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ABSTRACT

Adaptive gradient methods, such as Adam, have shown faster convergence speed
than SGD across various kinds of network models. However, adaptive algorithms
often suffer from inferior generalization performance than SGD. Though much ef-
fort via combining Adam and SGD have been invested to solve this issue, adaptive
methods still fail to attain as good generalization as SGD. In this work, we pro-
posed a Dimension-Reduced Adaptive Gradient Method (DRAG) to eliminate the
generalization gap. DRAG makes an elegant combination of SGD and Adam by
adopting a trust-region like framework. We observe that 1) Adam adjusts stepsizes
for each gradient coordinate, and indeed decomposes the n-dimensional gradient
into n independent directions to search; 2) SGD uniformly scales gradient for all
gradient coordinates and actually has only one descent direction to minimize. Ac-
cordingly, DRAG reduces the high degree of freedom of Adam and also improves
the flexibility of SGD via optimizing the loss along k (≪ n) descent directions,
e.g. the gradient direction and momentum direction used in this work. Then per
iteration, DRAG finds the best stepsizes for k descent directions by solving a trust-
region subproblem whose computational overhead is negligible since the trust-
region subproblem is low-dimensional, e.g. k = 2 in this work. DRAG is com-
patible with the common deep learning training pipeline without introducing extra
hyper-parameters and with negligible extra computation. Moreover, we prove the
convergence property of DRAG for non-convex stochastic problems that often oc-
cur in deep learning training. Experimental results on representative benchmarks
testify the fast convergence speed and also superior generalization of DRAG.

1 INTRODUCTION

SGD (Robbins & Monro, 1951) and its variant with momentum (Sutskever et al., 2013) are used
widely in training deep neural networks. They perform well empirically and have theoretical guar-
antee (Szegedy et al., 2015; He et al., 2016; Lee et al., 2016; Hardt et al., 2016). However, SGD
suffers from two issues. It often has slow convergence speed since it adopts a single learning rate for
all the gradient coordinates. Moreover, it is also hard to tune the single learning rate (Wilson et al.,
2017), since not all gradient coordinates share the same optimization properties.

To resolve this problem, several adaptive gradient methods have been proposed to adopt different
learning rate for different gradient coordinates. Typical examples of such methods include Adagrad
(Duchi et al., 2011), RMSProp (Tieleman et al., 2012), and Adam (Kingma & Ba, 2014). Emprically,
these methods have shown faster convergence speed and eased the burden of carefully tuning the
learning rate in SGD across many kinds of networks. However, their generalization performance are
often worse than SGD in many scenarios (Wilson et al., 2017; Zhou et al., 2020).

Some algorithms are proposed to combine the fast convergence speed of adaptive gradient methods
and good generalization performance of SGD. Instances of this type of algorithms include SWATS
(Keskar & Socher, 2017) which automatically switchs from Adam to SGD, ND-Adam (Zhang et al.,
2017) which utilizes vector learning rate and normalization to control direction and stepsize, and
AMSGrad (Reddi et al., 2018) which maintains a monotone increasing second moment. Unfortu-
nately, these methods only slightly bridge the generalization gap between SGD and Adam, but does
not attain as good generalization performance as SGD, needless to say the state-of-the-art perfor-
mance on test set. Accordingly, these algorithms are rarely used to train deep networks in practice.
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To combine the merits of Adam and SGD, i.e. fast convergence speed in Adam and excellent gener-
alization in SGD, we proposed a Dimension-Reduced Adaptive Gradient Method (DRAG for short)
which minimizes the loss from several descent directions to trade-off the whole space search in
Adam and the minimization along a single gradient direction in SGD. For Adam, adjusting stepsizes
for each gradient coordinate actually transforms the n-dimensional gradient into n independent di-
rections to optimize, in which each direction inherits one coordinate element from the gradient and
sets the remaining coordinate positions as zeros. In contrast, SGD only uses a single learning rate
for all gradient coordinates and minimizes the loss along one descent direction. Though the adaptive
learning rate for each coordinate shows faster convergence speed than a single learning rate for all
coordinates, as shown in many works (Wilson et al., 2017; Zhou et al., 2018), it also leads to the
inferior generalization in Adam, since minimizing n independent directions means searching the
whole parameter space and could results in overfitting. So it is natural to trade-off the number of
descent directions.

To this end, motivated by DRSOM (Zhang et al., 2022), we update the parameters along the gradient
direction and momentum direction through a trust-region-like approach, which greatly reduces the
high adaptivity of Adam while adding flexibility to SGD. At each iteration, DRAG searches for
the optimal update along the gradient and the momentum which are widely used in accelerated
algorithm (Polyak, 1964; Nesterov, 2003) by solving a two-dimensional trust-region subproblem to
find the best stepsizes for these two directions. For the trust-region subproblem, we use a quadratic
approximation to estimate the loss with the Hessian matrix estimated by the second moment in Adam
which is a diagonal matrix and can greatly reduce the computational cost. Moreover, we heuristically
design a simple and effective trust-region radius for the subproblem. Despite the delicate design of
our algorithm, we also theoretically prove that on non-convex problems, our DRAG can converge
and enjoys a stochastic gradient complexity of O(ϵ−4) to find an ϵ-approximate first-order stationary
point. To summarize, our contributions are as follows:

• We proposed the DRAG algorithm to optimize the loss from several descent directions for
balancing the whole space search in Adam and the optimization along a single gradient
direction in SGD. Moreover, we formulate the optimum stepsize search for these descent
directions into a low-dimensional trust region problem whose computational cost is negli-
gible when compared with the vanilla cost in adaptive gradient algorithms.

• We theoretically prove that to find an ϵ-approximate stationary point on non-convex
stochastic problems, DRAG has the stochastic gradient complexity of O(ϵ−4) which
matches the lower bound Ω(ϵ−4) in (Arjevani et al., 2022) under the same non-convex
optimization setting.

• Experimental results show that on several representative benchmarks, our DRAG method
can achieve faster convergence speed than SGD, and also state-of-the-art generalization
performance.

