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Abstract

CLIP, as a foundational vision language model,
is widely used in zero-shot image classification
due to its ability to understand various visual con-
cepts and natural language descriptions. How-
ever, how to fully utilize CLIP’s unprecedented
human-like understanding capabilities to achieve
better zero-shot classification is still an open
question. This paper draws inspiration from
the human visual perception process, where a
modern view is that when classifying an image
of an object, humans will first infer its class-
independent attributes such as background, orien-
tation, and illumination, and then classify based
on them. Similarly, we observe that providing
CLIP with the object attributes improves clas-
sification, and that CLIP itself can reasonably
infer the attributes from an image. Based on
these, we propose PerceptionCLIP, a training-
free zero-shot inference method. Given an im-
age, it first infers the object attributes, and then
does classification conditioning on them. Experi-
ments show that PerceptionCLIP achieves bet-
ter generalization, less dependence on spurious
features, and better interpretability. For example,
PerceptionCLIP improves average accuracy by
3.3% and worst-group accuracy by 24.8% on the
Waterbirds dataset.

1. Introduction
The CLIP model (Contrastive Language-Image Pretraining,
Radford et al. (2021)) is a foundational Visual Language
Model (VLM) that bridges the gap between the fields of
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vision and natural language. By pretraining on 400 million
image-caption pairs, CLIP can connect various visual con-
cepts with their corresponding natural language descriptions,
making it the foundation for numerous other visual language
models (Zhu et al., 2023; Liu et al., 2023; Dai et al., 2023;
Li et al., 2023b), diffusion models (Ramesh et al., 2022;
Rombach et al., 2022), and semantic segmentation mod-
els (Kirillov et al., 2023). Such remarkable understanding
capability of CLIP has an important application known as
zero-shot inference (Larochelle et al., 2008) — open-ended
image classification through natural language without ac-
cess to a validation set. It enables many challenging tasks
that suffer from little to no downstream data, such as model
deployment in the wild (Li et al., 2023a), medical image
classification (Wang et al., 2022) and satellite object recog-
nition (Ramaswamy et al., 2023).

While CLIP exhibits strong potential for zero-shot inference,
the corresponding methodology has not been systematically
investigated, leading to sub-optimal generalization, reliance
on spurious features (Yang et al., 2023), and lack of inter-
pretability (Menon & Vondrick, 2022). Current methods
treat the image classification as a text retrieval task, but
lack systematic investigation into the text prompts used.
For example, a basic method (Radford et al., 2021) uses
a simple template "a photo of a {class name}" to find the
most relevant class name, which however differs from the
captions provided by annotators in the pretraining data. An-
other method uses an ad-hoc selection of 80 templates for
ensemble, achieving better generalization, but it remains
unclear whether these templates are optimal or why they
are effective. These ad hoc zero-shot inference methods
may risk squandering CLIP’s understanding of both class-
dependent visual concepts and class-independent attributes
such as orientation and lighting (Figure 1).

Given the unprecedented human-like image and language
understanding of CLIP, a natural idea is to draw inspiration
from human visual perception for developing zero-shot in-
ference methods. Indeed, the classic neuroscience textbook
Kandel et al. (2013) offers a modern view of human visual
perception, presenting a significant difference from current
zero-shot inference methods:
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Figure 1. (Left): CLIP understands natural language descriptions of object attributes (here orientation). (Center): Compared to the basic
zero-shot classification method, which uses a fixed template for class name retrieval, our method first infers object attributes (here the
background), and then infers the class conditioning on the inferred attributes. (Right): The corresponding saliency maps obtained by
computing the gradient with respect to the classification loss showcase that our method focuses more on the core features (here the dog),
and is less distracted by spurious features (here the background).

"The brain analyzes a visual scene at three levels:
low, intermediate, and high. At the lowest level,
visual attributes such as local contrast, orienta-
tion, color, and movement are discriminated. The
intermediate level involves analysis of the layout
of scenes and of surface properties, parsing the vi-
sual image into surfaces and global contours, and
distinguishing foreground from background. The
highest level involves object recognition. Once a
scene has been parsed by the brain and objects
recognized, the objects can be matched with mem-
ories of shapes and their associated meanings."

"... the perceptual interpretation we make of any
visual object depends not just on the properties
of the stimulus but also on its context, on other
features in the visual field."

This perception process is hierarchical, cascaded, and
context-dependent, distinguishing it from the current single-
level zero-shot inference methods that overlook object at-
tributes. An example that reflects this view is that when
humans classify an object in an image, we almost always
know its additional class-independent attributes such as ori-
entation and illumination, as these pieces of information
are byproducts of the perception process. Moreover, when
presented with a rotated image, humans first infer that the
image is rotated and then calibrate the classification accord-
ingly.

