Under review as a conference paper at ICLR 2026

CAN LLMS DESIGN REAL HARDWARE? A NEW
BENCHMARK FOR RTL DESIGN AND VERIFICATION
TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present the XYZ benchmark [note to reviewers: name withheld in accordance
with ICLR double-blind policy], a new dataset and infrastructure to advance LLM
and agent research in hardware design and verification. XYZ includes 783 prob-
lems across 13 task categories, covering RTL generation, verification, debugging,
specification alignment, and technical Q&A authored by experienced hardware
engineers. Problems are offered in both non-agentic and agentic formats. The
benchmark introduces more realistic and challenging contexts than prior work, with
state-of-the-art models achieving no more than 34% pass@1 on code generation.
Agentic tasks—especially those involving RTL reuse and verification—are particu-
larly difficult. Evaluation uses open-source tools and model scoring infrastructure,
with comprehension tasks assessed via BLEU and LLM-based judging. XYZ
reveals substantial gaps in current model capabilities, underscoring the need for
continued research toward robust, real-world hardware design automation.

1 INTRODUCTION

Large language models (LLMs) have seen widespread adoption in software development for code
generation, bug fixing, question answering, test generation, and related tasks. Recently, agentic
assistants such as Cursor (Anysphere Inc.| (2025))—an Al-powered IDE based on Visual Studio
Code—have gained traction for their ability to not only answer questions but also perform complex
code edits and execute commands.

By contrast, semiconductor hardware design has not benefited as significantly from LLMs. Generating
Verilog RTL (Register-Transfer Level—the textual code used to design digital logic chips) with LLMs
presents unique challenges, including the limited availability of high-quality training data (Wang
et al.| (2025); |L1u et al.| (2025a)) and the relative recency of domain-specific benchmarks. Two widely
used datasets are VerilogEval (Liu et al.|(2023); Ho et al.| (2025))) and RTLLM (Lu et al.|(2024)); Liu
et al.| (2025b)), which report pass rates as high as 63% on GPT-4 and 94% for agentic approaches
(Pinckney et al.[(2025); [Ho et al.| (2025)). However, these benchmarks are narrow in scope and do not
reflect the full complexity of hardware development workflows. Moreover, their high pass rates leave
little headroom for measuring future improvements, limiting their usefulness as research drivers.

VerilogEval and RTLLM rely on hand-crafted prompts and evaluate on small, self-contained problems.
RTL-Repo (Allam and Shalan|(2024)) introduces more realistic GitHub-derived contexts, prompting
LLMs to complete redacted code regions. While it captures real-world structure, RTL-Repo focuses
solely on code completion and does not test broader challenges like specification-to-RTL generation,
debugging, or verification. Related benchmarks cover testbench stimuli (Zhang et al.|(2025))), though
close to 100% coverage of their benchmark is achievable by Claude 3.5 Sonnet, and formal assertions
(Liu et al.[(2025D)).

We introduce the XYZ benchmark [note to reviewers: name withheld in accordance with ICLR
double-blind policy], which expands on prior work with broader task coverage and greater depth.
XYZ includes 783 human-authored problems across 13 categories, including RTL generation, design
verification, debugging, assertion creation, and technical comprehension. Tasks are provided in both
Non-Agentic (single-turn) and Agentic (multi-turn, tool-using) formats. Previous benchmarks focus
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on single-turn prompts and evaluation infrastructure, while XYZ is designed to evaluate agents, with
support for tool interaction, iterative workflows, and complex reasoning.

XYZ addresses the growing need for benchmarks that reflect real-world hardware development.
Problem categories cover tasks such as RTL/testbench generation, debugging, assertions, code
modification, power and area optimization, question answering, and code-spec alignment. The dataset
is intended to expand over time, evolving alongside improvements in LLM and agent capabilities,
while continuing to offer meaningful challenge and headroom for future research.

This work makes four key contributions:

1. The first agentic-oriented benchmark for Verilog RTL code generation, verification, and related
tasks. The benchmark’s prompts and infrastructure are designed to evaluate Dockerized LLM-
based agents on real-world problems with EDA tool use.

2. A broader benchmark that encompasses a wider range of hardware design and verification
tasks. The benchmark is intended to support both model and agent research. Initial Non-Agentic
categories were selected with greater agent workflows in mind, representing useful subtasks within
larger design processes.

3. A more challenging benchmark, featuring tasks significantly more difficult than those in Verilo-
gEval (Liu et al.| (2023)); Pinckney et al.|(2025))) and RTLLM (Lu et al.| (2024)). Prior benchmarks
largely drew from public repositories and are increasingly saturated, with high pass rates from
both models and agents. In contrast, the current benchmark offers data points crafted and QA’ed
by experienced hardware engineers with more than 4 years of experience from scratch. As a result,
we show that state-of-the-art models—including Claude 3.7 Sonnet, GPT-4.1, and LLaMA 3.1
405B—achieve no more than a 34% pass rate on code generation questions in our benchmark,
providing substantial headroom for future research in LLM-driven hardware design.

4. Analysis of model failures examines why state-of-the-art models frequently fail across specific
categories and offers insights into the key capabilities LLMs must develop before they can be
reliably deployed for real-world hardware design and verification.

RTL code represents only a small fraction of public GitHub repositories compared to software code,
and much design knowledge remains proprietary within industry. Consequently, there is a strong need
for an advanced, human-written, publicly available benchmark dataset—composed of real-world
design problems authored by design and verification experts. We created XYZ to address this critical

gap.

2 XYZ DATASET

The XYZ dataset and infrastructure build on methodologies from software LLM benchmarks such
as SWE-bench (Jimenez et al.| (2024)) and Microsoft’s Copilot evaluation harness (Agarwal et al.
(2024)). Whereas SWE-bench had access to a wide range of high-quality, open-source, software
code repositories and well-documented resolved GitHub issues to pull from, similar high-quality
RTL repositories are not as available in the open-source domain. Instead, we engaged a team of
approximately 35 hardware engineers with more than 4 years of Verilog and verification experience
to author problems across 13 task categories and difficulty levels, in both Non-Agentic and Agentic
formats.

In addition, subject matter experts with doctoral degrees in hardware design and/or engineering
management experiences also reviewed each problem for accuracy, task fit, and appropriate scope,
with intensive manual review during initial calibration batches to ensure data quality and task
alignment. Once categories stabilized, LLM-based filtering was used to catch errors, such as missing
context or incorrect category, and score ambiguity and consistency of the prompt. Sanity checks
ensured all reference solutions passed and incomplete contexts failed as expected. Of the 1,313
problems written, 783 were retained after quality filtering described in Section [3] As with any
codebase, a benchmark cannot be entirely bug-free (Ho et al.| (2025)). Errors may cap maximum
achievable scores, and updated benchmark versions will be released as needed.

Each datapoint, or “problem,” represents a multi-file repository extracted at evaluation time. A test
harness—typically a CocoTB (CocoTB|(2025)) simulation script—assesses correctness based on
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task type. CocoTB is a Python verification framework for testing RTL, and helps to automate the test
harness. BLEU (Papineni et al.|(2002)) scoring is used where code or natural language snippets are
expected verbatim, while technical natural language answers are scored using LLM-based subjective
judging.

