
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Comet: A COMMUNICATION-EFFICIENT AND PERFOR-
MANT APPROXIMATION FOR PRIVATE TRANSFORMER
INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The prevalent use of Transformer-like models, exemplified by ChatGPT in modern
language processing applications, underscores the critical need for enabling private
inference essential for many cloud-based services reliant on such models. However,
current privacy-preserving frameworks impose significant communication burden,
especially for non-linear computation in Transformer model. In this paper, we
introduce a novel plug-in method Comet to effectively reduce the communication
cost without compromising the inference performance. We second introduce an
efficient approximation method to eliminate the heavy communication in finding
good initial approximation. We evaluate our Comet on Bert and RoBERTa models
with GLUE benchmark datasets, showing up to 3.9× less communication and 3.5×
speedups while keep competitive model performance compared to the prior art.

1 INTRODUCTION

Leveraging the Transformer-based architecture (Vaswani et al. (2017)), the Generative Pretrained
Transformer (GPT) (Brown et al. (2020)) is reshaping the global deep learning applications (Wang
et al. (2022; 2024)) landscape by demonstrating remarkable proficiency in comprehending human
language and generating multifaceted content. For instance, users can receive instructional responses
by sending queries via ChatGPT web portal. While such client-server interaction scheme enhances
efficiency and productivity, privacy has emerged as a concern. More specifically, machine learning
applications like ChatGPT require either users provide language prompts or images, which may
include confidential information, to the service provider. On the other hand, the server has concerns on
exposing trained model weights, which are considered as vital asset, to the clients. Therefore, the gap
between privacy requirements and efficient performance motivates our study of private Transformer
inference.

To address the privacy concerns (Garcia et al. (2023)) of users and protect the model on the server,
several privacy-preserving inference frameworks (Rathee et al. (2020); Mishra et al. (2020); Xu
et al. (2024)) have been proposed for convolutional neural networks via applying secure multi-party
computation (MPC) techniques, such as homomorphic encryption (HE) (Fan & Vercauteren (2012);
Cheon et al. (2017)), secret sharing (SS) (Shamir (1979)), and oblivious transfer (OT) (Brassard
et al. (1987)). However, directly applying such privacy-preserving frameworks to Transformers
leads to overwhelming computing and communication cost, because the Transformer-based models
usually face complex hybrid protocols for non-linear functions like GeLU, Softmax, and LayerNorm,
which have not been sufficiently addressed in previous studies. To facilitate the widespread of
private Transformer inference services, several works (Hao et al. (2022); Li et al. (2022)) propose
customized protocols and fine-tuning model for reducing communication cost. However, these
existing works still encounter the challenge of heavy communication required to find good initial
approximations or lengthy fine-tuning processes. For example, our investigations have shown that the
Look-Up Table (LUT) method, extensively applied in the state-of-the-art work Iron, necessitates heavy
communication on capturing good initial approximations (Rathee et al. (2021); Hao et al. (2022)). To
alleviate such communication burdens, MPCFormer (Li et al. (2022)) replaces two heavy non-linear
functions, namely Softmax and GeLU, with aggressive quadratic polynomials for communication
reduction, albeit at the cost of requireing further lengthy fine-tuning and compromises to lower
performance. Based on our preliminary explorations, we gain observations about the empirical

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

LUT Polynomial (piecewise)
Hao et al. (2022); Huang et al. (2022)
Rathee et al. (2021)

Fan et al. Pang et al. (2024)
Lu et al. (2023) Luo et al. (2024) Dong et al. (2023)

Table 1: Existing works taxonomy of non-linear functions for private inference

characteristics of Transformer model and secret sharing techniques. These findings present us
opportunities for designing of communication-efficient and performant private Transformer inference:

Smoothed approximation for Transformer inference: We observe that smoothed approximation func-
tions can maintain or even enhance the Transformer performance across various tasks when replacing
GeLU activation function. Additionally, our experimental results indicate that Softmax function
replaced by ReLU(x)∑

ReLU(x) has marginal influence on model accuracy, which echos the finding of se-
cureML (Mohassel & Zhang (2017)). This provides us an opportunity to unify common non-linear
protocols to one function through the inverse square root.

Affinity of exponent of secret shares: Current protocols on calculating the inverse square root involve
high communication costs, often utilizing LUT or (piecewise) polynomial approximation to find good
initial approximations for consecutive Newton iterations. We discover that such heavy communication
can be totally removed via our novel design protocol. Because the magnitude of activation values is
around zero, this provides us a unique opportunity to propose a share flooding technique to ensure
our novel protocol working securely in two-party mode.

Based on the above observations, we propose Comet, a communication-friendly and performant
private Transformer plug-in approximation method. Comet unifies hybrid complex non-linear
functions and designs new specialized protocols to eliminate most of the communication for unified
non-linear function. Specifically, in Sec. 3.1, we first endeavor to harmonize non-linear functions
that applies hybrid complex protocols, namely GeLU and Softmax, with smoothed maximum unit
(SMU) function (Biswas et al. (2022)). In Sec. 3.2, we present our novel double approximation
protocol that removes the communication cost of finding the initial approximation when calculating
the inverse square root. To facilitate the proposed double approximation protocol applied in two-party
computation scheme, we design a share flooding technique to render the method fully practical,
thereby avoiding potential divergence after Newton iterations in Sec. 3.3. We implement our method
and conduct extensive evaluations with BERT (Kenton & Toutanova (2019)) and RoBERTa-base
(Liu et al. (2019)) models on the GLUE benchmark (Wang et al. (2018)) in Sec. 4. Our experiment
results show that Comet achieves up to 3.9× reduction in communication cost and 3.5× time speedup,
compared with LUT method and common Taylor approximation method utilizing the state-of-the-art
framework Iron (Hao et al. (2022)) and CrypTen (Knott et al. (2021)), respectively.

2 PRELIMINARIES

2.1 THREAT MODEL

Similar to previous works (Juvekar et al. (2018); Riazi et al. (2019); Hao et al. (2022)), our method
follows the two-party semi-honest threat model. Specifically, the client C and the server S follow the
protocol but attempt to infer each other’s input, namely the client’s input data and the server’s model
parameters, during the inference process.

