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ABSTRACT

This work develops a zero-shot mechanism, Comp-LTL, for an agent to satisfy a
Linear Temporal Logic (LTL) specification given existing task primitives trained
via reinforcement learning (RL). Autonomous robots often need to safely and
deterministically satisfy spatial and temporal goals that are unknown until run
time. Prior work on learning policies to execute an LTL task incorporates the
specification into the learning process, requiring retraining or fine-tuning if the
specification changes. We present a more flexible approach–to create a pipeline to
deterministically choose an execution set of composable safe task primitive policies
that can be used to satisfy arbitrary LTL specifications without retraining or fine-
tuning. Safe task primitives can be learned offline using RL with a reward function
focused on penalizing unsafe actions and combined using Boolean composition at
deployment. We focus on creating and pruning a transition system (TS) representa-
tion of the environment in order to solve for deterministic, non-ambiguous, and
feasible solutions to LTL specifications given an environment with multiply-labeled
regions and a set of safe task primitive policies. Our pruned TS is deterministic,
contains no unrealizable transitions, and is sound. Combining the TS with the
safe pretrained task primitives produces a sequence of composed policies that are
guaranteed to deterministically satisfy an LTL specification. Training on a base set
of safe tasks and composing at run time reduces total training time compared to
non-composition approaches and has negligible processing time at run time. We
verify our approach via simulation in grid-based and continuous environments, and
compare it to other state of the art approaches, showing that Comp-LTL is safer,
more adaptable, and quicker at satisfying unseen specifications at runtime.

1 INTRODUCTION

A major goal in autonomous systems is the deployment of robots that are capable of executing
tasks that are time-varying, interdependent, and otherwise complex. One approach to addressing
such complex task executions is planning with linear temporal logic (LTL) (Baier & Katoen, 2008;
Kress-Gazit et al., 2018). LTL allows a user to specify tasks with complex temporal and inter-task
relationships. A major strength of this approach is the focus on correct-by-construction algorithms
that are capable of planning for an arbitrary formula specified by a user. However, many associated
planning approaches require reliable task models in order to guarantee satisfaction of an LTL
specification (Kress-Gazit et al., 2018; Belta et al., 2017).

Some works, such as Reward Machines (RM) (Icarte et al., 2018), use an automaton to learn policies,
but they incorporate the specification into the learning process; therefore, they require retraining when
provided with a new specification (Cai et al., 2023; Li et al., 2019). LTL-Transfer (Liu et al., 2024) is
a zero-shot LTL solution that trains on transitions on a Büchi automata for a specification, and for
new specifications, transfers the transitions to the respective Büchi automata. Although LTL-Transfer
adheres to explicit safety in the specification, the zero-shot solution is constrained to transitions
already explored during the training pass, whereas we desire a more broadly applicable solution.

A closely related approach is Skill Machines (SM) (Nangue Tasse et al., 2024), which leverages
prior work on zero-shot composition (Nangue Tasse et al., 2020) to satisfy a proposition on a reward
machine. While changing the specification does not require re-training from scratch, it nonetheless
requires fine-tuning of the policies to guarantee satisfaction.
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Other works reduce training time for multi-task RL, such as LTL2Action (Vaezipoor et al., 2021),
or generalization for generating latent representations of a goal, such as (León et al., 2022), but do
not provide a guaranteed zero-shot solution. Similarly, works that focus on zero-shot specification
adherence, such as (Qiu et al., 2023) and (Jackermeier & Abate, 2025), must train on every goal
and do not consider regions with multiple labels since their policies do not support composition,
and, like most other work in the area, do not focus on safety guarantees. Our approach, on the
other hand, focuses on providing guarantees possible for zero-shot transfer of safe policies and the
required training and planning steps to claim those guarantees. Table 1 highlights the difference of our
approach from prior approaches. A comprehensive review of related work is included in Appendix B.

