
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THUNDERKITTENS: SIMPLE, FAST, AND
Adorable KERNELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The challenge of mapping AI architectures to GPU hardware is creating a critical
bottleneck in AI progress. Despite substantial efforts, hand-written custom kernels
fail to meet their theoretical performance thresholds, even on well-established op-
erations like linear attention. The diverse hardware capabilities of GPUs might
suggest that we need a wide variety of techniques to achieve high performance.
However, our work explores whether a small number of key abstractions can dras-
tically simplify the process. We present THUNDERKITTENS (TK), a framework
for writing performant AI kernels while remaining easy to use and maintain. Our
abstractions map to the three levels of the GPU hierarchy: (1) at the warp-level, we
provide 16x16 matrix tiles as basic data structures and PyTorch-like parallel com-
pute operations, (2) at the thread-block level, we provide templates for overlapping
operations asynchronously across warps, and (3) at the grid-level, we provide sup-
port to help hide block launch, tear-down, and memory costs. We show the value
of TK by providing kernels that match or outperform prior kernels for a range of
AI operations. We match CuBLAS and FlashAttention-3 on GEMM and attention
inference performance and outperform the strongest baselines by 10 − 40% on
attention backwards, 8× on state space models, and 14× on linear attention.

1 INTRODUCTION

AI is bottlenecked by the problem of efficiently mapping AI architectures onto accelerated GPU
hardware. There has been a Cambrian explosion of ML architectures (Ho et al., 2020; Gu & Dao,
2023); however, the performance of these architectures remains substantially below their theoretical
potential, despite substantial effort to develop kernels, or GPU implementations. Notably, kernel
support has been poor even for softmax attention, which is used throughout industry. FlashAttention-
2 (Dao, 2024) suffered a 47% performance degradation when translated to the H100 GPU, and it
took over two years from the release of the H100 to develop FlashAttention-3 (Shah et al., 2024).

We are inspired by several approaches to supporting the development of AI kernels. Ideally, we
would have a framework that supports high performance for a breadth of primitives, while being
easy to use, learn from, and maintain. High performance C++ embedded libraries like NVIDIA
CUTLASS/CuTe (NVIDIA, 2017) contain a myriad of nested templates, while compiler based ap-
proaches like Triton (Tillet et al., 2019) provide users with simpler interfaces, but fewer optimiza-
tions. We ask how broad and fast we can go by choosing a small and opinionated set of abstractions.

The main vector of growth for accelerated compute is in specialized matrix multiply units. On
the NVIDIA H100 and NVIDIA A100 GPUs, BF16 tensor cores represent 15 − 16× the FLOPs
available relative to general-purpose BF16 / FP32 compute. Consequently, any high performance
framework must prioritize keeping tensor cores at high utilization whenever possible. However, all
kernels have non-tensor operations, too (like memory loads or the softmax in attention), and it is
crucial to minimize their overhead. This proposition is at the heart of our approach.

To understand the complexities and opportunities in building a simple, yet high performance frame-
work, we examine a simplified model of GPU parallelism, further detailed in section 2.1

1. Warp-level parallelism: Modern GPUs consist of tens of thousands of hardware threads which
execute in parallel. Threads are organized into small groups, “warps”, which execute instructions
1We discuss primarily NVIDIA, but the parallelism types hold across architectures, including AMD and

Apple GPUs; we provide experiments on an Apple M2 Pro in Appendix B.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Load and
store workers

Compute
workers

0

1

2

0

1

2

Shared
Buffers

Inputs

Output

Sync/Async loads and stores
from HBM to Shared memory

// Sync load to buffer slot 0
load(k_smem[0], K_global,
 idx0);

// Async load to buffer slot 1
tma::load_async(k_smem[1],
 K_global, idx1, bar);

// Async store from buffer slot 2
tma::store_async(O_global,
 o_smem, idx1);

PyTorch-like operations on
shared and register memory tiles

// In-register tiles
rt_fl<16, kv_height> attn_t;

// Tensor cores, SMEM ➔ registers
warpgroup::mm_ABt(attn_t,

q_smem[workid],k_smem[0]);

// Use non-tensor core units
exp(attn_t, attn_t);

Global Tensors

L2 Cache
50 MB, 12 TB/s

Swizzled shared tiles

HBM
80 GB
3 TB/s

In TK as:
rt<M, N>;

Tensor core register tiles

In TK as:
st<M, N>;

Reg
64 KB

130 TB/s

Shared
227 KB
33 TB/s

Figure 1: THUNDERKITTENS explores whether a small set of abstractions can enable performant
AI kernels. Inspired by PyTorch, we first provide tiles with managed layouts and operations over
these tiles. Second, we provide program templates for coordinating asynchronous workers – e.g.,
workers that load and store data, while other workers perform computations in fast memory.

together. Memory layouts determine how the logical data elements are mapped to physical thread
ownership. If multiple threads try to access the same region (“bank”) of memory, this can create
expensive serializations between the threads (called “bank conflicts”).

2. Block-level parallelism: Warps are grouped into “blocks” of threads, which can quickly share
data. Warps execute their instructions on physical execution units, and having more warps in a
block (called occupancy) can help run more instructions at the same time, reducing runtime. For
example, one warp can run tensor cores for matmul, while another uses the ALU for max.

3. Grid-level parallelism. GPUs run many blocks of threads at once, which communicate through
large but slow global memory (HBM). An on-chip shared L2 cache helps reduce memory laten-
cies and increase bandwidth if thread blocks reuse the same data. Thread blocks also face setup
and tear-down overheads, which can introduce “pipeline bubbles” that hurt performance.

Despite the apparent need for a myriad of techniques to leverage all these hardware capabilities, our
central technical finding is that indeed, for many AI kernels, a small number of key abstractions exist
that can simplify the process of writing high-performance kernels. Our exploration led us to develop
THUNDERKITTENS (TK), an AI kernel framework built around three key principles:

1. Tile data structures with managed layouts: Our interface is inspired by familiar ML frame-
works like PyTorch and NumPy (Paszke et al., 2019), as highlighted in Figure 2. At the warp
level, we use a 16×16 matrix tile as our basic data structure, maximizing compatibility with and
encouraging the use of tensor cores. TK automatically picks the optimal memory layouts for the
tiles to minimize bank conflicts while remaining compatible with specialized hardware instruc-
tions, avoiding user effort. We provide a set of parallel compute primitives over tiles, based on
the suite of operations in PyTorch (e.g., pointwise multiply, mma, exp, and cumsum over tiles).

2. Program template for asynchronous work: At the block level, TK provides a general kernel
template for coordinating asynchronous execution across warps in a thread block, built on the
producer-consumer paradigm (Dijkstra, 1968). The developer’s effort reduces to populating a
few boilerplate functions within this model, using our PyTorch-like operands, and the template
internally hides latencies through memory pipelines and synchronization primitives (Figure 1).

3. Grid scheduling for pipelining thread-blocks. At the grid level, we show TK can help devel-
opers reduce pipeline bubbles and improve L2 cache hit rates. Our template supports a persistent
grid, where we overlap memory loads across thread block boundaries.

We highlight the value of these abstractions for developers in two ways:

• Through our exploration, we identify a few fundamental tradeoffs between achieving different
types of parallelism including in setting the tile layouts (warp-level), occupancy (block level),
and block launch order (grid level). Through our ablation studies (Section 3), we show how the
simplified interface in TK gives users the control to navigate the tradeoffs.

• We validate the TK abstractions by providing kernels that match or outperform prior kernels for
a range of AI operations. We match CuBLAS GEMMs and FlashAttention-3 attention inference,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

PyTorch attention:

1 # imports
2 import torch
3 import torch.nn.functional as F
4
5
6 # compute Q@K.T
7 att = torch.matmul(
8 q, k.transpose(2, 3))
9

10 # compute softmax
11 att = F.softmax(
12 att, dim=-1,
13 dtype=torch.float32)
14
15 # convert back to bf16
16 att = att.to(q.dtype)
17
18 # mma att@V
19 output = torch.matmul(att, v)

THUNDERKITTENS attention:

1 // imports
2 using namespace kittens;
3 rt_bf<16, 64> k_reg, v_reg;
4 // load k from shared memory to register
5 load(k_reg, k_smem[subtile]);
6 // compute Q@K.T
7 zero(att);
8 mma_ABt(att, q_reg, k_reg, att);
9 // compute softmax

10 sub_row(att, att, max_vec);
11 exp(att, att);
12 div_row(att, att, norm_vec);
13 // convert to bf16 for mma_AB
14 copy(att_mma, att);
15 // load v from shared memory to register
16 load(v_reg, v_smem[subtile]);
17 auto &v_reg_c = swap_layout_inplace(v_reg);
18 // mma att@V onto o_reg
19 mma_AB(o_reg, att_mma, v_reg_c, o_reg);

Figure 2: A snippet of our attention kernel to show the PyTorch-like operations on tiles.

and outperform the strongest baselines by 10 − 40% on attention backwards, up to 8× on state
space models, and up to 14× on linear attention.

Our contributions are (1) showing a small and opinionated set of abstractions in TK that goes sur-
prisingly far for writing simple and performant kernels; and (2) providing a collection of performant
AI kernels. We hope that TK and its insights help improve the accessibility of AI kernels.

2 GPU FUNDAMENTALS

Figure 3: The software (and
physical) GPU hierarchy.

GPU tasks are divided into small programs called kernels.
A kernel typically loads data from high bandwidth memory
(HBM), performs work on it, and writes the outputs back to
HBM before concluding. Before we explain THUNDERKIT-
TENS’s abstractions, we provide background on GPU paral-
lelism at the warp, block and grid levels. We follow NVIDIA’s
terminology and focus on the H100 SXM GPU, though the
principles apply across GPU vendors and generations.

2.1 GPU HIERARCHY

The GPU software hierarchy closely follows its physical hardware hierarchy (Figure 3). Here, we
illustrate several of its most important components and aspects.

1. Warps consist of groups of 32 consecutive threads that operate on data in small but fast reg-
ister memory. These instructions run on physical execution units, and individual threads can
frequently occupy multiple specialized execution pipelines (below) at once through instruction-
level parallelism, and different warps can further occupy available execution hardware:

(a) Load and store units, to bring data into and out of registers. Advanced GPUs have also
introduced dedicated hardware acceleration (e.g. H100 Tensor Memory Accelerator) for
asynchronous bulk data movement between HBM and shared memory.

(b) General purpose compute pipelines, such as ALU for max,min, FMA for multiplies and
adds, and XU for complex operations like exp. Throughput differs across the pipelines.

(c) Accelerated matrix multiply hardware (tensor cores), which have most of the GPU compute.

Threads can temporarily stall for a variety of reasons, including (but not limited to) fixed instruc-
tion latencies, memory latencies, barriers, pipeline throttles, or instruction cache misses.

2. Thread blocks are groups of warps which together execute a kernel on a physical core, called a
streaming multiprocessor (SM). Although each SM has just four physical execution units, up to
64 software warps can simultaneously run on it (called “occupancy”). These collocated warps of-
ten contend on hardware resources: registers, shared memory, issue slots, and compute pipelines,
but together they can help keep many work streams running at the same time within each execu-
tion unit. Warps synchronize at barriers, during which they cannot issue new work.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Importantly, warps within the same block can quickly communicate through special shared mem-
ory (SMEM, 227 KB, 33 TB/s). To improve bandwidth, SMEM is grouped into 32 physical
“banks” of memory, which can serve memory simultaneously. However, if different threads try
to access the same bank at the same time (called a bank conflict), their accesses must be serial-
ized, which both increases access latencies and reduces available bandwidth. Hopper has limit of
255 registers per thread and attempts to request more, results in spills to the L1 cache. SMEM
can be reallocated as an L1 cache for fast access to frequently used memory like spilled registers.

3. Grids of multiple thread blocks are launched to run the kernel. The H100 SXM GPU has 132
physical SM’s which can run thread blocks at the same time. Although SM’s are capable of
collocating multiple thread blocks, most AI kernels can achieve high performance by simply
collocating more warps within a single thread block (increasing the occupancy).
Thread blocks on the same GPU share common memory resources: large but slow high-
bandwidth memory (80 GB, 3 TB/s), which has both the greatest latency and least bandwidth
of all GPU memory, and a smaller but faster hardware-managed L2 cache (50 MB, 12 TB/s).
There are overheads to scheduling blocks. First, the block launch incurs setup costs and although
this cost must be paid at least once at the initial kernel launch, kernels that continuously launch
many large blocks can incur further costs. Second, there are tail effect costs if the grid is sized
poorly. If a kernel of 133 blocks is executed on an H100 with 132 physical SMs, the kernel would
require two waves to execute, the first with full efficiency, and the second with < 1% efficiency.
More advanced schedules using independent CUDA streams can ameliorate these tail effects,
such as recent work on asynchronous tensor-parallel schedules Chang et al. (2024).