2 RELATED WORK

Adaptive gradient methods, e.g. Adam (Kingma & Ba, 2014), Adagrad (Duchi et al., 2011), and
RMSprop (Tieleman et al., 2012), adopt different stepsizes for different gradient coordinates so as
to boost training process. Although Adam and its variants are used widely for training deep neural
networks, their poor generalization performance makes SGD still dominant in some areas, such as
training CNNs (He et al., 2016). Many researchers tried to improve the generalization capacity of
Adam, including SWATS (Keskar & Socher, 2017) which conducts an automatic switch from Adam
to SGD training strategy, ND-Adam (Zhang et al., 2017) which controls the stepsizes and update
direction in a more precise way, AMSGrad (Reddi et al., 2019) which ensures monotone increasing
second moment, and Padam (Chen et al., 2021) which introduces a partially adaptive parameter
to control the adaptivity of stepsizes. Our solution to improve the generalization performance is to
confine the update of parameters to a two-dimensional subspace of the parameter space. Specifically,
we solve a trust-region subproblem to determine the optimal stepsizes along the gradient direction
and momentum direction at each iteration.

The idea of utilizing gradient and momentum direction to update the variable traces back to Polyak’s
heavy ball method (Polyak, 1964)

xt = xt−1 − α1∇f(xt−1) + α2dt−1
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SGD (with momentum) (Sutskever et al., 2013) can also be written in this form after replacing the
gradient direction ∇f(xt−1) with stochastic gradient direction gt−1. Unlike SGD which adopts
constant stepsizes, DRAG adopts the stepsizes as the solution of a two-dimensional quadratic model
with a spherical constraint, it adaptively learns the optimal stepsize for each direction.

Trust-region method has been widely used in optimization, and some works tries to use it for ma-
chine learning (Martens et al., 2010; Dudar et al., 2017; Erway et al., 2020). The closest related work
is the Dimension Reduced Second Order Method (DRSOM) proposed by Zhang et al. (2022). It uses
a finite difference method to approximate the Hessian-vector product arisen in the trust-region sub-
problem and achieves higher convergence rate than first order methods. However, difference method
is inaccurate in high-dimensional problem, and it introduces huge extra computational overhead.
Our method DRAG, on the other hand, approximates the Hessian directly by the second moment of
stochastic gradient directly. It reduces extra forward-backward loops to calculate the Hessian-vector
product in DRSOM and captures curvature information more accurately. Moreover, DRAG adopts a
heuristic trust-region radius, making the algorithm compatible with dominant deep learning training
pipeline without introducing extra hyperparameters.

3 METHOD

Training neural networks can be seen as solving the following non-convex optimization problem

minx∈Rn f(x), (1)

where f is the loss function and x ∈ Rn is the variable. Among all optimizers, Adam (Kingma
& Ba, 2014) is one of the most popular algorithm to solve problem (1). At each training iteration,
Adam maintains an exponential moving average (EMA) of first and second moments of stochastic
gradient vt and ut as

vt = β1vt−1 + (1− β1)gt−1, ut = β2ut−1 + (1− β2)g
2
t−1,

where β1, β2 ∈ [0, 1] are constant and gt−1 := ∇̃f(xt−1) is the stochastic gradient. It adaptively
scales the learning rates for each gradient coordinate, and actually minimizes the loss function along
n descent directions

xt = xt−1 − η
v̂t√

ût + ν
= xt−1 −

n∑
i=1

η√
ût,i + ν

(v̂t,iei), (2)

where v̂t, ût are bias-corrected vt,ut, ei is the standard basis vector with 1 for dimension i and
0 for all other dimensions. Specifically, Adam adopts a stepsize of η√

ût,i+ν
for the i-th gradient

descent direction v̂t,iei.

While adaptive stepsize boosts the convergence of Adam, it weakens the generalization performance
due to noise and overfitting. In contrast, SGD generalizes well because it uses a single stepsize for
all gradient coordinates and indeed optimizes the loss function only along the gradient direction.
One interpretation for their different generalization performance is that Adam’s update direction no
longer falls into the subspace spanned by all stochastic gradients span{g0, · · · , gt} (Wilson et al.,
2017; Zhang et al., 2017), while SGD do. Actually, Wilson et al. (2017) proved that on a binary
classification problem, SGD converges to the max-margin solution because its update at each step
is linear combination of stochastic gradients, while adaptive gradient methods converge to solutions
that generalize poorly because adaptivity makes the algorithm susceptible to noises and therefore
causes overfitting.

To overcome the issue just mentioned, our DRAG algorithm optimizes the loss function in (1) from
the gradient direction and the momentum direction. It maintains flexibility in the update direction
while inheriting the generalization capacity of SGD. At each step, it searches for the optimal step-
sizes along these two directions by solving a two-dimensional trust-region subproblem. Therefore,
from the optimization perspective, it conducts the optimal update within the two-dimensional sub-
space spanned by gradient direction and momentum direction. Moreover, while DRAG adopts the
trust-region framework, it is compatible with the dominant deep learning training pipeline without
introducing extra hyperparameters.
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3.1 DETAILS OF THE ALGORITHM

Details of our algorithm are described in Algorithm 1. At each training epoch, DRAG first computes
stochastic gradient gt−1, and use it to update the first moment vt and second moment ut of stochas-
tic gradient like Adam. Then, we introduce the bias-corrected second moment ût to approximate
the Hessian. In this way, DRAG constructs the trust-region subproblem in line 9 of Algorithm 1.
While solving this trust-region subproblem in high-dimensional parameter space is computational
expensive, DRAG solves it in the two-dimensional subspace spanned by bias-corrected first moment
direction v̂t and momentum direction dt−1, making the computational overhead negligible. Here
we intuitively set the trust-region radius as η∥v̂t∥, and the benefits of this setting is described in
Section 3.2. After calculating the solution α1t and α2t of the subproblem, we get an optimal update
p = −α1tv̂t +α2tdt−1 in the two-dimensional subspace. Finally, we follow (Loshchilov & Hutter,
2018) and conduct a decoupled weight decay step. This is the overall framework of our DRAG.

Algorithm 1 Dimension-Reduced Adaptive Gradient Method (DRAG)

1: Input: Total number of training epoch m, learning rate η, exponential moving average coeffi-
cients β1, β2, weight decay scale γ, margin coefficient ν.