2.2 ADDITIVE SECRET SHARING AND PROTOCOLS

Given an original message m at party P ∈ {0, 1}, one of the two Additive Secret Shares (ASS)
is constructed by uniformly sampling randomness r and setting ⟨m⟩P = r, while the other share
is formed as ⟨m⟩1−P = m − r. To reconstruct the message, one can simply add two shares
m = ⟨m⟩P + ⟨m⟩1−P . In this work, we utilize ASS to share the encrypted output of linear functions.
Existing research has developed accurate computation protocols for non-linear function using secret
sharing, which protect the privacy of both the client and server. SIRNN (Rathee et al. (2021)) designs
multiple accurate non-linear computation protocols for convolution neural network, extensively using
LUT for layer normalization, Softmax, and exponential function. The functionality of LUT takes

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: The overview of Comet(The figure is updated.). The client (left), who holds the input,
interacts with and receives output from the server, who holds the model, via private Inference engines,
e.g., CrypTen and Iron. Comet (right) unifies the non-linear functions into inverse square root and
save communication with double approximation and share flooding in two-party mode.

as input string i (with σ bitwidth) and output T < i > (with α bitwidth) where T is a M-entries
table. Such functionality can be achieved via (M1)-OT with (2σ − logM) offline and (M ∗ α+ σ)
online communication bits (Brüggemann et al.; Ito et al. (1997)). Iron (Hao et al. (2022)) improves
the communication efficiency of relevant protocols via customized optimizations. Despite efforts to
reduce communication cost regarding accurate protocols, current protocols continue to face significant
communication burdens. To ease such overhead, (piecewise) polynomial approximation (e.g., Taylor
expansion) can greatly reduce the communication overhead by converting complex protocols to
multiplications (Fan et al.; Chou et al. (2018)). Nevertheless, the use of low-degree polynomials
leads to a notable loss in inference performance, while employing high-degree polynomials incurs
substantial communication costs.

2.3 IEEE 754 FLOAT-POINT REPRESENTATION

The IEEE 754 is a technical standard for floating-point representation (Kahan (1996)). Any floating-
point number can be represented in the form of (1+m)∗2e, where m is mantissa (m ∈ [0, 1)) and e is
exponent number. To store a floating-point number in IEEE 754 representation, taking 32-bit floating-
point number as example, 3 basic components should be filled: The highest bit denotes the sign of
floating-point number, where 0 represents a positive number while 1 represents a negative number;

Figure 2: a IEEE 754 Floating-point representation example

The exponent (E), as shown in Fig. 2
(green part), is filled by adding a bias
B= 27 − 1 to the actual exponent (e),
which means E = e + B. The Nor-
malised Mantissa (m) can be directly
filled in the binary form as shown in
red part of Fig. 2. For convenience,
we denote M as the integer mantissa,
which is generated by moving fraction dot to the end of mantissa (M = L ∗m), where L = 223.
M + EL denotes the binary content corresponding to a floating-point number.

2.4 NEWTON-RAPHSON METHOD

The Newton-Raphson method (Ramamoorthy et al. (1972)) is a root-finding algorithm which produces
successively better approximations to the roots of a real-valued function. Given a single-variable
function f defined for a real variable x, the derivative f

′
, and an initial guess x0 for a root of f , if

the function satisfies sufficient assumptions and the initial guess is close, then x1 = x0 − f(x0)
f ′(x0)

is a
better approximation of the root than x0. Geometrically, (x1, 0) is the intersection of the x-axis and
the tangent of the graph of f at (x0, f(x0))), or in other words, the improved guess is the unique root
of the linear approximation at the initial point. The process is repeated as xn+1 = xn− f(xn)

f ′(xn)
until a

sufficiently precise value or a predefined number of iterations is reached. In this study, we follow the
Newton Iteration equation xn+1 = xn(

3
2 −

x
2x

2
n) for inverse square root in previous works (Knott

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

et al. (2021); Ramamoorthy et al. (1972); James & Jarratt (1965); Schulte & Wires (1999)), where x
is the input and xn is the estimation result for each iteration.

2.5 PRIVATE TRANSFORMER INFERENCE

Comet, like previous related works (Rathee et al. (2020); Hao et al. (2022)), considers the scenarios
where the server holds Transformer model, while the client holds and sends private input, as shown
in the left part of Fig. 1. Our framework enables clients sending inference requests and receives
prediction results on its input. To keep the privacy of both client and server, several private Trans-
former inference frameworks (Hao et al. (2022); Li et al. (2022)) are introduced. These frameworks
mainly divide the cryptographic operations into two categories– linear and non-linear. For linear
computation like matrix multiplication, HE is commonly used. HE ciphertext allows operations
like multiplication on ciphertext without decryption. To maintain the correctness of decryption,
ciphertexts need to be refreshed within limited number of operations via bootstrapping (Chillotti
et al. (2016)) or re-encryption. To produce the linear results of each attention layers, the client
encrypts their input embedding vectors, with coefficient encoding technique (Hao et al. (2022);
Huang et al. (2022)), into HE ciphertexts and send them to the server. The server multiplies the
ciphertexts-plaintext matrix with HE multiplication. To protect the privacy of kernel parameters, the
server should generate two shares with random number mask and send one encrypted share to the
client for consecutive non-linear functions.

GeLU, LayerNorm, and Softmax are the most common non-linear functions in Transformer-like
models, which induce over 80% of communication cost in inference (Li et al. (2022)). For example,
GeLU necessitates the Gaussian Error function erf(x), which is approximated using a high-order
Taylor expansion. This introduces much more rounds of multiplications compared with linear part of
private Transformer inference. Similar challenges are faced in Softmax and LayerNorm, which require
to calculate exponential function and inverse square root. Furthermore, the variety of non-linear
functions imposes extra difficulties for reducing communication cost, since different customized
protocols must be developed for each non-linear function, such as exponential and complex erf
function. Current works apply high-order polynomial approximation to estimate such complex
function in (Lu et al. (2023); Pang et al. (2024); Dong et al. (2023); Luo et al. (2024)), compromising
to model performance or inference latency.

3 METHOD

In this section, we present Comet, which unifies the hybrid complex non-linear protocols and removes
the significant communication cost for finding good initial approximation. We provide details on how
to unify protocols in Sec. 3.1, how to transfer communication to local computation in Sec. 3.2, and
how to avoid divergence with share flooding in Sec. 3.3.