We distinguish between the festbench (SystemVerilog provided in-context) and the test harness (used
only for evaluation). Models or agents may generate or use a testbench but never see the test harness
or reference solution.

2.1 TASK CATEGORIES

Categories in the initial XYZ release (Table[I]) are grouped into two main areas: Code Generation
and Code Comprehension. Code Generation covers RTL-focused tasks such as code completion,
transforming natural language specifications to RTL, modifying or reusing existing modules, and
improving code for linting or quality-of-results (QoR). It also includes design verification tasks like
testbench stimulus and checker generation, assertion creation, and debugging. Code Comprehension
includes matching specifications to RTL or testbench code (and vice versa), as well as technical
question answering on both RTL and testbench content. These categories reflect common subtasks in
real-world hardware design and verification workflows.

Non-Agentic problems are evaluated in a single-turn setting where the prompt and context are fully
provided to the model. In contrast, Agentic problems run inside a Docker container, allowing an agent
to inspect a mini-repository and invoke tools (e.g., simulators). For both Non-Agentic and Agentic
problems we limited datapoint creation to oracle contexts, where models are provided only the
minimal, relevant information needed to complete the task, bypassing the need for retrieval or broader
context understanding. However, this is not a technical limitation of the benchmark infrastructure
and a full-repository context could be added to future datapoints.

Category volumes were based on likely deployment scenarios. Most task categories include both
Non-Agentic and Agentic datapoints, but some were designed as Non-Agentic-only or Agentic-only
based on their expected use case—e.g., simpler tasks for single-turn model inference, and more
complex tasks requiring tool use for agentic evaluation.

Each datapoint includes the context and a golden reference solution. Supporting materials—such as
related module documentation, testbenches, or editable starter code—were included as needed. The
benchmark is packaged as two JSONL files: one for Non-Agentic and one for Agentic datapoints.
The table shows the mean and maximum prompt and context token counts for each category, as
estimated using the tiktoken ¢1100k_base encoding.

Volume Tokens Mean/Max (k)
ID |Category Description Non- Agentic Non- Agentic
Agentic Agentic
Code Generation
¢id02 | RTL - Code Completion 94 0 1.5/4.5 -
cid03 | RTL - Natural Language Spec to Code 78 37 1.2/6.9 2.77.9
cid04 |RTL - Code Modification 56 26 2.0/4.6 5.7119.5
¢id05 | RTL - Spec to RTL (Module Reuse) 0 26 - 7.4/28.5
¢id07 | RTL - Code Improvement (Linting/QoR) 41 0 1.9/5.9 -
cid12 | Design Verification - Testbench Stimulus Gen. 68 18 1.4/6.2 2.1/4.6
cid13|Design Verification - Testbench Checker Gen. 53 18 2.8/7.3 4.5/10.7
cid14 | Design Verification - Assertion Generation 68 30 2.6/7.5 4.8/14.6
cid16 | Design Verification - Debugging / Bug Fixing 36 11 2.3/6.5 3.9/14.5
Code Comprehension
¢id06 | Correspondence - RTL to/from Specification 34 0 1.6/5.5 -
¢id08 | Correspondence - Testbench to/from Test Plan 29 0 3.1/6.1 -
¢id09 | Question & Answer - RTL 34 0 1.1/5.0 -
cid10 | Question & Answer - Testbench 26 0 3.6/4.8 -
Total # of Problems 617 166

Table 1: Comparison of Non-Agentic and Agentic problem counts by task category.
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2.2 DATAPOINT AUTHOR GUIDELINES

Datapoint writers were instructed to cover a range of human-tagged difficulty levels—easy, medium,
and hard. Since proxies like lines of code or gate count poorly capture true complexity (e.g., a 32-bit
16:1 multiplexer may be written succinctly or verbosely), writers were told to prioritize clarity and
best coding practices over artificial complexity.

Non-Agentic problems include only easy and medium tasks, while Agentic problems span all
difficulty levels, as hard problems are too complex for single-turn evaluation. Writers were also
asked to diversify topical coverage within each category, including: (1) FSM and control logic (e.g.,
Mealy/Moore, arbitration, counters); (2) Arithmetic and datapath (e.g., adders, multipliers, shifters);
(3) Interconnects (e.g., crossbars, routers, FIFOs); (4) Memory systems (e.g., caches, CAMs); and (5)
Architecture (e.g., CPUs, accelerators).

3 BENCHMARK INFRASTRUCTURE

The benchmark infrastructure is implemented in Python and includes callback interfaces to evaluate
custom models or agents. An overview of the evaluation flow is shown in Figure[I] Each datapoint
can be run with either the initial context or the reference solution, enabling self-checking of harness
validity. Harnesses use open-source tools where possible, including Icarus Verilog simulation
(Williams| (2023)), Yosys logic synthesis (Wolf and the YosysHQ contributors| (2025))), and Verilator
linting (Snyder and Contributors|(2025))). Some tasks (cid12-14) require commercial tools, currently
Cadence Xcelium (Cadence Design Systems, Inc) (2025). All agents and harnesses run inside
Docker containers to isolate evaluation artifacts, ensure tool consistency, and maintain security. Users
populate tool and agent images using provided templates. Configurable timeouts and retry counts
accommodate varying compute access.
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Figure 1: Benchmark Evaluation Flow.

The infrastructure includes a map feature for querying models across datapoints with custom
prompts—useful for prompt refinement or batch evaluation. The map feature also supports au-
tomated quality filtering using an LLM judge to score datapoints and remove low-quality examples.
Lastly, Agentic and Non-Agentic formats can be converted between to allow single-turn evaluation
on Agentic problems or multi-turn agent evaluation on Non-Agentic problems.

4 LLM BENCHMARK RESULTS

We evaluated state-of-the-art models on the XYZ dataset, including both Non-Agentic and Agentic
problems. Models evaluated include Anthropic Claude 3.7 Sonnet with and without Extended
Thinking (2023)), Claude 3.5 Haiku, OpenAl GPT 4.1 (20254d)), GPT ol
(OpenAlIl (2024)), o4-mini [OpenAll (2025b), Meta Llama 3.1 405B (Meta Al (2024a)), and Llama 3.1
70B (Meta Al (2024Db)). We report a pass@ 1 with n = 5 samples as the pass rate. The pass @k metric
is the probability that at least one sample passes among k samples, we estimate the expected value
of pass@1 across n = 5 samples. For Llama 3.1 405B and 70B, we set the decoding parameters to
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T = 0.2 and top-p = 0.7. For the other models we used the default temperature and top-p supported
by the API endpoint.

Tables 2] and 3] provide pass rates for the code generation tasks across models. Prior Verilog code gen-
eration benchmarks, such as VerilogEval v2 (Pinckney et al| (2025)), reported that LLaMA 3.1 405B
achieved a pass rate of 57% on specification-to-RTL tasks, with GPT-40 achieving a pass@1 of 63%,
the best result in that benchmark.

In contrast, the tables shows that XYZ presents a substantially greater challenge to state-of-the-art
models. The highest aggregate pass@1 rate observed was 34% (Claude 3.7 Sonnet), followed by
GPT-4.1—the successor to GPT-40—at 29%, and LLaMA 3.1 405B at 23%.

