556 with a 1 million token context window. Knowledge cutoff: June 2024.

557 OpenAI. Openai o1, 2024. URL <https://openai.com/o1/>. Released December 5, 2024.
 558 Reasoning-focused large language model designed for complex tasks in science, mathematics, and
 559 coding.
 560

561 OpenAI. Openai o4-mini, 2025b. URL <https://openai.com/index/introducing-o3-and-o4-mini/>. Released April 16, 2025. Enhanced reasoning
 562 capabilities with support for text and image inputs.
 563

564 Meta AI. Meta llama 3.1 405b, 2024a. URL <https://huggingface.co/meta-llama/Llama-3.1-405B>. Released July 23, 2024. 405B parameter multilingual model with 128K
 565 context window.
 566

567 Meta AI. Meta llama 3.1 70b, 2024b. URL <https://huggingface.co/meta-llama/Llama-3.1-70B>. Released July 23, 2024. 70B parameter multilingual model with 128K
 568 context window.
 569

570 Kristina P Sinaga and Miin-Shen Yang. Unsupervised k-means clustering algorithm. *IEEE access*, 8:80716–80727, 2020.

571 Yingfan Wang, Haiyang Huang, Cynthia Rudin, and Yaron Shaposhnik. Understanding how di-
 572 mension reduction tools work: An empirical approach to deciphering t-sne, umap, trimap, and
 573 pacmap for data visualization. *Journal of Machine Learning Research*, 22(201):1–73, 2021. URL
 574 <http://jmlr.org/papers/v22/20-1061.html>.
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593

594 **A INFRASTRUCTURE DETAILS**

595

596 The XYZ Benchmark implements a modular, containerized framework for evaluating hardware
 597 verification tasks, supporting both direct LLM evaluation and agent-based workflows. Its design
 598 emphasizes reproducibility, extensibility, and rigorous evaluation under diverse toolchains and
 599 environments.

600 The benchmark offers three complementary entry points that constitute the primary interface. The
 601 main execution utility functions as a unified evaluation engine for both LLMs and agents, supporting
 602 problem selection, model specification, and result collection. A companion utility extends this
 603 functionality to statistical evaluation by executing repeated trials and computing reliability estimates
 604 such as pass@k. A third utility generates structured reports from evaluation logs, providing both
 605 single-run analysis and aggregated statistical summaries. Together, these utilities provide a full
 606 workflow for executing, analyzing, and disseminating benchmark results. Configuration is entirely
 607 environment-based, with layered support for default settings, environment variables, and overrides,
 608 thereby enabling flexible deployment.

609 Two distinct evaluation paradigms are supported. In the non-agentic mode, language models are
 610 integrated directly through API calls. The system manages prompt preparation, response collection,
 611 and automated verification through containerized harnesses, enabling systematic comparison across
 612 models. The agentic mode instead relies on user-defined containers that are mounted with full
 613 problem contexts and toolchains, supporting iterative reasoning and tool use characteristic of agent
 614 workflows. This dual structure ensures that both conventional and experimental methodologies can
 615 be accommodated within a single framework.

616 Container orchestration is achieved through Docker Compose, which generates task-specific configura-
 617 tions to isolate agent execution from test harness verification. Agent containers are constructed
 618 around base images that encapsulate open-source hardware development environments, while ver-
 619 ification harnesses rely on parallel configurations to ensure reproducible testing conditions. Two
 620 standardized base images serve as building blocks: a verification image containing open-source
 621 simulators (e.g., Icarus Verilog, Verilator) and an implementation image that includes Yosys for
 622 gate-level synthesis challenges. These images are used as stable reference environments, ensuring
 623 consistency across evaluations while allowing researchers to layer custom dependencies as needed.
 624 For commercial evaluation scenarios, user-provided base images integrate enterprise EDA tools
 625 such as Cadence Xcelium, with infrastructure support for license server connectivity and validation.
 626 Researchers are expected to extend these base environments when developing custom agents, thereby
 627 retaining compatibility with the verification pipeline while enabling specialized tool use.

628 Robust resource management ensures reproducibility even under constrained conditions. The system
 629 monitors workspace directories to guard against uncontrolled file growth, applies configurable
 630 timeouts to prevent indefinite execution, and automatically provisions isolated Docker networks
 631 for evaluation runs. Network policies currently provide container-level separation and controlled
 632 connectivity for commercial tool licensing.