2: Initialize: Set x0, v0 = 0, u0 = 0.
3: for t = 1, · · · ,m do
4: Compute stochastic gradient gt−1 = ∇̃f(xt−1).
5: vt = β1vt−1 + (1− β1)gt−1, v̂t = vt/(1− βt

1)
6: ut = β2ut−1 + (1− β2)g

2
t−1, ût = ut/(1− βt

2)

7: Ht = diag(
√
ût + ν)

8: dt−1 = xt−1 − xt−2 if t ≥ 2 else dt−1 = 0.
9: (α1t, α2t) = argminp{⟨v̂t,p⟩+ 1

2 ⟨p,Htp⟩ | ∥p∥ ≤ η∥v̂t∥, p = −α1v̂t + α2dt−1

}
.

10: xt = xt−1 − α1tv̂t + α2tdt−1

11: xt = xt − ηγxt−1 (Conduct weight decay)
12: end for
13: Output: x1, · · · ,xm

The only extra computational overhead of DRAG compared with Adam is solving the two-
dimensional trust-region subproblem in line 9 of Algorithm 1. The trust-region subproblem can
be formally formulated as follows:

min
α1,α2

⟨v̂t,−α1v̂t + α2dt−1⟩+
1

2
⟨−α1v̂t + α2dt−1,Ht(−α1v̂t + α2dt−1)⟩

= [α1 α2]

[
−v̂T

t v̂t

v̂T
t dt−1

]
+

1

2
[α1 α2]

[
v̂T
t Htv̂t −v̂T

t Htdt−1

−v̂T
t Htdt−1 dT

t−1Htdt−1

] [
α1

α2

]
s.t. ∥ − α1v̂t + α2dt−1∥ ≤ η∥v̂t∥,

where Ht = diag(
√
ût + ν) as defined in Algorithm 1. This two-dimensional subproblem can be

solved efficiently by using its global minimal condition. In Appendix A, we transform this subprob-
lem into a standard trust-region subproblem, and then an ϵ-global primal-dual solution satisfying
KKT condition can be found in O(log log( 1ϵ )) time (Luenberger et al., 1984). See more details in
Appendix A.

If we set p in line 9 of Algorithm 1 as

p = −α1v̂t +
∑k−1

j=1
αj+1dt−j ,

our algorithm DRAG can be generalized to solve the subproblem with any k search directions. Al-
though according to experimental results, one search direction or multiple search directions usually
perform worse than two search directions (DRAG), they can give us some intuitions on the flexibility
of our method and the optimality of its update in the subspace. We omit ν in the discussions below
for the simplicity of notation.

One-dimensional subspace Suppose we update the variable in the one-dimensional subspace
spanned by gradient direction

xt = xt−1 − α1t · v̂t,
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where α1t is calculated by solving the trust-region subproblem

min
α1

{
⟨v̂t,−α1v̂t⟩+

1

2
⟨−α1v̂t,diag(

√
ût)(−α1v̂t)⟩

∣∣∣ |α1| ≤ η
}
.

In this case, the subproblem has an explicit solution α1t = min{η, ⟨v̂t,v̂t⟩
⟨v̂t,diag(

√
ût)v̂t⟩

}. As we can
see from the solution, unlike SGD which adopts the learning rate set externally as the stepsize, our
algorithm update the parameter with an adaptive stepsize within the learning rate. Furthermore, this
adaptive stepsize is optimal according to the quadratic approximation of the loss function.

Full-dimensional parameter space Suppose we update the variable along n directions in the
whole parameter space

xt = xt−1 + p.
Then trust-region subproblem becomes

min
p

{
⟨v̂t,p⟩+

1

2
⟨p,diag(

√
ût)p⟩

∣∣∣ ∥p∥ ≤ η∥v̂t∥
}
.

Under this scenario, the subproblem has solution as

p = − v̂t√
ût + λ

= −
n∑

i=1

1√
ût,i + λ

(v̂t,iei),

where λ ≥ 0 satisfies λ(∥p∥ − η∥v̂t∥) = 0. When ∥ v̂t√
ut

∥ ≤ η∥v̂t∥, λ = 0 and the solution is the
same as Adam’s update direction (2). From the form of solution, we can see all gradient coordinates
have adaptive stepsizes, which means the method optimizes the loss function along n directions in
the whole parameter space. Also, this update is optimal with respect to the quadratic approximation
of the loss function.

3.2 BENEFITS OF OUR ALGORITHM

Flexibility of update As in Algorithm 1, DRAG updates the variable x along EMA of gradient
direction v̂t and momentum direction dt−1. This update direction choice acts as a trade-off between
the whole space search of Adam and one direction search of SGD. Specifically, Adam adjusts step-
sizes for each gradient coordinate as xt = xt−1 −

∑n
i=1

η√
ût,i+ν

(v̂t,iei), while SGD uniformly

scales each coordinate of the gradient as xt = xt−1 − ηv̂t. DRAG, on the other hand, search along
two important directions as xt = xt−1 − α1tv̂t + α2tdt. This choice maintains the flexibility of
update direction while alleviating overfitting and excessive noises.

Moreover, the update of DRAG lies in the subspace span{v̂t,dt−1} ∈ span{g0, · · · , gt−1}. This
means that the parameter update direction is always a combination of stochastic gradients. Accord-
ing to Wilson et al. (2017), this property makes DRAG always converge to the max-margin solution
of the binary classification problem, which has the best generalization capacity. This helps to explain
DRAG’s excellent generalization performance in practice.

Optimal stepsizes DRAG solves the dimension-reduced subproblem at each training epoch and
finds the best update along the gradient direction and momentum direction. This optimal update is
evaluated by the quadratic approximation to the loss function, where the Hessian is approximated
by second moment

√
ût and gradient is approximated by first moment v̂t. Since DRAG conducts

optimal update along gradient and momentum direction within the learning rate we set, it converges
faster than SGD on training dataset and is comparable with adaptive gradient methods.