Agentic problems, when evaluated in single-turn format using a model, were even more challenging
overall—particularly for the OpenAl models. GPT-4.1 achieved a 21% pass@1 on Agentic tasks, 8%
lower than its Non-Agentic score. Claude 3.7 Sonnet’s pass rate dropped by 4% between Non-Agentic
and Agentic problems, while LLaMA 3.1 405B showed only a 2% drop, likely reflecting its inability
to solve many of the harder problems in either setting.

All reported results reflect the filtered dataset after automated quality control, as described in Section|2}
Prior to filtering, pass rates were lower by approximately 3% and 1.5% on average for Non-Agentic
and Agentic problems, respectively. These results highlight the difficulty of the XYZ benchmark
and the significant advancements still required before LLMs can be reliably deployed in complex,
real-world hardware design and verification workflows.

Generation pass rates vary significantly across categories, as shown in Table[2] Categories cid02—
04 correspond to RTL code generation and modification, cid07 covers code improvement tasks
(e.g., linting and QoR-focused modifications), and cid12—14 correspond to design verification tasks.
Category cid16 is also included in the generation evaluation.

Design verification categories—specifically testbench stimulus and checker generation (cid12-13)
and assertion generation (cid14)—exhibit substantially lower pass rates compared to other code
generation categories. This is examined in more detail in Section[5] Notably, state-of-the-art LLMs
consistently struggle to generate even syntactically valid testbench code, despite it being written in
the same hardware description language (SystemVerilog) as the RTL code generation tasks. This
discrepancy may stem from the more procedural and imperative nature of testbench code, as opposed
to the declarative structure typical of RTL logic.

Model Overall || cid02 | cid03 | cid04 || cid07 || cid12 | cid13 | cid14 || cid16
Claude 3.7 Sonnet 33.56% ||34.0% | 48.0% | 45.0% || 44.0% 53.0%

“ Thinking |33.04% |(35.0% [44.0% | 44.0% || 45.0% 51.0%
Claude 3.5 Haiku 28.0% 40.0% | 32.0% 31.0%
GPT 4.1 37.0% |44.0% |37.0% 45.0%
GPT ol 31.0%30.0% 33.0%
GPT o4-mini 47.0% 43.0%
Llama 3.1 405B 31.0% 32.0%
Llama 3.1 70B 26.0%

Table 2: Non-Agentic Code Generation Problems: Pass Rates Across Categories and Models.
Categories are grouped into RTL generation and modification, code improvement, testbench or
assertion generation, and debugging. Results are reported as pass@1 with n = 5 samples.

Agentic datapoints were converted to Non-Agentic format for evaluation, as no open-source, general-
purpose hardware design agent currently exists. Agentic generation pass@1 rates across categories,
shown in Table 3] follow similar trends to those observed in Table[2} Code Completion (cid02) and
Code Improvement (cid07) tasks are exclusive to the Non-Agentic dataset, while the Agentic dataset
introduces Spec-to-RTL Module Reuse tasks (cid05). These problems require composing multiple
existing RTL modules into a new top-level module, often with additional glue logic, to satisfy the
specified behavioral requirements.

As in the Non-Agentic results, Claude 3.7 Sonnet performs notably well compared to other models on
most RTL code generation and debugging categories (cid03—04, cid16). However, Claude 3.7 Sonnet
does not exhibit a significant advantage over other models on Spec-to-RTL Component Reuse (cid05),
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suggesting that while it excels at generating or modifying RTL code, it struggles with the more
complex task of composing existing RTL components to implement new functionality.

Model Overall || cid03 | cid04 | cid05 || cid12 | cid13 | cid14 || cid16
Claude 3.7 Sonnet 29.0% 53.0%

“ Thinking | 29.0% 56.0%
Claude 3.5 Haiku 55.0%
GPT 4.1 45.0%
GPT ol 36.0%
GPT o04-mini 38.0%

Llama 3.1 405B
Llama 3.1 70B

45.0%
45.0%

Table 3: Agentic Code Generation Problems: Pass Rates Across Categories and Models. Categories
are grouped into RTL generation and modification, testbench or assertion generation, and debugging.
Results are reported as pass@1 with n = 5 samples.

The Code Comprehension dataset is limited to Non-Agentic format and is scored differently from the
Code Generation problems. RTL/Testbench Correspondence tasks (cid06, cid08) are evaluated using
BLEU (Papinent et al. (2002)) scores, as the expected responses are code or natural language snippets
that should match a reference verbatim. RTL/Testbench Question & Answer tasks (cid09-10) are
scored using subjective, LLM-based evaluation: the model compares an actual response against the
reference solution in the context of the original prompt. The scoring prompt instructs the model to
emphasize information explicitly requested in the original question. For efficiency and availability,
GPT 04-mini is used as the scoring model.

As shown in the results, all LLMs perform well on the Question & Answer tasks, with minimal gains
observed from newer models over older ones. Since conversational QA has been a central application
area for LLMs, this may reflect the models’ maturity in chatbot-style environments. However, further
investigation is needed to assess the technical reliability of these scores.

Model Average Rating || cid06 | cid08 || cid09 | cid10
Claude 3.7 Sonnet 66.0% 63.0%|42.0%||78.0% | 82.0%

“ Thinking 71.0% 70.0% | 48.0% || 83.0% | 84.0%
Claude 3.5 Haiku 51.0% 27.0%||73.0% |83.0%
GPT 4.1 47.0% 82.0% |89.0%
GPT ol 43.0% 82.0% |83.0%
GPT o04-mini 49.0% 88.0% | 89.0%
Llama 3.1 405B 40.0% 75.0% | 78.0%
Llama 3.1 70B 38.0% 68.0% |77.0%

Table 4: Non-Agentic Code Comprehension Problems: Overall and Per-Category Scores. Categories
are grouped into Correspondence and Question & Answer problems. Results are reported with n = 5
samples.

5 FAILURE ANALYSIS AND INSIGHTS

We perform a systematic and detailed category-level analysis of the failed cases for each LLM to
identify the critical areas that need improvement in state-of-the-art LLMs across various Verilog
design categories (i.e., RTL coding, assertion generation, testbench generation, debugging, etc.).

The category-level failure analysis flow is shown in Algorithm[I] First, we leverage a reasoning
LLM (.e., ol) to reflect on the failed data points and project the failure reflections into a vector
space using SentenceTransformer (Line 2 to 5). Then, we apply the unsupervised K-means clustering
methodology (Sinaga and Yang| (2020)) to generate the optimal number of clusters based on the
maximum silhouette score (Line 8 to 14). Finally, we use a reasoning LLM (i.e., ol) to interpret and
summarize the category-level failures (CF), identifying the critical shortcomings of state-of-the-art
LLMs in Verilog design and verification tasks (Line 15 to 18).