633 Datasets are distributed in two complementary formats. A structured JSONL schema supports direct
 634 LLM evaluation by defining prompts, context, expected outputs, and verification procedures. An
 635 agentic schema expands these definitions into multi-file workspaces, enabling complex tool use and
 636 iterative reasoning strategies. Automatic transformation utilities allow researchers to convert between
 637 the two schemas while preserving semantic equivalence, ensuring that datasets can be reused across
 638 paradigms.

639 Evaluation metrics combine objective and subjective components. Objective verification is provided
 640 by the containerized test harnesses, yielding pass/fail results grounded in hardware development
 641 practice. Subjective scoring complements this by assessing explanation and comprehension tasks.
 642 Statistical extensions such as pass@k provide reliability estimates over repeated runs, accounting for
 643 the stochastic behavior of both LLMs and agents. Category-specific evaluation protocols further tailor
 644 metrics to the demands of code generation, comprehension, or design verification with commercial
 645 EDA tools.

646 Extensibility is a central feature. New models can be integrated through lightweight adapter files that
 647 register them with the evaluation framework, while local inference can be supported via standardized
 export/import routines that decouple prompt preparation from response evaluation. Agent develop-

648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

ment is facilitated by containerized environments derived from Docker base images, allowing both open-source and commercial toolchains. To support researchers, the framework includes development templates and build scripts that provide practical starting points. These are intended as aids to custom agent creation rather than as reference implementations.

Finally, the framework has been engineered for scalability. Evaluation can be executed sequentially or in parallel, with automatic cleanup and resource monitoring to ensure stability under concurrency and low model accuracy. Deployment is supported with low host requirements, and with an environment-driven configuration system. This uniformity allows evaluations to be reproduced across diverse computational contexts with minimal modification.

B COMPUTE REQUIREMENTS

Benchmark infrastructure development and model evaluation were performed on a virtual machine with 12 virtual CPUs and 24 GB of RAM, running Rocky Linux 8.10. Disk usage per model evaluation ranged from 6.4 GB to 15 GB, primarily due to errant RTL or testbench outputs generating large simulation logs or Verilog Change Dumps (VCDs). A built-in disk monitor in the XYZ framework checks each active datapoint run directory every second and aborts execution if its size exceeds 100 MB. Agents or models producing excessive output may trigger this limit. The framework also supports run directory compression.

Models were evaluated via API endpoints and are not included in the compute resource figures. Token usage per category can be estimated from Table 1.

C FAILURE ANALYSIS

Section 5 presented a category-level analysis; here, we examine two specific examples to better understand where LLMs fail in generating correct code.