Heuristic trust-region radius We set the trust-region radius for the subproblem as η∥v̂t∥. The
intuition is that when gradient is large, we hope our algorithm can make a larger step to minimize the
loss function significantly. While when gradient is small, we hope our method to be stable and don’t
change the parameters too much. This heuristic design not only frees us from changing the radius at
each step as trust region method does, but also make our algorithm compatible well with dominant
deep learning training pipeline without introducing extra hyperparameters. Other deep learning
optimizers that adopt trust-region like framework, such as the Hessian-free optimization method
(Martens et al., 2010), L-SSR1-TR (Erway et al., 2020), DRSOM (Zhang et al., 2022) introduced
extra hyperparameters and may incur high extra computational overhead. From our knowledge,
this is the first time that a trust-region like method is well-compatible with dominant deep learning
training setting without extra hyperparameters.
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4 CONVERGENCE ANALYSIS IN NON-CONVEX STOCHASTIC OPTIMIZATION

For the analysis of stochastic non-convex algorithm, we follow the works Zhuang et al. (2020); Guo
et al. (2021) and make the following necessary definitions and also mild assumptions.
Definition 1. For a differentiable function f , x is said to be an ϵ-approximate first-order stationary
point if it satisfies ∥∇f(x)∥ ≤ ϵ.
Definition 2. For a differentiable funtion f(x), it is called L-Lipschitz smooth if it statisfies
∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for a constant L > 0 and any x,y in domain of f .

Based on these definitions, we have the following assumption.
Assumption 1. For non-convex problem minx∈Rn f(x), we assume the loss f(x) satisfies

• f is L-Lipschitz smooth.

• The gradient estimation g is unbiased, namely E[gt] = ∇f(xt), and its variance can be
bounded as E[∥gt −∇f(xt)∥2] ≤ σ2.

Then we can derive the convergence of our proposed algorithm and also provide its stochastic gra-
dient complexity to find an ϵ-approximate first-order stationary point.
Theorem 1. Suppose Assumption 1 holds. Let βt = β and ηt = η for all t. Assume there exist
constants α,G > 0, such that α ≤ mint α1t and α1t ≤ ηG, |α2t| ≤ ηG. In addition, η ≤

min

{
1

2LG ,
(

(1−β)2α
8GL2

) 1
3

,
(

α2

96G2

) 1
4

,
(

α
48LG2

) 1
4 ,

(
α

192L2G3

) 1
5

}
. Then, if 1 − β ≤ ϵ2

3C2σ2 and T ≥

max
{

3C1

αϵ2 ,
3C3

(1−β)ϵ2

}
, DRAG can achieve

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ ϵ2,

1

T

T−1∑
t=0

E
[
∥vt∥2

]
≤ 8ϵ2, (3)

where C1 = 4 (f(x0)− f(x∗)), C2 = 4ηG
α and C3 = 2ηGE[∥∇f(x0)−(1−β0)g0∥2]

α .
Remark 1. Theorem 1 with its proof in Appendix C demonstrates that by properly selecting constant
trust-region radius ηt and constant momentum parameter βt (correspond to β1 in Algorithm 1),
DRAG can converge to an ϵ-approximate first-order stationary point of the non-convex stochastic
problem with stochastic gradient complexity O(ϵ−4). Note that the assumptions for α1t and α2t are
satisfied naturally with the design of DRAG, see details in Appendix B. The complexity of DRAG is
of the same order as the lower bound provided by Arjevani et al. (2022). A similar complexity has
also been obtained in, for example, LAMB (You et al., 2019), Adam-family (Guo et al., 2021). In
the analysis of DRAG, we only need a unbiased and variance-bounded stochastic gradient, without
any large mini-batch sizes requirement as in LARS (You et al., 2017) and LAMB (You et al., 2019).
In addition, some previous works (Luo et al., 2018; Zaheer et al., 2018; Liu et al., 2019; Shi et al.,
2020) require the momentum parameter βt to be very close or decreasing to zero. In contrast, DRAG
requires βt to be close to one, which is more consistent with the practice.
Theorem 2. Suppose Assumption 1 holds. Assume there exist constants δ,G > 0, such that 0 <

δ ≤ α1t

ηt
≤ G, |α2t|

ηt
≤ G. Set ηt =

cη√
t+2

, 1− βt =
Ccη√
t+1

, for any cη and C satisfying C ≥ L
√

8G
δ ,

and cη ≤
{

1√
2LG

,
(

δ2

96G2

) 1
2

,
(

δ
48LG2

) 1
3 ,

(
δ

192L2G3

) 1
4

}
. Then there exist two constant C1 and C2

which are independent with T , such that

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≤
C1√
T

+
C2 log T√

T
,

1

T

T−1∑
t=0

E[∥vt+1∥2] ≤ 8C1√
T

+
8C2 log T√

T
.

Given a tolerance ϵ > 0, if T ≥ Õ( 1
ϵ4 ), we have

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≤ ϵ2,
1

T

T−1∑
t=0

E[∥vt+1∥2] ≤ 8ϵ2.
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Table 1: Top-1 test accuracy (%) of VGG16, ResNet34, DenseNet121 on CIFAR10 and CIFAR100.

DRAG SGD Adam AdamW AdaBelief

CIFAR10
VGG16 94.0 92.7 92.2 92.4 93.6
ResNet34 95.6 94.5 93.3 94.5 95.4
DenseNet121 96.1 94.5 93.3 94.6 95.5

CIFAR100
VGG16 72.8 69.7 62.2 68.5 72.2
ResNet34 77.6 75.6 73.0 70.9 76.1
DenseNet121 79.2 77.8 73.7 74.3 78.2

Remark 2. Theorem 2 with its proof in Appendix D establishes an O(log T/
√
T ) sub-linear con-

vergence rate for DRAG by choosing a decreasing ηt and 1 − βt with the order O(1/
√
t). Similar

sub-linear convergence rates are also established by Zou et al. (2019) for Adam and Guo et al.
(2021) for Adam-type optimizers. While Zou et al. (2019) has restrictions on the second moment
momentum parameter β2. In Theorem 2, we only need βt (corresponds β1 in Algorithm 1) to in-
crease to one.

5 EXPERIMENTS

We conduct experiments on several representative benchmarks, including VGG (Simonyan & Zis-
serman, 2014), ResNet (He et al., 2016), DenseNet (Huang et al., 2017) on CIFAR10, CIFAR100
dataset (Krizhevsky et al., 2009), ResNet18 on ImageNet (Deng et al., 2009), and LSTM (Hochre-
iter & Schmidhuber, 1997) on the Penn Treebank dataset (Marcinkiewicz, 1994). We compare our
algorithm DRAG with some popular deep learning optimizers, including SGD (Robbins & Monro,
1951), Adam (Kingma & Ba, 2014), AdamW (Loshchilov & Hutter, 2018), AdaBound (Luo et al.,
2018), AdaBelief (Zhuang et al., 2020), RAdam (Liu et al., 2019), Yogi (Zaheer et al., 2018), and
Padam (Chen et al., 2021). Experimental results show that DRAG has faster convergence speed
compared with SGD and it achieves state-of-the-art generalization performance. We also conduct
ablation study to show 1) two search directions (DRAG) performs better than one direction and mul-
tiple directions and 2) DRAG is robust to different learning rate schedules. At the end of ablation
study, we give some advice for practitioners to use DRAG.