2.2 COST MODEL

Summarizing the above components, we show a simplified cost model for GPU parallelism below.
This cost model is inspired by the roofline model Williams et al. (2008). The overall kernel execution
time COverall is the sum of the following costs where memory costs are a combination of the latency
and bandwidth, and compute costs are a combination of latency and throughput.

COverall = max
(
CHBM,CL2,CL1,CShared︸ ︷︷ ︸

Memory

,CTensor,CALU,CFMA,CXU︸ ︷︷ ︸
Compute

)
+CSetup +CSync︸ ︷︷ ︸

Overhead

This model represents the ideal case of perfect overlapping between memory, compute, and tensor
core costs. A kernel’s actual cost will lie between the max and the sum of the terms, depending
on the workload properties (i.e., some operations are inherently sequential), and the implementation
efficiency. We aim to (1) reduce these individual costs, and (2) improve their collective overlapping.
In Section 3, where we detail TK, we connect our primitives and optimizations back to these costs.

2.3 GPU PROGRAMMING FRAMEWORKS

We are inspired by a number of related efforts to simplify the development of AI kernels, such as
NVIDIA CUTLASS/CuTe (NVIDIA, 2017) and Triton (Tillet et al., 2019).

CUTLASS’s myriad of nested CUDA templates helps power highly optimized AI kernels (Shah
et al., 2024; Bikshandi & Shah, 2023a;b) and fundamentally, the same kernels are expressible in
TK and CUTLASS, since both are embedded libraries, giving users the full power of C++. We take
a complementary approach by being rather opinionated about the abstractions. We ask: (1) How
far can we get with a small set of templates? and (2) Does concision sacrifice performance? An
appealing outcome is improved accessibility to AI researchers, since it can be challenging to fully
leverage the capabilities of CUTLASS (Bikshandi & Shah, 2023b). We find that even industrially
popular kernels written in CUTLASS, like FlashAttention-3, struggle from preventable issues like
bank conflicts. We seek abstractions that manage such issues for users. Most recent AI architectures
use high level compilers instead (Dao & Gu, 2024; Yang & Zhang, 2024; Fu et al., 2023c).

Triton, PyTorch (Paszke et al., 2019), TVM (Chen et al., 2018), TensorFlow XLA (Abadi et al.,
2016), and others approach the problem from a compiler perspective. The frameworks are not C++
embedded, so it can be challenging to use unsupported specialized hardware instructions. It can
also be difficult to manage asynchronous execution and register usage in high level frameworks. We
explore avenues that retain the simple, PyTorch-like feel while enabling maximum performance in
the next section. An extended discussion of related work is in Appendix A.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 THUNDERKITTENS

We present THUNDERKITTENS (TK), a framework designed to simplify the development of high-
performance AI kernels while leveraging the full capabilities of modern GPUs. This section (1)
introduces our key programming abstractions and (2) shows how they can help developers navigate
the tradeoffs between different types of parallelism. Section 3.1 focuses on warp level, Section 3.2
on thread block level, and Section 3.3 on grid level parallelism.

As running examples in this section, we show how TK helps optimize attention (Vaswani et al.,
2017) and GEMM kernels. Section 4 demonstrates how the principles yield performant kernels for
a breadth of AI operations (e.g., attention variants, convolution, SSM, rotary).

3.1 WARP PARALLELISM WITH FAMILIAR DATA STRUCTURES AND OPERATIONS

At its core, THUNDERKITTENS is built on two fundamental abstractions – tile data structures
at each level of the memory hierarchy and bulk operands on tiles akin to the familiar suite of
operations in PyTorch and NumPy. We first define the abstractions, and then show they can help
developers navigate tradeoffs between the tile sizes and compute efficiency.

Programming abstractions TK is heavily inspired by PyTorch and NumPy, given their familiar-
ity to ML audiences (Paszke et al., 2019). We provide a concise set of parallel compute operations,
based on the suite of operations in PyTorch (e.g., in Figure 2). The operations are executed by a
“worker” abstraction, or a warp or warpgroup (4 warps) of threads that collaboratively own and
operate on a piece of data. TK uses a 16 × 16 matrix tile as its basic data structure, designed to
maximize compatibility with tensor cores. We provide tiles for each level of the memory hierarchy:

1. Register tiles and vectors, which are templated by type, shape, and layout. In Figure 2 we initial-
ize a bfloat16 type tile with a column-major layout, height 16, width 64. The explicit control of
register memory can help users reducing CMemory in Section 2.

2. Shared tiles and vectors, which are templated by type and shape.
3. Global layout descriptors: We set up HBM loads and stores as indexing into 4D tensors, where

the dimensions can be known at runtime or compile-time (saving valuable registers).

An advantage of these tile-based abstractions is that they enable TK to statically check layouts and
operations, which is important because GPU kernels are often difficult to debug. For example, an
in-register tensor core multiply mma AB requires A to be in a row-major layout, and B to be in a
column-major layout, and TK can raise compile-time errors if these conditions are not met.

Figure 4: Shared memory bank layouts, illustrated for a 16x64 16-bit tile; each memory bank has
its own color. Top left: A naive, row-major layout. Although loading rows is efficient, loading into
a tensor core register layout suffers 8-way bank conflicts. Top right: A padded layout, which has
no bank conflicts but consumes additional memory. Bottom: Two of TK’s selected layouts, with
compile-time selection based on width. (Bank conflicts are unavoidable for some tile sizes while
maintaining good hardware support.) These layouts have 2-way and no bank conflicts, respectively.

Choosing a memory layout Layouts specify how logical data elements are mapped to physical
thread ownership. Different tile sizes, types, and hardware-accelerated instructions benefit from
different layouts, and some layouts lead to bank conflicts Our goals are:

• We want our register tiles (the fastest GPU memory) to by-default keep memory in the layouts
required by tensor core units (the fastest GPU compute units). Shown in Figure 1 (Left), where

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

each color represents a different thread’s ownership over the data elements, the tensor formats are
rather difficult to use and reason about, highlighted in our discussion of naive layouts in Figure 4.

• We want to support the use of hardware-accelerated instructions (e.g., asynchronous matrix mul-
tiply and bulk copy instructions), which also require specific shared memory layouts.

In TK, we simplify to 3 layouts – swizzled on 32, 64, and 128 byte boundaries – and automati-
cally assign shared tiles with layouts that minimize bank conflicts for their size and type. Seen in
Section 4.2, even the FlashAttention-3 kernels written with CUTLASS templates can face bank con-
flicts, hurting performance. Our approach helps minimize conflicts, reducing CShared in Section 2.

3.2 BLOCK PARALLELISM WITH A GENERALIZED ASYNCHRONOUS TEMPLATE

THUNDERKITTENS helps developers reduce overheads by coordinating how workers in a thread
block asynchronously overlap execution. Though the GPU hierarchy might suggest that we need a
wide variety of techniques, we propose a single concise template that we find enables high perfor-
mance on a surprisingly broad range of AI workloads. We first define the template, which has four
steps – load-compute-store-finish (LCSF for short) – and builds on the classical producer-consumer
paradigm (Dijkstra, 1968; Bauer et al., 2011). We show how the LCSF template can help navigate
the tradeoffs between occupancy and efficiency (reducing CHBM, CCompute in Section 2).

Load function:

1 if(warpgroup::warpid() == 0) {
2 tma::expect(inputs_arrived,
3 block.k, block.v);
4 tma::load_async(
5 block.k, globals.k,
6 {batch, head, iter, 0},
7 inputs_arrived);
8 tma::load_async(
9 block.v, globals.v,

10 {batch, head, iter, 0},
11 inputs_arrived);
12 }
13 else arrive(inputs_arrived);

Compute function:

1 warpgroup::mm_ABt(att, scratch.q[state.id], block.k);
2 warpgroup::mma_async_wait();
3
4 // softmax (simplified)
5 sub_row(att, att, max_vec);
6 exp(att, att);
7 div_row(att, att, norm_vec);
8
9 copy(att_bf16, att);

10
11 warpgroup::mma_AB(state.o, att_bf16, block.v);
12 warpgroup::mma_async_wait();
13 arrive(inputs_finished);

Figure 5: A simplified depiction of attention in the LCSF template to highlight the role of different
specialized workers. Left is executed by workers that manage HBM to SRAM memory movement,
and right by parallel compute workers, which operate in fast memory, registers and SRAM.

Programming abstractions As per Section 2, AI kernel usually load tiles of large tensors from
HBM to SRAM, perform computation in fast memory, store the result for the tile back to HBM, and
repeat this for the next tiles. To use the LCSF template, the developer writes four functions:

1. Load function. Specifies the data that load workers should load from HBM to shared memory,
and when to signal to compute workers that this memory is ready for use.

2. Compute function. Specifies the kernel instructions that compute workers should execute, using
the tile data structure and operation primitives from Section 3.1.

3. Store function. Specifies what data workers need to store to HBM.
4. Finish function. At the end of the kernel, the workers store any final state and exit.

M = N = K Stages TFLOPS

4096 1 260
4096 2 484
4096 3 683
4096 4 760

Table 1: Pipeline buffer stages We
measure efficiency in TFLOPS for our
GEMM kernels as we vary the number of
pipeline buffer stages in the TK template.

TK provides abstractions to help the developer manage
worker overlapping and synchronization.

1. Multi-stage buffer: The template maintains N -stage
pipelined buffers in shared memory, which are used for
loads and stores from HBM. Load/store workers add/re-
move tiles of data from the buffers, based on the status
of compute workers. With a single stage, load workers
would need to wait for all compute workers to finish ex-
ecuting before replacing the input tile. A 2-stage buffer
can hide the HBM load (store) latency since the next
tile can asynchronously load, while the compute work-
ers execute on the current tile. Deep buffers can reduce the synchronization required across compute

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

workers, allowing them to operate on multiple tiles concurrently. TK lets the user set a single num-
ber to specify the number of stages, and manages the setup and use of these buffers for the user. In
Section 3.2, we vary the number of stages N ∈ {1, 2, 3, 4} for our GEMM kernel.

2. Synchronization barriers: Load/store workers need to alert compute workers when new memory
is written to the input buffer. Compute workers need to alert load/store workers when tiles are
written to the output buffer, or when input tiles can be evicted from the input buffer. Within the TK
template, we provide an arrive function for workers to signal that they have finished their stage.

3. Asynchronous I/O: We wrap synchronous and asynchronous load and store instructions, including
cp.async and TMA, in the same interface. We automate tensor map descriptor creation for TMA
hardware-accelerated address generation for our global layout descriptors (gl).

1 2 3 4 5 6
Worker Warpgroups

0

100

200

300

400

500

TF
LO

Ps

123

216
255

300 300

181

268

375

440

341

270

103

Synchronous vs LCSF Attention

Synchronous LCSF

Figure 6: Occupancy tradeoff: (Left) Attention
TFLOPs as a function of occupancy, benchmarked
with head dimension 64 and context length 4096.
We compare synchronous and LCSF kernels.

Tradeoffs between occupancy and efficiency
TK parametrizes the number of load/store and
compute workers (or occupancy) providing a
simple way for developers tune their kernels.
As discussed in Section 2, higher occupancy
increases overlapping, but creates contention
over limited hardware resources (e.g., regis-
ters). With fewer registers, workers need to op-
erate on smaller tiles of data, resulting in more
instruction issues, SRAM to register I/O, and
potentially higher synchronization costs due to
the increased data partitioning across workers.

Figure 6 shows the occupancy tradeoffs for at-
tention kernels. We consider (1) a simple kernel
that only uses warp level parallelism (Listing 2)
and (2) a kernel written in the LCSF template
(Listing 5). Although with both kernels, performance increases with occupancy until resource con-
tention dominates, LCSF expands the Pareto frontier beyond the naive kernel.

We find the general LCSF template to be effective across a range of AI workloads. We keep the
template lightweight and simple by making opinionated design choices. However, we don’t want
TK to get in the way of achieving peak GPU performance – TK is embedded, meaning developers
can use the full power of CUDA to extend the library as warranted.

3.3 GRID PARALLELISM WITH BLOCK LAUNCH SCHEDULING

TK makes it easier for users to quickly try varied grid layouts and coordinate thread block launches.
This can help reduce the setup and tear-down costs for each thread block (CSetup in Section 2), and
encourage memory reuse between thread blocks, to avoid slow HBM accesses (CHBM in Section 2).