Method Satisfies Given
Specification

Skill Primitive
Composition

Implicit Safety
Guarantee

Generalization to
Unseen Specifications

Comp-LTL Zero-shot
SM Zero shot possible,

few-shot guaranteed
RM
LTL2Action Zero-shot for limited

length specifications
LTLTransfer Zero-shot for previously

observed transitions

Table 1: Capabilities of Our Method, Comp-LTL, and Related Works
(Nangue Tasse et al., 2024; Icarte et al., 2018; Vaezipoor et al., 2021; Liu et al., 2024)

Figure 1: Paths the agent could take for the
specification F (W ). Comp-LTL: the dotted
blue (safe) or dashed green. Other methods: the
solid orange (unsafe) or dashed green.

To better underscore our contributions, consider
an example with three regions shown in Figure 1:
1) W,R; 2) W,C; 3) R, representing a waste (W )
dump site in a residential (R) area, a waste (W )
dump site in a commercial (C) area, and residential
area (R), respectively, with the R region in front
of (but not completely surrounding) the W,C re-
gion. If we provide the LTL specification F (W ),
Comp-LTL will go to either the residential waste
site or the commercial waste site. Our path to the
W,R site is dashed green, and the path to the W,C
path is dotted blue.

If a truck were carrying hazardous material, it can-
not safely pass through the residential (R) neigh-
borhood on the path to the commercial waste site
(W,C). Our approach is the only approach to avoid
the region implicitly, so it will successfully avoid R
with the specification F (W ∧C), as seen via the blue dotted line, whereas the other approaches need
to explicitly train on an R region and include it in their specification to avoid it, as F (W ∧C)∧G¬R.
Without this explicit avoidance criteria, they would follow the dangerous orange solid path. We com-
pose policies associated with each individual label, reducing the total number of policies needed to be
trained prior to run time. Most other approaches would need to train on every possible combination
of labels (e.g., W , C, and W ∧ C) to mirror our behavior.

In this work, we propose Comp-LTL, a framework for finding a satisfying solution for an environment
and specification regardless of the exact environment, specification, or policies. Inspired by Kloetzer
& Belta (2008) and recent work in zero-shot Boolean Composition (Nangue Tasse et al., 2020) (BC),
we observe that compositional approaches allow us to satisfy Boolean constraints on automaton repre-
sentations of LTL specifications. We leverage the prior work on safety-aware Boolean compositions
of primitive policies to ensure the solution can be run zero-shot (Leahy et al., 2024), and that the
satisfying word can be achieved in the environment. Figure 2 shows our approach, Comp-LTL.

The specific contributions of this work are the following:
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Figure 2: Comp-LTL training and path execution pipeline.

1. We develop a method for abstracting a geometric representation of an environment into a
transition system (TS) with transition labels representing feasible Boolean combinations of
tasks to transition between multiply labeled regions;

2. We resolve nondeterminism in the transitions enabled by the Boolean composition of
primitive task policies; and

3. We demonstrate that this representation allows zero-shot satisfaction of LTL specifications at
run time, and the resulting behavior is inherently safe without adding specific safety criteria
into the specification.

Our goal is to produce a behavior sequence that is guaranteed to satisfy an LTL specification. Neither
embedding safety in the policies nor pruning the TS on its own will accomplish this. We support our
theoretical results with case studies in simulation and comparison to other approaches.

2 BACKGROUND AND PROBLEM FORMULATION

We consider an agent moving in a planar environment according to a high-level mission description.
The agent’s environment is E ⊆ Rn. The environment contains non-intersecting regions R ⊆ E. We
define a region labeling function L : R → 2Σ, where R is the set of all labeled regions and Σ is the
set of atomic propositions (AP). Each region can be labeled with multiple APs (multiply labeled).

Assumption 1 We assume the environment is deterministic, so we further model the agent’s environ-
ment as a deterministic labeled Markov decision process (MDP).