3.1 UNIFY HYBRID COMPLEX PROTOCOLS

To address the heavy communication issue in private Transformer inference, we first shed light on the
Transformer architecture, which consists of multiple encoder-decoder architecture. The encoder has
similar structure with the decoder, hence we focus on encoder blocks. A typical Transformer model
with multiple encoder blocks consists of (1) an embedding layer, (2) a stack of encoder blocks, and
(3) a prediction layer. One input token maps to a latent representation vector via the embedding layer.
The encoder blocks are composed of attention layers and feed-forward layers as illustrated below.

Attention layers. After taking in the token embedding vector, attention function attempts to generate
query, key, and values vectors with corresponding weights, denotes as XQ, XK , and XV , respec-
tively. Then, the layer output the attention vector using the function: Attention(XQ, XK , XV) =

Softmax(
XQXT

K√
d

)XV , where d is the dimension of embedding vector.

Feed-forward Layers. The layer can be represented as follows: FeedForward(X) =
GeLU(XW1 + b1)W2 + b2, where GeLU is the Gaussian Error Linear Unit function. The feed-
forward layer takes the output attention vectors of attention layers as input. The GeLU function
requires Gaussian Error function erf(x): GeLU(x) = 0.5x ∗ (1 + erf(x√

2
)).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Layer Normalization. Layer Normalization (LayerNorm) is applied after attention layers and
feed-forward layers. By calculating the normalization of mini-batch of input, it smooths gradients for
better generalization accuracy, shown in following equation: y = x−E(x)√

V ar(x)+ϵ
∗ γ + β , where E(x)

denotes the mean of input x and V ar(x) is the variance of input, γ and β are learnable parameter
during the training.

ex in Softmax, erf(x) in GeLU, and 1√
x

in LayerNorm require either different Taylor approximation
functions or different specialized LUT protocols to calculate their results. To unify the complex
protocols in non-linear functions, we propose to replace the exponential function ex in Softmax
with ReLU function as SecureML (Mohassel & Zhang (2017)), i.e., Softmax∗(x) = ReLU(x)∑

ReLU(x)

since it shows competent performance in experiments (see in Sec. 4.2 and Appendix. C). Since the
erf function in GeLU requires high order Taylor expansion in specialized protocol, we leverage
the smoothed maximum unit (SMU) to replace the GeLU function. The SMU function for GeLU
derives as smu(x) = 1+α

2 ∗ x + (1−α)∗x2+µ2

2∗
√

(1−α)∗x2+µ2
, where α and µ are the trainable parameters to

control the slope of negative axis and smoothness of function, respectively (refer to Appendix. B for
detailed derivation and Appendix. F for explanation). We set α = 0, µ = 0 for ReLU replacement in
Softmax∗ function, and α = 0, µ = 1√

2
for GeLU replacement in smu(x) function to retain the

model performance. Additionally, we test the flexibility of α and µ by training from scratch, showing
a performance boost in some tasks of GLUE benchmark in Appendix. C. As the LayerNorm only
requires inverse square root, we successfully unify all non-linear functions, namely GeLU, Softmax
and LayerNorm, into inverse square root.

3.2 DOUBLE APPROXIMATION

Even though we unify complex non-linear protocols to the inverse square root, we still face the high
communication challenge when calculating this function. Current works on calculating the inverse
square root requires the Newton iterations, or Goldschmidt’s iteration (Ercegovac et al. (2000)),
to get accurate results with a initial approximation. Due to the local convergence characteristic of
Newton method (refer to Appendix. E for details), the initial approximation has to be close enough
to the root of function, referred as "the good initial approximation". However, finding the good
initial approximation usually requires over 85% communications of total process using LUT method
or high order Taylor expansion (Rathee et al. (2021)). In this manner, we demonstrate our double
approximation method for such initial approximation finding without communication for inverse
square root y = 1√

x
. First, we take logarithm on both sides of the equation to log(y) = − 1

2 log(x).
Such equation can be easily transformed into secret-shared form as equation (1), where xc and xs

denote as the share of client and server.

2log(y) = −log(x)
= −log(xc + xs)

(1)

Then we replaced the input x and output y with IEEE 754 floating-point representation:

2log((1 +my) ∗ 2ey) = −log((1 +mx) ∗ 2ex)
= −log((1 +mxc

) ∗ 2exc) + (1 +mxs
) ∗ 2exs))

(2)

First, let us focus on one-party calculation of inverse square root, which is the upper equation in
equation (2). We change the multiplication in logarithm to addition following the logarithm rule.

2(log(1 +my) + ey) = −log(1 +mx) + ex (3)

As the logarithm can be complex to calculate, we first approximate the logarithm with linear function
log(1+m) ≈ m+ b,m ∈ [0, 1), where b is a constant number we can predefined based on logarithm
function. After the replacement of logarithm with first approximation, we have the equation (4) and
reorganized to equation (5) to estimate the inverse square root value:

2(my + b+ ey) ≈ −(mx + b+ ex) (4)

(my + ey) ≈ −(mx + ex)/2− 3b/2 (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Such approximation can be efficient to calculate the inverse square root with good precision in
one-party mode. However, it is challenging for the secret share scheme, as the logarithm cannot be
replaced when two shares are added in the lower part of equation (2). Our insight is that two shares’
exponent part can be approximately equal to each other, as the exponent parts for two shares are only
8-bits length. Then we take the second approximation exc

≈ exs
as hypothesis and satisfied in

Sec. 3.3. We can further transform the secret-shared form equation (2) with second approximation as
following:

2log((1 +my) ∗ 2ey) ≈ −log((1 +mxc
+ 1 +mxs

) ∗ 2exs)) (6)

2(log(1 +my) + ey) ≈− log((1 + (mxc
+mxs

)/2) ∗ 2exs+1))

= −log(1 + (mxc +mxs)/2)− exs − 1
(7)

Then we apply the first approximation to the lower equation (7):

2(my + b+ ey) ≈ −(mxc +mxs)/2− b− exs − 1 (8)

We then replace the m and e with M = L ∗m and E = e+B as stated in Sec. 2.3:

2
My

L
+ 3b+ 2(Ey −B) ≈ − (Mxc

+Mxs
)

2L
− Exs

+B − 1 (9)

We reorganize (9) to the equation (10) into two shares mode, where Exc|s denotes we replace the Exc

with Exs
as second approximation:

My + LEy ≈ −
1

4
(Mxc

+ LExc
)

c

−1

4
(Mxs

+ LExc|s)
s

+
(3B − 3b− 1)L

2
s

(10)

The orange and blue term can be regarded as the integer value of the client and the server share,
respectively. The last black term is a constant that both parties can learn offline. The boxed term
with undertext c and s are the output shares of approximated inverse square root result for client and
server, respectively.

