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ABSTRACT

Large language models (LLMs) enhanced with retrieval-augmented generation
(RAG) have introduced a new paradigm for web search. However, the limited
context awareness of LLMs degrades their performance on RAG tasks. Exist-
ing methods to enhance context awareness are often inefficient, incurring time
or memory overhead during inference, and many are tailored to specific position
embeddings. In this paper, we propose Position-Embedding-Agnostic attention
Re-weighting (PEAR), which enhances the context awareness of LLMs with zero
inference overhead. Specifically, on a proxy task focused on context copying,
we first detect heads which suppress the models’ context awareness, thereby di-
minishing RAG performance. To weaken the impact of these heads, we re-weight
their outputs with learnable coefficients. The LLM (with frozen parameters) is op-
timized by adjusting these coefficients to minimize loss on the proxy task. During
inference, the optimized coefficients are fixed to re-weight these heads, regardless
of the specific task at hand. Our proposed PEAR offers two major advantages over
previous approaches: (1) It introduces zero additional inference overhead in terms
of memory usage or inference time, while outperforming competitive baselines in
accuracy and efficiency across various RAG tasks. (2) It is independent of position
embedding algorithms, ensuring broader applicability.

1 INTRODUCTION

Retrieval-augmented generation (RAG, (Lewis et al., 2021)) is widely utilized to enhance large
language models (LLMs) on tasks like question answering. Typically, an RAG framework retrieves
documents related to users’ question from external knowledge bases or web pages, and then arranges
them in the LLMs’ context as the references to form answers. This LLM-based question-answering
paradigm has given rise to a promising web search paradigm (Microsoft, |2023; OpenAl, [2024).

Recent research demonstrated LLMs’ limitations on context awareness, especially when processing
long context. These limitations in LLMs’ context awareness challenge the effectiveness and robust-
ness of RAG frameworks. For instance, [Liu et al.| (2023) found that when performing in-context
retrieval tasks, LLMs exhibit insensitivity to information located in the middle of the context, a phe-
nomenon referred to as “lost in the middle.” |Chen et al.| (2024) identified a mathematical property
in rotary position embedding (RoPE, (Su et al., [2023)) that results in LLMs assigning less attention
to specific contextual positions, leading to varying context awareness throughout the entire context.

Existing approaches to enhancing LLMs’ context awareness are inefficient in terms of memory
and time cost. Some works (Peysakhovich & Lerer, |2023) segment and re-arrange the input con-
text, with the assumption that placing important information in positions the model attends well
can improve RAG’s effectiveness. This method incur additional inference time costs, negatively
affecting user experience, as it requires multiple forward passes to obtain attention weights for guid-
ing segment rearrangement. Another group of studies modifies the model’s working mechanism,
specifically by employing a set of position embeddings to adjust the attention preferences of atten-
tion heads. While these methods are input-agnostic, they also lack efficiency due to “parallelable”
forward passes (Chen et al.,|2024)) although without increased time cost, disrupting the parallelism
of multi-head attention (resulting in increased time cost) to achieve low memory cost (Lin et al.,
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Table 1: An example input for the proxy task, where unique letters representing distinct tokens, with
n = 4. For example, at position n 4+ % = 5 (with ¢ = 1), when an LLM receives “ABCDA” as input,
it is likely to output “B.” This happens because the last occurrence of “A” in the preceding context
is followed by “B.” If a head suppresses copying “B” from position ¢ + 1 = 2 to position n 47 = 5,
it could negatively impact RAG performance.

Input Sequence |[A. B C D A B C D
PositionIndex |1 2 3 4 5 6 7 8

2024), or still requiring “non-parallelable” multiple forward passes (Zhang et al., |2024) which is
similar to (Peysakhovich & Lerer| [2023). Moreover, these studies are mainly designed for RoPE
and face challenges in generalizing to other position embedding algorithms, limiting their broader
applications.

In this paper, we introduce Position-Embedding-Agnostic attention head Re-weighting (PEAR),
which unleashes the context awareness of LLMs, thereby improving their RAG performance. PEAR
achieves zero additional overhead in memory usage and inference time. Our motivation relies on the
following facts:

1. Prior research (McDougall et al., |2023; [Lv et al., 2024a) detected some attention heads
decrease the language model’s prediction confidence by suppressing the flow of contextual
information to the final position within the context, where the output is to be generated.