We present category-level failure analysis results for Llama 3.1 405B, Claude 3.7 Sonnet, and GPT
4.1 in Table El We report the number of failed cases, number of clusters, the failure entity of the
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Ly = Kmeans(Fe, k)
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Sbest = Sks kbest = k; Lbest = Lk;
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: end for
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largest cluster, and its percentage share of the total failed cases within each category. We observe
that state-of-the-art LLMs particularly struggle with testbench stimulus generation (cid12), testbench
checker generation (cid13), and assertion generation (cid14). Compared to RTL coding (cid02—cid04,
¢cid07), the average number of clusters for design verification and debug problems (cid12—cid14,
cid16) is consistently higher across all three models—Llama 3.1 405B, Claude 3.7 Sonnet, and GPT
4.1 as shown in Figure[2a] In the design verification categories, in addition to syntax and functional
errors, failure entities include issues like "Misplaced SVA" and "Insufficient Coverage." To illustrate
the diversity of failure types within design verification problems, we present a cluster visualization
plot for Claude 3.7 Sonnet on Testbench Checker generat (cid13) using the PACMAP graph reduction
method (Wang et al|(2021)) in Figure [2b] which preserves both local and global distances.

Cat Model Name Pass Rate Category-Level Failure Analysis
) (%) # Failed [ # Clusters Failed Entity of Max Cluster Size Max Cluster Size (%)
Llama 3.1 405B 28.43% 73 2 | Arbiter meltdown;Metastability hazards 90.41%
¢id02 | Claude 3.7 Sonnet| 42.16% 59 2 | Data misalignment;Syntax errors 55.93%
GPT 4.1 37.25% 64 10 [ Encoding failures; Timing violations 18.75%
Llama 3.1 405B 29.29% 70 2 | Missing functionality 57.14%
¢id03 | Claude 3.7 Sonnet 48.48% 51 2 | Clock Domain;Protocol Violations 54.90%
GPT 4.1 39.39% 60 3 | Reversed indexing; Module mismatch 53.33%
Llama 3.1 405B 34.26% 71 2 | Protocol Handling;Datapath Logic 52.11%
cid04 | Claude 3.7 Sonnet | 45.37% 59 2 | bit-slicing errors; missing states 59.32%
GPT 4.1 37.96% 67 2 | Parameter Mismatch;Architecture Deviation 52.24%
Llama 3.1 405B 17.31% 86 3 | Logical Errors;Incomplete Implementation 40.70%
¢id07 | Claude 3.7 Sonnet| 36.54% 66 2 | Structural Breakage;Area Shortfall 54.55%
GPT 4.1 23.08% 80 2 | New mismatches;Unrequested signals 56.25%
Llama 3.1 405B 20.00% 80 3 | Missing coverage;Incorrect naming 52.50%
cid12 | Claude 3.7 Sonnet| 25.00% 75 4 | Missing timescale;Module mismatch 56.00%
GPT 4.1 12.00% 88 3 | Truncated Implementation;Missing Tasks 69.32%
Llama 3.1 405B 9.90% 91 4 | Incorrect synchronization;Insufficient coverage 35.16%
cid13 | Claude 3.7 Sonnet | 22.77% 78 6 | Syntax errors;Unmatched blocks 26.92%
GPT 4.1 8.91% 92 6 | Overhauled Testbench;Parameter Mismatch 28.26%
Llama 3.1 405B 11.00% 89 2 | Misplaced SVA;Operator Errors 60.67%
cid14 | Claude 3.7 Sonnet|  25.00% 75 2 | Flawed Timing;Syntax Mismatch 58.67%
GPT 4.1 13.00% 87 2 | Procedural Blocks;Syntax Deviations 58.62%
Llama 3.1 405B 34.65% 66 2 | Datapath flaw;Protocol mismatch 57.58%
¢id16 | Claude 3.7 Sonnet| 58.42% 42 9 | Faulty Reset Handling;Boundary Check Errors 30.95%
GPT 4.1 44.55% 56 10 [ Timer guard;Reset Logic 23.21%

Table 5: Failure analysis of Non-Agentic Generation, pass@1 (n=1). For each category, we show
#failures, #clusters, top failure entity, and max cluster share (#failed cases of max cluster/#failed

ca

ses).
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Figure 2: Failure Analysis on different problem categories. Visualization plot uses PACMAP graph

reduction method (Wang et al.| (2021)).

Lastly, we further analyze the Testbench Checker Generation set (cid13) after applying quality
filtering (as shown in Table [I), since state-of-the-art LLMs achieve the lowest pass rates in this
category, and a larger number of data points are filtered during the quality screening process among
the design verification categories. Figure [3| presents the cluster visualizations of Llama 3.1 405B,
Claude 3.7 Sonnet, and GPT-4.1 on design verification categories before and after quality filtering.
Compared to the unfiltered data, the number of failure clusters is reduced after quality filtering due to
decreased ambiguity and increased consistency in the problem descriptions. For Claude 3.7 Sonnet
specifically, the number of failure clusters drops from 6 to 2 after quality filtering, reflecting the
improved clarity of the case descriptions. In summary, our failure analysis reveals key challenges
and insights into where state-of-the-art LLMs struggle across RTL tasks—particularly in design
verification—offering valuable and comprehensive benchmarks for advancing LLM research in
hardware design and verification.

6 LIMITATIONS

The XYZ benchmark is designed to push the limits of existing LLMs and agents in solving real-world
hardware code generation tasks. While considerably more challenging for current large language
models than prior benchmarks—particularly in areas such as design verification and module reuse—it
does have limitations. The contexts of the Agentic datapoints are, on average, larger than those of
the Non-Agentic datapoints. However, the Agentic context remains an oracle context and does not
include files referencing additional units. The Question & Answer Code Comprehension datapoints
do not sufficiently challenge the LLMs, and a separate task category focused on specification creation
from RTL code may be more informative and demanding while addressing similar comprehension
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Figure 3: Failure cluster visualization of Testbench Checker set set (cid13) before/after quality filtered
using the PACMAP graph reduction method (Wang et al.| (2021)). After quality filtered, the # of
failure clusters is less because of improved ambiguity and consistency in prompt.

goals. Finally, the tasks in the benchmark are limited to standard hardware design and verification
tasks and do not encompass the full range of challenges a design or verification engineer might face
from project inception through fabrication. Specific academic and industry organizations may have
additional requirements, custom tooling, or specialized needs not fully addressed by XYZ.

7 CONCLUSIONS

XYZ comprises 783 human expert-authored problems across 13 hardware design and verification task
categories. The dataset spans Non-Agentic Code Generation, Non-Agentic Code Comprehension,
and Agentic Code Generation tasks. State-of-the-art LLMs achieve no more than 34% pass@1 on
Code Generation, revealing notable performance gaps—especially in design verification tasks such
as System Verilog testbench generation. Given the tooling-intensive nature of hardware workflows,
XYZ supports Dockerized agents and test harnesses for realistic tool interaction.

The Dockerized infrastructure not only enables sophisticated agent workflows, but also lowers the
barrier to entry. Because the benchmark can be executed within portable container images, host
system requirements are minimal and reproducibility across platforms is preserved. At the same time,
the container-based approach is inherently extensible, allowing integration of additional commercial
or open-source EDA tools, as well as future orchestration of full end-to-end flows.