M=N K TK-No TK-Yes CuBLAS

4096 64 93 108 69
4096 128 161 184 133
4096 256 271 309 242
4096 512 414 450 407
4096 1024 565 600 633

Table 2: Persistent block launch TFLOPS for
TK GEMM kernels with (yes) persistent and
without (no) persistent launch as we vary matrix
dimension K.

Block launch costs We provide optimiza-
tions to minimize launch costs, centered around
a persistent grid, where we launch thread
blocks on the full set of SMs upfront, and sim-
ply load the next task for the kernel within the
existing block. We further eliminate pipeline
bubbles by having load/store workers anticipate
the next task and pre-load memory to prepare
for future work, while the compute workers run
the finish stage for the prior task. Table 2 shows
these optimizations for matrix multiplies.

L2 reuse and block launch order Recall that thread blocks need to communicate via HBM. As
introduced in Section 2, when thread blocks reuse memory, the data is often available in L2 cache,
which is significantly faster than HBM. However, cache eviction means that these reuse qualities
depend on the order in which blocks get launched. For our attention and GEMM kernels, we measure
efficiency as we vary block order, summarized in Table 3. Block order substantially affects L2 reuse
(measured through HBM bandwidth), which in turn can control kernel performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Matrix Multiply (M=N=K=16384)
Block Order HBM GB/s TFLOPS

{8, N, M/8} 982 805
{N, M} 3,070 392

Attention Forward (D=128)
Block Order HBM GB/s TFLOPS

{N, H, B} 213 600
{B, H, N} 2,390 494

Table 3: L2 reuse: We vary the block orders and measure both consumed bandwidth from HBM
(GB/s) and efficiency (TFLOPS). For attention, we consider an optimized kernel, with an internal
tiling of 8 rows of blocks, versus a naive kernel that schedules blocks in row-major order. For
attention, we compare block order (1) sequence length N , heads H , and outermost batch B vs. (2)
innermost B, H , then outermost N . Block order has significant performance implications.

4 EXPERIMENTS

In experiments, we validate that THUNDERKITTENS speeds up a broad range of ML primitives.
We compare to well-optimized kernels from prior work, written in alternate frameworks such as
CUTLASS, CuBLAS, general CUDA, and Triton. We compare our kernels for the “workhorse”
operations in AI, GEMM and attention, as well as kernels for emerging AI architectures, such as
linear attention and state space models (Section 4.1). We profile the kernels to understand TK’s role
in achieving high performance in Section 4.2. Kernel listings, in the TK template, are in Appendix C.

4.1 TK ENABLES SIMPLE AND PERFORMANT AI KERNELS

Figure 7: GEMM kernel from CuBLAS and TK.

We evaluate a suite of TK kernels. We bench-
mark on an NVIDIA H100 80GB SXM GPUs
using CUDA 12.6 and report average TFLOPS.
We provide experiments on an NVIDIA RTX
4090 and an Apple M2 Pro in Appendix B.

Workhorse kernels for AI Industry teams
and researchers have made significant invest-
ments into optimizing GEMMs and attention
over the past several years (NVIDIA, 2023;
Dao et al., 2022b; Bikshandi & Shah, 2023a;
Shah et al., 2024, inter alia.), two workhorse
operations that power the Transformer architecture (Vaswani et al., 2017). While the baselines are
strong, TK kernels match or outperform:

• GEMM: We compare to the strongest baselines: CuBLAS(NVIDIA, 2023), CUTLASS NVIDIA
(2017). A single TK matrix multiply kernel, with just 40 lines of device code, is competitive.

• Attention: We support multiple variants of attention: causal, non-causal, and grouped query at-
tention (Ainslie et al., 2023) at head dimensions 64 and 128. We compare to the strongest baseline,
which is concurrent to our work: FlashAttention-3 (FA3) (Shah et al., 2024). TK competes with
FA3 across sequence lengths on the non-causal forwards pass, and outperforms FA3 on the causal
and non-causal backwards pass by over 40% at shorter and 10% at longer sequences.

We find that TK makes it easy to use the GPU effectively by simplifying the choice of memory
layouts, exploration of grid patterns for L2 reuse, and selection of occupancy and pipeline depth.
The baseline kernels successfully use specialized H100 instructions and manage memory. However,
the existing kernels are relatively complex: FlashAttention-3 proposes a “ping-pong scheduler” for
workers, and the CuBLAS library is >600MB in CUDA 12.6 (Table 5), containing many tuned
GEMM variants and logic to select the best option at runtime (Schuetze, 2024). With TK, we
remove the ping-pong and maintain FA3-level efficiency, and we compete with CuBLAS on the
demonstrated matrix sizes, using a single GEMM kernel (entirely in Appendix C.1).

Kernels for emerging AI architectures In addition to supporting peak performance on popular
operations like GEMMs and attention, TK is also designed to be extensible to emerging AI work-
loads. We release kernels across recent ML primitives, including linear attention (Katharopoulos
et al., 2020), FFT convolutions (Cooley & Tukey, 1965), and state space models (Gu et al., 2021).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 8: Attention causal and non causal inference and backwards pass efficiency.

• Linear attention We optimize two different classes of linear attention architectures, polynomial-
based feature maps as in (Arora et al., 2024; Aksenov et al., 2024; Keles et al., 2023; Kacham
et al., 2024) and learned feature maps as in (Zhang et al., 2024b;a). In Figure 9, we compare to
the strongest available baselines: the popular Flash Linear Attention (FLA) CUDA kernels (Yang
& Zhang, 2024), which are written in Triton. We show TK outperforms FLA’s polynomial-based
linear attention by 14×. TK outperforms FLA’s learned map linear attention by 6.5×.

• State space models The long convolution, implemented with Fourier transforms using the convo-
lution theorem, is the key primitive in popular state space modeling architectures such as S4, H3,
and Hyena (Gu et al., 2021; Poli et al., 2023; Fu et al., 2023b; Hasani et al., 2022; Agarwal et al.,
2024, inter alia.). In Figure 9, we compare to the strongest available baseline: the FlashFFTConv
CUDA kernels in Fu et al. (2023c) and show TK outperforms the prior work by 4.7× at sequence
length 4096 and 7.9× at 1024. TK outperforms PyTorch’s FFT operations by up to 8.7×.
We also optimize the recent Mamba-2 state space model (Dao & Gu, 2024). We provide a TK
kernel that outperforms the Triton kernels in prior work Dao & Gu (2024) by > 3× (Figure 9).
This gap is primarily due to the ease of fusing complex operations in TK.

We also develop kernels for common memory-intensive AI operations – fused dropout-residual-
layernorm (Ba et al., 2016), and rotary (Su et al., 2023) – and show TK is effective. We compare to
popular Triton kernels for these operations. 2

TK’s programming model is extensible. In Appendix B, we demonstrate that TK extends across
(1) hardware platforms by providing competitive NVIDIA 4090 and Apple M2 kernels, (2) preci-
sions by providing a competitive FP8 GEMM kernel, and (3) tile shapes by providing an attention
kernel for arbitrary shapes.

4.2 COMPARING KERNEL IMPLEMENTATIONS

To understand TK’s improvements, we profile the kernels using NVIDIA’s NSight Compute (NCU)
tool. In Table 4, we give NCU profiles for both the emerging long convolution primitive and the
well-optimized attention backwards pass, comparing to the strongest respective baselines.

• Long convolution: We profile FlashFFTConv (FC) and TK convolution kernels at B,D,N =
16, 1024, 4096 in NCU. We find TK helps both with overlapping the workers (indicated by higher
issue slots and fewer memory stalls) and in tensor core utilization (4.1× increase). This is enabled
by our TK template, and use of TK warpgroup operations (which saves registers and establishes
a SMEM to register memory pipeline through warpgroup matrix-multiply-add operations).

2Reference Triton kernels are from: https://github.com/Dao-AILab/flash-attention.

9

https://github.com/Dao-AILab/flash-attention

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 9: ThunderKittens kernels are performant across a wide range of kernels.

Occupancy utilizations (%) HBM Shared

Impl. Tensor core Issue slots TPS (GB/s) Stalls (Cycles) Stalls (Cycles)

FA3 Bkwd 61.2 25.1 328 1.83 0.92
TK Bkwd 58.2 34.8 490 1.63 0.14

FlashFFT 13.4 25.5 14.8 2.5 1.6
TK 54.8 40.0 31.4 0.6 0.3

Table 4: NCU profiles for 1) attention backwards pass kernels from FlashAttention-3 (Shah et al.,
2024) vs. TK and 2) long convolution kernels from FlashFFTConv (Fu et al., 2023c) vs. TK.

• Attention backwards: We consider FA3 and TK at B,H,N,D = 16, 16, 3072, 128. The meth-
ods match in tensor core utilization, but TK gives higher issue slot utilization, suggesting the oc-
cupancy may be better-tuned. TK gives higher HBM memory throughput and incurs 10% fewer
stalled cycles on HBM waits. For shared memory, TK incurs 85% fewer stalled cycles – we find
TK has no bank conflicts, but NVIDA’s NCU profiler reports up to 9.6-way bank conflicts in FA-3.

5 CONCLUSION

Given the challenge of mapping AI architectures to GPU hardware, our work asks how far we can get
with a few, easy to use programming abstractions. In THUNDERKITTENS, we give abstractions for
each level of the GPU hierarchy: tiles with managed layouts at the worker level, and an asynchronous
LCSF template at the thread block level. We highlight tradeoffs for persistent block launches and
L2 reuse at the grid level. The natural question is whether we sacrifice anything in performance
when we write kernels with so few abstractions. We implement a breadth of AI kernels in TK and
excitingly find that our abstractions are both general and consistently meet or exceed state-of-the-art.
We are optimistic about the potential for accessible ways for programming AI hardware.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Naman Agarwal, Daniel Suo, Xinyi Chen, and Elad Hazan. Spectral state space models, 2024. URL
https://arxiv.org/abs/2312.06837.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. The 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP),
2023.

Yaroslav Aksenov, Nikita Balagansky, Sofia Maria Lo Cicero Vaina, Boris Shaposhnikov, Alexey
Gorbatovski, and Daniil Gavrilov. Linear transformers with learnable kernel functions are better
in-context models. 2024.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance
the recall-throughput tradeoff. International Conference on Machine Learning, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Michael Bauer, Henry Cook, and Brucek Khailany. Cudadma: Optimizing gpu memory bandwidth
via warp specialization. SC ’11: Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, 2011.

Ganesh Bikshandi and Jay Shah. A case study in cuda kernel fusion: Imple-
menting flashattention-2 on nvidia hopper architecture using the cutlass library, 2023a.
URL https://research.colfax-intl.com/wp-content/uploads/2023/12/
colfax-flashattention.pdf.

Ganesh Bikshandi and Jay Shah. Developing cuda kernels for accelerated matrix mul-
tiplication on nvidia hopper architecture using the cutlass library, 2023b. URL
https://research.colfax-intl.com/wp-content/uploads/2023/12/
colfax-gemm-kernels-hopper.pdf.

Li-Wen Chang, Wenlei Bao, Qi Hou, Chengquan Jiang, Ningxin Zheng, Yinmin Zhong, Xuanrun
Zhang, Zuquan Song, Chengji Yao, Ziheng Jiang, Haibin Lin, Xin Jin, and Xin Liu. Flux: Fast
software-based communication overlap on gpus through kernel fusion, 2024. URL https:
//arxiv.org/abs/2406.06858.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An automated {End-to-End} op-
timizing compiler for deep learning. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pp. 578–594, 2018.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. Interna-
tional Conference on Learning Representations, 2024.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. International Conference on Machine Learning (ICML), 2024.

Tri Dao, Beidi Chen, Nimit Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for
efficient and accurate training, 2022a. URL https://arxiv.org/abs/2204.00595.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Process-
ing Systems, 2022b.

11

https://arxiv.org/abs/2312.06837
https://research.colfax-intl.com/wp-content/uploads/2023/12/colfax-flashattention.pdf
https://research.colfax-intl.com/wp-content/uploads/2023/12/colfax-flashattention.pdf
https://research.colfax-intl.com/wp-content/uploads/2023/12/colfax-gemm-kernels-hopper.pdf
https://research.colfax-intl.com/wp-content/uploads/2023/12/colfax-gemm-kernels-hopper.pdf
https://arxiv.org/abs/2406.06858
https://arxiv.org/abs/2406.06858
https://arxiv.org/abs/2204.00595

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

E. W. Dijkstra. Co-operating sequential processes. In F. Genuys (ed.), Programming Languages.
NATO Advanced Study Institute, 1968. Lectures given at a three weeks Summer School held in
Villard-le-Lans, 1966.