Since our pruned TS is deterministic, following our method in Section 3.2, it is consistent with our
assumption of a deterministic labeled MDP, defined by the tuple (S,A, ρ,r), where S is the state
space. The labeling function of an MDP includes a set of goals: G ⊆ S. An execution of a labeled
MDP is the word τ ∈ (2σ)ω, consisting of the sequence of labels corresponding to the regions the
agent visits. To transform an agent’s interaction with the environment into a set of labels, we project
an execution onto the set of associated AP labels: ↾L: S × 2Σ → 2Σ.

The agent’s task is specified using linear temporal logic (LTL) (Baier & Katoen, 2008). LTL includes
Boolean operators, such as AND (∧), OR (∨), and NOT (¬), along with time based operators eventually
(♢), always (□), and until (U ). The formal syntax of LTL in Backus–Naur form is

ϕ ::= ⊤|σ|¬σ|ϕ1 ∨ ϕ2|ϕ1 ∧ ϕ2|ϕ1Uϕ2|♢ϕ1|□ϕ1 , (1)

where σ ∈ Σ is an atomic proposition, and ϕ, ϕ1, and ϕ2 are LTL specifications (Baier & Katoen,
2008).

Due to space constraints, we do not describe the semantics of LTL here, but provide a brief intuition.
A execution sequence τ ∈ (2Σ)ω satisfies a specification ϕ (written τ |= ϕ) if the sequence matches
the properties specified by ϕ. For example, if ϕ = ♢σ (“eventually σ"), τ |= ϕ if σ occurs at some
point in τ . Similarly, □σ (“always σ") requires that σ appear at every point in τ . Interested readers are
directed to Baier & Katoen (2008) for more details on the semantics of LTL. Importantly, off-the-shelf
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software, such as SPOT (Duret-Lutz et al., 2022), can automatically translate LTL specifications
into Büchi automata. Furthermore, each transition on such automata can be described by a Boolean
combination of atomic propositions.

We assume the environment transition model is unknown to the agent, so we use reinforcement
learning (RL) to learn policies for the agent to execute tasks. RL is a branch of machine learning that
maps states to actions in order to maximize a numerical reward signal (Sutton & Barto, 2018).

To facilitate satisfaction of temporal logic objectives, we leverage prior work (Leahy et al., 2024) on
safety-aware task composition to train policies for a given set of tasks. Other compositional works
consider reachability-only (RO) semantics (Nangue Tasse et al., 2020). Negating a task in RO context
means an agent will not terminate in the region associated with the negated task, but it could pass
through that region. Negating a task in safety-aware context (i.e., within the primitive policy) means
that the agent will always avoid the region associated with the negated task, which aligns with LTL
requirements. If safety is not included at the task level, negation/avoidance cannot be ensured at run
time, only that something will be reached.

To train safety-aware policies Leahy et al. (2024) proposed a method for learning policies that have
“minimum-violation" (MV) safety semantics. For τ , let the number of positions in the word with
non-empty symbols be denoted |τ | and the set of symbols in the last position of the word be denoted
τf . Then, for a Boolean formula φ, we define MV semantics.

Definition 1 Minimum-violation (MV) Path: A word τ is a minimum-violation path if |τ | > 1 and
τf |= φ and there is no word τ ′ such that |τ ′| < |τ | (Leahy et al., 2024).

Intuitively, an MV path: 1) terminates in a state that satisfies a Boolean formula; 2) if possible,
visits no additional labeled states; and 3) if not possible, visits the fewest additional labeled states.
Additional details on safety-aware MV semantics can be found in Appendix D.2.

In order for a policy to enforce this behavior, any label generated that does not satisfy the current
task is given a penalty. To enforce the multiple levels of behaviors to be avoided, the rewards are
structured hierarchically, with less bad rewards for passing through an unsafe state than terminating
in an unsafe state (Leahy et al., 2024). Additional training details, including Table 5 with the reward
hierarchy, is included in Appendix H.3.