In this work, we introduce PerceptionCLIP, a zero-shot
inference method that emulates human visual perception by
iteratively inferring and adjusting for the contextual features,
resulting in improved generalization, reduced reliance on
spurious features, and better interpretability. Our contribu-
tions are as follows:

Contributions. We formulate the contextual attributes of
objects as generative factors in the data generation pro-

cess, accompanied by textual descriptions understandable
to CLIP (§4.1). We also use the CLIP similarity score to ap-
proximate the probability distributions needed for inference
(§4.2). In doing so, we showcase that providing ground-
truth object attributes helps inference for CLIP (§5.1), and
that CLIP itself can infer object attributes reasonably (§5.2).

Based on the observations, we propose PerceptionCLIP
for zero-shot inference (§6), which automatically infers
generative factors and does class inference conditioned on
them. Prompt ensemble can be viewed as a special (yet
sub-optimal) case of PerceptionCLIP, thus explaining its
effectiveness. We empirically evaluate PerceptionCLIP

(§7) and show that it achieves better zero-shot generaliza-
tion, interpretability, group robustness, and less reliance on
spurious features.

2. Related Work
Descriptive prompts with external knowledge. Due to
CLIP’s ability to understand visual concepts at a finer gran-
ularity than just classes, such as body parts and components,
some work leverages external knowledge to expand the vi-
sual concepts associated with class names and incorporates
their descriptions into prompts to improve zero-shot clas-
sification. For example, Menon & Vondrick (2022); Pratt
et al. (2022); Mao et al. (2022) use large language models
(LLMs) such as GPT-3 to generate class-specific descrip-
tions for each class and integrate them into prompts, such
as "a photo of a hen, which has two legs". Novack et al.
(2023) use class hierarchies (existing or by querying GPT-3)
to generate sub-classes for each parent class and aggregate
model predictions on all sub-classes to get a final predic-
tion. In contrast, our method addresses class-independent
attributes such as background and orientation, whose com-
prehension by CLIP is not well-known. These attributes
are also combinatorial in nature, covering more aspects of
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an image than just a few class-exclusive components and
reducing distractions from spurious features.

Additionally, Roth et al. (2023) show that replacing the class-
specific descriptions in the prior work with random words
or even meaningless characters yields minimal impact on
performance, resembling the effect of noise augmentation
or randomized smoothing. Addressing this issue, we ablate
our method and show that random attributes or meaningless
characters yield approximately half the benefit compared to
using correct or self-inferred attributes, thus cannot explain
the effectiveness of our method. Roth et al. (2023) also
show that appending high-level class-independent descrip-
tions (e.g., Land Use for EuroSAT, Place for Places365) to
prompts helps classification, which aligns with our findings.

Prompt tuning. Another line of work that modifies prompts
to improve CLIP’s classification is prompt tuning, which op-
timizes the prefix characters of the prompts. Typical prompt
tuning methods require labeled (Zhou et al., 2022b;a; Zhu
et al., 2022; Derakhshani et al., 2023) or unlabeled down-
stream data (Huang et al., 2022; Mirza et al., 2023; Mengh-
ini et al., 2023), making them fall outside our scope of
zero-shot (data-free) classification. They are also prone to
overfitting the training dataset, whereas our method relies on
image attributes shared by common datasets. On the other
hand, Shu et al. (2022) use test-time prompt tuning that
applies to zero-shot classification. Specifically, they gen-
erate multiple views for each test image and optimize the
prompt to minimize the entropy of the model’s prediction
on these views. This method introduces several hyperpa-
rameters (e.g., data augmentations, confidence threshold,
optimization algorithm, learning rate) that require tuning on
a labeled proxy validation set. In contrast, our method, de-
pending on implementation, introduces either no additional
hyperparameters or only one (temperature). Furthermore,
our method is training-free and can work in the black-box
setting.

Reasoning and chain-of-thoughts. The inference process
of our method resembles the reasoning or chain-of-thoughts
in prompting LLMs (Wei et al., 2022; Yao et al., 2023),
where the model is prompted to give some intermediate step
results and then conditioning on them to give final results.
However, CLIP itself cannot do step-wise reasoning out of
the box, so our method manually prompts it through the
reasoning process.

3. Preliminaries
This section reviews the original method for the zero-shot
inference of CLIP. We also review the captions in the pre-
training data of CLIP to show its misalignment with the
description templates used for the zero-shot inference.