In this manner, we can get a approximated value of inverse square root without heavy communication
between the client and server, as the client and server can only calculate on their own shares and a
constant. The initial approximation can be produced by adding two shares. The precise result can be
approached via Newton Method with 3-4 iterations, as shown in Sec. 4.3. As the main bottleneck of
communication lies in finding good initial approximation, we decrease O(2σ) LUT communication
cost to O(1) in private Transformer inference.

3.3 SHARE FLOODING

In two-party mode, server needs to generate the shares for client and server itself with random number
mask, after the linear results are produced in HE ciphertext. However, our second approximation
requires the exponent part of two shares are close to each other to remove the communication
cost. If the exponent part is not close enough, the result of Newton iteration would be diverge (see
Appendix D for more detailed experiments). As shown in Fig. 3, the random number in the gray
box which is too close to the input values can make the counterpart share far from each other, e.g., if
the input value is 3.1 and random number is 3.098, the other share 0.002 would generate bad initial
approximation that leads to divergence, since the large difference in the exponent of two shares breaks
second approximation. This imposes a dilemma for generating two shares as one of the share is the
uniformly random number mask that is generated offline by server. It is infeasible to always meet
the requirements of second approximation as the server cannot learn the convolution results before
generating the random number mask offline. This dilemma brings us a new challenge— How can we
securely generate shares and efficiently perform double approximation while satisfying privacy needs
and approximation assumptions?

To address this challenge, we propose the share flooding technique for private Transformer inference.
Our insight is that the absolute magnitude of tensor values is closely surrounded around zero. This is
because the input embedding vector is a 0 to 1 valued vector after softmax using word2vec technique
(Mikolov et al. (2013)). Applying Softmax and LayerNorm function in attention block and feed-
forward layers iterative also confine the activation magnitude into zero to one range. Meanwhile, the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

X0

d-d x-d x+d

Figure 3: Demonstration of double approximation divergence example. "d" denotes the upper bound
of exponent between two shares that would lead to divergence in Newton Method. One share
generated, in integer field Z231 , in grey box (within the bound d) means the share is too close to the
input X, which makes the two shares exponent out of the convergence bound of Newton Method.

training process usually applies L1/L2 normalization in loss function to discourage large weights to
fight overfitting issue, which makes the consecutive activation magnitude to be small as well. This is
also validated in our preliminary experiments. We refer readers to Appendix A for more details.

With our insight, we design to flood the random number mask with a large absolute value. This
flood number can drown the exponent of two shares to satisfy the second approximation requirement.
For example, if the flood number is 8192 and input message is 3.1, we add the flood number to the
random number mask, such as 3.098, results in 8195.098. The other share is -8191.998. Both shares
have the same exponent equal to 140 in IEEE 754 float-point representation. To be more precise, we
flood the random mask offline with a large adjustable flooding number to specific task, as one party’s
share. The corresponding other share is generated when online message subtract with flooded random
mask, then transfer the floating-point valued share to the integers in corresponding integer field. As
equation (10) shows, the flooding number cannot be offset as the blue and orange shares are same
sign. We compensate the over-flooded value by adding 1

2 (Ef −Em)L, where Ef is the exponent of
flooding number and Em denotes the exponent of most frequent activation value of the distribution
learned in similar tasks. Note that the fixed-point shares can be easily transfer to floating-point
shares by dividing the scale (see details in Appendix G). We securely produce shares as there is
no information exposed except the sign of two shares, which would not expose any information
of original input value. This novel design enable us for addressing the challenge of security and
approximation assumption requirement.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We implement Comet within the secure two-party framework Iron, which uses the EMP toolkit (emp)
for implementing non-linear functions, and the CrypTen framework. The experiments are conduct on
two servers with an AMD EPYC 7413 24-core Processor 64GB RAM, under the network bandwidth
of 200Mbps. We set the flooding number equal to 8192 (Ef = 140,Mf = 0), as it only floods the
exponent Ef with mantissa Mf equals to zero, and Em = 128, as it covers most of the activation
distribution in Transformer-based model. We evaluate the model performance based on HuggingFace
implementation with the dataset of GLUE benchmarks. In following sections, we aim to answer three
questions to present the benefits of Comet: (1) The model performance of the unified model. (2) The
iteration number of the Newton method required and its effect on model performance. (3) The time
and communication reduction of Comet.

4.2 UNIFIED MODEL PERFORMANCE

To present the model performance of the unified model, we evaluate its performance use the Bert-base
and RoBERTa-base model and compare it with baseline models. We use the sequence length of
128 for the selected datasets of GLUE benchmark. Baseline models are selected combinations
within the set of {GeLU, s-GeLU, Softmax, Softmax∗, s− Softmax∗ }, where "s-" denotes the
smu(x)-replaced ReLU or GeLU in the following function. We train the baseline models with
learning rate from 1e-6, 5e-6, 1e-5, and 1e-4, the number of epochs from 10, 30, and 100. We also set
the α = 0, µ = 0 for s− Softmax∗ and α = 0, µ = 1√

2
for s-GeLU, as stated in Sec. 3.1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: The model performance of a subset of GLUE benchmark with different combination of
smoothed maximum unit replacement for GeLU and Softmax function. "Softmax∗" stands for
ReLU replaced Softmax in Sec. 3.1. "s-" stands for the smu(x) smoothed function in Sec. 3.1.
Average Pearson and Spearman correlation is reported for STS-B. Matthews correlation is reported
for CoLA. Accuracy is reported for other datasets.