5.1 CNNS ON IMAGE CLASSIFICATION

We conducted experiments for VGG16 with Batch Normalization, ResNet34, and DenseNet121 on
CIFAR10 an CIFAR100 dataset. The experimental setting is borrowed from AdaBelief (Zhuang
et al., 2020) and we also use their default setting for all the hyperparameters. For DRAG, we choose
its learning rate to be the same as in SGD, which is 0.1, and weight decay factor is 0.0015 for
CIFAR10 and 0.0025 for CIFAR100. Other hyperparameters of DRAG is the same as the default
setting (β1 = 0.9, β2 = 0.999, ϵ = 10−8). As Figure 1 shows, DRAG has convergence speed
comparable with adaptive gradient methods and it attains the best generalization performance. To
be specific, DRAG obtains more than 0.5% generalization accuracy gain over AdaBelief (Zhuang
et al., 2020) on most tasks. The detailed test accuracy is summarized in Table 1.

We also train ResNet18 on ImageNet under the official training setting in He et al. (2016), and
compare the top-1 test accuracy of DRAG with the best result of other optimizers in the literature.
Experimental results show DRAG has the best generalization capacity. Details are in Table 2.

The possible reasons for this improvement on the convergence speed and generalization capacity
is 1) DRAG searches for the optimal update along two directions and thus converges faster, 2)
DRAG confines the search of update within the two-dimensional subspace spanned by gradient
and momentum direction to avoid overfitting and alleviating the influence of noises, therefore it
generalizes better.

5.2 LSTMS ON LANGUAGE MODELING

We experimented with LSTM on the Penn Treebank dataset and record the perplexity (lower is
better). We follow the exact experimental setting in Adabelief (Zhuang et al., 2020) and use their
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(a) VGG16 on CIFAR10. (b) ResNet34 on CIFAR10. (c) DenseNet121 on CIFAR10.
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(a) VGG16 on CIFAR10. (b) ResNet34 on CIFAR10. (c) DenseNet121 on CIFAR10.

Figure 1: Training and test accuracy of CNNs on CIFAR10 dataset.

Table 2: Top-1 test accuracy (%) of ResNet18 on ImageNet. All results except DRAG are reported
by Zhuang et al. (2020) and Chen et al. (2021).

DRAG SGD Adam AdamW AdaBound Padam AdaBelief
70.41 70.23 63.79 67.93 68.13 70.07 70.08

default hyperparameters except for SGD. For SGD, we use the same hyperparameters as DRAG
to make a fair comparison between the two. For SGD and DRAG, we set their learning rate as
25, 75, 75 for 1,2,3-layer LSTM and weight decay factor as 2.5 × 10−6. SGD’s generalization
performance in our setting is better than the results provided by Zhuang et al. (2020). As show in
Figure 2, for 1-layer, 2-layer, and 3-layer LSTM, DRAG’s convergence speed is faster than SGD
and comparable to adaptive gradient methods. From Table 3, we can see that DRAG attains more
than 0.5 less perplexity than other optimizers. The fast convergence speed may be attributed to the
optimal update DRAG takes and the good generalization performance may be due to DRAG’s two-
direction search. The gradient direction inherits SGD’s good generalization property and the extra
momentum direction further improves its performance.

5.3 ABLATION STUDY

Different search directions We compare the performance of algorithms that solve the trust-region
subproblem in one-dimensional, two-dimensional (DRAG), and three-dimensional subspaces as de-
scribed in Section 3.1. As show in Table 4 in Appendix E, DRAG generalizes better than its one
search direction and three search direction counterparts. The reason is that DRAG updates in more
directions than the one search direction counterpart while its subproblem can be solved more accu-
rately than the three direction counterpart, since low-dimensional subproblem can be solved with
less numerical errors in single precision arithmetic by GPU.

Robustness to learning rate schedule DRAG is robust to different choices of learning rate sched-
ule. Except for letting the learning rate decay at epoch 150 as in Section 5.1, we also conduct ex-
periments on decaying the learning rate at epoch 120 and adopting cosine annealing learning rate
schedule. The only change of hyperparameter setting from Section 5.1 is we increase the learning
rate of DRAG from 0.1 to 0.12 in cosine annealing schedule. The intuition is that when the trust-
region radius is decreased during the training process, we need a larger initial radius to converge to
a better local minima. We compared DRAG’s test performance with other optimizers with VGG16
on CIFAR10, details are presented in Table 5 in Appendix E, which shows that DRAG enjoys the
best generalization performance for all the learning rate schedules.
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(a) 1-layer LSTM. (b) 2-layer LSTM. (c) 3-layer LSTM.
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(a) 1-layer LSTM. (b) 2-layer LSTM. (c) 3-layer LSTM.

Figure 2: Training and test perplexity of 1,2,3-layer LSTM on Penn Treebank dataset.

Table 3: Test perplexity (lower is better) of 1-layer, 2-layer, and 3-layer LSTM on PTB dataset. All
results except DRAG, SGD, and Padam are reported by Adabelief (Zhuang et al., 2020).

DRAG SGD AdaBound Adam AdamW AdaBelief RAdam Yogi Padam
1-layer 82.5 83.0 84.3 85.1 87.7 84.8 86.5 86.5 84.0
2-layer 65.6 66.1 67.5 67.4 72.8 66.3 72.3 71.3 66.3
3-layer 61.0 61.8 63.6 64.3 69.9 61.8 70.0 67.5 62.8

For practitioners, any task that can use SGD can use DRAG to achieve faster convergence and
comparable generalization performance with negligible extra computational overhead. The user
only needs to set the learning rate the same as in SGD or slightly larger. For a new task, if one
values good generalization performance, one can always use DRAG instead of SGD to enjoy easier
hyperparameter tunning. DRAG is more robust than SGD when large learning rate is used. For
instance, when training VGG16 on CIFAR10 dataset, setting the learning rate to 0.5 still allows
DRAG to attain over 90 percent test accuracy, but SGD diverge and fail in the training process.