2. This suppression negatively impacts LLMs’ context awareness, particularly abilities in in-
context retrieval and context integration, which are crucial for effective RAG.

As aresult, we contend that such suppression mechanism in LLMs can be safel weakened in RAG
scenarios, thereby improving the performance of RAG. Our proposed PEAR includes two stages:

In the first stage, we discover attention heads negatively affect performance on a proxy task. The
proxy task involves feeding the model a random token sequence of length 2n, which consists of a
duplicated sub-sequence of length n. Table [I]illustrates an example input. At position n + i, the
model typically predicts the token from position ¢ + 1, as the natural continuation for a semantically
meaningless context is to copy the existing in-context token pattern (Lv et al.,[2024b). The negatively
impactful attention heads are discovered using the path patching technique (Wang et al.|, 2023). Since
this proxy task is free from semantic bias and requires both in-context retrieval and generation based
on th:{aZl context—fundamental capacities for RAG, we refer to discovered heads as RAG-suppression
head

In the second stage, we weaken detected RAG-suppression heads by re-weighting their outputs using
learnable coefficients. These coefficients are optimized by minimizing the LLM’s loss on the proxy
task, with the objective of next-token prediction in a supervised fine-tuning process (loss is computed
only for the second half of the random-token sequence). During the optimization, the original LLM
parameters are frozen. Intuitively, most of the learned coefficients are optimized to values less than
one, reducing the relative weight of these heads compared to others in the same layer when multi-
head outputs are aggregated. Consequently, their influence during the forward pass are weakened.
Once optimized, the coefficients remain fixed and are agnostic to downstream RAG tasks.

PEAR achieves three-fold contributions:
1. PEAR introduces zero inference overhead in terms of both memory usage and inference

time—an advantage not achieved by competitive baselines. Across a wide range of RAG
tasks, PEAR surpasses previous works in both efficiency and accuracy.

2. PEAR is independent of specific position embedding algorithms, making it broadly appli-
cable. We demonstrate that PEAR enhances the RAG performance of various LLMs using

!“Safely” means that the parametric knowledge and fundamental capabilities remain unaffected. Detailed
experimental results are presented in Section
2We do not imply that these heads hinder RAG through the same mechanisms (discussed in Section .
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distinct position embeddings (e.g., learnable embeddings (Zhang et al.| [2022), RoPE (Sul
et al.,[2023)), and Alibi (Press et al.,[2022))).

2 RELATED WORKS

In this section, we discuss two research areas closely related to this paper: enhancements to LLMs’
context awareness and studies on mechanistic interpretability.

2.1 CONTEXT AWARENESS ENHANCEMENT

Many studies highlighted limitations in LLMs’ context awareness. For example, [Lu et al.| (2022)
found that the order of in-context learning (ICL) demonstrations significantly affects ICL accuracy.
Liu et al.| (2023) demonstrated that LLMs exhibit stronger awareness of content at the beginning
and end of context but weaker awareness in the middle, a phenomenon termed “lost in the middle.”
Chen et al.[(2024) proposed that LLMs’ context awareness fluctuates across token positions due to
mathematical properties in position embeddings. These challenges impact applications like RAG
that rely on robust context awareness.

Several approaches have been proposed to tackle these issues. However, existing methods often
come at the cost of increased inference time or memory overhead. Attention Buckets (AB, (Chen
et al.}[2024)) enhances context awareness by integrating positional information from a set of various
ROoPE angles, but it incurs significant inference overhead due to multiple parallel forward passes,
leading to increased memory usage. Ms-PoE (Zhang et al., 2024)) calculates distinct re-scaling fac-
tors for each attention head, requiring multiple non-parallel forward passes that introduce noticeable
time delays. MoICE (Lin et al., [2024) builds on Attention Buckets by employing a Mixture-of-
Experts (MoE, (Shazeer et al., 2017)) approach, treating each RoPE embedding as a unique in-
context expert, thereby limiting extra attention computations to within each layer rather than across
the entire forward pass.