We employ Boolean task algebra in order to perform task conjunction ∧ over these MV poli-
cies (Nangue Tasse et al., 2020). The conjunction of two tasks is performed by taking the minimum of
their individual Q-value functions:Q1∧2(s, g, a) = min[Q1(s, g, a), Q2(s, g, a)]. We refer the reader
to Appendix D.1 for more information. Boolean task algebra allows the agent to use a pretrained set
of primitive tasks to expand the number of tasks that can be achieved with no additional learning by
expressing the additional tasks as a Boolean expression over the original task primitives.

Problem 1 Given a set of labels Σ, an environment E labeled from Σ, and safety-aware primitive
policies trained to achieve tasks σ ∈ Σ according to Leahy et al. (2024), select and compose primitive
policies such that the policies can be used to satisfy an LTL specification ϕ over Σ without additional
training.

3 TECHNICAL APPROACH

To solve Problem 1 we introduce a novel policy-aware environment abstraction as described below.
First, we create a transition system (TS) (Belta et al., 2017) that captures both the topology of
the environment as well as the policies for each primitive task to move the agent between regions.
Constructing such a TS is conservative and can introduce ambiguity and non-determinism. To that
end, we identify 3 cases for pruning the edge labels to remove non-determinism due to the reliance
on task composition. The resulting TS can be used for planning to satisfy an LTL specification in
the standard method (Belta et al., 2017), while accurately capturing the behavior created by the RL
policies.
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3.1 GENERATING THE TRANSITION SYSTEM

To facilitate reasoning about satisfaction of an LTL specification, we abstract the environment as a
TS. A TS describes the discrete behavior of a system via states and transitions and is formally defined
as follows.

Definition 2 A transition system (TS) is a tuple, TS = (S,Act,→, I,Σ, L), where S is a finite set
of states; Act is a finite set of actions; →⊆ S ×Act× S is a transition relation; I ∈ S is an initial
state; Σ is a set of atomic propositions; and L : S → 2Σ is a labeling function.

To create the initial TS, each region is instantiated as a state, and adjacent regions are connected by
transitions; this captures the topology of the environment. Algorithm 1 in Appendix E.1 generates the
transition labels. In planning- and control-based approaches, it is typical to assume that an agent can
travel between any adjacent regions. For example, Fig. 3a shows an environment and a corresponding
TS (3b). In a planning framework, an agent may choose which of the regions labeled a to visit. Using
our RL approach, however, for an agent in the unlabeled region q2, executing a policy corresponding
to a may cause the agent to visit q1, q3, q5, or q6, since the transition function is unknown. We
introduce a pruning process to model and resolve such ambiguities.

a

a
c

a

c

a

b

(a)

q0

{b}

q1

{a}

q2

{}

q3

{a}

q4

{c}

q5

{a}

q6

{a}

q7

{c}
a, c, {} a, c, {} a, c c

b a, b a, b, c, {} a, b, c, {}

a, b, c, {}

a, b, c, {}

a, c
c

a, b, c, {} a

(b)

Figure 3: (3a) Example of an environment with distinct regions labeled with σ ∈ Σ. (3b) A
corresponding unpruned TS created from the environment in Fig. 3a. Region colors from the
environment in Fig. 3a correspond to the colors of the state nodes. State labels appear in bold above
each state. Transition labels appear in italics adjacent to the transition arrows and correspond to task
policies that enable a transition.

To resolve this non-determinism, we propose a method for pruning the TS. To prune, we will remove
transitions and policies in transition labels that introduce non-determinism, by checking for the
specific cases of: 1) Equivalency; 2) Ambiguity; and 3) Feasibility; with the methods for mitigating
these cases later described in Sec. 3.2.

3.2 TRANSITION SYSTEM PRUNING

When we follow the procedure outlined in Sec. 3.1, we capture how states are connected, but the
resulting TS state and transition labels can introduce non-determinism. To mitigate such problems,
we introduce a TS pruning method, which removes symbols from transition labels.