Notations. We use uppercase letters to denote random
variables, while the corresponding lowercase letters denote
their realizations. For a random variable Z, we use pZ(z) to
denote its probability mass or density function. For notation
simplicity, we omit the subscript Z when the function’s
meaning can be inferred from the input notation z.

Captions in the pretraining data. CLIP is pretrained on
a dataset of 400 million image-text pairs collected from
the internet. For each image, the text caption typically de-
scribes the visual object in the image, including the object’s
class and some of its attributes such as color, style, and
background (Radford et al., 2021). These captions are typi-
cally given by human annotators. For reference, we show
some caption examples in Table 1, which are chosen from a
comparable dataset LAION-400M (Schuhmann et al., 2021)
since the original pretraining dataset of CLIP is not made
public.

Table 1. Image caption examples from LAION-400M (comparable
to CLIP’s pretraining dataset).

Caption #1 Men’s Classics Round Bracelets Watch in Grey
Caption #2 stock photo of gremlins - 3 d cartoon cute green

gremlin monster - JPG
Caption #3 Medium Size of Chair: Fabulous Mid Century

Modern Chair Adalyn Accent In Red:

Zero-shot inference of CLIP. The original CLIP work
(Radford et al., 2021) uses the following method for zero-
shot visual classification. First, they manually design
a (prompt) template, represented by an annotation func-
tion α(y) = "a photo of a {classname of y}", that takes
the class index y as the input and outputs a text descrip-
tion. Then, we view the CLIP model as a score function
CLIP1 : Y × X → R via

CLIP1(y;x) ≜ ⟨ϕI(x), ϕT (α(y))⟩, (3.1)

which takes the label index y and the image x as inputs
and outputs a scalar value, known as the score, that falls
within [−1, 1]. The functions ϕI and ϕT represent the image
encoder and the text encoder, respectively, which include
the normalization operation before the final output. The
symbol ⟨·, ·⟩ denotes the inner product.

Lastly, with a set of candidate classes Y and an image x,
the method predicts the class ŷ as the one with the highest
CLIP score:

ŷ = argmax
y∈Y

CLIP1(y;x). (3.2)

Template ensemble. Moreover, Radford et al. (2021) pro-
pose to ensemble different templates to improve inference
performance. Specifically, they manually design 80 dif-
ferent templates {αi}80i=1 and use the following new CLIP
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score for inference:

CLIP80(y;x) ≜

〈
ϕI(x),

1
80

∑80
i=1 ϕT (αi(y))∥∥∥ 1

80

∑80
i=1 ϕT (αi(y))

∥∥∥
〉
.

(3.3)

Using such template ensemble improves zero-shot classi-
fication accuracy. For example, from 66.3% to 68.2% for
ViT-B/32 on ImageNet.

4. Problem Formulation
This section formulates the factors in the data generation
process with their corresponding text descriptions, which are
omitted or not systematically addressed in previous prompt
studies. Moreover, we approximate several probabilities us-
ing the CLIP score, providing interpretations. These forms
the foundation of our step-by-step reasoning method intro-
duced in subsequent chapters.

4.1. Structuring Generative Factors and Their
Descriptions

When observing an image, humans recognize not only the
class of an object but also its attributes, such as color, style,
and background. To formalize this intuition, we consider
the following data generation process.

Data generation process. Let Y denote the underlying
class label (e.g., dog or cat) that takes values in the label set
Y . Let each Zi, 1 ≤ i ≤ m be a certain generative factor
(e.g., illumination, orientation) that describes a certain at-
tribute of the object and takes values in the attribute set Zi

(e.g., bright and dark for illumination). Then, we consider
an image X to be generated as

Y → X ← {Zi}mi=1,

We only consider discrete Zi’s since we observe that CLIP
cannot effectively encode text descriptions of continuous
values.

Text descriptions for abstract generative factor values.
Each attribute set Zi only contains abstract discrete values
in the data generation process. To bridge these abstract
values with the corresponding text descriptions in captions,
we use an annotation function that reflects the linguistic
preferences of human annotators when describing specific
attributes of objects in natural language.

The annotation function α : Z → P(texts) maps an ab-
stract discrete value in Z to a random variable with a distri-
bution over all possible natural language text descriptions.
We reuse the notation α for simplicity, whereas its previous
appearance in Eq. 3.1 is a special case when the input is dis-
crete values in Y and the output random variable α(y) only

takes the value of one text description. Figure 2 illustrates
some examples.