While the current release focuses on common front-end design and verification tasks, semiconductor
workflows span a much broader continuum that is often highly complex and institutionally specific.
XYZ is designed with extensibility in mind, enabling incorporation of more advanced flows over time.
For example, the infrastructure includes support for multiple tests per datapoint, yielding finer-grained
diagnostic information about model performance and exposing more nuanced verification challenges.

Finally, the need for such infrastructure and datasets extends beyond the current benchmark. The
long-term advancement of Al for semiconductor design and verification will depend on scalable and
flexible evaluation environments that can evolve with the capabilities of both models and tools. By
providing a rigorous yet adaptable foundation, XYZ aims to help drive this progress and catalyze
continued research into Al-driven design flows.
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A INFRASTRUCTURE DETAILS

The XYZ Benchmark implements a modular, containerized framework for evaluating hardware
verification tasks, supporting both direct LLM evaluation and agent-based workflows. Its design
emphasizes reproducibility, extensibility, and rigorous evaluation under diverse toolchains and
environments.

The benchmark offers three complementary entry points that constitute the primary interface. The
main execution utility functions as a unified evaluation engine for both LLMs and agents, supporting
problem selection, model specification, and result collection. A companion utility extends this
functionality to statistical evaluation by executing repeated trials and computing reliability estimates
such as pass@k. A third utility generates structured reports from evaluation logs, providing both
single-run analysis and aggregated statistical summaries. Together, these utilities provide a full
workflow for executing, analyzing, and disseminating benchmark results. Configuration is entirely
environment-based, with layered support for default settings, environment variables, and overrides,
thereby enabling flexible deployment.

Two distinct evaluation paradigms are supported. In the non-agentic mode, language models are
integrated directly through API calls. The system manages prompt preparation, response collection,
and automated verification through containerized harnesses, enabling systematic comparison across
models. The agentic mode instead relies on user-defined containers that are mounted with full
problem contexts and toolchains, supporting iterative reasoning and tool use characteristic of agent
workflows. This dual structure ensures that both conventional and experimental methodologies can
be accommodated within a single framework.

Container orchestration is achieved through Docker Compose, which generates task-specific configu-
rations to isolate agent execution from test harness verification. Agent containers are constructed
around base images that encapsulate open-source hardware development environments, while ver-
ification harnesses rely on parallel configurations to ensure reproducible testing conditions. Two
standardized base images serve as building blocks: a verification image containing open-source
simulators (e.g., Icarus Verilog, Verilator) and an implementation image that includes Yosys for
gate-level synthesis challenges. These images are used as stable reference environments, ensuring
consistency across evaluations while allowing researchers to layer custom dependencies as needed.
For commercial evaluation scenarios, user-provided base images integrate enterprise EDA tools
such as Cadence Xcelium, with infrastructure support for license server connectivity and validation.
Researchers are expected to extend these base environments when developing custom agents, thereby
retaining compatibility with the verification pipeline while enabling specialized tool use.

Robust resource management ensures reproducibility even under constrained conditions. The system
monitors workspace directories to guard against uncontrolled file growth, applies configurable
timeouts to prevent indefinite execution, and automatically provisions isolated Docker networks
for evaluation runs. Network policies currently provide container-level separation and controlled
connectivity for commercial tool licensing.

Datasets are distributed in two complementary formats. A structured JSONL schema supports direct
LLM evaluation by defining prompts, context, expected outputs, and verification procedures. An
agentic schema expands these definitions into multi-file workspaces, enabling complex tool use and
iterative reasoning strategies. Automatic transformation utilities allow researchers to convert between
the two schemas while preserving semantic equivalence, ensuring that datasets can be reused across
paradigms.

Evaluation metrics combine objective and subjective components. Objective verification is provided
by the containerized test harnesses, yielding pass/fail results grounded in hardware development
practice. Subjective scoring complements this by assessing explanation and comprehension tasks.
Statistical extensions such as pass @k provide reliability estimates over repeated runs, accounting for
the stochastic behavior of both LLMs and agents. Category-specific evaluation protocols further tailor
metrics to the demands of code generation, comprehension, or design verification with commercial
EDA tools.

Extensibility is a central feature. New models can be integrated through lightweight adapter files that
register them with the evaluation framework, while local inference can be supported via standardized
export/import routines that decouple prompt preparation from response evaluation. Agent develop-
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ment is facilitated by containerized environments derived from Docker base images, allowing both
open-source and commercial toolchains. To support researchers, the framework includes development
templates and build scripts that provide practical starting points. These are intended as aids to custom
agent creation rather than as reference implementations.

Finally, the framework has been engineered for scalability. Evaluation can be executed sequentially or
in parallel, with automatic cleanup and resource monitoring to ensure stability under concurrency and
low model accuracy. Deployment is supported with low host requirements, and with an environment-
driven configuration system. This uniformity allows evaluations to be reproduced across diverse
computational contexts with minimal modification.

B COMPUTE REQUIREMENTS

Benchmark infrastructure development and model evaluation were performed on a virtual machine
with 12 virtual CPUs and 24 GB of RAM, running Rocky Linux 8.10. Disk usage per model evaluation
ranged from 6.4 GB to 15 GB, primarily due to errant RTL or testbench outputs generating large
simulation logs or Verilog Change Dumps (VCDs). A built-in disk monitor in the XYZ framework
checks each active datapoint run directory every second and aborts execution if its size exceeds
100 MB. Agents or models producing excessive output may trigger this limit. The framework also
supports run directory compression.

Models were evaluated via API endpoints and are not included in the compute resource figures. Token
usage per category can be estimated from Table[I]

C FAILURE ANALYSIS

Section [5] presented a category-level analysis; here, we examine two specific examples to better
understand where LLMs fail in generating correct code.

Input Prompt

Complete the existing “sorting_engine’ module given below to implement the **brick sort** Latency Considerations (Continued)
algorithm using finite state machine (FSM). - Perform N passes to completely sort the array.
- Each pass has N/2 isons and swaps.

[Brick sort description, algorithm example, and port list are omitted due to space constraints] - Each odd-numbered pass has N/2-1 comparisons and swaps.

- Each comparison-and-swap takes 1 clock cycle.
**Parameters** - 1 clock cycle to transition to "DONE’ state from the "SORT".
-'N’ (Default is 8, Greater than 0): Number of elements to sort. Assume "N is an even - 1 clock cycle to set the output sorted array and assert the "done’ signal after sorting is
integer complete.

- 'WIDTH' (Default is 8, Greater than 0): Bit-width of each input element
Latency Example:

Latency Considerations -N=4, WIDTH =4

Total latency = (N * (N- 1)) /2 + 4 -in_data=[0, 1, 2, 3]
Perform a single compare-and-swap operation per clock cycle (sequential approach): -out_data=3,2,1,0]

- 1 clock cycle for moving from *IDLE" state to "LOAD'. - Latency = 10 clock cycles

-1 clock cycle to load the data.