Our proposed method, PEAR, enhances context awareness by weakening the RAG-suppression
heads during the forward pass. It introduces no additional modules or extra forward passes, result-
ing in zero additional overhead in memory usage and inference time. Additionally, PEAR operates
independently of position embedding algorithms, which is applicable to more LLMs compared to
existing approaches.

2.2 MECHANISTIC INTERPRETABILITY

Investigating the role of a specific head during a forward pass is one of key focuses in mechanistic
interpretability research. [Wang et al.| (2023) reported that in GPT-2 small (Radford et al.| |2019),
the 7th head in the 10th layer, termed the “negative head,” significantly hinders answer copying
from context. [McDougall et al.|(2023) comprehensively studied this head, suggesting it functions
as a self-repair mechanism to prevent overconfident outputs. [Lv et al.| (2024a)) found that negative
heads exist across various LLMs, employing different mechanisms to mitigate overconfidence, such
as generating counteracting vectors or introducing high-frequency tokens’ information. This paper
does not examine what specific mechanisms the heads employ to suppress RAG performance but
instead aims to discover and suppress heads negatively impactful across general RAG tasks.

Yu et al.|(2023) detected two types of heads in Transformer-based language models during counter-
factual task execution (where counter-factual knowledge is provided in the context): memory heads,
which prefer to use stored knowledge, and in-context heads, which prefer to use facts in the context.
However, when re-weighting these heads, only reducing the weight of memory heads successfully
enhances the model’s preference of using contextual knowledge, while enhancing or mitigating in-
context heads does not bring much influence. Moreover, existing results only demonstrate effective-
ness of these heads in the “country-capital” task (i.e., prompting the model to answer the capital city
of the given country). Additionally, there is no evidence suggesting that re-weighting these heads
improves the comprehensive context awareness of LLMs. We owe these failures to their head detec-
tion method, and the same re-weighting value applied for all the heads of the same type. By contrast,
in our proposed PEAR, each individual head is re-weighted by a specific learnable coefficient, which
is optimized through a proxy task independent of downstream tasks.
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Wu et al| (2024) also relates to head re-weighting. They reported that diminishing induction
heads (Olsson et al.,|2022), which is known for handling context copying, can impair LLMs’ long-
context performance. However, they did not offer a solution to improve context awareness.

3 PRELIMINARIES: DISCOVERY OF INFLUENTIAL ATTENTION HEADS

For a particular task, research has shown that only

a sparse sub-network is activated during the forward
pass in Transformer language models (Wang et al., :

2023; [Merullo et al., 2024; Gong et al., 2024). Such @
a sub-network is referred to as a circuit (Olah et al.}

2020). Discovering circuits provides interpretabil-
ity into the working mechanisms of language models v

and offers insights for model enhancement. @
\J

The primary method for circuit discovery is based on
causal mediation analysis. The core idea is to view
the forward computation graph as a causal graph, :

where the output of one module serves as the input @
for the next. In such a case, if the output of a module ; } :

is changed, the computation of subsequent modules  Perturbed run  Normal run Intervention
in the causal graph is also affected, as their inputs

change.

] o ) Figure 1: An illustration of causal mediation
In this paper, we primarily focus on analyzing the methods for circuit discovery.
working mechanism of attention heads in language

models. We briefly introduce a paradigm from a se-
ries of works (Wang et al., 2023} [Zhang & Nanda,
2024; |Wang et al.| [2024) that discovers which attention heads are crucial for processing an input
sequence X of length n. Suppose the language model consists of L layers, with H attention heads
per layer. Let A(W") denote the h-th attention head in the I-th layer, and let its outputs be denoted

by alb?) € R"*4, We use a"" ¢ R where 1 < i < n, to represent the output at position i. The

)

discovery paradigm typically includes three steps, as illustrated in Figure/[I}

1. In the normal run, with an input sequence X (e.g., X =“The capital of France is”), a(’-")
for every attention head are recorded.

2. In the perturbed run, the forward computation runs using the same input sequence X, but
with some mediation. This mediation either changes the discrete input tokens within X
by substituting specific keywords (e.g., replacing “France” with “England”), or corrupts
the hidden states by adding noise. The modified a“" for each attention head are then
recorded.