We propose the following theorems about our method, please refer to Appendix G for the complete
proof sketches.

Theorem 1 The resulting pruned TS from Sec. 3.2 is deterministic.

Theorem 2 The resulting pruned TS from Sec. 3.2 contains no unrealizable transitions.

Case 1: Equivalent States If a bisimulation TS≈ exists for TS, reduce the total number of states
by using TS≈. The TS contains multiple branches from a parent state which contain the same state
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q0

{b}

q1

{a}

q2

{}

q3

{a}

q4

{c}

q5

{a}

a, c, {} a, c, {} a, c c

b a, b a, b, c, {} a, b, c, {}
a, b, c, {} a

(a)

q0

{b}

q1

{a}

q2

{}

q3

{a}

q4

{c}

q5

{a}

a, c, {} a, c, {} a, c c

b a, b a, b, c, {} a, b, c, {}
a, b, c, {} a

(b)

q0

{b}

q1

{a}

q2

{}

q3

{a}

q4

{c}

q5

{a}

a, c, {} a, c, {} c c

b b a, b, {} a, b, c, {}
a, b, c, {} []

(c)

q0

{b}

q1

{a}

q2

{}

q3

{a}

q4

{c}

q5

{a}

a, c, {} c, {} c c

b b b, {} a, b, {}
b, c, {} []

(d)

Figure 4: The TS pruning process. State labels appear above each state. Transition labels correspond
to task policies that enable a transition. 4a The q3, q4 and q6 , q7 branches are combined via case1. 4b
Red label symbols are removed via case2. 4c Red label symbols are removed via case3. 4d Red
label symbols are removed via emptyCleanup

and transition labels. In order to simplify the TS, we employ Bisimulation, which uses observational
equivalence to reduce the TS (Belta et al., 2017). In a TS where multiple branches from a parent state
contain the same state and transition labels, taking a policy from one of the symbols shared on the
transition label could take the agent to any of the duplicate child state regions. The branches are then
observationally equivalent, so we can reduce the TS to a bisimulation TS. Please refer to Appendix
E.2.1 for a more detailed explanation.

Figure 4a highlights the changes in the TS after case1 is executed. Algorithm case1 identifies
that the TS has equivalence classes. q2 has branches that are equivalent. The two equivalent branches
are 1) the branch containing q3 and q4 and 2) the branch containing q6 and q7. In Fig. 4a, the two
equivalent branches get combined into the branch containing q3 and q4, and this resulting TS is TS≈.

Case 2: Ambiguous Transitions If any outgoing transitions from a state share a symbol in the
transition label, only keep the symbol in the transition with the least distance to the state labeled
with the shared symbol, according to MV semantics. If all the distances to the state that is labeled
with the shared symbol are the same, remove the symbol from all the transition labels of the state. If
a state has multiple transition labels that contain the same symbol, it is uncertain which transition
will be followed when the corresponding policy is executed. We seek a method that is zero-shot, so
we perform no additional checks or training on the policy to see how it would behave if run in the
state region; therefore, we wish to keep at most once outgoing transition labeled with that symbol.
Algorithm 3 in Appendix E.2.2 shows the procedure for case2.

Figure 4b highlights the changes in the TS after case2 is executed. No labels a are kept on outgoing
transitions from q2, because MV semantics cannot distinguish them. The label c is removed from the
transition linking q3 to q2, because MV semantics will result in an agent transitioning from q3 to q4
under a policy associated with task c.

Case 3: Ineffectual Transitions and Feasibility If a state shares the same label as any outgoing
transitions, remove the label from those transitions. This case only arises when there are multiple
states containing the same symbol label during the initial TS creation. Each duplicate state will have
an outgoing transition label containing the same symbol as its own label, to get to the other states that
share the same symbol label. We prune the symbol from the outgoing transition labels as running the
policy for generating a symbol while already in the region that produces the symbol will not cause
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the agent to transition out of its current state. Therefore, since the state does not change, the symbol
on the label is ineffectual.