Figure 2. Illustration of some generative factors, their abstract val-
ues, and the corresponding distributions over text descriptions
mapped by the underlying annotation function.

Note that the random text description may take the value
of an empty string. This is more likely for common factor
values in the dataset. For example, in the case of an upright
image, human annotators often overlook descriptions of its
upright orientation, whereas upside-down images usually
have explicit descriptions of their inverted orientation.

With multiple factors describing different attributes of an
object, we concatenate their descriptions together to form
the final text description for an image. We use ⊕ to denote
the concatenation operation that outputs a new random
variable α(y)⊕ α(z1)⊕ α(z2)⊕ ... from multiple random
variables α(y), α(z1), α(z2), ..., by concatenating their
values separated by a comma. For example, when y repre-
sents "dog" and z represents "upright", the concatenation
α(y) ⊕ α(z) can take the value of "a photo of a dog, up-
right".

4.2. Approximating Probability Distributions Using
CLIP-Score

CLIP score with generative factors. Since previous CLIP
scores do not explicitly consider the generative factors, we
define a new CLIP score function that models them. Specif-
ically, we define CLIP : Y × Z1 × · · · × Zm × X → R
via

CLIP(y, z1, . . . , zm;x) ≜ (4.1)〈
ϕI(x),

E ϕT (α(y)⊕ α(z1)⊕ · · · ⊕ α(zm))

∥E ϕT (α(y)⊕ α(z1)⊕ · · · ⊕ α(zm))∥

〉
.

CLIP score empirically captures generative factors. We
observe that the CLIP score is high for correctly matched
pairs of image and generative factors while low for incorrect
ones. Specifically, it showcases the following property:

CLIP(y∗, z∗i ;x
∗) ≥ CLIP(y, zi;x

∗), (4.2)
∀ y ∈ Y, ∀ zi ∈ Zi, ∀ 1 ≤ i ≤ m
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Figure 3. The averaged CLIP scores evaluated on the ImageNet test set. We apply different transformations to all the images to simulate
different generative factors. y∗ and z∗ denote the ground-truth label and generative factor value. zwrong denotes the wrong generative
factor value. random(z) indicates that the randomized description is used in the text prompt following (Roth et al., 2023). CLIP scores
indicate that CLIP has the knowledge of these generative factors and including the descriptions of correct generative factors in the text
prompt yields better alignment with the corresponding image.

Table 2. Some (Bayesian) probabilities and their approximations
using CLIP’s similarity scores.

Probability Approximation

p(y, z|x)
eCLIP(y,z;x)∑

y

∑
z e

CLIP(y,z;x)

p(y|x, z)
eCLIP(y,z;x)∑
y e

CLIP(y,z;x)

p(z|x)
∑

y e
CLIP(y,z;x)∑

z

∑
y e

CLIP(y,z;x)
or

eCLIP(z;x)∑
z e

CLIP(z;x)

where (y∗, z∗i ) are the ground-truth generative factors (con-
sider y also as a generative factor) Figure 3 illustrates the
empirical result.

Note that this property also aligns with the training objec-
tive of CLIP, since the contrastive training loss encourages
high scores for correctly matched image-caption pairs while
suppressing the score of incorrect ones.

Approximating probability distributions. Our sub-
sequent analysis involves calculating the conditional
probability p(y, z1, . . . , zm|x), p(y|z1, . . . , zm, x), and
p(y, z1, . . . , zm|x). Since the CLIP score can take negative
values and does not directly model any of them, we provide
two ways to approximate them using the CLIP score. For
notation simplicity, we use z to denote (z1, . . . , zm).

Table 2 shows the probabilities and our corresponding ap-
proximations. Observing the property in Eq. 4.2, our first
approximation method is to view the CLIP score as an en-
ergy function that can model p(y, z|x) by exponentiation
and normalization. The rest two probability distributions
can them be derived following the law of total probability.

5. CLIP Benefits from and Can Infer
Generative Factors

This section presents two empirical observations: First, ad-
ditionally conditioning on generative factors improves clas-
sification and mitigates spurious features. Second, CLIP
itself has a certain capability for inferring generative factors
from a given image. These two observations motivate our
step-by-step reasoning method in the next section.

5.1. Telling CLIP Generative Factors Helps It Inferring
Classes

To infer the class Y conditioning on the known generative
factor z, we compute argmaxy p(y|x, z) by resorting to
the approximation in Table 2:

argmax
y

p(y|x, z) = argmax
y

eCLIP(y,z;x)∑
y e

CLIP(y,z;x)
(5.1)

= argmax
y

eCLIP(y,z;x)

= argmax
y

CLIP(y, z;x),

where the second equality holds because
∑

y e
CLIP(y,z;x) is

a constant of y.