Input Prompt	Latency Considerations (Continued)
Complete the existing ‘sorting_engine’ module given below to implement the “brick sort” algorithm using finite state machine (FSM).	<p><i>[Brick sort description, algorithm example, and port list are omitted due to space constraints]</i></p> <p>**Parameters**</p> <ul style="list-style-type: none"> - ‘N’ (Default is 8, Greater than 0): Number of elements to sort. Assume ‘N’ is an even integer - ‘WIDTH’(Default is 8, Greater than 0): Bit-width of each input element <p>Latency Considerations</p> <p>Total latency = $(N * (N - 1)) / 2 + 4$</p> <p>Perform a single compare-and-swap operation per clock cycle (sequential approach):</p> <ul style="list-style-type: none"> - 1 clock cycle for moving from ‘IDLE’ state to ‘LOAD’. - 1 clock cycle to load the data.
Golden Solution	<p><i>[Only the core implementation is shown below due to space constraints]</i></p> <pre>// Compare-swap the current pair // Check if we are within the valid pair range if (pair_idx < pairs_in_this_pass) begin if (pass_cnt[0] == 1'b0) begin if (data_array[2*pair_idx] > data_array[2*pair_idx+1]) begin (data_array[2*pair_idx], data_array[2*pair_idx+1]) <= (data_array[2*pair_idx+1], data_array[2*pair_idx]); end end else begin if ((2*pair_idx+2) < N) begin if (data_array[2*pair_idx+1] > data_array[2*pair_idx+2]) begin (data_array[2*pair_idx+1], data_array[2*pair_idx+2]) <= (data_array[2*pair_idx+2], data_array[2*pair_idx+1]); end end end end // Update ‘pass_cnt’ in the same cycle as the last compare-swap to avoid a one-cycle delay if (pair_idx + 1 == pairs_in_this_pass) begin pass_cnt <= pass_cnt + 1; pair_idx <= 0; end else begin pair_idx <= pair_idx + 1; end</pre>
LLM-Generated Incorrect Solution	<p><i>[Only the core implementation is shown below due to space constraints]</i></p> <pre>if (pair_idx < pairs_in_this_pass) begin if (pass_cnt[0] == 1'b0) begin if (data_array[pair_idx*2] > data_array[pair_idx*2+1]) begin // Issue 1: Mixed usage of blocking '=' and non-blocking '<=' assignments temp = data_array[pair_idx*2]; data_array[pair_idx*2] <= data_array[pair_idx*2+1]; data_array[pair_idx*2+1] <= temp; end end else begin // Issue 2: missing check to ensure 'pair_idx*2+2' is within the valid range if (data_array[pair_idx*2+1] > data_array[pair_idx*2+2]) begin temp = data_array[pair_idx*2+1]; data_array[pair_idx*2+1] <= data_array[pair_idx*2+2]; data_array[pair_idx*2+2] <= temp; end end pair_idx <= pair_idx + 1; end else begin // Issue 3: Updating 'pass_cnt' when pair_idx == pairs_in_this_pass // delays the update by one cycle after the last swap operation due to '<=' assignment, // causing a 1-cycle delay per pass, // which accumulates to an N-cycle delay for N elements to sort pass_cnt <= pass_cnt + 1; pair_idx <= 0; end end</pre>

Figure 4: A failure case on brick sort algorithm implementation.

702
703

C.1 CASE STUDY 1:

704
705
706
707
708
709
710
711
712

Figure 4 highlights three critical flaws in the LLM-generated implementation of the brick sort algorithm, despite the fact that this algorithm is generally well understood by leading language models. First, the model carelessly mixes blocking ($=$) and non-blocking ($<=$) assignments, which can result in unintended behaviors due to mismatched update semantics. Second, it fails to perform bounds checking before accessing `data_array[2*pair_idx+2]`, potentially leading to out-of-range access. Most notably, the model delays updating the `pass_cnt` signal by one cycle after the final compare-and-swap in each pass, causing an extra cycle of latency per pass. Since brick sort performs exactly N passes for an input of size N , this leads to a total of N additional clock cycles, which violates the expected latency specified in the prompt.

713
714
715
716
717
718

These issues underscore a broader limitation of even the most capable LLMs: while they can reproduce high-level algorithmic structure, they often fail to account for cycle-accurate control sequencing, boundary conditions, and precise timing contracts critical for correct RTL behavior. The resulting code may appear syntactically correct, yet lacks the semantic fidelity expected in hardware design. This case study demonstrates that, despite recent advances, LLMs still fall short in generating accurate RTL code.