Bert-base RTE MRPC STS-B SST-2 CoLA
GeLU + Softmax 70.8 88.97 88.6 92.7 58.9
GeLU + Softmax∗ 66.4 86.9 85.8 91.4 54.2
GeLU + s-Softmax∗ 67.9 86.3 86.7 90.5 55.7
s-GeLU + Softmax 69.4 86.7 88.3 91.1 56.1
s-GeLU + Softmax∗ 67.2 88.1 88.1 92.1 55.7
s-GeLU + s-Softmax∗ 71.5 88.6 88.8 92.6 57.9
RoBERTa-base
GeLU + Softmax 74.2 92.3 89.1 92.1 55.7
GeLU + Softmax∗ 71.8 89.6 84.8 89.9 53.8
GeLU + s-Softmax∗ 72.6 88.9 87.2 89.1 52.9
s-GeLU + Softmax 72.7 89.1 88.1 87.3 54.2
s-GeLU + Softmax∗ 73.4 91.7 86.3 88.4 54.1
s-GeLU + s-Softmax∗ 74.9 92.2 90.1 90.4 55.8

Table. 2 upper part shows the model performance of Bert model on a subset of GLUE benchmark with
different baseline models. Since all non-linear functions are unified to inverse square root with SMU
unit, we name our target model with "s-GeLU + s-Softmax∗", as the unified model. The unified
model achieves marginal performance loss with less than 1%. It also shows a small accuracy boost
of approximately 1% in the relatively small dataset RTE, while other baselines experience larger
performance loss. In this manner, our unified model preserves model performance with Bert-base
model. To validate our observation, we also evaluate the unified model with RoBERTa-base model
architecture with same datasets. As shown in lower part of Table. 2, the target unified model of
RoBERTa-base shows consistent model performance among the GLUE benchmark subset.

4.3 NEWTON ITERATION EVALUATION ON MODEL PERFORMANCE

In this section, we evaluate the double approximation method of Comet in model performance.
To answer the question of how many iterations that the double approximation method requires
to recover the performance of unified model, we conduct experiments on the unified model with
varying iteration number when calculating the inverse square root with double approximation method.
We set b = 0.045 by inversely solving 3

2L(B − b) = 0x5f3759df derived from equation (5) with
m = M/L and e = E −B replaced, given the magic number 0x5f3759df as in fast inverse square
root algorithm (Lomont (2003)). Such magic number can be obtained by minimizing the relative
error between the approximated results and real results as shown in (Lomont (2003)). Our double
approximation method can recover the model performance of the unified model in 3∼4 iterations
with the initial approximation resulting from our method, as shown in Table. 3. Our method requires
fewer iterations compared to the CrypTen, where the inverse square root requires 10 iterations by
default with a communication-intensive initial approximation function of 2.2 ∗ e(−0.5x+0.2) + 0.2.
Even though we incur around extra 2 rounds compared with LUT method (which only requires 1∼2
rounds), LUT method necessitates heavy communication for accurate initial approximation, and
such communication can grow exponentially with the number of table entries. Thus, our method
outperforms the LUT in the total communication and we elaborate the details in Sec. 4.4.

4.4 END-TO-END INFERENCE COMMUNICATION AND TIME COMPARISON

In this section, we evaluate the end-to-end inference time and communication cost of Comet im-
plemented within the state-of-the-art privacy-preserving frameworks Iron and CrypTen. We first
compare our method with the 2.2∗e(−0.5x+0.2)+0.2 function applied in CrypTen and high/low order
of Taylor expansion for finding initial approximation of inverse square root in both communication
and time using the unified model. Comet recovers the model performance with setting of 4 Newton

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: The model performance of double approximation method on how many iterations to recover
the best model performance from initial approximation. The unmodified model is the model with
unchanged GeLU and Softmax functions. The unified model is the SMU-replaced GeLU and SMU-
replaced Softmax∗ function model.

Bert-base RTE MRPC STS-B SST-2 CoLA
Unmodified Model 70.8 88.97 88.6 92.7 58.9
Unified Model 71.5 88.6 88.8 92.6 57.9
Without Newton Iteration 64.6 81.58 86.7 90.8 52.6
3 iterations 70.8 86.9 88.6 92.2 56.4
4 iterations 71.5 88.6 87.6 92.5 57.8
RoBERTa-base
Unmodified Model 74.2 92.3 89.1 92.1 55.7
Unified Model 74.9 92.2 90.1 90.4 55.8
Without Newton Iteration 66.7 87.8 86.7 85.3 51.9
3 iterations 72.4 86.7 90.1 89.4 53.9
4 iterations 74.2 88.1 92.1 90.6 55.7

iterations as shown in Sec. 4.3, while high and low order Taylor approximation would take 2 and 8
iterations, respectively. We can see from Table. 4 that Comet achieves a 2.5× speedup compared to
the original CrypTen framework, with 2× to 3× communication reduction for different non-linear
functions. Such improvement is attributed to the removal of the bottleneck communication involved in
finding initial approximation. We also compare Comet with Taylor approximation with high/low order
polynomial, namely 1− x

2 +
1
2 +

3(x−1)2

8 − 5(x−1)3

16 + 35(x−1)4

128 − 63(x−1)5

256 + 231(x−1)6

1024 − 429(x−1)7

2048

and 1 − x
2 + 1

2 + 3(x−1)2

8 , showing similar 4.0× ∼ 2.8× reduction in time and 3.2× ∼ 1.9× in
communication. This is because the high-order Taylor approximation requires significant communi-
cation for calculating the initial approximation, whereas the low-order Taylor approximation typically
demands more iterations and may diverge due to the initial approximation surpassing the requirement
for local convergence of the Newton Method.

Table 4: The communication (GB) and inference time (Second) comparison on Bert-base and
RoBERTa-base model with CrypTen. "H-Taylor P" and "L-Taylor P" denote 7 order Taylor polynomial
and 2 order Taylor polynomial approximating inverse square root generated at 1, respectively.

Bert-base Total
Time(s)

LayerNorm
Time(s)

LayerNorm
Comm

Act Time Act
Comm

Softmax
Time

Softmax
Comm

CrypTen 74.8 12.19 2.14 34.1 6.28 17.8 3.28
H-Taylor P 73.2 13.6 2.33 32.6 5.82 16.2 3.19
L-Taylor P 70.6 10.5 2.03 29.6 5.57 15.8 3.09
Comet 29.8(2.5×) 3.32(3.7×) 0.94(2.3×) 7.92(4.3×) 1.83(3.4×)5.7(3.1×) 1.58(2.07×)
RoBERTa
CrypTen 79.3 14.19 2.6 36.3 7.4 18.2 3.34
H-Taylor P 75.7 13.9 2.32 34.7 7.31 17.6 3.19
L-Taylor P 73.1 13.3 2.21 30.9 6.4 15.1 3.1
Comet 34.8(2.3×) 5.81(2.4×) 1.59(1.6×) 9.1(4.0×) 1.88(3.9×)6.9(2.63×) 1.79(1.8×)

We also compare Comet to LUT-based framework Iron in the same experimental setting as we did
with CrypTen. Our method achieves up to 3.48× for time speedup and 2.4× to 3.7× communication
reduction in non-linear functions, as shown in Table. 5. This runtime improvement and communication
reduction demonstrate the efficiency of the novel design of Comet. For more ablation experiments,
we refer readers to the Appendix H.