Then, we evaluate if additionally conditioning on the ground-
truth generative factors improves the inference accuracy of
the class Y . Specifically, given an image x∗, its ground-
truth generative factor z∗, and a randomly chosen generative
factor z′, we predict the class Y using the following three
methods and compare the average accuracy over all test
examples:

1. No generative factors considered:
argmaxy CLIP1(y;x).
Description example: "a photo of a {classname}."
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Figure 4. Visualization of the original image, the regions of core and spurious features, and three saliency maps corresponding to prompts
with different contextual descriptions.

2. Conditioned on the random generative factor:
argmaxy CLIP(y;x, zrandom).
Description example: "a photo of a {classname},
iaYo5n0Dli7."

3. Conditioned on the wrong generative factor:
argmaxy CLIP(y;x, zwrong).
Description example: "a photo of a {classname}, up-
right."

4. Conditioned on the ground-truth generative factor:
argmaxy CLIP(y;x, z

∗).
Description example: "a photo of a {classname},
upside-down."

Empirically verifying this hypothesis requires annotations
of the latent factors for each image, which are not available.
Therefore, we manually incorporate some latent factors into
the image generation process. Specifically, we first confirm
that most images in the ImageNet test set exhibit an upright
orientation, natural illumination, and standard image quality.
Then, we apply diverse transformations and corruptions
controlled by the corresponding latent factors to alter the
images. This incorporation of latent factors ensures that
their underlying ground-truth values are known and become
part of the generation process. Lastly, we use CLIP to do
zero-shot classification, providing descriptions for correct
or incorrect latent factors.

Result. Table 3 shows that conditioning on the correct latent
factors indeed increases the prediction accuracy of the label
when compared to conditioning on the incorrect ones, or
intuitively, telling CLIP the correct latent factors helps its
prediction. Furthermore, Figure 4 shows that conditioning
on the correct generative factors reduces reliance on spuri-
ous features, which cannot be achieved by using random
generative factors.

5.2. CLIP Can Infer Generative Factors

Our previous finding suggests improving the inference of
CLIP by providing it with the correct latent factors. How-
ever, manually annotating latent factors for each image is

impractical. Addressing this challenge, this section show-
cases the capability of CLIP to infer the correct latent factors
from a given image reasonably.

To infer the generative factor Z from a given image x, we
can compute argmaxz p(z|x) by resorting to one of the
two approximations in Table 2. The first approximation,
which conditions on all possible ys and then aggregates
them out, yields

argmax
z

p(z|x) = argmax
z

∑
y e

CLIP(y,z;x)∑
y

∑
z e

CLIP(y,z;x)
(5.2)

= argmax
z

∑
y

eCLIP(y,z;x),

where the second equality holds because
∑

y

∑
z e

CLIP(y,z;x)

is a constant of z. An example of the corresponding descrip-
tion is "a photo of a {classname}, {description of z}".

Similarly, using the alternative simpler approximation yields

argmax
z

p(z|x) = argmax
z

eCLIP(z;x)∑
z e

CLIP(z;x)
(5.3)

= argmax
z

eCLIP(z;x)

= argmax
z

CLIP(z;x).

An example of the corresponding description is "a photo of
an object, {description of z}".

To evaluate the inference of generative factors, similar to
the setting in Section 5.1, we construct randomly altered
images controlled by some manually incorporated genera-
tive factors with known ground-truth values. We apply each
data transformation randomly to half of the images in the
ImageNet test set while keeping the other half unchanged.
In this case, inferring the factor values is a binary classifi-
cation task with a random guessing accuracy of 50%. We
report the average accuracy over five runs.

Result. Table 4 shows that CLIP can predict the correct
generative variables with reasonable accuracy. This find-
ing suggests that we may bootstrap CLIP’s inference by
conditioning on the generative factors inferred by itself.
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Table 3. Classification accuracy (%) on ImageNet, conditioning on different generative factors.