719
720
721
722
723
724
725
726
727

Input Prompt	Golden Solution	LLM-Generated Incorrect Solution
<p>Complete the given sequential Arithmetic Logic Unit (ALU) module in Verilog that performs various arithmetic and logical operations based on an input opcode. The ALU should operate synchronously with a clock signal and include an active-low asynchronous reset to initialize the output. Additionally, the ALU must incorporate a security feature that only allows operations if a provided input key matches an internal configurable 8-bit key.</p> <p># Design Requirements</p> <p>1. Inputs:</p> <ul style="list-style-type: none"> - <code>i_clk</code> (Clock signal) - <code>i_rst</code> (Active-low asynchronous reset) - <code>i_operand_a</code> (4-bit input operand) - <code>i_operand_b</code> (4-bit input operand) - <code>i_opcode</code> (3-bit input signal to specify the operation) - <code>i_key_in</code> (8-bit input security key) <p>2. Outputs:</p> <ul style="list-style-type: none"> - <code>o_result</code> (8-bit result of the operation) 	<pre> case (i_opcode) 3'b000: // ADD o_result <= i_operand_a + i_operand_b; 3'b001: // SUB o_result <= i_operand_a - i_operand_b; 3'b010: // MUL o_result <= i_operand_a * i_operand_b; 3'b011: // AND o_result <= ({4'b0},i_operand_a & i_operand_b); 3'b100: // OR o_result <= ({4'b0},i_operand_a i_operand_b); 3'b101: // NOT A o_result <= ({4'b0},~i_operand_a); 3'b110: // XOR o_result <= ({4'b0},i_operand_a ^ i_operand_b); 3'b111: // XNOR o_result <= ({4'b0},~(i_operand_a ^ i_operand_b)); endcase </pre>	<p>3. Internal Configuration:</p> <ul style="list-style-type: none"> - A configurable 8-bit internal security key, <code>'p_key'</code>, with default to 0xAA. <p>4. Functional Behavior:</p> <ul style="list-style-type: none"> - If <code>i_key_in</code> matches the internal key, the ALU operations are active and follow the behavior described below: <ul style="list-style-type: none"> - **Addition** (<code>i_opcode = 000</code>): Perform <code>'i_operand_a + i_operand_b'</code>. - **Subtraction** (<code>i_opcode = 001</code>): Perform <code>'i_operand_a - i_operand_b'</code>. - **Multiplication** (<code>i_opcode = 010</code>): Perform <code>'i_operand_a * i_operand_b'</code>. - **Bitwise AND** (<code>i_opcode = 011</code>): Perform <code>'i_operand_a & i_operand_b'</code>. - **Bitwise OR** (<code>i_opcode = 100</code>): Perform <code>'i_operand_a i_operand_b'</code>. - **Bitwise NOT** (<code>i_opcode = 101</code>): Negate <code>i_operand_a</code> (i.e., <code>~i_operand_a</code>). - **Bitwise XOR** (<code>i_opcode = 110</code>): Perform <code>'i_operand_a ^ i_operand_b'</code>. - **Bitwise XNOR** (<code>i_opcode = 111</code>): Perform <code>~(i_operand_a ^ i_operand_b)</code>. - If <code>i_key_in</code> does not match the internal key: <ul style="list-style-type: none"> - The output <code>o_result</code> should remain 8'b0, and no operation is performed.

728
729
730
731
732
733
734
735
736
737

Figure 5: A failure case on ALU implementation.

740
741
742

C.2 CASE STUDY 2:

743
744
745
746
747
748
749
750
751

Apart from their difficulty in reasoning about timing behavior, Figure 5 reveals a second critical limitation of LLMs for RTL coding: a tendency to ignore explicit bit-width handling. The incorrect implementation overlooks the width mismatch between the 4-bit operands (`i_operand_a`, `i_operand_b`) and the 8-bit output (`o_result`) for all bit-wise operations (AND, OR, NOT, XOR, XNOR). In RTL coding, assigning a 4-bit expression to an 8-bit target triggers an implicit zero-extension of the most significant bits. While this compiles, it silently violates the intent of specification: the upper four bits should be explicitly cleared so that downstream logic can rely on deterministic, intentionally driven zeros. The golden solution makes that intent explicit with `{4'b0}, ...` concatenations.

752
753

D QUALITY FILTERING

754
755

Automatic quality filtering proceeds in two stages. The first stage applies sanity checks to the test harness: it must pass with the reference solution and fail with the initial context. The former ensures consistency between the test harness and the reference solution, while the latter confirms that a correct

756 solution is required and the initial context does not already satisfy the task. Of the 1,313 initial
 757 datapoints, 78 were excluded due to failing these sanity checks.
 758

759 The second stage of quality filtering uses LLM-based judging with four metrics: ambiguity, consistency,
 760 category match, and behavioral match (Figure 6). The prompt used for this LLM quality judge
 761 is shown in Listing 1. It also includes fields for prompt refinement, enabling automated revisions
 762 of ambiguous or incorrect prompts; however, we do not report results from that experiment in this
 763 work, as further vetting is needed to ensure such revisions do not result in overly descriptive or trivial
 764 prompts. When running XYZ in map mode with the LLM judge, the output is a scored JSONL
 765 file with additional metadata fields. Post-processing scripts then combine the four metrics into an
 766 aggregate score and remove low-scoring problems. For this work, we used a threshold of 8.0 for a
 767 passing score. The final filtered JSONL dataset excludes the scoring fields.
 768