We compare our methods on the model performance among PUMA (Dong et al. (2023)), Bumblebee
(Lu et al. (2023)), Secformer (Luo et al. (2024)) and BOLT (Pang et al. (2024)), as they all using
polynomial approximation for non-linear functions without fine-tuning. Our method demonstrates
competitive model performance when compared to PUMA and BumbleBee, as in Table.6. For fair

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: The communication (GB) and inference time (Second) comparison on Bert-base and
RoBERTa-base model with Iron.

Bert-base Total
Time

LayerNorm
Time

LayerNorm
Comm

Act Time Act
Comm

Softmax
Time

Softmax
Comm

Iron 289.6 48.2 7.45 134.3 14.9 82.6 8.85
Comet 82.4(3.48×) 15.3(3.17×) 3.03(2.4×) 26.8(4.9×) 4.05(3.7×)20.4(4.0×) 3.56(2.5×)
RoBERTa
Iron 290.1 52.3 7.8 127.9 13.83 77.6 8.03
Comet 92.1(3.15×) 14.2(3.68×) 2.8(2.8×) 28.5(4.45×) 4.3(3.2×) 18.9(4.12×) 3.28(2.4×)

comparison, we also compare our method (integrated with other baselines) with original methods
in inference time in Table. 7 in 2-PC mode. We exclude PUMA as it is in 3-PC computation. The
Table. 7 shows our method achieve up to 3.2× speedup when compare to the state-of-the-are works.

Table 6: The model performance comparison of Comet, PUMA, and Bumblebee.

STS-B CoLA RTE
PUMA 88.4 59.2 70
Bumblebee 87.5 60.8 70.04
ours 88.8 59.4 71.3

Table 7: The latency (communication (GB)) comparison between Bumblebee, BOLT, Secformer and
Comet.

BOLT Bumblebee Secformer Ours Speedup
(14 calls) GeLU 27.8s 28.9s 30.4s 13.4s 2.2×
Bert-base 187.1s(60.61) 153.4s(51.1) 142.8s(63.4) 57.9s(38.2) 3.2×
Bert-large 374.1s(93.3) 303.3s(78.3) 317s(82.3) 234.5s(67.2) 2.4×

We also surpass MPCFormer in model performance and avoiding its lengthy knowledge distillation
process, with similar inference time performance, as shown in Table. 8.

Table 8: The accuracy, and inference time (Second) comparison on Bert-base model with MPCFormer
(Li et al. (2022)). "-" denotes not applicable to the method.

Bert-base Total Time KD training STS-B CoLA
MPCFormer 27.7 100 80.1 52.6
Comet 29.8 - 87.6 57.9

5 CONCLUSION

In this paper, we propose Comet, a communication-efficient and performant approximation framework
for private Transformer inference. We specifically unified the hybrid complex protocols into one
protocol– inverse square root for non-linear functions. Then, we further carefully design the double
approximation method to convert the heavy communication of finding initial approximation to local
computation for inverse square root, with our share flooding technique to securely secret sharing
under strong assumption satisfaction. Our experimental results show that Comet outperforms prior
art with up to 3.9× less communication and 3.48× speedups.

REFERENCES

EMP-ToolKit URL. https://github.com/emp-toolkit.

10

https://github.com/emp-toolkit

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Koushik Biswas, Sandeep Kumar, Shilpak Banerjee, and Ashish Kumar Pandey. SMU: smooth
activation function for deep networks using smoothing maximum technique. In 2022 IEEE CVPR,
2022.

Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclosure of secrets. In
Proc. CRYPTO, 1987.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Andreas Brüggemann, Robin Hundt, Thomas Schneider, Ajith Suresh, and Hossein Yalame. FLUTE:
fast and secure lookup table evaluations. In 2023 IEEE Symposium on Security and Privacy (SP),
pp. 515–533.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In Proc. ASIACRYPT, 2017.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In ASIACRYPT, pp. 3–33, 2016.

Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei. Faster cryptonets:
Leveraging sparsity for real-world encrypted inference. arXiv preprint arXiv:1811.09953, 2018.

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong Huang, Cheng
Hong, Tao Wei, and Wenguang Chen. Puma: Secure inference of llama-7b in five minutes. arXiv
preprint arXiv:2307.12533, 2023.

Milos D Ercegovac, Laurent Imbert, David W Matula, J-M Muller, and Guoheng Wei. Improving
goldschmidt division, square root, and square root reciprocal. IEEE Transactions on Computers,
49(7):759–763, 2000.

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptol-
ogy ePrint Archive, 2012.

Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu. Nfgen: Automatic
non-linear function evaluation code generator for general-purpose mpc platforms. In Proc. of the
2022 ACM SIGSAC CCS, pp. 995–1008.

Katherine R. Garcia, Jeremiah Ammons, Xiangrui Xu, and Jing Chen. Phishing in social media:
Investigating training techniques on instagram shop. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, 67(1):1850–1855, 2023. doi: 10.1177/21695067231192588.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei Zhang. Iron: Private
inference on transformers. Advances in neural information processing systems, 35:15718–15731,
2022.

Zhicong Huang, Wen jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure
Two-Party deep neural network inference. In USENIX Security, pp. 809–826, 2022.

Masayuki Ito, Naofumi Takagi, and Shuzo Yajima. Efficient initial approximation for multiplicative
division and square root by a multiplication with operand modification. IEEE Transactions on
Computers, 46(4):495–498, 1997.

Wendy James and P Jarratt. The generation of square roots on a computer with rapid multiplication
compared with division. Mathematics of Computation, 19(91):497–500, 1965.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low latency
framework for secure neural network inference. In Proc. USENIX Security, 2018.

William Kahan. IEEE standard 754 for binary floating-point arithmetic. Lecture Notes on the Status
of IEEE, 754(94720-1776):11, 1996.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-HLT, pp.
4171–4186, 2019.