Venmugil Elango, Norm Rubin, Mahesh Ravishankar, Hariharan Sandanagobalane, and Vinod
Grover. Diesel: Dsl for linear algebra and neural net computations on gpus. In Proceed-
ings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Program-
ming Languages, MAPL 2018, pp. 42–51, New York, NY, USA, 2018. Association for Com-
puting Machinery. ISBN 9781450358347. doi: 10.1145/3211346.3211354. URL https:
//doi.org/10.1145/3211346.3211354.

Daniel Y. Fu, Simran Arora, Jessica Grogan, Isys Johnson, Sabri Eyuboglu, Armin W. Thomas,
Benjamin Spector, Michael Poli, Atri Rudra, and Christopher Ré. Monarch mixer: A simple sub-
quadratic gemm-based architecture. 37th Conference on Neural Information Processing Systems
(NeurIPS 2023), 2023a.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry
Hungry Hippos: Towards language modeling with state space models. In International Confer-
ence on Learning Representations, 2023b.

Daniel Y Fu, Hermann Kumbong, Eric Nguyen, and Christopher Ré. Flashfftconv: Efficient convo-
lutions for long sequences with tensor cores. arXiv preprint arXiv:2311.05908, 2023c.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. International Conference on Learning Representations (ICLR), 2021.

Ramin Hasani, Mathias Lechner, Tsun-Huang Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. arXiv preprint arXiv:2209.12951, 2022.

Horace He, Driss Guessous, Yanbo Liang, and Joy Dong. Flexattention: The flexibility of py-
torch with the performance of flashattention, 2024. URL https://github.com/NVIDIA/
cutlass.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketching polynomial kernels, 2024. URL https://arxiv.org/abs/2310.01655.

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In Proceedings of the International Conference on Machine
Learning (ICML), 2020. URL https://arxiv.org/abs/2006.16236.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In 34th International Conference on Algorithmic Learning Theory,
volume 201, pp. 1–23, 2023.

NVIDIA. Cuda templates for linear algebra subroutines, 2017. URL https://github.com/
NVIDIA/cutlass.

NVIDIA. cuBLAS, 2023. URL https://docs.nvidia.com/cuda/cublas/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019. URL https://arxiv.org/abs/1912.01703.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou, Przemys-
law Kazienko, Jan Kocon, and Jiaming et al. Kong. Rwkv: Reinventing rnns for the transformer
era. Findings of the Association for Computational Linguistics: EMNLP 2023, 2023.

12

https://doi.org/10.1145/3211346.3211354
https://doi.org/10.1145/3211346.3211354
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://arxiv.org/abs/2310.01655
https://arxiv.org/abs/2006.16236
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://docs.nvidia.com/cuda/cublas/
https://arxiv.org/abs/1912.01703

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional lan-
guage models. Proceedings of the 40th International Conference on Machine Learning (ICML),
2023.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman
Amarasinghe. Halide: a language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. Acm Sigplan Notices, 48(6):519–530, 2013.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng, Roman Dzhabarov,
Nick Gibson, James Hegeman, Meghan Lele, Roman Levenstein, et al. Glow: Graph lowering
compiler techniques for neural networks. arXiv preprint arXiv:1805.00907, 2018.

Fabian Schuetze. Reverse-engineering cublas, 2024. URL https://accu.org/journals/
overload/32/181/schuetze/#:˜:text=The%20kernels%20provided%
20with%20cuBLAS,Ubuntu%2C%20libblas%2C%20ships%20600KB.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision, 2024. URL
https://arxiv.org/abs/2407.08608.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023.

Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for
tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, MAPL 2019, pp. 10–19, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367196. doi:
10.1145/3315508.3329973. URL https://doi.org/10.1145/3315508.3329973.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito,
William S Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstractions. arXiv preprint
arXiv:1802.04730, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 31st Conference on Neural Infor-
mation Processing Systems (NIPS 2017), 2017.

A. Vyas, A. Katharopoulos, and F. Fleuret. Fast transformers with clustered attention. In Pro-
ceedings of the International Conference on Neural Information Processing Systems (NeurIPS),
2020.

Richard Wei, Lane Schwartz, and Vikram Adve. Dlvm: A modern compiler infrastructure for deep
learning systems. arXiv preprint arXiv:1711.03016, 2017.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual perfor-
mance model for floating-point programs and multicore architectures. Communications of the
ACM, 2008.

Songlin Yang and Yu Zhang. Fla: A triton-based library for hardware-efficient implementations of
linear attention mechanism, January 2024. URL https://github.com/sustcsonglin/
flash-linear-attention.

Michael Zhang, Simran Arora, Rahul Chalamala, Alan Wu, Benjamin Spector, Aaryan Singhal,
Krithik Ramesh, and Christopher Ré. Lolcats: On low-rank linearizing of large language models.
2024a. URL https://arxiv.org/abs/2410.10254.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedgehog & the porcu-
pine: Expressive linear attentions with softmax mimicry. International Conference on Learning
Representations (ICLR), 2024b.

13

https://accu.org/journals/overload/32/181/schuetze/#:~:text=The%20kernels%20provided%20with%20cuBLAS,Ubuntu%2C%20libblas%2C%20ships%20600KB.
https://accu.org/journals/overload/32/181/schuetze/#:~:text=The%20kernels%20provided%20with%20cuBLAS,Ubuntu%2C%20libblas%2C%20ships%20600KB.
https://accu.org/journals/overload/32/181/schuetze/#:~:text=The%20kernels%20provided%20with%20cuBLAS,Ubuntu%2C%20libblas%2C%20ships%20600KB.
https://arxiv.org/abs/2407.08608
https://doi.org/10.1145/3315508.3329973
https://github.com/sustcsonglin/flash-linear-attention
https://github.com/sustcsonglin/flash-linear-attention
https://arxiv.org/abs/2410.10254

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Our appendix is organized as follows:

1. Appendix A provides an extended discussion of related work.
2. Appendix B provides a set of kernel that demonstrate the extensibility and simplicity of TK

kernels.
3. Appendix C provides a set of kernel listings written in the TK abstractions.
4. Appendix D provides extended discussion of the TK library implementation details, including

approaches to constructing shared memory layouts and the set of layouts used in TK.

A EXTENDED DISCUSSION OF PRIOR WORK

We provide an initial discussion of related work in Section 2 and extended discussion here. We
discuss various programming frameworks that support AI kernel development and discuss prior
work to develop hardware-aware AI algorithms.

CPP embedded libraries Towards raising the level of abstraction and supporting simpler pro-
grams, NVIDIA maintains the CuTe and CUTLASS libraries, which are CUDA primitives library
for graphics, scientific computing, and ML. As discussed in Section 2, both CUTLASS and TK can
support the same kernels, since both are C++ embedded libraries. Developers can use the power
of the full C++ library, including raw CUDA, when using these frameworks. Distinct from CUT-
LASS’s objectives, we specifically explore how broad and fast we can go, just using a small number
of opinionated abstractions.

Compiler-based libraries Many machine learning frameworks employ high-level computational
graph representations for optimizations, such as TVM Chen et al. (2018), TensorFlow XLA Abadi
et al. (2016), Glow Rotem et al. (2018), and DLVM Wei et al. (2017). TVM, for instance, incor-
porates a flexible tensor expression language and automated schedule optimization. Building upon
Halide’s Ragan-Kelley et al. (2013) separation of algorithm and schedule, TVM introduces new
primitives such as tensorization. The approaches of these frameworks differ from THUNDERKIT-
TENS in that they provide a full end-to-end stack that optimizes both graph-level and operator-level
transformations, while THUNDERKITTENS concentrates specifically on kernel-level optimizations.

Triton Tillet et al. (2019) builds on existing approaches to deep learning compilation while intro-
ducing novel techniques for efficient tiled computations on GPUs. Recently, tools such as Flex
Attention also provide easy to use interfaces to write kernels for attention variants, and compile
down to Triton He et al. (2024). Unlike XLA and Glow, which use tensor-level IRs and predefined
templates, or Tensor Comprehensions Vasilache et al. (2018) and Diesel Elango et al. (2018), which
rely on polyhedral models, Triton introduces a C-like language (Triton-C) and an LLVM-based IR
(Triton-IR) centered around parametric tile variables. This approach supports non-affine tensor in-
dices that polyhedral models struggle with. Triton’s JIT compiler (Triton-JIT) implements tile-level
optimizations and an auto-tuner, often enabling high performance on par with hand-tuned libraries.
A key difference between TK and Triton is that TK is embedded within CUDA, and as a result its
abstractions fail gracefully. In contrast, Triton supports inline PTX only for element-wise operations
on tensors.

Hardware-aware AI architectures We are inspired by the success of several prior works that
introduce systems-level innovations to improve ML efficiency such as FlashAttention (Dao et al.,
2022b; Dao, 2024; Shah et al., 2024) and other optimized attentions (Bikshandi & Shah, 2023a),
FlashFFTConv (Fu et al., 2023c), linear attention kernels Vyas et al. (2020); Yang & Zhang (2024);
Peng et al. (2023); Dao & Gu (2024). Given the effort required to independently optimize each new
architecture, we ask whether a small set of opinionated GPU programming abstractions can help
researchers obtain kernels for a broad range of AI operations.

B EXTENDED RESULTS

In Section 4, we show that THUNDERKITTENS results in state of the art kernels across a broad
range of AI workloads on NVIDIA H100 GPUs. This section provides extended details of our

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

experimental protocol, additional results to analyze the extensibility and simplicity of TK kernels,
and additional results to further highlight the breadth of features.

B.1 EXTENDED DETAILS OF EXPERIMENTAL PROTOCOL

• Benchmarking kernels In order to ensure fair performance comparisons between TK kernels and
others, we run 10 warm-up iterations then use cudaEvents to measure total kernel execution time
over 10 benchmarking iterations. Reported performance is the average of the 10 benchmarking
iterations.

• Benchmarking PyTorch We measure baseline PyTorch algorithm-implementations with and
without torch.compile - a new compile is run any time the input configurations (sequence length,
batch size, etc.) change. We report the maximum TFLOPS with torch.compile across settings.

• Tuning kernels Baseline GEMM kernels are tuned via a grid-search over the default execution
parameters exposed (if any) and through auto-tuning methods (exposed via CuBLASLt) - for
baselines, the maximum performance achieved is reported. Furthermore, for Triton kernels, we
run triton.autotune over the default parameter configurations provided in baselines we compare
TK kernels to. In order to avoid impacting performance measurements, kernel tuning is done in
separate iterations prior to warmup and benchmarking.

We use the following software versions for benchmarking: CUDA 12.6, Triton version 3.00, and
PyTorch version 2.4.

B.2 ANALYZING THE EXTENSIBILITY OF TK ACROSS WORKLOADS

We include additional kernels to demonstrate two additional TK features:

1. FP8 precision: We provide an FP8 GEMM kernel in TK and compare this to CuBLAS in
Figure 10. The inputs and outputs are both in FP8 precision, and the accumulate is in FP32.

2. Padded tiles While TK uses 16 × 16 tiles by default, to encourage users to utilize tensor
cores and coalesced loads, it is important to support un-aligned workloads. TK handles
this by padding the tiles (discussed in Appendix D). We implement attention with non-
aligned dimensions on the NVIDIA 4090 and H100 GPUs and find that the performance
characteristics remain the same as our aligned kernels.

Figure 10: GEMM kernel using FP8 precision on the NVIDIA Hopper GPU.

B.3 ANALYZING THE EXTENSIBILITY OF TK ACROSS HARDWARE PLATFORMS

We find that TK is extensible across hardware platforms. While we focused on the top-of-line
data center hardware, NVIDIA H100, in Section 4, here we additionally consider the top-of-line
consumer hardware, NVIDIA 4090, and personal hardware, Apple M2 chips.

Consumer hardware: NVIDIA 4090 GPU We implement non causal attention at head dimen-
sions 64 and 128 using TK. We compare to FlashAttention-2 Dao (2024), a popular reference kernel,
and find that the TK kernel is competitive across settings.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 11: Attention non causal inference at head dimensions 64 and 128 and Based kernels, on
NVIDIA 4090 chips using TK and the reference baselines.

Personal hardware: Apple M2 chip We implement non causal attention at head dimensions 64
and 128, and GEMMs on the M2 chip. We compare to the Apple MLX framework example kernels
and find that the TK kernel is competitive across settings.