6 CONCLUSION

In this paper we propose the DRAG algorithm, which finds the optimal update of the parameters
along gradient and momentum directions at each iteration. Compared with Adam, DRAG reduces
the flexibility of update direction from searching in the whole parameter space to updating in a
two-dimensional subspace: therefore is less susceptible to overfitting and has better generalization
performance. Compared with SGD, DRAG inherits the gradient update direction and also update
along an extra momentum direction, thus it has faster convergence speed and comparable gener-
alization capacity. Theoretically we prove that DRAG has the same order of stochastic gradient
complexity as the lower bound for non-convex stochastic optimization (Arjevani et al., 2022). Ex-
perimentally we show that DRAG has faster convergence speed compared with SGD and it attains
state-of-the-art generalization performance. Our algorithm can be further generalized to any number
of search directions and any choice of Hessian approximation.
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A SOLVE THE TRUST-REGION SUBPROBLEM

Recall the trust region subproblem

min
α

⟨α,Ct⟩+
1

2
⟨α,Qtα⟩

s.t.
√

⟨α,Gtα⟩ ≤ η∥v̂t∥,

where α :=

[
α1

α2

]
, Ct :=

[
−v̂Tt v̂t
v̂Tt dt−1

]
, Qt :=

[
v̂Tt Htv̂t −v̂Tt Ht

−dTt−1Htv̂t dTt−1Htdt−1

]
, and Gt :=[

v̂Tt v̂t −v̂Tt dt−1

−dTt−1v̂t dTt−1dt−1

]
, Ht = diag(

√
ût + ν).

In order to solve this trust region subproblem, we transform it into a standard trust region subproblem
with L2-norm constraint.

When matrix Gt is positive definite, we have

Gt = LtL
T
t (Cholesky Decomposition)√

αTGtα =
√

(LT
t α)

TLT
t α = ∥LT

t α∥ ≤ η∥v̂t∥.

So we let y = LT
t α, then α = L−T

t y and the subproblem becomes

min
y

⟨Ct, L
−T
t y⟩+ 1

2
⟨L−T

t y,QtL
−T
t y⟩

s.t. ∥y∥ ≤ η∥v̂t∥

⇐⇒ min
y

⟨L−1
t Ct, y⟩+

1

2
⟨y, L−1

t QtL
−T
t y⟩

s.t. ∥y∥ ≤ η∥v̂t∥.

In this way, the trust region subproblem is transformed to a standard spherical constrained quadratic
optimization problem and it can be solved efficiently (Wright et al., 1999).

When |Gt| = 0, this means v̂t is linearly dependent with dt−1. In this case, we solve the one-
dimensional subproblem as described in Section 3.1.

B HOW α1t, α2t SATISFY THE ASSUMPTIONS NATURALLY

The trust-region subproblem to be solved in Algorithm 1 has global optimality condition (Luen-
berger et al., 1984) given by 

(Qt + λGt)α+ Ct = 0

Qt + λGt ⪰ 0

λ(∥α∥Gt
− η∥v̂t∥) = 0, λ ≥ 0.

By its construction, we know that Gt is positive semidefinite. In practice, numerical issues some-
times make it indefinite, leaving the trust-region subproblem insoluble. Thus, we make an adjust-
ment to Gt

Gt =

{
Gt if λmin ≥ ε0 or |Gt| = 0

ε0I o.w.

where λmin is the smallest eigenvalue of Gt. In this way, when |Gt| ≠ 0, we have

∥α∥ ≤ ∥G−1/2
t ∥∥α∥Gt ≤ η∥G−1/2

t ∥∥v̂t∥ ≤ η
∥v̂t∥√
ε0

,

which means

|α1t

η
|, |α2t

η
| ≤ ∥v̂t∥√

ε0
.
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With the common additional assumption that stochastic gradient gt = ∇̃f(xt) has bounded L∞
norm, i.e.∥gt∥∞ ≤ G∞, then v̂t as an moving average of gt also has bounded norm ∥v̂t∥. Therefore,
we can see that |α1t

η |, |α2t

η | are upper bounded by a constant.

When |Gt| = 0, which means dt−1 is parallel with v̂t. Then we only need to find the optimal update
within the trust-region along gradient direction v̂t. In this case, we manually set α2t = 0 in our
implementation of DRAG, and then α1 satisfies |α1| ≤ η.

From discussions above, we can see the assumption that |α1t

η |, |α2t

η | are upper bounded in Theorem
1 and Theorem 2 is satisfied given the common assumption that stochastic gradient gt = ∇̃f(xt)
has bounded L∞ norm. For the simplicity of notations, we directly make assumptions for α1t and
α2t in Theorem 1 and Theorem 2.

For the assumption that α1t is positive and α1t

η is lower bounded by a constant, we give an expla-
nation here by intuition and empirical results. Gradient direction is what we considered the most
important update direction locally, because by the training pipeline of neural networks, stochastic
gradients of training parameters are the new information we gain at each iteration. Thus, we consider
the update should at least move towards the gradient descent direction rather than move towards the
gradient ascent direction. Moreover, from the observations of α1t under all the experimental set-
tings, α1t is always positive and α1t

η is always larger than 0.1. Therefore, this assumption on α1t is
reasonable based on common sense and holds true in practice.

C PROOF OF THEOREM 1

One key ingredient in our analysis is an existing variance recursion of the stochastic estimator based
on moving average, which is given by the following lemma.
Lemma 3 (Variance Recursion (Wang et al., 2017)). Suppose Assumption 1 holds, then we have

Et[∥vt+1 −∇f(xt)∥2] ≤ β∥vt −∇f(xt−1)∥2 + 2(1− β)2Et[∥gt −∇f(xt)∥2] +
L2∥dt∥2

1− β
,

where Et[·] denotes the conditional expectation with respect to all randomness before gt.

Before proving Theorem 1, we need to prove the following auxiliary lemma.
Lemma 4. Suppose Assumption 1 holds. Assume there exist α, η, δ,G > 0, such that α ≤ mint α1t,
maxt ηt ≤ η, and 0 < δ ≤ α

η ≤ α1t

ηt
≤ G, |α2t|

ηt
≤ G, (δ,G) are constants independent with t.