769 The number of problems filtered per category is shown in Table 6, an expanded version of Table 1.
 770 Code Improvement (cid07) and Debugging (cid16) saw the most filtering, while Code Completion
 771 (cid02) saw the least. Pass rate changes resulting from quality filtering are shown in Table 7. Claude
 772 3.7 showed a 10–14 point increase in pass rate for Code Improvement and Debugging, as did Spec-
 773 to-RTL (cid03) and Code Modification (cid04). Interestingly, Testbench and Assertion Generation
 774 (cid12–14) saw little improvement despite aggressive filtering, as shown in Table 6. This supports our
 775 findings in Section 4 that existing LLMs struggle fundamentally with generating correct and accurate
 776 SystemVerilog testbench code.
 777

778 You are an expert at refining code challenge datapoints.
 779 Analyze the provided datapoint and improve it, focusing ONLY on enhancing the 'prompt' field.
 780 Improvements should be subtle and nuanced, and should not change the overall meaning of the datapoint,
 781 but should make the datapoint more precise and helpful in solving the problem.
 782 The 'input', 'output', 'categories', and 'harness' fields MUST remain unchanged and are provided
 783 only for reference to help you understand the task better. Return a complete datapoint JSON structure
 784 with an additional 'reasoning_prompt' field that explains your improvements, along with 'ambiguity_score'
 785 and 'consistency_score' fields that evaluate the quality of the original datapoint.
 786
 787 You should also include a 'category_match_score' field that evaluates how well the category tag in the
 788 original datapoint matches the category tag in the 'categories' field, where 1 means no match and 10
 789 means a perfect match. With this, include a 'reasoning_category_match' field that explains your
 790 reasoning for the category match score.
 791
 792 Additionally, provide a 'behavioral_match_score' field that evaluates how well the logic and behavior
 793 described in the prompt matches the actual logic and behavior in the output reference solution and what
 794 is checked in the test harness. Include a 'behavioral_match_reasoning' field explaining your assessment
 795 of this behavioral alignment.
 796
 797 I need help refining this code challenge datapoint (ID: {id}).
 798
 799 Here is the original datapoint:
 800

```
```json
 801 {json.dumps(datapoint, indent=2)}
 802 ````
```

  
 803  
 804 IMPORTANT CONSTRAINTS:  
 805 - You can ONLY modify the 'prompt' field  
 806 - The following fields MUST remain exactly as they are in the original:  
 807 \* 'input': The input to the code challenge  
 808 \* 'output': The expected output of the code challenge (the "reference solution")  
 809 \* 'categories': Includes the difficulty ("easy", "medium", "hard") and the category tag. The category tags  
 810 below are the only ones that are allowed:  
 811 \* 'cid002': "RTL Code Completion: Input must be skeleton code, and output must be the complete RTL code."  
 812 \* 'cid003': "Specification to RTL Translation: Input must be a natural language specification, and output  
 813 must be the complete RTL code."  
 814 \* 'cid004': "RTL Code Modification: Input must be existing RTL code and natural language specification of  
 815 the changes to make, and output must be the modified RTL code."  
 816 \* 'cid005': "Specification to RTL Translation - Module Instantiation and Component Reuse: Input must be a  
 817 natural language specification, and output must be the complete RTL code with module instantiations  
 818 and component reuse."  
 819 \* 'cid006': "RTL Correspondence (Match RTL to Specification or vice versa): Input must be an RTL code and  
 820 a natural language specification, and output must be the RTL code that matches the specification, or  
 821 vice-versa."  
 822 \* 'cid007': "RTL Lint Improvement or Power-Performance Optimization: Input must be an RTL code and a  
 823 natural language specification of the changes to make, and output must be the linted or optimized  
 824 RTL code. For power-performance optimization, the specification should clearly specify criteria of  
 825 area reduction or latency changes."  
 826 \* 'cid008': "Testbench Correspondence (Match Testbench to Test Plan or vice versa): Input must be a  
 827 testbench and a test plan, and output must be the testbench that matches the test plan, or vice-  
 828 versa."  
 829 \* 'cid009': "Question & Answer on RTL: Input must be an RTL code and a question, and output must be the  
 830 answer to the question based on the RTL code."  
 831 \* 'cid010': "Question & Answer on Testbench: Input must be a testbench and a question, and output must be  
 832 the answer to the question based on the testbench."  
 833 \* 'cid012': "Test Plan to Testbench Stimulus Generation: Input must be a test plan, and output must be the  
 834 stimulus for the testbench without any logic to check the output of the device under test."  
 835 \* 'cid013': "Test Plan to Testbench Checker Generation: Input must be a test plan, and output must be the  
 836 checker for the testbench that can be used to verify the output of the device under test along with  
 837 stimulus generation. The input might also include an existing stimulus-only testbench, in which case