Figure 12: Attention non causal inference at head dimensions 64 and 128 and GEMM kernels, on
Apple M2 chips using TK and the Apple MLX reference baselines.

We next include code listings for the attention kernel on NVIDIA 4090 fig. 13 and Apple M2 Fig-
ure 14, highlighting the close resemblance between the implementations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

NVIDIA 4090 attention:

1 template<int D> constexpr size_t ROWS = 16*(128/D); // height of each worker tile (rows)
2 template<int D, typename T=bf16, typename L=row_l> using qkvo_tile = rt<T, ROWS<D>, D, L>;
3 template<int D, typename T=float> using attn_tile = rt<T, ROWS<D>, ROWS<D>>;
4 template<int D> using shared_tile = st_bf<ROWS<D>, D>;
5 template<int D> using global_layout = gl<bf16, -1, -1, -1, D>; // B, N, H, at runtime, D at compile time
6 template<int D> struct globals { global_layout<D> Qg, Kg, Vg, Og; };
7
8 template<int D> __launch_bounds__(NUM_WORKERS*WARP_THREADS, 1)
9 __global__ void attend_ker(const __grid_constant__ globals<D> g) {

10
11 using load_group = kittens::group<2>; // pairs of workers collaboratively load k, v tiles
12 int loadid = load_group::groupid(), workerid = kittens::warpid(); // which worker am I?
13 constexpr int LOAD_BLOCKS = NUM_WORKERS / load_group::GROUP_WARPS;
14 const int batch = blockIdx.z, head = blockIdx.y, q_seq = blockIdx.x * NUM_WORKERS + workerid;
15
16 extern __shared__ alignment_dummy __shm[];
17 shared_allocator al((int*)&__shm[0]);
18 shared_tile<D>(&k_smem)[LOAD_BLOCKS][PIPE_STAGES] = al.allocate<shared_tile<D>,LOAD_BLOCKS,PIPE_STAGES>();
19 shared_tile<D>(&v_smem)[LOAD_BLOCKS][PIPE_STAGES] = al.allocate<shared_tile<D>,LOAD_BLOCKS,PIPE_STAGES>();
20 shared_tile<D> (&qo_smem)[NUM_WORKERS] = reinterpret_cast<shared_tile<D>(&)[NUM_WORKERS]>(k_smem);
21 // Initialize all of the register tiles.
22 qkvo_tile<D, bf16> q_reg, k_reg; // Q and K are both row layout, as we use mma_ABt.
23 qkvo_tile<D, bf16, col_l> v_reg; // V is column layout, as we use mma_AB.
24 qkvo_tile<D, float> o_reg; // Output tile.
25 attn_tile<D, float> att_block; // attention tile, in float.
26 attn_tile<D, bf16> att_block_mma; // bf16 attention tile for second mma_AB. We cast right before.
27 typename attn_tile<D, float>::col_vec max_vec_last, max_vec, norm_vec; // these are column vectors.
28 // each warp loads its own Q tile of 16x64
29 if (q_seq*ROWS<D> < g.Qg.depth) {
30 load<1, false>(qo_smem[workerid], g.Qg, {batch, q_seq, head, 0}); // going through shared memory
31 __syncwarp();
32 load(q_reg, qo_smem[workerid]);
33 }
34 __syncthreads();
35
36 if constexpr(D == 64) mul(q_reg, q_reg, __float2bfloat16(0.125f * 1.44269504089));
37 else if constexpr(D == 128) mul(q_reg, q_reg, __float2bfloat16(0.08838834764f * 1.44269504089));
38 neg_infty(max_vec);
39 zero(norm_vec);
40 zero(o_reg);
41 // launch the load of the first k, v tiles
42 int kv_blocks = (g.Kg.depth + LOAD_BLOCKS*ROWS<D>-1) / (LOAD_BLOCKS*ROWS<D>), tic = 0;
43 load_group::load_async<1, false>(k_smem[loadid][0], g.Kg, {batch, loadid, head, 0});
44 load_group::load_async<1, false>(v_smem[loadid][0], g.Vg, {batch, loadid, head, 0});
45 // iterate over k, v for these q’s that have been loaded
46 for(auto kv_idx = 0; kv_idx < kv_blocks; kv_idx++, tic=(tic+1)%3) {
47 int next_load_idx = (kv_idx+1)*LOAD_BLOCKS + loadid;
48 if(next_load_idx*ROWS<D> < g.Kg.depth) {
49 int next_tic = (tic+1)%3;
50 load_group::load_async<1, false>(k_smem[loadid][next_tic], g.Kg, {batch, next_load_idx, head, 0});
51 load_group::load_async<1, false>(v_smem[loadid][next_tic], g.Vg, {batch, next_load_idx, head, 0});
52 load_async_wait<1>(); // next k, v can stay in flight.
53 }
54 else load_async_wait();
55 __syncthreads();
56 #pragma unroll LOAD_BLOCKS
57 for(int subtile = 0; subtile < LOAD_BLOCKS && (kv_idx*LOAD_BLOCKS + subtile)*ROWS<D> < g.Kg.depth;

↪→ subtile++) {
58 load(k_reg, k_smem[subtile][tic]); // load k from shared into registers
59 zero(att_block); // zero 16x16 attention tile
60 mma_ABt(att_block, q_reg, k_reg, att_block); // Q@K.T
61 int first_index = (kv_idx*LOAD_BLOCKS + subtile)*ROWS<D>; // one past last KV index of tile
62 int start_fill = g.Kg.depth-first_index < ROWS<D> ? g.Kg.depth-first_index : ROWS<D>;
63 right_fill(att_block, att_block, start_fill, base_types::constants<float>::neg_infty());
64 copy(max_vec_last, max_vec);
65 row_max(max_vec, att_block, max_vec);
66 sub_row(att_block, att_block, max_vec);
67 exp2(att_block, att_block);
68 sub(max_vec_last, max_vec_last, max_vec);
69 exp2(max_vec_last, max_vec_last);
70 mul(norm_vec, norm_vec, max_vec_last);
71 row_sum(norm_vec, att_block, norm_vec);
72 copy(att_block_mma, att_block);
73 load(v_reg, v_smem[subtile][tic]);
74 mul_row(o_reg, o_reg, max_vec_last);
75 mma_AB(o_reg, att_block_mma, v_reg, o_reg);
76 }
77 }
78 div_row(o_reg, o_reg, norm_vec);
79 __syncthreads();
80 if (q_seq*ROWS<D> < g.Og.depth) { // write out o.
81 store(qo_smem[workerid], o_reg); // going through shared memory improves coalescing of dram writes.
82 __syncwarp();
83 store<1, false>(g.Og, qo_smem[workerid], {batch, q_seq, head, 0});
84 }
85 }

Figure 13: Attention implemented in TK on NVIDIA 4090 chips.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Apple M2 attention:

1 namespace custom_ops {
2 struct subexp2 {;
3 template<typename T> static METAL_FUNC T op(thread const T &a, thread const T &b) { return metal::exp2(a-

↪→ b); }
4 };
5 }
6
7 template<typename RT, typename RV>
8 static METAL_FUNC typename metal::enable_if<ducks::is_register_tile<RT>() && ducks::is_register_vector<RV>(), void

↪→ >::type
9 subexp2(thread RT &dst, thread const RT &src, thread const RV &row_values) {

10 row_map<custom_ops::subexp2, RT, RV>(dst, src, row_values);
11 }
12 template<typename RV, typename U>
13 static METAL_FUNC typename metal::enable_if<ducks::is_register_vector<RV>(), void>::type
14 subexp2(thread RV &dst, thread const RV &lhs, thread const U &rhs) {
15 bin_op<custom_ops::subexp2, RV>(dst, lhs, rhs);
16 }
17 //constant constexpr const int D = 128;
18 #define NUM_WORKERS 1
19 template<int D>
20 kernel void attend_ker(ATTEND_KER_PARAMS) {
21 static_assert(D == 64 || D == 128, "D must be 64 or 128");
22 using global_layout = kittens::ore::gl<bfloat, 1, -1, -1, D>;
23 global_layout gl_q(__q__, nullptr, H, N, nullptr);
24 global_layout gl_k(__k__, nullptr, H, N, nullptr);
25 global_layout gl_v(__v__, nullptr, H, N, nullptr);
26 global_layout gl_o(__o__, nullptr, H, N, nullptr);
27 using st_qkv = st_bf<8, D>;
28
29 using rt_qv = rt_bf<8, D>;
30 using rt_k_t = rt_bf<8, D, ducks::rt_layout::col>;
31 using rt_att = rt_fl<8, 8>;
32 using rt_o = rt_fl<8, D>;
33 using rv_att = rt_fl<8, 8>::col_vec;
34
35 const int block = blockIdx.z;
36 const int head = blockIdx.y;
37 const int q_seq = (blockIdx.x * NUM_WORKERS) + warpId;
38 const int kv_blocks = N / st_qkv::rows;
39 rt_qv q_reg;
40 rt_k_t k_reg;
41 rt_qv v_reg;
42 rt_att att_block;
43 rt_o o_reg;
44 rv_att max_vec_last;
45 rv_att max_vec;
46 rv_att norm_vec;
47 load(q_reg, gl_q, {block, head, q_seq, 0}, laneId);
48 neg_infty(max_vec);
49 zero(norm_vec);
50 zero(o_reg);
51 constexpr const bf16 q_mul = ((D == 128) ? 0.08838834764bf : 0.125bf) * 1.44269504089bf;
52 mul(q_reg, q_reg, q_mul);
53 #pragma clang loop unroll(full)
54 for(auto kv_idx = 0; kv_idx < kv_blocks; kv_idx++) {
55 load(k_reg, gl_k, {block, head, kv_idx, 0}, laneId);
56 zero(att_block);
57 mma_ABt(att_block, q_reg, k_reg, att_block);
58 copy(max_vec_last, max_vec, laneId);
59 row_max(max_vec, att_block, max_vec, laneId);
60 subexp2(max_vec_last, max_vec_last, max_vec);
61 subexp2(att_block, att_block, max_vec);
62 mul(norm_vec, norm_vec, max_vec_last);
63 row_sum(norm_vec, att_block, norm_vec, laneId);
64 mul_row(o_reg, o_reg, max_vec_last);
65 load(v_reg, gl_v, {block, head, kv_idx, 0}, laneId);
66 mma_AB(o_reg, att_block, v_reg, o_reg);
67 }
68 div_row(o_reg, o_reg, norm_vec);
69 store(gl_o, o_reg, {block, head, q_seq, 0}, laneId);
70 }

Figure 14: Attention implemented in TK on Apple M2 chips.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.4 ANALYZING THE SIMPLICITY OF TK

As a proxies for understanding the simplicity of the TK library, we measure (1) the size of various
popular frameworks in bytes and (2) the lines of code across our kernels.

The library sizes are shown in Table 5. For CUTLASS and TK we report the size of the “include/”
directory, and for Triton we report the combined size of the “include/” directories in Triton plus the
“include/” in the core MLIR compiler dependency.

Library Size (Bytes) Date / Version

CUTLASS 22 MB 10/22/2024
Triton 12.6 MB 10/22/2024
TK <1.0 MB 10/22/2024

Table 5: Sizes of various CUDA libraries.

We find that the TK kernels in Table 6 average at < 200 lines of code. We compare to the lines
of code in the corresponding state of the art baseline kernels, and the TK speed ups over these
baselines. While measuring lines of code may be difficult, we provide links in the table indicate our
approach. For TK, we include many comments, all the global data descriptor, and custom functions.
We exclude the python bindings and other wrapper functions for all baselines. We generally observe
that TK kernels use fewer lines of code and provide speed ups.

Workload TK kernel (LoC) Reference kernel (LoC) Speed up (min-max)

Attention forwards 217 2325 (CUTLASS FA3) 0.87-1.14×
GEMM 84 463 (CUTLASS) 0.98-2.05×
Convolution (N = 4096) 131 624 (CUDA FlashFFTConv) 4.7×
Based linear attention 282 89 (Triton) 3.7-14.5×
Hedgehog linear attention 316 104 (Triton) 4.0-6.5×
Mamba-2 192 532 (Triton) 3.0-3.7×
Rotary 101 119 (Triton) 1.1-2.3×
Fused layernorm 146 124 (Triton) 1.0-2.2×

Table 6: Lines of code (LoC) across TK H100 kernels, state of the art non TK kernels, and the TK
speed up over the reference across the evaluated input dimensions in Section 4.