Golden Solution enerated orre olutio

[Only the core implementation is shown below due to space constraints] [Only the core implementation is shown below due to space constraints]
/I Compare-swap the current pair if (pair_idx < pairs_in_this_pass) begin
/I Check if we are within the valid pair range if (pass_cnt[0] == 1'b0) begin
if (pair_idx < pairs_in_this_pass) begin if (data_array[pair_idx*2] > data_array[pair_idx*2+1]) begin
if (pass_cnt[0] == 1'b0) begin //lssue 1: Mixed usage of blocking ‘=" and non-blocking ‘<=’ assignments
if (data_array[2*pair_idx] > data_array[2*pair_idx+1]) begin temp = data_array[pair_idx*2];
{data_array[2*pair_idx], data_array[2*pair_idx+1]} data_array[pair_idx*2] <= data_array[pair_idx*2+1];
<={data_array[2*pair_idx+1], data_array[2*pair_idx]}; data_array[pair_idx*2+1] <= temp;
end end
end end else begin
else begin // lssue 2: missing check to ensure ‘pair_idx*2+2’ is within the valid range
if (2*pair_idx+2) < N) begin if (data_array[pair_idx*2+1] > data_array[pair_idx*2+2]) begin
if (data_array[2*pair_idx+1] > data_array[2*pair_idx+2]) begin temp = data_array[pair_idx*2+1];
{data_array[2"pair_idx+1], data_array[2*pair_idx+2]} data_array[pair_idx*2+1] <= data_array[pair_idx*2+2];
<= {data_array[2*pair_idx+2], data_array[2*pair_idx+1]}; data_array[pair_idx*2+2] <= temp;
end end
end end
end pair_idx <= pair_idx + 1;
end end else begin
/ Issue 3: Updating ‘pass_cnt’ when pair_idx == pairs_in_this_pass
/I Update 'pass_cnt' in the same cycle as the last compare-swap to avoid a one-cycle delay // delays the update by one cycle after the last swap operation due to ‘<=" assignment,
if (pair_idx + 1 == pairs_in_this_pass) begin // causing a 1-cycle delay per pass,
pass_cnt <= pass_cnt + 1; // which accumulates to an N-cycle delay for N elements to sort
pair_idx <= 0; pass_cnt <= pass_cnt + 1;
end else begin pair_idx <= 0;
pair_idx <= pair_idx + 1; end
end

Figure 4: A failure case on brick sort algorithm implementation.
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C.1 CASE STUDY 1:

Figure [ highlights three critical flaws in the LLM-generated implementation of the brick sort
algorithm, despite the fact that this algorithm is generally well understood by leading language
models. First, the model carelessly mixes blocking (=) and non-blocking (<=) assignments, which
can result in unintended behaviors due to mismatched update semantics. Second, it fails to perform
bounds checking before accessing data_array [2+pair_idx+2], potentially leading to out-of-
range access. Most notably, the model delays updating the pass_cnt signal by one cycle after the
final compare-and-swap in each pass, causing an extra cycle of latency per pass. Since brick sort
performs exactly IV passes for an input of size N, this leads to a total of N additional clock cycles,
which violates the expected latency specified in the prompt.

These issues underscore a broader limitation of even the most capable LLMs: while they can
reproduce high-level algorithmic structure, they often fail to account for cycle-accurate control
sequencing, boundary conditions, and precise timing contracts critical for correct RTL behavior. The
resulting code may appear syntactically correct, yet lacks the semantic fidelity expected in hardware
design. This case study demonstrates that, despite recent advances, LLMs still fall short in generating
accurate RTL code.

Input Prompt

Complete the given sequential Arithmetic Logic Unit (ALU) module in Verilog that performs 3. Internal Configuration:

various arithmetic and logical operations based on an input opcode. The ALU should operate - A configurable 8-bit internal security key, ‘p_key’, with default to OxAA.
synchronously with a clock signal and include an active-low asynchronous reset to initialize
the output. Additionally, the ALU must incorporate a security feature that only allows
operations if a provided input key matches an internal configurable 8-bit key.

4. Functional Behavior:
- If ‘i_key_in" matches the internal key, the ALU operations are active and follow the behavior
described below:

## Design Requirements

1. Inputs:

-"i_clk’ (Clock signal)

-’i_rst_b" (Active-low asynchronous reset)
operand_a’ (4-bit input operand)

operand_b’ (4-bit input operand)

-"i_opcode’ (3-bit input signal to specify the operation)
-'i_key_in" (8-bit input security key)

- **Addition** ('i_opcode = 000°): Perform *i_operand_a + i_operand_b’.

- **Subtraction** (*i_opcode = 001"): Perform "i_operand_a - i_operand_b'.

- **Multiplication** ('i_opcode = 010°): Perform 'i_operand_a * i_operand_b’.

- **Bitwise AND** ("i_opcode = 011"): Perform "i_operand_a & i_operand_b’.

- **Bitwise OR** ("i_opcode = 100"): Perform "i_operand_a | i_operand_b".

- **Bitwise NOT** (‘'i_opcode = 101°): Negate "i_operand_a’ (i.e., ~i_operand_a’).
- **Bitwise XOR™* ('i_opcode = 110°): Perform "i_operand_a /" i_operand_b".

- **Bitwise XNOR** (‘i_opcode = 111"): Perform "~(i_operand_a " i_operand_b)".

[Only the core implementation is shown below due to space constraints]

case (i_opcode)
3'0000: // ADD
o_result <=i_operand_a + i_operand_b;
3'h001: // SUB
o_result <= i_operand_a - i_operand_b;
3'b010: // MUL
o_result <= i_operand_a * i_operand_b;
3'b011: / AND
o_result <= {{4'b0},i_operand_a & i_operand_b};
3'100: // OR
o_result <= {{4'b0},i_operand_a | i_operand_b};
3b101:/NOT A
o_result <= {{4'b0},~i_operand_a};
3'110: // XOR
o_result <= {{4'b0},i_operand_a " i_operand_b};
3'b111: // XNOR
o_result <= {{4'b0},~(i_operand_a " i_operand_b)};
endcase

2. Outputs: - If ‘i_key_in’ does not match the internal key:
- o_result” (8-bit result of the operation) - The output ‘o_result’ should remain 8'b0, and no operation is performed.
Golden Solution LLM-Generated Incorrect Solution

[Only the core implementation is shown below due to space constraints]

case (i_opcode)
3'b000: // ADD
o_result <=i_operand_a + i_operand_b;
3'h001: // SUB
o_result <= i_operand_a - i_operand_b;
3'b010: // MUL
o_result <= i_operand_a * i_operand_b;
3'b011: // Failed to account for different bitwidths between input and output
o_result <= i_operand_a & i_operand_b;
3'h100: // OR
o_result <= i_operand_al i_operand_b;
3b101: /NOT A
o_result <= ~i_operand_a;
3'b110: / XOR
o_result <= i_operand_a ” i_operand_b;
3'b111: // XNOR
o_result <= ~(i_operand_a * i_operand_b);
endcase

Figure 5: A failure case on ALU implementation.

C.2 CASE STUDY 2:

Apart from their difficulty in reasoning about timing behavior, Figure [5] reveals a second critical
limitation of LLMs for RTL coding: a tendency to ignore explicit bit-width handling. The incorrect im-
plementation overlooks the width mismatch between the 4-bit operands (i_operand_a, i_operand_b)
and the 8-bit output (o_result) for all bit-wise operations (AND, OR, NOT, XOR, XNOR). In RTL
coding, assigning a 4-bit expression to an 8-bit target triggers an implicit zero-extension of the most
significant bits. While this compiles, it silently violates the intent of specification: the upper four bits
should be explicitly cleared so that downstream logic can rely on deterministic, intentionally driven
zeros. The golden solution makes that intent explicit with {{4’b0}, ...} concatenations.