```

810 the output should be a checker that can be used to verify the output of the device under test along
811 with the existing stimulus."
812 * 'cid014': "Test Plan to Assertions Generation: **Must** be about generating assertions for the testbench
813 . The input will include a test plan and existing testbench, and the output must include the
814 assertions for the testbench."
815 * 'cid016': "RTL Debugging and Bug Fixing: **Must** be about fixing an existing bug in the RTL that is
816 leading to incorrect output. The input will include an RTL code and a testbench, and the output must
817 include the fixed RTL code."
818 * 'harness': The harness that the code challenge uses to evaluate the output
819 - These fields are provided only as reference to help you understand the task
820 - You don't need to include these unchanged fields in your response - only include 'prompt', 'reasoning_prompt'
821 ', and the score fields
822 - When in doubt, be more critical of the datapoint and give lower scores. Critical information may be missing
823 from the datapoint, or there may be a bug in the harness and reference solution in matching a
824 specification in the prompt.
825 - The person who will be using the refined datapoint **will not be granted access** to the reference solution
826 or harness, so they must rely on the datapoint (prompt, input, context, etc.) and their own knowledge to
827 make the best possible solution. Therefore, refrain from referring to the src/ directory in any prompt
828 revisions.

829 Please provide a refined version of the datapoint that:
830 1. Clarifies and enhances ONLY the 'prompt' field
831 2. Makes the instructions more precise and helpful based on examining the input, output, and test harness
832 3. Adds hints or clarifications that would help a senior hardware engineer succeed
833 4. Should not solve the problem in the refined prompt - only add hints or critical clarifications that would
834 not be assumed by a senior hardware engineer
835 5. Maintains the exact same structure for all other fields (if you include them)
836 6. Adds a 'reasoning_prompt' field explaining your improvements and why they help
837 7. Includes an 'ambiguity_score' rating from 1-10 for the original prompt (1 = very vague/impossible to solve,
838 10 = perfectly clear)
839 8. Includes a 'consistency_score' rating from 1-10 for how well the original problem components align (1 =
840 inconsistent between prompt/input/output/harness, 10 = perfectly consistent)
841 9. Includes a 'category_match_score' rating from 1-10 for how well the category tag in the original datapoint
842 matches the category tag in the 'categories' field (1 = there is a better category for the datapoint, 10
843 = perfect match)
844 10. Includes a 'behavioral_match_score' rating from 1-10 that evaluates how well the logic and behavior
845 described in the prompt matches the actual logic and behavior in the output reference solution and what
846 is checked in the test harness (1 = significant mismatch, 10 = perfect behavioral alignment)

847 The 'reasoning_prompt' field should contain your justification for the prompt improvements you made, what
848 issues you addressed, and how these enhancements will help the model succeed. Your reasoning should also
849 address the three scores (ambiguity, consistency, and category match) in your explanation.

850 The 'ambiguity_score' should reflect how clear or ambiguous the original prompt was, where 1 means extremely
851 vague/impossible to understand and 10 means completely clear with no ambiguity. Ambiguity is a measure
852 of how well a senior hardware engineer would be able to understand the prompt and solve the problem
853 without having to iterate multiple times.

854 The 'reasoning_ambiguity' field should explain your reasoning for the ambiguity score.

855 The 'consistency_score' should reflect how well the various components of the problem (prompt, input, output,
856 harness) align with each other, where 1 means severe inconsistencies and 10 means perfect alignment. In
857 particular, the prompt should match with the reference solution ('output') and the harness very closely.

858 The 'reasoning_consistency' field should explain your reasoning for the consistency score.

859 The 'category_match_score' should reflect how well the category tag in the original datapoint matches the
860 category tag in the 'categories' field. When scoring, consider if the task better fits in a different
861 category.