19

https://github.com/Dao-AILab/flash-attention/tree/main/hopper
https://github.com/NVIDIA/cutlass/blob/b0e09d7cd371eded41f7c1e057caf1593c27ba55/include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized.hpp#L55
https://github.com/HazyResearch/flash-fft-conv/blob/main/csrc/flashfftconv/monarch_cuda/kernels_bf16/monarch_cuda_16_16_16_kernel_bf16.h
https://github.com/sustcsonglin/flash-linear-attention/blob/ccbba8eb48944c196ac346a27c1e7ab9cf07cd1a/fla/ops/based/parallel.py#L17
https://github.com/sustcsonglin/flash-linear-attention/blob/ccbba8eb48944c196ac346a27c1e7ab9cf07cd1a/fla/ops/linear_attn/fused_chunk.py#L15
https://github.com/state-spaces/mamba/tree/main/mamba_ssm/ops/triton
https://github.com/Dao-AILab/flash-attention/blob/7153673c1a3c7753c38e4c10ef2c98a02be5f778/flash_attn/ops/triton/rotary.py#L11
https://github.com/Dao-AILab/flash-attention/blob/7153673c1a3c7753c38e4c10ef2c98a02be5f778/flash_attn/ops/triton/layer_norm.py#L128

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C THUNDERKITTENS KERNEL LISTINGS

This section first recaps our benchmarking methodology for the results and provides a set of kernels
written in the TK LCSF template and tile abstractions:

1. Appendix C.1 GEMM kernel
2. Appendix C.2 Long convolution kernel
3. Appendix C.3 Attention kernel
4. Appendix C.4 Rotary kernel

To introduce the template components, we describe the GEMM kernel in detail in Appendix C.1.

Benchmarking approach Our kernels in Section 4 are benchmarked on an NVIDIA H100 80GB
SXM GPU with 10 warmup and 10 timed iterations using timings measured in C++. We also provide
Python-bound kernels and benchmarking infrastructure in our repository for reference.

C.1 MATRIX MULTIPLY

First we show and describe a TK GEMM kernel in the LCSF template.

Each compute warpgroup is responsible for computing 64M -row, 64N -column chunk of the result-
ing output matrix. Each compute worker identifies the coordinates for its chunk, zeros its accumula-
tor registers, repeatedly runs large asynchronous matrix multiplies (compute), and finally stores out
its tile in the end (finish). The load workers also compute their coordinates, and then repeatedly load
chunks of the input matrices (load). Store workers perform asynchronous stores when the compute
workers are finished with the chunks (stores).

Tuning the number of workers and pipeline stages The computation is divided into stages, with
each stage processing 64 elements along the reduction dimensions of the input matrices. The input
pipeline is automatically sized by THUNDERKITTENS if the user does not specify a value. For
common configurations of either a (2 compute warpgroup) 128 × 256 or (3 compute warpgroups)
192× 192 output tile per block, it generates a 4-stage pipeline.

Tuning the grid order The greatest complexity of this kernel is in setting the grid parameters. This
kernel adopts a 3D stride over the input matrices, which has a significant effect for large matrices
which do not fit in L2 cache. The order in which blocks execute strongly influences cache locality
and thus available memory bandwidth. To illustrate the magnitude of the effect, comparing the
presented scheme versus a naive grid (in which blocks are executed in row-major order) a 4096 ×
4096× 4096 matrix multiply only drops from 767 TFLOPs to 735 TFLOPs, but a 16384× 16384×
16384 matrix multiply drops from 797 TFLOPs to 387 TFLOPs, a > 50% performance degradation.

1 using namespace kittens;
2 using namespace kittens::prototype;
3 using namespace kittens::prototype::lcf;
4 template<int M_BLOCK, int N_BLOCK>
5 struct matmul_layout {
6 using base_tile = st_bf<64, 64>;
7 using global_layout = gl<bf16, 1, 1, -1, -1, base_tile>;
8 struct globals { global_layout A, B, C; };
9 struct input_block { base_tile a[M_BLOCK], b[N_BLOCK]; };

10 struct finish_block { base_tile c[M_BLOCK][N_BLOCK]; };
11 struct common_state { int2 coord; };
12 struct consumer_state { rt_fl<16, N_BLOCK*base_tile::cols> accum; };
13 };
14 template<int _M_BLOCK=2, int _N_BLOCK=4, int _SUPER_M=12>
15 struct matmul_template {
16 static constexpr int M_BLOCK = _M_BLOCK, N_BLOCK = _N_BLOCK, SUPER_M = _SUPER_M;
17 using layout = matmul_layout<M_BLOCK, N_BLOCK>;
18 using wide_tile = st_bf<64, 64*N_BLOCK>;
19 static constexpr int NUM_CONSUMER_WARPS=M_BLOCK*4, INPUT_PIPE_STAGES=4,

↪→ PRODUCER_BARRIER_ARRIVALS=1;

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1 // Helper functions
2 template<bool PERISISTENT_GRID=true> __host__ static inline dim3 grid(int M, int N, int K) {
3 return dim3(PERISISTENT_GRID ? 132 : M*N/(M_BLOCK*N_BLOCK*layout::base_tile::num_elements)

↪→);
4 }
5 // ThunderKittens template functions
6 __device__ static inline void common_setup(common_setup_args<layout> args) {
7 int Rblocks = args.globals.C.rows / (M_BLOCK*64), Cblocks = args.globals.C.cols / (N_BLOCK

↪→ *64);
8 int super_rows = (Rblocks/SUPER_M)*SUPER_M,
9 final_rows = Rblocks - super_rows,

10 super_repeat = SUPER_M*Cblocks;
11 int task_id = args.task_iter*gridDim.x + blockIdx.x;
12 if (task_id < super_rows * Cblocks)
13 args.common.coord = { SUPER_M*(task_id/super_repeat) + task_id%SUPER_M,
14 (task_id%super_repeat)/SUPER_M };
15 else if (task_id < Rblocks*Cblocks) {
16 int remainder_id = task_id - super_rows*Cblocks;
17 args.common.coord = { super_rows + (remainder_id%final_rows), remainder_id/final_rows };
18 }
19 else { // Id is too high, no more work to do
20 args.num_iters = -1;
21 return;
22 }
23 args.num_iters = args.globals.A.cols/64;
24 int id = warpgroup::groupid() == NUM_CONSUMER_WARPS/4 ? 0 : warpgroup::groupid(); //

↪→ producer sets as 0
25 args.common.coord = { args.common.coord.x*M_BLOCK + id, args.common.coord.y*N_BLOCK };
26 }
27 struct producer {
28 __device__ static void setup(producer_setup_args<layout> args) {
29 warpgroup::decrease_registers<40>(); // decrease registers for producers
30 }
31 __device__ static void load(producer_load_args<layout> args) {
32 if(warpgroup::warpid() == 0) {
33 tma::expect(args.inputs_arrived, args.input);
34 for(int i = 0; i < M_BLOCK; i++)
35 tma::load_async(args.input.a[i], args.globals.A,
36 {args.common.coord.x+i, args.iter}, args.inputs_arrived);
37 for(int i = 0; i < N_BLOCK; i++)
38 tma::load_async(args.input.b[i], args.globals.B,
39 {args.iter, args.common.coord.y+i}, args.inputs_arrived);
40 }
41 }
42 };
43 struct consumer {
44 __device__ static void setup(consumer_setup_args<layout> args) {
45 warpgroup::increase_registers<232>(); // increase registers for consumers
46 zero(args.state.accum);
47 }
48 __device__ static void compute(consumer_compute_args<layout> args) {
49 warpgroup::mma_AB(
50 args.state.accum, // dest registers
51 args.input.a[warpgroup::groupid()], // A matrix
52 reinterpret_cast<wide_tile&>(args.input.b) // B matrix
53);
54 warpgroup::mma_async_wait();
55 if(laneid() == 0) arrive(args.inputs_finished);
56 }
57 __device__ static void finish(consumer_finish_args<layout> args) {
58 warpgroup::store(reinterpret_cast<wide_tile&>(args.finish.c[warpgroup::groupid()]), args

↪→ .state.accum);
59 warpgroup::sync();
60 if(warpgroup::warpid() == 0) for(int i = 0; i < N_BLOCK; i++) {
61 tma::store_async(args.globals.C, args.finish.c[warpgroup::groupid()][i],
62 {args.common.coord.x, args.common.coord.y+i});
63 tma::store_async_read_wait(); // wait that store is finished before reusing finish

↪→ memory
64 }
65 zero(args.state.accum);
66 if(laneid() == 0) arrive(args.finish_finished);
67 }
68 };
69 };

Figure 15: Templated matrix multiply kernel which is reasonably competitive with CuBLAS.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.2 LONG CONVOLUTION

This section shows the long convolution kernel for sequence length 4096, written in the TK ab-
stractions. We use the FFT convolution algorithm, computed via Monarch Matrices, for our long
convolution kernel (Cooley & Tukey, 1965; Fu et al., 2023a; Dao et al., 2022a).

1 struct consumer {
2 __device__ static void setup(consumer_setup_args<layout> args) {
3 warpgroup::consumer_registers<NUM_CONSUMER_WARPS/4>();
4 int iters_per_head = (args.globals.x.batch + NUM_CONSUMER_WARPGROUPS-1) /

↪→ NUM_CONSUMER_WARPGROUPS;
5 args.state.current_head = (0 / iters_per_head)*132 + blockIdx.x; // start for iter 0
6 using consumers = group<NUM_CONSUMER_WARPS>;
7 consumers::load(args.scratch.f, args.globals.f, {0, 0, 0, 0});
8 consumers::load(args.scratch.finv, args.globals.finv, {0, 0, 0, 0});
9 consumers::load(args.scratch.tw, args.globals.tw, {0, 0, 0, 0});

10 consumers::load(args.scratch.twinv_t, args.globals.twinv_t, {0, 0, 0, 0});
11 load_head_data(args.scratch, args.globals, args.state.current_head);
12 }
13 __device__ static void compute(consumer_compute_args<layout> args) {
14
15 int warpgroupid = warpgroup::warpid()/kittens::WARPGROUP_WARPS;
16 int default_barrer_id = warpgroupid + 4;
17 // X = FˆT X
18 crt_fl<16, 64> mma_reg; // 64 registers
19 crt_bf<16, 64> accum, tmp; // 32 registers each
20 warpgroup::mm_AB(mma_reg.real, args.scratch.f.real, args.input.x[warpgroup::groupid()]);
21 warpgroup::mm_AB(mma_reg.imag, args.scratch.f.imag, args.input.x[warpgroup::groupid()]);
22 warpgroup::mma_async_wait();
23 copy(accum, mma_reg);
24 warpgroup::load(tmp, args.scratch.tw); // for twiddle first
25 mul(accum, accum, tmp);
26 group<NUM_CONSUMER_WARPS>::sync(2);
27 warpgroup::mm_AB(mma_reg, accum, args.scratch.f);
28 warpgroup::mma_async_wait();
29 copy(accum, mma_reg);
30 warpgroup::load(tmp, args.scratch.kf); // for filter second
31 mul(accum, accum, tmp);
32 warpgroup::mm_AB(mma_reg, accum, args.scratch.finv);
33 warpgroup::mma_async_wait();
34 copy(accum, mma_reg);
35 warpgroup::load(tmp, args.scratch.twinv_t); // twiddle inverse is pre-transposed
36 mul(accum, accum, tmp);
37 warpgroup::store(args.scratch.tmp[warpgroup::groupid()], accum); // must store for AtB
38 warpgroup::sync(default_barrer_id);
39 warpgroup::mm_AB(mma_reg, args.scratch.finv, args.scratch.tmp[warpgroup::groupid()]);
40 warpgroup::mma_async_wait();
41 warpgroup::store(args.output.o[warpgroup::groupid()], mma_reg.real);
42 warpgroup::sync(default_barrer_id);
43
44 if(laneid() == 0) {
45 arrive(args.inputs_finished);
46 arrive(args.outputs_arrived);
47 }
48 __syncwarp();
49 int iters_per_head = (args.globals.x.batch + NUM_CONSUMER_WARPGROUPS-1) /

↪→ NUM_CONSUMER_WARPGROUPS;
50 int next_head = ((args.iter+1) / iters_per_head)*132 + blockIdx.x;
51 if(next_head != args.state.current_head) {
52 load_head_data(args.scratch, args.globals, next_head);
53 args.state.current_head = next_head;
54 }
55 }
56 __device__ static void finish(consumer_finish_args<layout> args) { if(laneid() == 0)

↪→ arrive(args.finish_finished); }
57 };
58 };