D QUALITY FILTERING

Automatic quality filtering proceeds in two stages. The first stage applies sanity checks to the test
harness: it must pass with the reference solution and fail with the initial context. The former ensures
consistency between the test harness and the reference solution, while the latter confirms that a correct
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solution is required and the initial context does not already satisfy the task. Of the 1,313 initial
datapoints, 78 were excluded due to failing these sanity checks.

The second stage of quality filtering uses LLM-based judging with four metrics: ambiguity, consis-
tency, category match, and behavioral match (Figure[6). The prompt used for this LLM quality judge
is shown in Listing[I] It also includes fields for prompt refinement, enabling automated revisions
of ambiguous or incorrect prompts; however, we do not report results from that experiment in this
work, as further vetting is needed to ensure such revisions do not result in overly descriptive or trivial
prompts. When running XYZ in map mode with the LLM judge, the output is a scored JSONL
file with additional metadata fields. Post-processing scripts then combine the four metrics into an
aggregate score and remove low-scoring problems. For this work, we used a threshold of 8.0 for a
passing score. The final filtered JSONL dataset excludes the scoring fields.

The number of problems filtered per category is shown in Table[6] an expanded version of Table
Code Improvement (cid07) and Debugging (cid16) saw the most filtering, while Code Completion
(cid02) saw the least. Pass rate changes resulting from quality filtering are shown in Table[7} Claude
3.7 showed a 10-14 point increase in pass rate for Code Improvement and Debugging, as did Spec-
to-RTL (cid03) and Code Modification (cid04). Interestingly, Testbench and Assertion Generation
(cid12-14) saw little improvement despite aggressive filtering, as shown in Table[6} This supports our
findings in Section ] that existing LLMs struggle fundamentally with generating correct and accurate
SystemVerilog testbench code.

You are an expert at refining code challenge datapoints.

Analyze the provided datapoint and improve it, focusing ONLY on enhancing the ’'prompt’ field.
Improvements should be subtle and nuanced, and should not change the overall meaning of the datapoint,
but should make the datapoint more precise and helpful in solving the problem.

The ’input’, ’output’, ’categories’, and ’'harness’ fields MUST remain unchanged and are provided

only for reference to help you understand the task better. Return a complete datapoint JSON structure
with an additional ’reasoning_prompt’ field that explains your improvements, along with ’ambiguity_score’
and ’consistency_score’ fields that evaluate the quality of the original datapoint.

You should also include a 'category_match_score’ field that evaluates how well the category tag in the
original datapoint matches the category tag in the ’categories’ field, where 1 means no match and 10
means a perfect match. With this, include a ’'reasoning_category_match’ field that explains your
reasoning for the category match score.

Additionally, provide a ’behavioral_match_score’ field that evaluates how well the logic and behavior
described in the prompt matches the actual logic and behavior in the output reference solution and what
is checked in the test harness. Include a ’'behavioral_match_reasoning’ field explaining your assessment
of this behavioral alignment.

I need help refining this code challenge datapoint (ID: {id}) .

Here is the original datapoint:
‘Y 'json
{Jjson.dumps (datapoint, indent=2)}

IMPORTANT CONSTRAINTS:
— You can ONLY modify the ’prompt’ field
— The following fields MUST remain exactly as they are in the original:
* ’input’: The input to the code challenge
* ’output’: The expected output of the code challenge (the "reference solution")

* ’'categories’: Includes the difficulty ("easy", "medium", "hard") and the category tag. The category tags
below are the only ones that are allowed:

* ’cid002’: "RTL Code Completion: Input must be skeleton code, and output must be the complete RTL code."

* 'cid003’: "Specification to RTL Translation: Input must be a natural language specification, and output
must be the complete RTL code."

* 'cid004’: "RTL Code Modification: Input must be existing RTL code and natural language specification of
the changes to make, and output must be the modified RTL code."

% "cid005’: "Specification to RTL Translation - Module Instantiation and Component Reuse: Input must be a

natural language specification, and output must be the complete RTL code with module instantiations
and component reuse."

* ’cid006’: "RTL Correspondence (Match RTL to Specification or vice versa): Input must be an RTL code and
a natural language specification, and output must be the RTL code that matches the specification, or
vice-versa."

* 'cid007’: "RTL Lint Improvement or Power-Performance Optimization: Input must be an RTL code and a
natural language specification of the changes to make, and output must be the linted or optimized
RTL code. For power-performance optimization, the specification should clearly specify criteria of
area redunction or latency changes."

* ’cid008’: "Testbench Correspondence (Match Testbench to Test Plan or vice versa): Input must be a
testbench and a test plan, and output must be the testbench that matches the test plan, or vice-
versa."

* 'cid009’: "Question & Answer on RTL: Input must be an RTL code and a question, and output must be the
answer to the question based on the RTL code."

* ’cid010’: "Question & Answer on Testbench: Input must be a testbench and a question, and output must be
the answer to the question based on the testbench."

% ’cid012’: "Test Plan to Testbench Stimulus Generation: Input must be a test plan, and output must be the

stimulus for the testbench without any logic to check the output of the device under test."

% "cid013’: "Test Plan to Testbench Checker Generation: Input must be a test plan, and output must be the
checker for the testbench that can be used to verify the output of the device under test along with
stimulus generation. The input might also include an existing stimulus-only testbench, in which case
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the output should be a checker that can be used to verify the output of the device under test along
with the existing stimulus."
* ’cid014’: "Test Plan to Assertions Generation: xxMustxx be about generating assertions for the testbench
The input will include a test plan and existing testbench, and the output must include the
assertions for the testbench."
% ’cid016’: "RTL Debugging and Bug Fixing: xxMust** be about fixing an existing bug in the RTL that is
leading to incorrect output. The input will include an RTL code and a testbench, and the output must
include the fixed RTL code."
* ’harness’: The harness that the code challenge uses to eveluate the output
— These fields are provided only as reference to help you understand the task
- You don’t need to include these unchanged fields in your response - only include ’prompt’, ’reasoning_prompt
', and the score fields
— When in doubt, be more critical of the datapoint and give lower scores. Critical information may be missing
from the datapoint, or there may be a bug in the harness and reference solution in matcing a
specification in the prompt.
— The person who will be using the refined datapoint **will not be granted accessxx to the reference solution
or harness, so they must rely on the datapoint (prompt, input, context, etc.) and their own knowledge to
make the best possible solution. Therefore, refrain from referring to the src/ directory in any prompt
revisions.