Figure 4c highlights the changes in TS≈ after case3 is executed. State q1’s label is a, and the
transition from q1 to q2 contains a, so a is removed from that transition. The same logic applies to
the other highlighted labels.

3.3 PRODUCT BETWEEN TRANSITION SYSTEM AND BÜCHI AUTOMATON

Theorem 3 Satisfying an LTL specification using product construction with our pruned TS≈ is
sound, meaning there are no false positives.

Given a fully pruned TS≈ with labels from Σ, we create a Büchi automaton using a an LTL
specification ϕ over Σ. Importantly, transitions in the Büchi automaton are enabled by Boolean
combinations of elements of Σ. Labels in E and TS≈ model how an agent satisfies those Boolean
combinations. Hence, we can then construct a Cartesian product between TS≈ and the automaton,
preserving the transition labels from TS≈. The resulting product automaton (PA) can be used with
typical off-the-shelf solution methods to find a satisfying sequence (Belta et al., 2017). Appendix F
includes a complete description of PA generation and Appendix G includes the proof sketch.

4 RESULTS

4.1 SIMULATION CASE STUDY

To demonstrate our logic, we used three different environments: an office world environment based
on Icarte et al. (2018), a high-dimensional video game environment based on Nangue Tasse et al.
(2020), and a continuous 3D physics simulation Gronauer (2022). Our TS and PA are constructed
using NetworkX (Hagberg et al., 2008) and a modified version of LOMAP 1. Our Büchi automaton is
created using SPOT (Duret-Lutz et al., 2022). The composition of policies is performed zero-shot
via the method of Leahy et al. (2024). Appendix H.3 includes additional environment and training
information.

Office World Environment The office world environment is a grid-world with symbols from
the set of propositions {A (lobby:�), B (labeled office), C (labeled office), D (breakroom:U), E
(mailroom:�), F (coffee:K), G (printer room:Ò), n (plant:l)}. Each grid cell may contain any
symbol from the set of propositions. To expand on the typical office world environment, we trained
symbols on each of the 4 quadrants of the map, which allows the user to be more specific about which
symbols can satisfy the specification. These create the extra propositions {↑, ↓,←,→}. We trained
all 12 policies using tabular Q-learning with an MV reward structure (Leahy et al., 2024).

Given the LTL specification ♢B ∧ ♢l, our accepted word τ is [B, l]. Those respective policies
are shown in Figure 5b and Figure 5a, and the path for those policies executed is shown in Figure 5c.

Next, we demonstrate compositionality in the office world environment. For example, there are two
Ksymbols in the environment. If the user wants to specify the Kin the top half of the office, they can
specify ♢K∧ ↑. Figure 6a shows the composed values and policies for K∧ ↑. Comp-LTL computes
that for specification ♢C ∧ ♢(K∧ ↑) ∧ ♢(l∧ ↓) the accepted word τ is τ = [K∧ ↑ ∧ ←,l∧ ↓
∧ ←, C∧ ↑ ∧ →], with the path from the green start shown in Figure 6b.

Video Game Environment The video game environment is a grid-world. Each cell may contain an
object characterized by a color and a shape from the set propositions {w (white), b (blue), p (purple),
 (circle), ■ (square)}. These traits can be composed in a Boolean fashion, e.g., ■ := b ∧ ■. A
policy is trained for each proposition using the Deep Q-Learning (DQL) RL methodology with MV
safety semantics (Leahy et al., 2024).

The first example is shown in Fig. 7. For the LTL specification ♢■, “eventually square", Comp-LTL
produces the shortest word τ [■], which translates to the Boolean composition policy π■ := πb ∧π■.