Figure 16: A convolution kernel for context length 4096, written in the TK LCSF template, which
outperforms FlashFFTConv (Fu et al., 2023c).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1 using namespace kittens;
2 using namespace kittens::prototype;
3 using namespace kittens::prototype::lcsf;
4 template<int _wg> struct fftconv_4096_layout { // 4096
5 static constexpr int wg = _wg;
6 using seq_tile = st_bf<64, 64>;
7 using seq_layout = gl<bf16, -1, -1, 64, 64, seq_tile>;
8 using filter_layout = cgl<gl<bf16, 1, -1, 64, 64, seq_tile>>;
9 using fft_layout = cgl<gl<bf16, 1, 1, 64, 64>>;

10 struct globals {
11 seq_layout o, x;
12 filter_layout kf;
13 fft_layout f, finv, tw, twinv_t;
14 };
15 struct input_block { seq_tile x[wg]; };
16 struct output_block { seq_tile o[wg]; };
17 struct scratch_block {
18 cst_bf<64, 64> kf, f, finv, tw, twinv_t, tmp[2];
19 };
20 struct consumer_state { int current_head; };
21 };
22 struct fft_4096_template {
23 static constexpr int NUM_CONSUMER_WARPS=8, NUM_CONSUMER_WARPGROUPS=NUM_CONSUMER_WARPS/4,

↪→ NUM_BLOCKS=1, OUTPUT_PIPE_STAGES=2, INPUT_PIPE_STAGES=4;
24 using layout = fftconv_4096_layout<NUM_CONSUMER_WARPGROUPS>;
25 // mine
26 __device__ static inline void load_head_data(typename layout::scratch_block &scratch, const

↪→ layout::globals &g, int head) {
27 using consumers = group<NUM_CONSUMER_WARPS>;
28 consumers::sync(3);
29 consumers::load(scratch.kf, g.kf, {0, head, 0, 0}); // next chunk
30 consumers::sync(3);
31 }
32 // tk
33 __device__ static void common_setup(common_setup_args<layout> args) {
34 int heads_handled = (args.globals.x.depth+131-blockIdx.x) / 132; // I am guaranteeing

↪→ batch is handled by just one block.
35 int iters_per_head = (args.globals.x.batch + NUM_CONSUMER_WARPGROUPS-1) /

↪→ NUM_CONSUMER_WARPGROUPS;
36 args.num_iters = args.task_iter == 0 ? heads_handled * iters_per_head : -1;
37 }
38 struct producer {
39 __device__ static void setup(producer_setup_args<layout> args) {
40 warpgroup::producer_registers();
41 }
42 __device__ static void load(producer_load_args<layout> args) {
43 int iters_per_head = (args.globals.x.batch + NUM_CONSUMER_WARPGROUPS-1) /

↪→ NUM_CONSUMER_WARPGROUPS;
44 int head = (args.iter / iters_per_head)*132 + blockIdx.x;
45 int batch = (args.iter % iters_per_head) * NUM_CONSUMER_WARPGROUPS;
46 if(warpgroup::warpid() == args.iter%4) {
47 tma::expect_bytes(args.inputs_arrived, sizeof(args.input.x[0]) * min((int)

↪→ NUM_CONSUMER_WARPGROUPS, (int)(args.globals.x.batch - batch)));
48 for(int b = batch; b < batch+NUM_CONSUMER_WARPGROUPS && b < args.globals.x.batch; b++)

↪→ {
49 tma::load_async(args.input.x[b-batch], args.globals.x, { b, head, 0, 0 }, args.

↪→ inputs_arrived);
50 }
51 if(laneid() == 0) arrive(args.inputs_arrived, 3); // extra arrivals needed
52 __syncwarp();
53 }
54 }
55 __device__ static void store(producer_store_args<layout> args) {
56 int iters_per_head = (args.globals.x.batch + NUM_CONSUMER_WARPGROUPS-1) /

↪→ NUM_CONSUMER_WARPGROUPS;
57 int head = (args.iter / iters_per_head)*132 + blockIdx.x;
58 int batch = (args.iter % iters_per_head) * NUM_CONSUMER_WARPGROUPS;
59 if(warpgroup::warpid() == args.iter%4) {
60 for(int b = batch; b < batch+NUM_CONSUMER_WARPGROUPS && b < args.globals.x.batch; b++)

↪→ {
61 tma::store_async(args.globals.o, args.output.o[b-batch], { b, head, 0, 0 });
62 }
63 tma::store_async_read_wait();
64 if(laneid() == 0) arrive(args.outputs_finished, 4);
65 __syncwarp();
66 }
67 }
68 };

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.3 ATTENTION

This section shows non-causal attention at head dimensions 64, 128, in the TK abstractions.

1 exp2(args.state.max_vec_last_scaled, args.state.max_vec_last_scaled);
2 mul(args.state.norm_vec, args.state.norm_vec, args.state.max_vec_last_scaled);
3 row_sum(args.state.norm_vec, args.state.att_block, args.state.norm_vec); // accumulate

↪→ onto the norm_vec
4 mul_row(args.state.o_reg, args.state.o_reg, args.state.max_vec_last_scaled); //

↪→ normalize o_reg before mma
5 copy(args.state.att_block_mma, args.state.att_block); // convert to bf16 for mma
6 // O += A @ V
7 warpgroup::mma_AB(args.state.o_reg, args.state.att_block_mma, args.input.v);
8 warpgroup::mma_async_wait();
9 if(laneid() == 0) arrive(args.inputs_finished); // done!

10 }
11 __device__ static inline void finish(consumer_finish_args<layout> args) {
12 if((args.common.seq*NUM_WORKERS+warpgroup::groupid())*64 >= args.globals.Q.rows) return;

↪→ // out of bounds?
13 div_row(args.state.o_reg, args.state.o_reg, args.state.norm_vec);
14 auto &o_smem = reinterpret_cast<typename layout::qo_tile&>(args.scratch.q[warpgroup::

↪→ groupid()]);
15 warpgroup::store(o_smem, args.state.o_reg);
16 warpgroup::sync(warpgroup::groupid());
17 if(warpgroup::warpid() == 0)
18 tma::store_async(args.globals.O, o_smem, {args.common.batch, args.common.head, args.

↪→ common.seq*NUM_WORKERS+warpgroup::groupid(), 0});
19 }
20 };
21 };
22 // kernel is kittens::prototype::lcf::kernel<attn_fwd_template<HEAD_DIM>>;

Figure 17: A templated non-causal attention kernel for head dims. 64 and 128 that competes with
FlashAttention-3.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

1 using namespace kittens;
2 using namespace kittens::prototype;
3 using namespace kittens::prototype::lcf;
4 template<int D, int NUM_WORKERS> struct attn_fwd_layout {
5 using qo_tile = st_bf<64, D>;
6 using kv_tile = st_bf<D==64?192:128, D>;
7 using qo_global = kittens::gl<bf16, -1, -1, -1, D, qo_tile>;
8 using kv_global = kittens::gl<bf16, -1, -1, -1, D, kv_tile>;
9 struct globals { qo_global O, Q; kv_global K, V; };

10 struct input_block { kv_tile k, v; };
11 struct scratch_block { qo_tile q[NUM_WORKERS]; };
12 struct common_state { int batch, head, seq; };
13 struct consumer_state {
14 rt_fl<16, qo_tile::cols> o_reg;
15 col_vec<rt_fl<16, kv_tile::rows>> max_vec, norm_vec;
16 col_vec<rt_fl<16, kv_tile::rows>> max_vec_last_scaled, max_vec_scaled;
17 rt_fl<16, kv_tile::rows> att_block;
18 rt_bf<16, kv_tile::rows> att_block_mma;
19 };
20 };
21 template<int D> struct attn_fwd_template {
22 static constexpr int NUM_CONSUMER_WARPS = 12, NUM_WORKERS = NUM_CONSUMER_WARPS/4,

↪→ INPUT_PIPE_STAGES = 2;
23 using layout = attn_fwd_layout<D, NUM_WORKERS>;
24 __device__ static inline void common_setup(common_setup_args<layout> args) {
25 args.common.batch = blockIdx.z; args.common.head = blockIdx.y; args.common.seq = blockIdx.

↪→ x;
26 args.num_iters = args.task_iter == 0 ? args.globals.K.rows/layout::kv_tile::rows : -1;
27 }
28 struct producer {
29 __device__ static inline void setup(producer_setup_args<layout> args) {
30 warpgroup::producer_registers();
31 }
32 __device__ static inline void load(producer_load_args<layout> args) {
33 if(warpgroup::warpid() == 0) {
34 tma::expect(args.inputs_arrived, args.input);
35 tma::load_async(args.input.k, args.globals.K, {args.common.batch, args.common.head,

↪→ args.iter, 0}, args.inputs_arrived);
36 tma::load_async(args.input.v, args.globals.V, {args.common.batch, args.common.head,

↪→ args.iter, 0}, args.inputs_arrived);
37 }
38 else if(laneid() == 0) arrive(args.inputs_arrived);
39 }
40 };
41 struct consumer {
42 __device__ static inline void setup(consumer_setup_args<layout> args) {
43 warpgroup::consumer_registers<NUM_WORKERS>();
44 if((args.common.seq*NUM_WORKERS + warpgroup::groupid())*layout::qo_tile::rows < args.

↪→ globals.Q.rows) // out of bounds?
45 warpgroup::load(args.scratch.q[warpgroup::groupid()], args.globals.Q,
46 {args.common.batch, args.common.head, args.common.seq*NUM_WORKERS+

↪→ warpgroup::groupid(), 0});
47 zero(args.state.o_reg);
48 zero(args.state.norm_vec);
49 neg_infty(args.state.max_vec);
50 warpgroup::sync(warpgroup::groupid());
51 }
52 __device__ static inline void compute(consumer_compute_args<layout> args) {
53 constexpr float TEMPERATURE_SCALE = (D == 128) ? 0.08838834764f*1.44269504089f : 0.125f

↪→ *1.44269504089f;
54 warpgroup::mm_ABt(args.state.att_block,args.scratch.q[warpgroup::groupid()],args.input.k

↪→);
55 mul(args.state.max_vec_last_scaled,args.state.max_vec,TEMPERATURE_SCALE);
56 warpgroup::mma_async_wait();
57 // softmax
58
59 row_max(args.state.max_vec, args.state.att_block, args.state.max_vec); // accumulate

↪→ onto the max_vec
60 mul(args.state.max_vec_scaled, args.state.max_vec, TEMPERATURE_SCALE);
61 mul(args.state.att_block, args.state.att_block, TEMPERATURE_SCALE);
62 sub_row(args.state.att_block, args.state.att_block, args.state.max_vec_scaled);
63 exp2(args.state.att_block, args.state.att_block);
64 sub(args.state.max_vec_last_scaled, args.state.max_vec_last_scaled, args.state.

↪→ max_vec_scaled);

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

C.4 ROTARY POSITIONAL ENCODINGS

This section shows the rotary kernel for head dimension 128, written in the TK abstractions.