In addition, η ≤ min

{
1

2LG , 1−β
2L

√
δ
2G , δ

4
√
6G

,
(

δ
48LG2

) 1
3 ,

(
δ

192L2G3

) 1
4

}
. Then there exist positive

constants C1, C2 and C3, which are all independent with T , such that the following estimation
holds:

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ C1

Tα
+ C2(1− β)σ2 +

C3

T (1− β)
,

1

T

T−1∑
t=0

E
[
∥vt∥2

]
≤ 8C1

Tα
+ 8C2(1− β)σ2 +

8C3

T (1− β)
.

(4)

Proof. Since F is L-smooth, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt),−α1tvt+1 + α2tdt⟩+
L

2
∥ − α1tvt+1 + α2tdt∥2

= f(xt)− α1t⟨∇f(xt), vt+1⟩+ α2t⟨∇f(xt), dt⟩+
Lα2

1t

2
∥vt+1∥2 +

Lα2
2t

2
∥dt∥2 − Lα1tα2t⟨vt+1, dt⟩

= f(xt) +
α1t

2
∥∇f(xt)− vt+1∥2 −

α1t(1− Lα1t)

2
∥vt+1∥2 −

α1t

2
∥∇f(xt)∥2 + α2t⟨∇f(xt), dt⟩

+
Lα2

2t

2
∥dt∥2 − Lα1tα2t⟨vt+1, dt⟩.

(5)
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By Lemma 3, we can obtain

T∑
t=1

E[∥∇f(xt−1)−vt∥2] ≤
1

1− β
E[∥∇f(x0)−v1∥2]+2(1−β)Tσ2+

L2

(1− β)2
E

[
T∑

t=1

∥dt∥2
]
.

(6)
Taking expectation for both sides of (5) and taking summation among t = 0, ..., T − 1, combining
with (6), we have

E [f(xT )− f(x0)]

≤ηG

2

[
E[∥∇f(x0)− v1∥2]

1− β
+ 2(1− β)Tσ2 +

L2

(1− β)2

T∑
t=1

E[∥dt∥2]

]
−

T−1∑
t=0

α1t

2
E[∥∇f(xt)∥2]

−
T−1∑
t=0

α1t(1− Lα1t)

2
E[∥vt+1∥2] +

T−1∑
t=0

(
E[α2t⟨∇f(xt), dt⟩] +

Lα2
2t

2
∥dt∥2 − E[Lα1tα2t⟨vt+1, dt⟩]

)
.

By AM-GM inequality,

α2t⟨∇f(xt), dt⟩ ≤
α1t

4
∥∇f(xt)∥2 +

α2
2t

α1t
∥dt∥2,

−Lα1tα2t⟨vt+1, dt⟩ ≤
α1t(1− Lα1t)

4
∥vt+1∥2 +

L2α1tα
2
2t

1− Lα1t
∥dt∥2.

(7)

Combining all together, we have

T−1∑
t=0

α1t

4
E[∥∇f(xt)∥2]

≤f(x0)− f(x∗) +
ηG

2(1− β)
E[∥∇f(x0)− v1∥2] +

T∑
t=1

ηGL2

2(1− β)2
E[∥dt∥2]

+ ηG(1− β)Tσ2 +

T−1∑
t=0

(
α2
2t

α1t
+

Lα2
2t

2
+

L2α1tα
2
2t

1− Lα1t

)
E[∥dt∥2]−

T−1∑
t=0

α1t(1− Lα1t)

4
E[∥vt+1∥2],

(8)
where x∗ is one of the global minimizer of F . Since α1t ≤ ηG ≤ 1

2L , we have α1t(1−Lα1t)
4 ≥ α1t

8 .

By the conditions for η and α, we have α1t

16 ≥ α
16 ≥ η3GL2

2(1−β)2 ≥ ηGL2η2
t+1

2(1−β)2 , α1t

96 ≥ α
96≥

η4G2

α ≥
α2

2,t+1η
2
t+1

α1,t+1
, α1t

96 ≥ α
96 ≥ Lη4G2

2 ≥ Lα2
2,t+1η

2
t+1

2 , and α1t

96 ≥ α
96 ≥ 2L2η5G3 ≥ L2α1,t+1α

2
2,t+1η

2
t+1

1−Lα1,t+1
.

By ∥dt∥ ≤ ηt∥vt∥. Since v0 = 0, we have

T−1∑
t=0

(
α2
2t

α1t
+

Lα2
2t

2
+

L2α1tα
2
2t

1− Lα1t

)
∥dt∥2 +

T∑
t=1

ηGL2

2(1− β)2
∥dt∥2 −

T−1∑
t=0

α1t(1− Lα1t)

4
∥vt+1∥2

≤− α

8

T−1∑
t=0

∥vt+1∥2 +
T−1∑
t=0

(
α2
2tη

2
t

α1t
+

Lα2
2tη

2
t

2
+

L2α1tα
2
2tη

2
t

1− Lα1t

)
∥vt∥2 +

T−1∑
t=0

ηGL2η2t+1

2(1− β)2
∥vt+1∥2

≤− α

32

T−1∑
t=0

∥vt+1∥2.

(9)
Combining (8) and (9), we can obtain

T−1∑
t=0

α1t

4
E[∥∇f(xt)∥2] ≤ f(x0)− f(x∗) +

ηG

2(1− β)
E[∥∇f(x0)− v1∥2] + ηG(1− β)Tσ2,

α

32

T−1∑
t=0

E[∥vt+1∥2] ≤ f(x0)− f(x∗) +
ηG

2(1− β)
E[∥∇f(x0)− v1∥2] + ηG(1− β)Tσ2.
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Dividing the above two inequalities by αT
4 and αT

32 respectively, we have

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≤
4 (f(x0)− f(x∗))

Tα
+

2GE[∥∇f(x0)− v1∥2]
δ(1− β)T

+
4G(1− β)σ2

δ
,

1

T

T−1∑
t=0

E[∥vt+1∥2] ≤
32 (f(x0)− f(x∗))

Tα
+

16GE[∥∇f(x0)− v1∥2]
δ(1− β)T

+
32G(1− β)σ2

δ
,

which completes the proof by letting C1 = 4 (f(x0)− f(x∗)), C2 = 4G
δ , C3 = 2GE[∥∇f(x0)−v1∥2]

δ .