Factor Acc
w/o z w/ random z w/ wrong z w/ correct z w/ self-infer z

vertical flip 51.17 52.02 (↑0.85) 52.19 (↑1.02) 52.48 (↑1.31) 52.54 (↑1.37)
90° rotation 57.02 58.38 (↑1.36) 58.23 (↑1.21) 58.75 (↑1.73) 58.30 (↑1.28)
elastic-transform 48.66 48.45 (↓0.21) 48.75 (↑0.09) 48.89 (↑0.23) 49.00 (↑0.34)
color-invert 35.29 36.12 (↑0.83) 35.89 (↑0.60) 36.72 (↑1.43) 36.80 (↑1.51)
solarize 49.79 49.74 (↓0.05) 50.20 (↑0.41) 50.49 (↑0.70) 50.54 (↑0.75)
blur 38.86 39.65 (↑0.79) 39.21 (↑0.35) 39.92 (↑1.06) 39.80 (↑0.94)
grayscale 59.51 59.67 (↑0.16) 59.48 (↓0.03) 59.98 (↑0.47) 60.04 (↑0.53)
bright 60.81 62.04 (↑1.23) 60.94 (↑0.13) 61.41 (↑0.60) 61.28 (↑0.47)
noise 14.16 14.88 (↑0.72) 14.75 (↑0.59) 15.66 (↑1.50) 15.68 (↑1.52)
snow 33.09 32.94 (↓0.15) 33.56 (↑0.47) 34.50 (↑1.41) 34.33 (↑1.24)
frost 31.08 31.91 (↑0.83) 31.76 (↑0.68) 32.63 (↑1.55) 32.81 (↑1.73)
fog 37.61 38.40 (↑0.79) 38.00 (↑0.39) 39.31 (↑1.70) 39.34 (↑1.73)
jpeg 33.67 34.80 (↑1.13) 35.11 (↑1.45) 35.39 (↑1.72) 35.47 (↑1.80)

average ↑0.64 ↑0.57 ↑1.16 ↑1.17

Table 4. The accuracy (%) of CLIP in predicting generating factors from images.

Factor vflip rotation elastic invert solarize blur gray bright noise snow frost fog jpeg Avg

W/ Y 76.30 68.65 72.03 78.67 74.67 62.91 84.67 56.98 66.00 86.56 82.39 89.11 66.66 74.28

W/o Y 75.77 61.58 66.37 80.79 82.11 73.99 70.19 62.17 79.68 86.75 81.19 95.28 67.49 75.64

6. PerceptionCLIP: Inference with Inferred
Generative Factors

In this section, we propose PerceptionCLIP. Given an
image, PerceptionCLIP first infers the generative factors
of the image and refines the factors using human knowledge.
Then, it infers the class of the image conditioning on the
generative factors. We also show that the template ensem-
ble can be viewed as a special case of PerceptionCLIP
that does not include human intervention in the inferred
generative factors.

Section 5 shows that inferring the class conditioning on
the ground-truth generative factors via argmaxy p(y|x, z)
improves the prediction accuracy for the class Y . How-
ever, ground-truth generative factors are often unavailable
in zero-shot inference. On the other hand, CLIP can infer
the generative factors from a given image with a certain
level of accuracy via argmaxz p(z|x). Building on these
observations, we propose to do zero-shot inference in two
steps.

Step one: inferring generative factors. Since CLIP cannot
perfectly infer the generative factors from a given image, we
construct a distribution p̂(z|x) that models the uncertainty,
instead of choosing the single most possible value. A natural
choice for constructing p̂(z|x) is to directly use the approxi-
mation of p(z|x) in Table 2. However, some existing results
suggest that CLIP’s estimation of long tail probabilities is
not accurate. Therefore, we truncate the top-k probabilities
of z in p(z|x) and re-normalize them to construct p̂(z|x).

Step two: inferring the class. Due to the imperfect infer-
ence of the generative factors, instead of conditioning on
a single inferred generative factor value, we use the con-
structed distribution p̂(z|x) and infer Y via

argmax
y

∑
z

p(y|x, z)p̂(z|x). (6.1)

A simplified single-step version. We can also directly use
the distribution p(z|x) for constructing p̂(z|x), which yields
a simplified implementation of PerceptionCLIP that es-
sentially does inference and conditioning on generative fac-
tors in one step. Specifically, it follows that

argmax
y

∑
z

p(y|x, z)p(z|x) = argmax
y

∑
z

p(y, z|x)

(6.2)

= argmax
y

∑
z

eCLIP(y,z;x),

where the second equality follows from the approximation in
Table 2 and by omitting the denominator which is a constant
of z and y.

The implementation includes: (1) for an input image, com-
pute the CLIP score with multiple templates that describe
all latent factors and class labels. (2) For each class label,
sum over the latent factors to marginalize them out and get
a score. (3) Choose the class label with the highest score.