Please provide a refined version of the datapoint that:
1. Clarifies and enhances ONLY the ’prompt’ field
2. Makes the instructions more precise and helpful based on examining the input, output, and test harness
3. Adds hints or clarifications that would help a senior hardware engineer succeed
4. Should not solve the problem in the refined prompt - only add hints or critical clarifications that would
not be assumed by a senior hardware engineer
Maintains the exact same structure for all other fields (if you include them)
Adds a ’reasoning_prompt’ field explaining your improvements and why they help
7. Includes an ’'ambiguity_score’ rating from 1-10 for the original prompt (1 = very vague/impossible to solve,
10 = perfectly clear)
8. Includes a ’consistency_score’ rating from 1-10 for how well the original problem components align (1 =
inconsistent between prompt/input/output/harness, 10 = perfectly consistent)
9. Includes a ’category_match_score’ rating from 1-10 for how well the category tag in the original datapoint
matches the category tag in the ’categories’ field (1 = there is a better category for the datapoint, 10
= perfect match)
10. Includes a ’'behavioral_match_score’ rating from 1-10 that evaluates how well the logic and behavior
described in the prompt matches the actual logic and behavior in the output reference solution and what
is checked in the test harness (1 = significant mismatch, 10 = perfect behavioral alignment)

o U

The ’reasoning_prompt’ field should contain your justification for the prompt improvements you made, what
issues you addressed, and how these enhancements will help the model succeed. Your reasoning should also
address the three scores (ambiguity, consistency, and category match) in your explanation.

The ’ambiguity_score’ should reflect how clear or ambiguous the original prompt was, where 1 means extremely
vague/impossible to understand and 10 means completely clear with no ambiguity. Ambiguity is a measure
of how well a senior hardware engineer would be able to understand the prompt and solve the problem
without having to iterate multiple times.

The ’'reasoning_ambiguity’ field should explain your reasoning for the ambiguity score.

The ’consistency_score’ should reflect how well the various components of the problem (prompt, input, output,
harness) align with each other, where 1 means severe inconsistencies and 10 means perfect alignment. In
particular, the prompt should match with the reference solution (’output’) and the harness very closely.

The ’reasoning_consistency’ field should explain your reasoning for the consistency score.

The ’category_match_score’ should reflect how well the category tag in the original datapoint matches the
category tag in the ’categories’ field. When scoring, consider if the task better fits in a different
category.

The ’reasoning_category_match’ field should explain your reasoning for the category match score.

The ’'behavioral_match_score’ should evaluate specifically how well the logic and behavior described in the
prompt matches the actual implementation details in the reference solution and what is being checked in
the test harness. It focuses on the technical alignment of the expected behavior versus what is actually

implemented and tested.

The ’'behavioral_match_reasoning’ field should explain your reasoning for the behavioral_match_score,
highlighting any discrepancies or strong alignments between the prompt’s behavioral specifications and
the actual implementation/testing.

Your JSON response can be minimal, containing just:

json
{
"prompt": "your improved prompt here",
"reasoning_prompt": "your explanation here",
"ambiguity_score": 8,
"reasoning_ambiguity": "your explanation for ambiguity_score here",
"consistency_score": 8,
"reasoning_consistency": "your explanation for consistency_score here",
"category_match_score": 8,
"reasoning_category_match": "your explanation for category_match_score here",
"behavioral_match_score": 8,
"behavioral_match_reasoning": "your explanation for behavioral_match_score here"

}

R

Or you can include the full datapoint structure if you prefer. The system will ensure other fields remain
unchanged.

Return the datapoint as valid JSON.
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Listing 1: Quality filtering prompt instructions.

Original Annotated JSON Post-
JSONL Full with Scores and Scored Process
Dataset Datapoint Benchmark Explanations Script

JSONL
Runner
Dataset

Map 2 Fuu Datapoint (Category,
mode | Prompt, Context, Harness,
¥ Ref. Solution)

LLM-Based Quality Judge

Ambiguity Score? Behavioral Score?

Category Score? Consistency Score?

Figure 6: Quality filtering flow.

Final JSON Dataset Only

Containing High Scoring
Datapoints

Type | ID

Unfiltered Volume Filtered Volume

Category Description % Filtered | Non-Agnt| Agentic | Non-Agnt| Agentic
Code Generation ¢id02 | RTL — Code Completion 7.8% 102 0 94 0
¢id03 | RTL — Natural Language Spec to Code 26.8% 99 58 78 37
cid04 | RTL — Code Modification 46.4% 108 45 56 26
¢id05 | RTL — Spec to RTL (Module Reuse) 35.0% 0 40 0 26
¢id07 | RTL — Code Improvement (Linting/QoR) 60.6% 104 0 41 0
cid12 | Design Verification — Testbench Stimulus 35.8% 100 34 68 18
¢id13 | Design Verification — Testbench Checker 45.0% 101 28 53 18
cid14 | Design Verification — Assertion Generation | 31.5% 100 43 68 30
¢id16 | Design Verification — Debugging / Bug Fix | 64.1% 101 30 36 11
Code Comprehension | cid06 | Correspondence — RTL to/from Spec 43.3% 60 0 34 0
¢id08 | Correspondence — Testbench to/from Plan 47.3% 55 0 29 0
¢id09 | Question & Answer — RTL 38.2% 55 0 34 0
¢id10 | Question & Answer — Testbench 48.0% 50 0 26 0
Total # of Problems 40.4% 1035 278 617 166

Table 6: Comparison of Non-Agentic and Agentic problem counts by task category, with percentage

of problems removed by filtering.

Model cid02 cid03 | cid04 cid05 cid07 | cidl12 cid13 cidl4 | cidl6
Claude 3.7 Sonnet
“ Thinking
Claude 3.5 Haiku
GPT 4.1
GPT ol
GPT o4-mini
Llama 3.1 405B
Llama 3.1 70B

Table 7: Change in pass@1 (n = 5) rates after quality filtering for Code Generation tasks. Positive

values indicate improved pass rates. Units are percentage points.

17



Under review as a conference paper at ICLR 2026

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

940
941 Model ¢id008 | cid009 ¢id010
Claude 3.7 Sonnet

942 “ Thinking
943 Claude 3.5 Haiku

GPT 4.1

944 GPT ol

945 GPT o4-mini

Llama 3.1 405B

946 Llama 3.1 708

947
948 Table 8: Change in average score (n = 5) after quality filtering for Code Comprehension tasks.
949 Positive values indicate improved performance. Units represent the difference in average score.

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
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E SUPPLEMENTAL: REPRODUCIBILITY

We recognize the central importance of reproducibility for both validating prior work and enabling
future advances. As this work introduces an evaluation benchmark, it is especially critical that the
community can reliably reproduce our reported results and then apply the same infrastructure for
consistent comparisons in future research. To this end, our benchmark infrastructure and dataset
are fully released under permissive open-source licenses and are publicly accessible on GitHub and
Hugging Face. The complete infrastructure—including Docker scaffolding, open-source EDA tool
images, and evaluation data points—allows independent researchers to validate our results directly,
while also serving as a shared foundation for future benchmarking studies. All released artifacts are
versioned, openly licensed, and designed for long-term accessibility by the community.

In accordance with ICLR’s double-blind review policy, we cannot provide direct repository links
within the submission. However, we confirm that these resources are publicly available today, and we
would be happy to provide the links to the track chair to verify their accessibility and reproducibility.
Community resources are also in place to continue maintaining and supporting the benchmark over
time.
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