862 The 'reasoning_category_match' field should explain your reasoning for the category match score.

863 The 'behavioral_match_score' should evaluate specifically how well the logic and behavior described in the
864 prompt matches the actual implementation details in the reference solution and what is being checked in
865 the test harness. It focuses on the technical alignment of the expected behavior versus what is actually
866 implemented and tested.

867 The 'behavioral_match_reasoning' field should explain your reasoning for the behavioral_match_score,
868 highlighting any discrepancies or strong alignments between the prompt's behavioral specifications and
869 the actual implementation/testing.

870 Your JSON response can be minimal, containing just:
871 ````json
872 {
873 "prompt": "your improved prompt here",
874 "reasoning_prompt": "your explanation here",
875 "ambiguity_score": 8,
876 "reasoning_ambiguity": "your explanation for ambiguity_score here",
877 "consistency_score": 8,
878 "reasoning_consistency": "your explanation for consistency_score here",
879 "category_match_score": 8,
880 "reasoning_category_match": "your explanation for category_match_score here",
881 "behavioral_match_score": 8,
882 "behavioral_match_reasoning": "your explanation for behavioral_match_score here"
883 }
884 ````

885 Or you can include the full datapoint structure if you prefer. The system will ensure other fields remain
886 unchanged.

887 Return the datapoint as valid JSON.

```

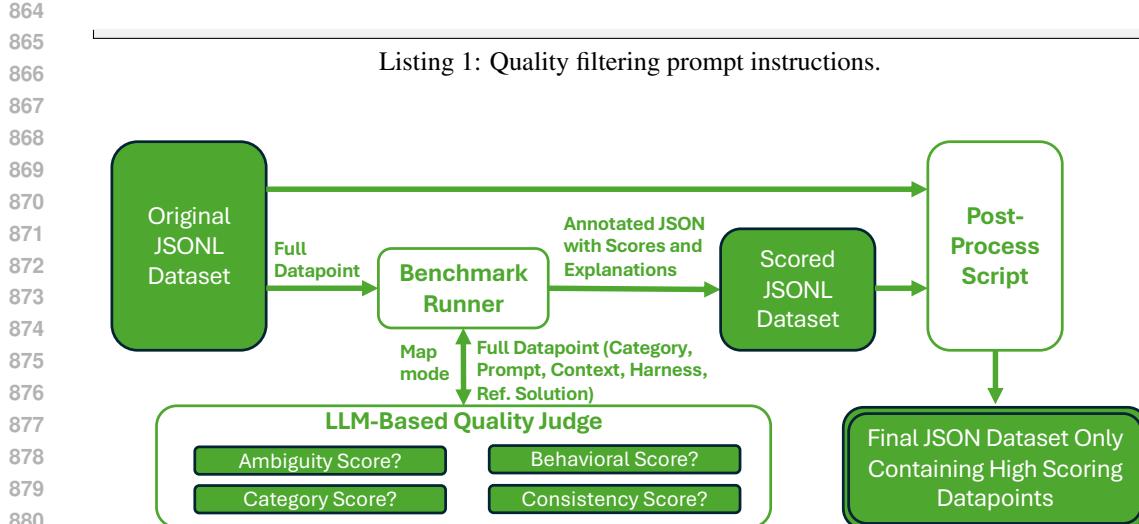


Figure 6: Quality filtering flow.

884  
885

Type	ID	Category Description	% Filtered	Unfiltered Volume		Filtered Volume	
				Non-Agnt	Agentic	Non-Agnt	Agentic
Code Generation	cid02	RTL – Code Completion	7.8%	102	0	94	0
	cid03	RTL – Natural Language Spec to Code	26.8%	99	58	78	37
	cid04	RTL – Code Modification	46.4%	108	45	56	26
	cid05	RTL – Spec to RTL (Module Reuse)	35.0%	0	40	0	26
	cid07	RTL – Code Improvement (Linting/QoR)	60.6%	104	0	41	0
	cid12	Design Verification – Testbench Stimulus	35.8%	100	34	68	18
	cid13	Design Verification – Testbench Checker	45.0%	101	28	53	18
	cid14	Design Verification – Assertion Generation	31.5%	100	43	68	30
Code Comprehension	cid16	Design Verification – Debugging / Bug Fix	64.1%	101	30	36	11
	cid06	Correspondence – RTL to/from Spec	43.3%	60	0	34	0
	cid08	Correspondence – Testbench to/from Plan	47.3%	55	0	29	0
	cid09	Question & Answer – RTL	38.2%	55	0	34	0
	cid10	Question & Answer – Testbench	48.0%	50	0	26	0
			<b>Total # of Problems</b>	<b>40.4%</b>	<b>1035</b>	<b>278</b>	<b>617</b>
							<b>166</b>

Table 6: Comparison of Non-Agentic and Agentic problem counts by task category, with percentage of problems removed by filtering.

896  
897  
898  
899  
900  
901  
902  
903  
904  
905

Model	cid02	cid03	cid04	cid05	cid07	cid12	cid13	cid14	cid16
Claude 3.7 Sonnet	0.35	14.96	15.62	-0.15	14.2	6.88	-0.03	2.13	10.88