Comparison. The one-step method, although simple in
implementation, has two drawbacks. First, it does not allow

7
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Table 5. Summary of generative factors and their descriptions. Here ϕ indicates an empty string.
Factor Value Descriptions

orientation ϕ, upside-down, rotated
background ϕ, in water, in forest, in sky, at street, at outdoor, at home, in office

quality ϕ, good, bad, low resolution, pixelated, jpeg corrupted, blurry,
, clean, dirty

illumination ϕ, bright, dark
quantity ϕ, many, one, large, small
perspective ϕ, close-up, cropped, hard to see

art ϕ, sculpture, rendering, graffiti, tattoo, embroidery, drawing, doodle,
, origami, sketch, art, cartoon

medium ϕ, video game, plastic, toy, plushie
condition ϕ, cool, nice, weird
color-scheme ϕ, black and white
tool ϕ, with pencil, with pen, digitally

Table 6. Zero-shot classification accuracy on five datasets using ViT-B/16. The best result in each column is highlighted in bold, while the
next two highest values are underlined.

Factors ImageNet ImageNetV2 ImageNet-R ImageNet-A ImageNet-Sketch

single template 66.72% 60.85% 73.99% 47.80% 46.16%
80 templates 68.32% 61.93% 77.71% 49.95% 48.26%

single factor

background 67.70% 61.91% 75.71% 49.13% 47.21%
illumination 66.91% 61.04% 74.60% 48.32% 46.08%
orientation 67.21% 61.04% 74.31% 47.88% 46.54%
quality 68.11% 61.78% 76.24% 50.41% 47.39%
quantity 67.57% 61.39% 75.22% 50.08% 46.57%
perspective 67.87% 61.36% 74.91% 49.55% 46.90%
art 67.42% 60.94% 77.08% 49.59% 47.95%
medium 67.22% 60.73% 76.30% 49.45% 46.78%
condition 68.30% 61.64% 75.51% 49.25% 47.25%
color-scheme 66.67% 60.70% 73.85% 48.07% 46.41%
tool 66.70% 60.61% 75.32% 48.28% 47.22%

composition of top 2 factors 68.49% 61.95% 77.64% 50.85% 48.18%
composition of top 3 factors 68.52% 62.01% 77.92% 50.53% 48.39%
composition of top 4 factors 68.50% 62.24% 77.95% 50.97% 48.79%

human intervention during the process of inferring latent
factors. Our validation reveals that CLIP does not always
infer latent factors well, whereas human intervention can
leverage prior knowledge to improve this. Second, the infer-
ence in the one-step approach prevents us from knowing the
inferred latent factors, which could be utilized to improve
the interpretability of the inference results.

Relationship to template (prompt) ensemble. Modulo the
difference in templates, this implementation recovers the
multi-template strategy adopted by the existing zero-shot
inference method of CLIP, thus explaining its effectiveness.
Nevertheless, the latter chooses the templates in an ad-hoc
way, whereas our experiments indicate that the use of more
diverse and systematic templates, describing all latent fac-
tors, further improves the inference of CLIP.

7. Experiments
In this section, we evaluate PerceptionCLIP in improving
zero-shot generalization, providing interpretable prediction,
improving group robustness, and mitigating spurious fea-
tures. Since our method is training-free and deterministic,
the quantitative results do not include error bars.

7.1. Improving Zero-Shot Generalization

We first evaluate the generalization of PerceptionCLIP
by using a single generative factor to show the effects of
different object attributes. Then, we extend the evaluation to
multiple factors. Finally, we show how PerceptionCLIP

can benefit from interventions on the inferred generative fac-
tors by leveraging prior knowledge. We test on the ImageNet
dataset (Deng et al., 2009) and its out-of-distribution vari-
ants, including ImageNetV2 (Recht et al., 2019), ImageNet-
R (Hendrycks et al., 2021a), ImageNet-A (Hendrycks et al.,

8
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Table 7. Average accuracy and worst group accuracy on the Waterbirds dataset.
ViT-B/32 ViT-B/16 RN50 ViT-L/14

Avg Worst Avg Worst Avg Worst Avg Worst

CLIP 72.25 50.07 79.53 26.48 78.98 27.88 84.21 35.98
PerceptionCLIP (Z={"on land", "on water"}) 81.14 65.11 81.48 16.20 82.38 33.02 86.49 46.42
PerceptionCLIP (Z={"on land", "on water", . . . }) 75.39 68.25 82.97 36.60 83.10 38.16 87.63 60.75

Table 8. Average accuracy and worst group accuracy on the CelebA dataset.
ViT-B/32 ViT-B/16 RN50

Avg Worst Avg Worst Avg Worst

CLIP 80.73 75.82 75.16 62.01 81.05 73.87
PerceptionCLIP (Z={gender}) 79.22 75.45 74.84 64.15 84.87 79.98
PerceptionCLIP (Z={gender, age, race}) 81.08 75.82 78.45 70.85 87.37 86.24

2021b), and ImageNet-Sketch (Wang et al., 2019).