Proof of Theorem 1

Proof. By the selections of α and ηt in Theorem 1, let δ = α/η. By Lemma 4, we have

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ C1

Tα
+ C2(1− β)σ2 +

C3

T (1− β)
.

The conditions 1 − β ≤ ϵ2

3C2σ2 and T ≥ max
{

3C1

αϵ2 ,
3C3

(1−β)ϵ2

}
lead to C1

Tα ≤ ϵ2

3 , C2(1 − β)σ2 ≤
ϵ2

3 ,
C3

T (1−β) ≤
ϵ2

3 . This completes the proof.

D PROOF OF THEOREM 2

Proof. From (5) in Lemma 4, we have

f(xt+1) ≤ f(xt) +
α1t

2
∥∇f(xt)− vt+1∥2 −

α1t(1− Lα1t)

2
∥vt+1∥2 −

α1t

2
∥∇f(xt)∥2 + α2t⟨∇f(xt), dt⟩

+
Lα2

2t

2
∥dt∥2 − Lα1tα2t⟨vt+1, dt⟩.

(10)
By Lemma 3, we have

(1−βt)∥vt−∇f(xt−1)∥2 ≤ ∥vt−∇f(xt−1)∥2−Et[∥vt+1−∇f(xt)∥2]+2(1−βt)
2Et[∥∇f(xt)−gt∥2]+

L2∥dt∥2

1− βt
.

Taking expectation and summation for t = 1, ..., T , we get

T−1∑
t=0

E[(1−βt+1)∥∇f(xt)−vt+1∥2] ≤ E[∥v1−∇f(x0)∥2]+
T∑

t=1

(
2(1− βt)

2σ2 +
L2E[∥dt∥2]

1− βt

)
.

(11)
Note that 1 − βt+1 = Cηt, so α1t

2 ≤ G
2 ηt =

G
2C (1 − βt+1). Taking expectation for both sides of

(10) and taking summation among t = 0, ..., T − 1, combining with (11), we can obtain

E [f(xT )− f(x0)]

≤ G

2C

[
E[∥v1 −∇f(x0)∥2] +

T∑
t=1

(
2(1− βt)σ

2 +
L2∥dt∥2

1− βt

)]
−

T−1∑
t=0

α1t(1− Lα1t)

2
E[∥vt+1∥2]

−
T−1∑
t=0

α1t

2
E[∥∇f(xt)∥2] +

T−1∑
t=0

(
E[α2t⟨∇f(xt), dt⟩] +

Lα2
2t

2
∥dt∥2 − E[Lα1tα2t⟨vt+1, dt⟩]

)
.

(12)
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From (7) and (12), we can get

T−1∑
t=0

α1t

4
E[∥∇f(xt)∥2]

≤f(x0)− f(x∗) +
G

2C
E[∥∇f(x0)− v1∥2] +

T∑
t=1

G

C
(1− βt)

2σ2 +

T∑
t=1

GL2∥dt∥2

2C(1− βt)

+

T−1∑
t=0

(
α2
2t

α1t
+

Lα2
2t

2
+

L2α1tα
2
2t

1− Lα1t

)
E[∥dt∥2]−

T−1∑
t=0

α1t(1− Lα1t)

4
E[∥vt+1∥2],

(13)

By the conditions for cη and C, we have α1t ≤ ηtG ≤ 1
2L , α1t(1−Lα1t)

4 ≥ α1t

8 . By similar

arguments in the proof of Lemma 4, we have α1t

16 ≥ δηt

16 ≥ η2
t+1GL2

2ηtC2 =
GL2η2

t+1

2(1−βt+1)C
, α1t

96 ≥ δηt

96 ≥
α2

2,t+1η
2
t+1

α1,t+1
, α1t

96 ≥ δηt

96 ≥ Lα2
2,t+1η

2
t+1

2 , and α1t

96 ≥ δηt

96 ≥ 2L2η5t+1G
3 ≥ L2α1,t+1α

2
2,t+1η

2
t+1

1−Lα1,t+1
. By

∥dt∥ ≤ ηt∥vt∥. Since v0 = 0, we can get

T−1∑
t=0

(
α2
2t

α1t
+

Lα2
2t

2
+

L2α1tα
2
2t

1− Lα1t

)
∥dt∥2 +

T∑
t=1

GL2

2C(1− βt)
∥dt∥2 −

T−1∑
t=0

α1t(1− Lα1t)

4
∥vt+1∥2

≤−
T−1∑
t=0

α1t

8
∥vt+1∥2 +

T−1∑
t=0

(
α2
2tη

2
t

α1t
+

Lα2
2tη

2
t

2
+

L2α1tα
2
2tη

2
t

1− Lα1t

)
∥vt∥2 +

T−1∑
t=0

GL2η2t+1

2C(1− βt+1)
∥vt+1∥2

≤−
T−1∑
t=0

α1t

32
∥vt+1∥2.

(14)
Combining (13) and (14), we can obtain

T−1∑
t=0

δηt
4

E[∥∇f(xt)∥2] ≤
T−1∑
t=0

α1t

4
E[∥∇f(xt)∥2] ≤ f(x0)− f(x∗) +

GE[∥∇f(x0)− v1∥2]
2C

+

T∑
t=1

Gσ2

C
(1− βt)

2,

T−1∑
t=0

δηt
32

E[∥vt+1∥2] ≤
T−1∑
t=0

α1t

32
E[∥vt+1∥2] ≤ f(x0)− f(x∗) +

GE[∥∇f(x0)− v1∥2]
2C

+

T∑
t=1

Gσ2

C
(1− βt)

2.

Then, the final assertion can be obtained by
∑T

t=1
1

t+1 = O(log T ). This completes the proof.

E EXPERIMENTAL RESULTS FOR ABLATION STUDY

Table 4: Test accuracy of algorithms solving the trust-region subproblem with one, two, and three
search directions on CIFAR10.

VGG16 ResNet34 DenseNet121
1 direction 93.8 95.3 96.0
DRAG 94.0 95.6 96.1
3 directions 93.8 95.4 95.7

Table 5: Test accuracy of VGG16 on CIFAR-10 with three different learning rate schedules.

DRAG SGD Adam AdamW Adabelief
Cosine Annealing 94.3 94.0 92.2 92.4 94.1
Decay at 120 epoch 93.8 92.5 91.8 92.6 93.6
Decay at 150 epoch 94.0 92.7 92.2 92.4 93.6
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