1https://github.com/wasserfeder/lomap
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(a) Policy for l. (b) Policy for B.
(c) Path for τ=[B,l] from green
start, collected symbols in pink.

Figure 5: Policies and path of the accepted word τ for LTL specification ♢B ∧ ♢l.

(a) Composed value and policy for
policies K∧ ↑.

(b) Path for τ = [K∧ ↑ ∧ ←,l∧ ↓
∧ ←, C∧ ↑ ∧ →] from green start,
collected symbols in pink.

Figure 6: The composed policy for K∧ ↑ and the path of the accepted word τ for LTL specification
♢C ∧ ♢(K∧ ↑) ∧ ♢(l∧ ↓).

Fig. 7b shows that the agent following policy π■ does not collect another color or shape. The path
obeys MV semantics as it contains no additional symbols and never violates the specification.

The second example is shown in Figure 8. For the LTL specification ♢(b∧¬■)∧♢p, “eventually (blue
and not square) and eventually purple", Comp-LTL produces the word τ [ ,■,■], which corresponds
to the sequence of Boolean composition policies given by [π ,π■,π■]:=[πb∧π ,πb∧π■,πp∧π■].
The agent progresses along the list of policies in the order provided, so first the agent begins executing
π . Once the agent has reached a region that produces b ∧ , the agent transitions to executing the
next policy. The agent is done when it has reached a region that produces the symbols of the final
policy. In this instance, the agent is finished when it enters the region that produces p ∧■.

q0

{ }

q1

{ }

q2

{ }

q4

{}

q3

{■}

■ 
 

 
 

 

 

■

■

■

(a) Generated Transition
System from Map.

(b) Path Agent
Takes Executing
Policy π■ from PA.

Figure 7: Pipeline for ♢■.
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■

 
 

 
■

 

 

 

■

■

■

■

■

(a) Generated Transition
System from Map.

(b) Path Agent
Takes Execut-
ing Policies
[π ,π■,π■] from
PA.

Figure 8: Pipeline for ♢(b ∧ ¬■) ∧ ♢p.
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Fig. 8b shows that the agent following a policy does not collect another color or shape. The agent
travels the long way around the center obstacle to only collect the blue circle without encountering
additional symbols. Again, the path obeys MV semantics.

Remark 1 A trade-off of our approach is demonstrated in this case study. The agent does not take
the shortest path in the environment, { ,■, }, since we only consider path length in the automaton.
The paths { ,■, } and { ,■,■} both have automaton path length 3. This is one of the primary
trade-offs for zero-shot satisfaction, and methods such as RM can use fine-tuning to address this
trade-off, but require additional training episodes.

Figure 9: Comp-LTL path for ♢ ∧ (¬ Ub)

Continuous Environment The continuous en-
vironment is a Bullet physics gym environ-
ment (Gronauer, 2022). To mirror the video
game environment in a continuous scenario,
each 3D object is characterized by a color and
a shape from the set propositions {w (white), b
(blue), p (purple),  (sphere), ■ (box)}. Opti-
mal policies for each proposition are approxi-
mated by TD3 modified with MV safety seman-
tics (Fujimoto et al., 2018; Leahy et al., 2024).

Given an LTL specification ♢ ∧ (¬ Ub), our
accepted word τ = [b ∧  ]. Figure 9 shows
execution of the composed policy π := πb ∧
π .

4.2 COMPARISON

We compare our approach, Comp-LTL, to three other state-of-the-art approaches: BC, RM, and
SM. Comp-LTL trains tasks primitives using safety properties before run time and combines models
temporally as needed using composition at run time (zero-shot) using environmental information to
satisfy the specification. These safety-focused policies are MV policies. BC (Nangue Tasse et al.,
2020) trains task primitives before run time and combines models as needed using composition.
To demonstrate the necessity of safety primitive policies, we train primitive policies using BC and
replace our safety primitive policies in our pipeline with their primitive policies. Table 1 highlights
Comp-LTLs contributions and shows how we provide a thorough comparison suite by comparing to
methods with the closest functionality.