“ Thinking	0.38	9.95	15.86	1.35	14.79	6.69	1.45	4.23	17.75
Claude 3.5 Haiku	1.2	7.37	5.44	-2.23	10.11	3.05	-0.53	3.77	11.07
GPT 4.1	0.52	7.52	9.23	-3.23	10.75	3.61	6.63	1.54	4.03
GPT o1	0.23	5.11	1.61	0.69	8.41	4.6	2.94	1.37	17.14
GPT o4-mini	0.56	8.85	9.91	-0.5	9.24	2.59	1.94	2.34	12.17
Llama 3.1 405B	0.31	9.15	7.81	6.38	5.19	1.91	-2.69	2.69	17.83
Llama 3.1 70B	-0.38	6.13	4.87	4.19	7.71	-0.8	2	-1.16	3.03

Table 7: Change in pass@1 ( $n = 5$ ) rates after quality filtering for Code Generation tasks. Positive values indicate improved pass rates. Units are percentage points.

918  
 919  
 920  
 921  
 922  
 923  
 924  
 925  
 926  
 927  
 928  
 929  
 930  
 931  
 932  
 933  
 934  
 935  
 936  
 937  
 938  
 939  
 940

Model	cid006	cid008	cid009	cid010
<b>Claude 3.7 Sonnet</b>	0.07	0.04	0.11	0.10
“Thinking	0.09	0.10	0.08	0.11
<b>Claude 3.5 Haiku</b>	0.03	-0.01	0.13	0.12
<b>GPT 4.1</b>	0.04	0.03	0.12	0.09
<b>GPT o1</b>	0.03	-0.01	0.11	0.08
<b>GPT o4-mini</b>	0.02	0.02	0.07	0.08
<b>Llama 3.1 405B</b>	0.04	0.01	0.13	0.10
<b>Llama 3.1 70B</b>	0.04	0.00	0.13	0.10

941  
 942  
 943  
 944  
 945  
 946  
 947  
 Table 8: Change in average score ( $n = 5$ ) after quality filtering for Code Comprehension tasks.  
 948 Positive values indicate improved performance. Units represent the difference in average score.  
 949

950  
 951  
 952  
 953  
 954  
 955  
 956  
 957  
 958  
 959  
 960  
 961  
 962  
 963  
 964  
 965  
 966  
 967  
 968  
 969  
 970  
 971

972 E SUPPLEMENTAL: REPRODUCIBILITY  
973974 We recognize the central importance of reproducibility for both validating prior work and enabling  
975 future advances. As this work introduces an evaluation benchmark, it is especially critical that the  
976 community can reliably reproduce our reported results and then apply the same infrastructure for  
977 consistent comparisons in future research. To this end, our benchmark infrastructure and dataset  
978 are fully released under permissive open-source licenses and are publicly accessible on GitHub and  
979 Hugging Face. The complete infrastructure—including Docker scaffolding, open-source EDA tool  
980 images, and evaluation data points—allows independent researchers to validate our results directly,  
981 while also serving as a shared foundation for future benchmarking studies. All released artifacts are  
982 versioned, openly licensed, and designed for long-term accessibility by the community.983 In accordance with ICLR’s double-blind review policy, we cannot provide direct repository links  
984 within the submission. However, we confirm that these resources are publicly available today, and we  
985 would be happy to provide the links to the track chair to verify their accessibility and reproducibility.  
986 Community resources are also in place to continue maintaining and supporting the benchmark over  
987 time.988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025