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and Laurens
van der Maaten. CrypTen: Secure multi-party computation meets machine learning. Advances in
Neural Information Processing Systems, 34:4961–4973, 2021.

Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P Xing, and Hao Zhang. MPCFormer: fast,
performant and private Transformer inference with MPC. 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Chris Lomont. Fast inverse square root. Technical report, 2003.

Wenjie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian Liu, Cheng Hong, Kui Ren, Tao Wei, and
WenGuang Chen. BumbleBee: Secure two-party inference framework for large transformers.
2023.

Jinglong Luo, Yehong Zhang, Jiaqi Zhang, Xin Mu, Hui Wang, Yue Yu, and Zenglin Xu. Secformer:
Towards fast and accurate privacy-preserving inference for large language models. arXiv preprint
arXiv:2401.00793, 2024.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: a cryptographic inference system for neural networks. In Proceedings of the 2020
Workshop on Privacy-Preserving Machine Learning in Practice, pp. 27–30, 2020.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE symposium on security and privacy (SP), pp. 19–38, 2017.

Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng, and Thomas Schneider. Bolt: Privacy-
preserving, accurate and efficient inference for transformers. In 2024 IEEE Symposium on Security
and Privacy (SP), pp. 4753–4771. IEEE, 2024.

Chittoor V Ramamoorthy, James R Goodman, and KH Kim. Some properties of iterative square-
rooting methods using high-speed multiplication. IEEE Transactions on Computers, 100(8):
837–847, 1972.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem
Rastogi, and Rahul Sharma. CrypTFlow2: Practical 2-Party Secure Inference. In Proc. ACM CCS,
2020. ISBN 9781450370899. doi: 10.1145/3372297.3417274. URL https://doi.org/10.
1145/3372297.3417274.

Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta, Rahul Sharma, Nishanth
Chandran, and Aseem Rastogi. SIRNN: A math library for secure rnn inference. In 2021 IEEE
Symposium on Security and Privacy (SP), pp. 1003–1020, 2021.

M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and Farinaz Koushan-
far. XONN: XNOR-based oblivious deep neural network inference. In Proc. USENIX Security,
SEC’19, USA, 2019. USENIX Association. ISBN 9781939133069.

Michael J Schulte and Kent E Wires. High-speed inverse square roots. In Proceedings 14th IEEE
Symposium on Computer Arithmetic, pp. 124–131. IEEE, 1999.

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

12

https://doi.org/10.1145/3372297.3417274
https://doi.org/10.1145/3372297.3417274

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE: A
Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In Proceedings
of the 2018 EMNLP Workshop, pp. 353–355, 2018.

Zhenzhen Wang, Carla Saoud, Sintawat Wangsiricharoen, Aaron W. James, Aleksander S. Popel,
and Jeremias Sulam. Label cleaning multiple instance learning: Refining coarse annotations on
single whole-slide images. IEEE Transactions on Medical Imaging, 41(12):3952–3968, 2022. doi:
10.1109/TMI.2022.3202759.

Zhenzhen Wang, Cesar A. Santa-Maria, Aleksander S. Popel, and Jeremias Sulam. Bi-level graph
learning unveils prognosis-relevant tumor microenvironment patterns from breast multiplexed
digital pathology. bioRxiv, 2024. doi: 10.1101/2024.04.22.590118.

Jin Xu, Zishan Li, Bowen Du, Miaomiao Zhang, and Jing Liu. Reluplex made more practical: Leaky
relu. In 2020 IEEE Symposium on Computers and communications (ISCC), pp. 1–7, 2020.

Xiangrui Xu, Qiao Zhang, Rui Ning, Chunsheng Xin, and Hongyi Wu. SPOT: Structure Patching
and Overlap Tweaking for Effective Pipelining in Privacy-Preserving MLaaS with Tiny Clients.
In 2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS), pp.
1318–1329, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A PRELIMINARY EXPERIMENTS ON ACTIVATION VALUE

We test the activation values distribution of Bert base model in various layers and different dataset, as
we trained in Sec. 4.2. The Fig. 4 and Fig. 5 show that the activation values are compact to small
absolute magnitude (surround zero) regardless the datasets and layers.

Figure 4: Activation distribution before GeLU and LayerNorm layer on various dataset (RTE,
STS-B,COLA) within feed-forward block 2 of Bert base model

Figure 5: Activation distribution before GeLU layer on RTE in different block of Bert base model

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B DERIVATION OF SMU FUNCTION

The SMU smoothed activation function that is proposed in Biswas et al. (2022) is derived from the
equation 11.

max(x1, x2) =

{
x2 if x1 ≤ x2

x1 otherwise

=
(x1 + x2) + |x1 + x2|

2
(11)

By replacing |x| with
√
x2 + µ2, the smoothed approximation formula can be generated as shown in

equation 12.

f(x1, x2, µ) =
(x1 + x2) +

√
x2 + µ2

2
(12)

To have a smoothed approximation of Parametric Activation function, e.g., Leaky ReLU Xu et al.
(2020), x1 = x and x2 = αx are substituted and result in equation 13.

f(x1, x2, α, µ) =
(1 + α)x+

√
(1 + α)x2 + µ2

2
(13)

For convenience of calculation of inverse square root, we transform it into equation 14.

f(x, α, µ) =
1 + α

2
∗ x+

(1− α) ∗ x2 + µ2

2 ∗
√
(1− α) ∗ x2 + µ2

(14)

C EXPERIMENTS ON FLEXIBLE SMU TRAINABLE PARAMETERS

We test the model performance with flexible parameters in SMU function to replace the GeLU and
ReLU in Softmax∗ on subset of GLUE benchmark. We follow the training setting and strategy as
in Sec. 4.1 and Sec. 4.2. The Table. 9 shows about 1− 2% performance boost between unified model
(s-GeLU + s-Softmax∗) and original one (GeLU + Softmax) on the datasets we test when using
flexible trainable parameters.

Table 9: The model performance of a subset of GLUE benchmark with different combination of
smoothed maximum unit replacement for GeLU and Softmax function. "Softmax∗" stands for
ReLU replaced Softmax in Sec. 3.1. "s-" stands for the smu(x) smoothed function in Sec. 3.1.
Average Pearson and Spearman correlation is reported for STS-B. Matthews correlation is reported
for CoLA. Accuracy is reported for other datasets.