Inference with single generative factors. We first uti-
lized GPT-3 to compile a set of possible generative factors.
This set systematically summarizes the generative factors
involved in the 80 hand-crafted templates (Radford et al.,
2021) and includes additional factors such as orientation,
background, and drawing tools. Table 5 provides detailed
descriptions of each factor and its potential values.

Table 6 presents the results of PerceptionCLIP. Here we
use the two-step method. Compared to using the simple
template "a photo of {class name}", considering almost
any single generative factor improves the results. How-
ever, the impact of different generative factors varied. For
example, considering only the quality factor (with 9 pos-
sible values) significantly improves accuracy, surpassing
prompt ensemble with 80 templates (Radford et al., 2021)
on ImageNet-A. Moreover, the most influential generative
factors differed for different datasets, which may be due
to their different data generation processes. For example,
all images in ImageNet-Sketch are sketches, making art a
crucial generative factor for image generation. This also
indicates that PerceptionCLIP works the best when the
considered generative factors cover the generation process
of the downstream dataset.

Inference with multiple generative factors. The bottom
section of Table 6 presents the results considering multiple
generative factors. To this end, we simply concatenate the
text descriptions of each generative factor using commas
for details). As the number of factors considered increases,
the classification accuracy gradually improves. By com-
bining three factors, PerceptionCLIP outperforms prompt
ensemble with 80 templates (Radford et al., 2021) on all
datasets.

Intervening during inferring generative factors. Since
CLIP’s inference on generative factors is not always ac-
curate, we leverage prior knowledge to intervene in this

Table 9. Results of intervening during inferring generative factors,
using temperature= 5, ViT-B/16, and considering the combination
of the top three factors.

W/o intervention W/ intervention
w/ y w/o y

ImageNet 68.26% 68.52% 68.49%
ImageNetV2 61.89% 62.01% 62.01%
ImageNet-R 77.65% 77.92% 77.96%
ImageNet-A 50.42% 50.53% 50.50%
ImageNet-Sketch 48.41% 48.39% 48.48%

process and test if it helps. This intervention requires the
two-step implementation of PerceptionCLIP. Here, we
consider smoothing out CLIP’s inference on generative fac-
tors to "acknowledge its uncertainty". To this end, we
introduce a temperature hyperparameter t that is greater
than 1 in p̂(z|x), or equivalently, replace eCLIP(y,z;x) with
eCLIP(y,z;x)/t and replace eCLIP(z;x) with eCLIP(z;x)/t in the
last row in Table 2. Table 9 (with t = 5) shows that this
intervention achieves modest but consistent performance
gains across different datasets.

7.2. Improving Group Robustness and Mitigating
Spurious Features

We evaluated the group robustness of PerceptionCLIP
through bird type classification on the Waterbirds dataset
(Sagawa* et al., 2020) and hair color classification on the
CelebA (Liu et al., 2015) dataset. In both datasets, each
image has an underlying group attribute unknown to the
model. These group attributes are background in Waterbirds
and gender in CelebA. They both spuriously correlate with
the class labels but do not causally determine the labels,
thus considered spurious features. When evaluating the
worst group accuracy, we group the images based on their
labels and group attributes, and evaluate the accuracy of
each group.
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Tables 7 and 8 show the results on the two datasets. When
the text prompts only describe the labels, such as "a photo
of a {landbird/waterbird}." and "a photo of a celebrity with
{dark hair/blond hair}.", the CLIP model exhibits biased
accuracy, with a significant discrepancy between average
accuracy and the accuracy of the worst-performing group.
This bias arises because CLIP overly relies on spurious
features, such as directly associating images with a water
background to the water bird class, instead of focusing on
the core features of the subject. By inferring and condi-
tioning on the group attribute, PerceptionCLIP reduces
reliance on spurious features and mitigates the bias.

8. Conclusion
Through systematic interpretation and structuring of the
prompt, we showcase CLIP’s abilities to understand and in-
fer the factors involved in the data generation process. Based
on this, we propose PerceptionCLIP, which achieves bet-
ter generalization, less reliance on spurious features, and
improved interpretability through self-inference and condi-
tioning of the generative factors. Our work showcases CLIP,
as a model with the unprecedented ability to communicate
with humans through natural language, still holds enormous
potential in zero-shot reasoning.
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