1 load(args.state.cos, args.globals.cos, idx);
2 }
3 __device__ static void compute(consumer_compute_args<layout> args) {
4 rt_fl<16, headdim> x;
5 rt_fl<16, headdim/2> x1, x2, temp1, temp2;
6 load(x, args.input.x[warpid()]);
7 if(laneid() == 0) arrive(args.inputs_finished);
8 __syncwarp();
9 for(int i = 0; i < headdim/32; i++) {

10 #pragma unroll
11 for(int j = 0; j < 4; j++) {
12 x1.tiles[0][i].data[j] = x.tiles[0][i].data[j];
13 x2.tiles[0][i].data[j] = x.tiles[0][i+headdim/32].data[j];
14 }
15 }
16 mul(temp1, x1, args.state.cos);
17 mul(temp2, x2, args.state.cos);
18 mul(x2, x2, -1.f);
19 mul(x1, x1, args.state.sin);
20 mul(x2, x2, args.state.sin);
21 add(temp1, temp1, x2);
22 add(temp2, temp2, x1);
23 for(int i = 0; i < headdim/32; i++) {
24 #pragma unroll
25 for(int j = 0; j < 4; j++) {
26 x.tiles[0][i].data[j] = temp1.tiles[0][i].data[j];
27 x.tiles[0][i+headdim/32].data[j] = temp2.tiles[0][i].data[j];
28 }
29 }
30 store(args.output.o[warpid()], x);
31 __syncwarp();
32 if(laneid() == 0) arrive(args.outputs_arrived);
33 }
34 __device__ static void finish(consumer_finish_args<layout> args) {
35 if(laneid() == 0) arrive(args.finish_finished); // nothing to do here
36 }
37 };
38 };

Figure 18: A templated rotary kernel for head dim. 128 that outperforms popular Triton baselines.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1 using namespace kittens;
2 using namespace kittens::prototype;
3 using namespace kittens::prototype::lcsf;
4 template<int _headdim, int _warps> struct rotary_layout {
5 static constexpr int headdim = _headdim, warps = _warps;
6 using seq_tile = st_bf<16, headdim>;
7 using seq_global = gl<bf16, -1, -1, -1, headdim, seq_tile>;
8 using rope_global = gl<bf16, 1, 1, -1, headdim/2>;
9 struct globals {

10 seq_global o, x;
11 rope_global sin, cos;
12 int batches; // how many batches per block, for sizing grid
13 };
14 struct input_block { seq_tile x[warps]; };
15 struct output_block { seq_tile o[warps]; };
16 struct producer_state { int active_warps; };
17 struct consumer_state { rt_fl<16, headdim/2> sin, cos; }; // long-resident tiles
18 };
19 template<int _headdim> struct rotary_template {
20 static constexpr int headdim=_headdim, NUM_CONSUMER_WARPS=8, NUM_BLOCKS=1,

↪→ OUTPUT_PIPE_STAGES=3, INPUT_PIPE_STAGES=3;
21 using layout = rotary_layout<headdim, NUM_CONSUMER_WARPS>;
22 __device__ static inline void common_setup(common_setup_args<layout> args) {
23 if(args.task_iter == 0) {
24 args.num_iters = min(args.globals.batches, (int)(args.globals.x.batch-blockIdx.y*args.

↪→ globals.batches)) * args.globals.x.depth; // batches*heads handled by block
25 }
26 else args.num_iters = -1;
27 }
28 struct producer {
29 __device__ static void setup(producer_setup_args<layout> args) {
30 warpgroup::producer_registers();
31 args.state.active_warps = min((int)NUM_CONSUMER_WARPS,
32 (int)(args.globals.x.rows/16 - blockIdx.x*

↪→ NUM_CONSUMER_WARPS));
33 }
34 __device__ static void load(producer_load_args<layout> args) {
35 if(warpgroup::warpid() == args.iter%4) {
36 kittens::coord idx = { blockIdx.y*args.globals.batches+args.iter/args.globals.x.

↪→ depth,
37 args.iter%args.globals.x.depth,
38 blockIdx.x*NUM_CONSUMER_WARPS,
39 0 };
40 tma::expect_bytes(args.inputs_arrived, sizeof(layout::seq_tile)*args.state.

↪→ active_warps);
41 for(int i = 0; i < args.state.active_warps; i++) {
42 tma::load_async(args.input.x[i], args.globals.x, {idx.b,idx.d,idx.r+i,idx.c},

↪→ args.inputs_arrived);
43 }
44 if(laneid() == 0) arrive(args.inputs_arrived, 3);
45 __syncwarp();
46 }
47 }
48 __device__ static void store(producer_store_args<layout> args) {
49 if(warpgroup::warpid() == args.iter%4) {
50 kittens::coord idx = { blockIdx.y*args.globals.batches+args.iter/args.globals.x.

↪→ depth,
51 args.iter%args.globals.x.depth,
52 blockIdx.x*NUM_CONSUMER_WARPS,
53 0 };
54 for(int i = 0; i < args.state.active_warps; i++) {
55 tma::store_async(args.globals.o, args.output.o[i], {idx.b,idx.d,idx.r+i,idx.c});
56 }
57 tma::store_async_read_wait();
58 if(laneid() == 0) arrive(args.outputs_finished, 4);
59 __syncwarp();
60 }
61 }
62 };
63 struct consumer {
64 __device__ static void setup(consumer_setup_args<layout> args) {
65 warpgroup::consumer_registers<NUM_CONSUMER_WARPS/4>();
66 kittens::coord idx = { blockIdx.x*NUM_CONSUMER_WARPS + warpid(), 0 };
67 load(args.state.sin, args.globals.sin, idx); // could be better coalesced but doing just

↪→ once

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D LIBRARY IMPLEMENTATION DETAILS

This section provides additional implementation details for THUNDERKITTENS.

D.1 TILE DATA STRUCTURES

The core primitive in THUNDERKITTENS is the tile data structure as introduced in section 3.1. Tiles
exist at the shared memory and register memory levels of the GPU hierarchy, and are created with
multiples of 16× 16 in dimension.

Precision THUNDERKITTENS is extensible across data types: FP32, FP16, BF16, and FP8. De-
signing a unified tile data structure that seamlessly supports different data types is challenging for
two reasons:

1. Each data type requires using different memory layouts both at the shared and register memory
levels, in order to use specialized hardware instructions like tensor cores. 3

2. Each data type uses a different amount of space, meaning that the 16× 16 tile that the user sees
could contain a fixed number of bits, fixed number of elements, or some other option. Ideally, we
can store elements in fully packed formats (e.g., bf16 2 for bf16, e4m3 8x4 for e4m3 FP8).

We let the users think in terms of the number of elements per tile. When the user defines a 16× 32
tile for instance, we store this as 16× 8 packed elements of e4m3 8x4 or 16× 16 packed elements
of bf16 2 in registers. In the library, we define and operate an underlying tile width for the tiles to
hide this complexity from the user. Taking care of differences across data types at tile data structure
level, we can then use the exact same library functions (e.g., mma, exp, cumsum) across tiles of
different data types, preserving the simplicity of the library.

Padding Some AI workloads require shapes that are not multiples of 16. THUNDERKITTENS
provides mechanisms to support these workloads, too, without compromising performance on
hardware-friendly workloads.

1. Loads & Stores. THUNDERKITTENS loads and stores take an optional template arguments for
whether to assume tensors are multiples of 16. If not, each load or store is preceded by a check to
ensure that it is in-bounds. Out-of-bound loads are filled with zeros; out-of-bound stores are not
performed. For safety, these checks are enabled by default; however, they are not free, and they
can also be disabled by setting the appropriate template flag. This abides by TK’s philosophy
of “extensible, but with good defaults.” For TMA loads and stores, we use the built-in hardware
padding features (that is, out-of-bounds accesses are automatically filled in with zeros).

2. Fills & Masks. In addition to preventing illegal memory accesses, one often needs to alter data
within a tile to prevent accidental computations. THUNDERKITTENS provides functionality for
this, too, in the form of six functions: top fill, bottom fill, left fill, right fill, triu, and tril, which
respectively fill the top, bottom, left, right, upper triangle, or lower triangle of tiles. In our
experience, these functions have proven sufficient for all kernels considered.

D.2 SHARED MEMORY LAYOUTS

To illustrate some of the choices available in shared memory layouts, this appendix outlines six
different shared memory layouts for GPU tiles: a naive row-major layout, a padded layout, a simple
swizzled layout, and three more specialized swizzled layouts. We are particularly interested in which
memory banks (numbered from 00 to 31) store each element of the tile; for each layout, we color
and label the element of the tile accordingly. We illustrate all layouts using a 32× 64 16-bit tile.

D.3 NAIVE LAYOUT

A row-major layout, illustrated in figure 19, is among the simplest layouts. It has the benefit of
accurately reflecting tensor layouts in HBM. Furthermore, for access patterns that access row-wise,
it has no bank conflicts. But when loading or storing tensor core register layouts, it suffers 8-way
bank conflicts, and is thus extremely slow.

3https://docs.nvidia.com/cuda/parallel-thread-execution/
#asynchronous-warpgroup-level-matrix-instructions

28

https://docs.nvidia.com/cuda/parallel-thread-execution/#asynchronous-warpgroup-level-matrix-instructions
https://docs.nvidia.com/cuda/parallel-thread-execution/#asynchronous-warpgroup-level-matrix-instructions

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 19: Row-major shared memory layout.

1 bf16* naive_layout(bf16 *data, int r, int c) {
2 return &data[r * columns + c];
3 }

D.3.1 PADDED LAYOUT

Figure 20: Padded shared memory layout.

A common solution to these bank conflicts is to “pad” each row by one memory bank, thereby in-
troducing an offset to shift consecutive elements of a column into different memory banks. This
eliminates bank conflicts, but creates misaligned addresses which interferes with fast instructions
that require aligned addresses. For example, it wouldn’t be possible to use TMA to store the sec-
ond row of this layout due to it only having a 16-byte alignment, whereas TMA requires 128-byte
alignments.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

1 bf16* padded_layout(bf16 *data, int r, int c) {
2 return &data[r * (columns+1) + c];
3 }

D.3.2 NAIVE SWIZZLED LAYOUT

Figure 21: Naive swizzled shared memory layout.

A third option is to “swizzle” the memory, in which progressive rows are reshuffled to alter their
banking. This layout accomplishes this by xor’ing the index with the row, which reduces bank
conflicts. However, this layout lacks hardware support for HGMMA and UTMA instructions, which are
particularly important on H100 GPUs for achieving high performance. Additionally, the granularity
of the swizzling must be large enough to totally prevent bank conflicts when loading into registers.
We illustrate a simple, naive swizzling pattern here, which used to be recommended for preventing
bank conflicts before the advent of tensor cores:

1 bf16* row_swizzled_layout(bf16 *data, int r, int c) {
2 uint64_t addr = (uint64_t)&data[r * columns + c];
3 return (bf16*)(addr ˆ (r << 2));
4 }

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

D.3.3 32 BYTE SWIZZLING

Figure 22: 32 byte swizzled shared memory layout.

32 byte swizzling is the first of a family of layouts (of which we will examine three), where instead
of swizzling the index with the row, the memory address is instead swizzled directly with itself. This
layout is defined by the following C code:

1 bf16* swizzled_layout_32B(bf16 *data, int r, int c) {
2 uint64_t addr = (uint64_t)&data[r * columns + c];
3 return (bf16*)(addr ˆ (((addr % (32*8)) >> 7) << 4));
4 }

This layout here suffers from 4-way bank conflicts, but is valid for all tiles whose width is a multiple
of 16. However, importantly, it has (as do its siblings below) hardware support from both HGMMA
and UTMA instructions.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

D.3.4 64 BYTE SWIZZLING

Figure 23: 64 byte swizzled shared memory layout.

64 byte swizzling is a layout similar to 32 byte swizzling with a more aggressive pattern:
1 bf16* swizzled_layout_64B(bf16 *data, int r, int c) {
2 uint64_t addr = (uint64_t)&data[r * columns + c];
3 return (bf16*)(addr ˆ (((addr % (64*8)) >> 7) << 4));
4 }

64 byte swizzling suffers from just 2-way bank conflicts, but is only valid for tiles whose width is a
multiple of 32 (for half-precision types, or 16 for full-precision).

D.3.5 128 BYTE SWIZZLING.

Figure 24: 128 byte swizzled shared memory layout.

128 byte swizzling is a further extension of its kin:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

1 bf16* swizzled_layout_128B(bf16 *data, int r, int c) {
2 uint64_t addr = (uint64_t)&data[r * columns + c];
3 return (bf16*)(addr ˆ (((addr % (128*8)) >> 7) << 4));
4 }

Finally, 128 byte swizzling has no bank conflicts, but is only valid for half-precision tiles whose
width is a multiple of 64.

D.3.6 THUNDERKITTENS APPROACH

After substantial evaluation of these layouts, we concluded that the three final layouts were the three
most important, because HGMMA and UTMA instructions are critical to high performance, and further-
more that they are good enough to yield high performance across many kernels. Correspondingly,
depending on the width of the tile at compile time we select the highest level of swizzling possible
to minimize bank conflicts.

33

	Introduction
	GPU fundamentals
	GPU hierarchy
	Cost model
	GPU programming frameworks

	ThunderKittens
	Warp parallelism with familiar data structures and operations
	Block parallelism with a generalized asynchronous template
	Grid parallelism with block launch scheduling

	Experiments
	TK enables simple and performant AI kernels
	Comparing kernel implementations

	Conclusion
	Extended discussion of prior work
	Extended results
	Extended details of experimental protocol
	Analyzing the extensibility of TK across workloads
	Analyzing the extensibility of TK across hardware platforms
	Analyzing the simplicity of TK

	ThunderKittens kernel listings
	Matrix multiply
	Long convolution
	Attention
	Rotary positional encodings

	Library implementation details
	Tile data structures
	Shared memory layouts
	Naive layout
	Padded layout
	Naive Swizzled Layout
	32 byte swizzling
	64 byte swizzling
	128 byte swizzling.
	ThunderKittens approach