Bert-base RTE MRPC STS-B SST-2 CoLA
GeLU + Softmax 70.8 88.97 88.6 92.7 58.9
GeLU + s-Softmax∗ 68.2 87.1 86.9 91.1 56.6
s-GeLU + Softmax 70.4 86.7 88.7 91.5 56.8
s-GeLU + Softmax∗ 69.4 88.9 88.6 92.8 56.5
s-GeLU + s-Softmax∗ 72.1 89.5 89.2 93.8 59.4
RoBERTa-base
GeLU + Softmax 74.2 92.3 89.1 92.1 55.7
GeLU + s-Softmax∗ 73.4 88.9 87.9 89.1 53.9
s-GeLU + Softmax 72.9 89.1 89.3 88.7 55.2
s-GeLU + Softmax∗ 73.7 91.9 89.2 88.4 55.8
s-GeLU + s-Softmax∗ 76.1 93.6 91.1 93.8 57.9

D CLOSENESS BOUND OF TWO SHARES EXPONENT

We evaluate the closeness bound of exponent parts between two shares to avoid the divergence of
Newton method’s iterations and keep the model performance. As the Fig. 6 shows, the upper bound

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

of closeness between shares in exponent is |5|, showing as "elbow point", to satisfy the second
approximation assumption and result in good initial approximation without divergence.

(a) performance on RTE (b) performance on MRPC (c) performance on STS-B

(d) performance on SST-2 (e) performance on CoLA

Figure 6: Closeness evaluation on Bert-base model with 4 Newton iterations on GLUE subset
benchmark. "Baseline performance" denotes the original Bert-base model performance. "baseline
with random shares" denotes the double approximation method with different closeness on exponent
part of two shares.

E NEWTON METHOD’S LOCAL CONVERGENCE

We give the proof of local convergence of Newton’s Method as following.

Theorem 1. (local convergence of Newton’s method) Let f be a twice continuously differentiable
function defined over Rd. Assume that (1) there exists a neighborhood Nσ(x∗) of root of function x∗
and M > 0 for which ∥∇2f(x)−∇2f(y)∥ ≤ M

2 ∥x− y∥2 for any x, y ∈ Nσ(x
∗).

Proof. we have

xk+1 − xk = xk −∇2f(xk)
−1∇f(xk)− x∗

= xk − x∗ +∇2f(xk)
−1(∇f(xk)−∇f(x∗))

= xk − x∗ +∇2f(xk)
−1

∫ 1

0

[∇2f(xk + t(x∗ − xk))](x∗ − xk)dt

= [∇2f(xk)]
−1

∫ 1

0

[∇2f(xk + t(x∗ − xk))−∇2f(xk)](x∗ − xk)dt

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Then,

∥xk+1 − xk∥ ≤ ∥[∇2f(xk)]
−1∥∥

∫ 1

0

[∇2f(xk + t(x∗ − xk))−∇2f(xk)](x∗ − xk)dt∥

≤ ∥[∇2f(xk)]
−1∥

∫ 1

0

∥[∇2f(xk + t(x∗ − xk))−∇2f(xk)](x∗ − xk)∥dt

≤ ∥[∇2f(xk)]
−1∥

∫ 1

0

∥∇2f(xk + t(x∗ − xk))−∇2f(xk)∥∥x∗ − xk∥dt

≤
∫ 1

0

Mt∥xk − x∗∥2dt

≤ M

2
∥xk − x∗∥2

F SMU FUNCTION EXPLANATION

Although our proposed function, 1+α
2 x + 1/2 ∗ (1−α)x2+µ2√

(1−α)x2+µ2
, can be simplified to 1+α

2 x + 1/2 ∗√
(1− α)x2 + µ2, when switch to such square root version, our efficient initial approximation

finding method still works as our method is applicable to f(x) = x1/a (a ∈ Z ̸=−1,0,1) functions,
which is of independent interest. However, the Newton-Raphson update formula for square root,
yn+1 = 1/2 ∗ (yn + x

yn
) is inefficient to compute on secret shares mode (Knott et al. (2021)). It

requires secret share division that needs truncation and extension protocol on given integer ring
(Rathee et al. (2020)).

Therefore, we switch the smu function to the inverse square root version. Since the Newton-Raphson
update formula for inverse square root, yn+1 = 1

2 ∗ yn(3 − xy2n) only requires efficient share
multiplications and the inverse square root one is mathematically equal to the square root version. Our
method contributes to a more lightweight initial approximation finding for later Newton iterations.

G SHARE CONVERSION

For the conversion between the floating point share in non-linear function and integer shares, a
floating-point share (= M + EL) is correspond to one input value, according to IEEE 754 protocol.
Such input value can be converted to the fixed-point share from decimal value to binary. After
multiplied with a pre-defined scale (= 2f), the l-bit fixed-point integer share can be obtained in the
given integer ring Z2l (Knott et al. (2021)). We give the following share conversion example of 7.25:

(float-point share)0|10000001|11010000000000000000000(=1088946176(=M+EL)decimal)←→

7.25←→ (fixed point)0111.01(∗2
4) ←→(÷24) (fixed point integer share)01110100(= 29 decimal)

(15)

H ABLATION STUDY

To demonstrate the challenge and show the effectiveness of the proposed share flooding, we conduct
the ablation experiment on our method with and without flooding technique. The table 10 shows that
the model performance can be significantly harmed without share flooding by 10 loss in corresponding
metric. Our technique can successfully avoid such model performance loss while keeping the privacy.

Table 10: The ablation experiment of Comet method with v.s. without flooding technique.

STS-B CoLA RTE
Comet without flooding 72.2 49.7 62.5
Comet 87.9 57.9 71.1

17

	Introduction
	Preliminaries
	Threat Model
	Additive Secret Sharing and Protocols
	IEEE 754 Float-point Representation
	Newton-Raphson Method
	Private Transformer Inference

	Method
	Unify Hybrid Complex Protocols
	Double Approximation
	Share Flooding

	Experiments
	Experimental Settings
	Unified Model Performance
	Newton Iteration Evaluation on Model Performance
	End-to-End Inference Communication and Time Comparison

	Conclusion
	Preliminary Experiments on Activation Value
	Derivation of SMU function
	Experiments on flexible SMU trainable parameters
	Closeness bound of two shares exponent
	Newton Method's Local Convergence
	SMU Function Explanation
	Share Conversion
	Ablation Study