We compare the approaches based on three metrics 1) path safety; 2) training time; and 3) specification
processing time. Path safety ensures that when a primitive policy (or composition of primitive policies)
is being executed, no other symbol is produced unless necessary. Training time is the time for a
primitive policy to be fully trained. This is not applicable for RM as there are no primitive policies to
train. Specification processing time is the time for the approach to recalculate the approach based on
a new LTL specification. All comparison results for the video game environment are collected with
the 13a environment configuration, to ensure a possible clear path for every specification.

Time (s) (↓ better)
Environment MV BC SM
Video Game 288,160 218,164 3,398
Office World 10.70 8.79 31.30

Table 2: Average time to train primitive models per environment.

Table 2 shows that in the both environments, MV primitive policies take longer to train than non-MV
policies for a single training pass.
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Time (s) (↓ better)
LTL Specification Comp-LTL RM (QL,CRM,RS) RM (HRM,RS) SM
♢(b ∧■) 0.04 3,399.59 4,441.54 7.49
♢(p ∧ ) 0.04 3,789.82 4,414.29 6.79
♢b ∧□¬■ 0.06 2,192.17 3,004.70 7.46
□(♢(b∧■))∧□(♢(p∧ )) 0.03 18,141.99 47,982.74 7.20
♢K 0.02 5.38 8.73 0.09
□(♢�) ∧□(♢ U) 0.03 6.76 10.06 300.13*
□(¬B) ∧ ♢(⃝⃝l) 0.02 10.06 12.39 0.12

Table 3: Time to reprocess given a new LTL specification (*=few-shot).

LTL Specification
Comp-LTL Comp-LTL +

BC Policies
RM (QL,
CRM,RS)

RM (HRM,
RS)

SM

♢(b ∧■) 0 1 1 1 1
♢(p ∧ ) 0 0 0 0 0
♢b ∧□¬■ 0 0 1 1 2
□(♢(b∧■))∧□(♢(p∧ )) 0 0 0 0 0
♢K 0 1 1 1 2
□(♢�) ∧□(♢ U) 0 4 0 0 1*
□(¬B) ∧ ♢(⃝⃝l) 0 2 0 1 0
Total 0 8 3 4 6

Table 4: Number of additional symbols collected not required in the specification (↓ better). Green
indicates the specification was satisfied by the symbols collected, red indicates unsatisfied. (*=few-
shot).

Table 3 shows that upon a new LTL specification, Comp-LTL takes significantly less time to reprocess.
Our training time is linear to the number of primitive task policies, but our reprocessing time does
not vary greatly; however, the more complex the RM, the longer RM takes to train.

Table 4 show that Comp-LTL’s additional training for safety results in no additional symbols generated
other than the symbol for the primitive policy and that we are the only approach to consistently satisfy
the specification. Comp-LTL with BC policies is our framework with our MV policies swapped for
BC policies. Table 4 also shows that all other approaches collect multiple additional symbols. We
show that Comp-LTL is also the only guaranteed zero-shot solution, as SM, the only other zero-shot
capable comparator, requires additional training to satisfy one of the specifications.

5 CONCLUSION

We present Comp-LTL, an end-to-end zero-shot approach for executing an LTL task specification.
Our pruned TS representation of the environment is deterministic, contains only feasible transitions,
and is sound. Our results show that our zero-shot approach requires no additional training per
specification, and the paths our approach produces are safe and feasible. While Comp-LTL has
a linear cost for training the primitive task policies, our run time computation cost is minimal.
Our approach agnostic to the method in which the policies are trained, as we show Comp-LTL is
successful with tabular Q-learning and DRL policies in grid-based and continuous environments.

Future work includes demonstrating the effectiveness of Comp-LTL on a variety of systems, including
but not limited to a environment with moving objects or changing physics (e.g., terrain friction).
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