3. We conduct an intervention on a particular head A-") at a specific position i (e.g., the

country token position in above examples) in the normal run by substituting its outputs
with ﬁl(-l’h). The subsequent activations in the computational graph are then recomputed
(these reccomputed activations are denoted as a in the figure). If the final output of the
language model as the intervention expects (e.g., the predicted token changes from “Paris”
to “London”), the head A(:") is considered to have a positive influence on the processing
of sequence X.

This overview outlines a simplified discovery paradigm; detailed measurements of intervention im-
pact are tailored to specific experimental needs.

4 METHODOLOGY

In this section, we provide a detailed introduction to our proposed method, PEAR, which is executed
in two stages: (1) discovering RAG-suppression heads and (2) re-weighting coefficient learning.
The first stage discovers attention heads that have a negative impact on general RAG tasks based
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on circuit discovery for a proxy task. In the second stage, we optimize learnable coefficients to re-
weight the outputs of the discovered heads, aiming to mitigate their RAG-suppression effect. These
coefficients remain fixed during inference, irrespective of the specific input. Figure[2]demonstrates
the overview of PEAR.

4.1 DISCOVERY OF RAG-SUPPRESSION HEADS

We set up a proxy task and use this task as input for circuit discovery algorithms to discover influ-
ential attention heads that hamper LLMs’ performance on general RAG tasks.

Task Input For each input sample, we create a sequence of length n, denoted as {z1,...,z,},
where each x; is a randomly sampled token from the vocabulary. This sequence is repeated to form
an input sample X = {x1,...,z2,}, with x; = x;4, for i € [1,n]. Research has shown that,
in semantically meaningless contexts, models tend to check if the last few tokens in the sequence
appeared previously and copy the suffix of their last appearance as the output (Olsson et al., [2022;
Lv et al.| [2024b). We consider an arbitrary LLM to successfully perform the proxy task when, at
position n + i + 1, the token with the highest output logits is z;. Table[I]shows an example input.

This proxy task exhibits two key characteristics that facilitate the effective discovery of RAG-related
heads:

1. Completing the proxy task requires LLM capabilities essential for a robust RAG frame-
work, such as in-context retrieval and generation based on context, making it suitable for
discovering RAG-related attention heads.

2. The random token composition in X ensures semantically meaningless input, minimizing
knowledge bias and thereby enabling the discovered attention heads to have general RAG-
related functions, independent of specific downstream tasks.

Head discovery We previously outlined the head discovery algorithm in Section Here, we
provide additional practical details for the first stage of PEAR.

1. During the normal run, the input sequences X are constructed as above described, with a
length of 2n.

2. In the perturbed run, we do not modify the input or hidden states; instead, we average the
outputs of each attention head along the sequence dimension and record the resulting mean
vectors.

3. We focus on detecting changes in logits at position 2n, where the model is expected to copy
the token from position n — 1. Consequently, we intervene at aif;h'l) by replacing it with the
saved mean vectors.

4. Our intervention measurements are based on the logits difference, defined as:

jnd (l7h’)
Aﬂ,(l,h) — Ton, [xn_l} —1, (1)
Ton [xnfl]
where g, represents the final logits at position 2n during the normal run, and [x,,_1]
denotes selecting the value of the token ,,_; from the logits. 7(“") indicates the logits after
intervention on A(-"). We contend that a higher value of this metric suggests a stronger
suppression effect from A4,

5. For an arbitrary LLM, we repeat the proxy task multiple times with varying values of n to
mitigate bias in context length. The final metric score for each head is the average of the
results from these repeated experiments. The detailed setup is provided in Section[5.1]

6. Based on the final metric scores, we identify the heads with the top- /K most negative influ-
ence on the proxy task as a set S, defined as:

S = {ALM] AGR has one of the top-K values of Ar(bP)},

These heads are collectively referred to as RAG-suppression heads.
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Notably, we do not suggest that the heads we discovered suppressing RAG tasks operate through
the same mechanisms. In Section[5.6] we demonstrate that these heads may serve various functions,
such as copy suppression (McDougall et al., 2023)), incorporating high-frequency token informa-
tion (Lv et al.| 2024a)), or influencing the behavior of other heads to indirectly affect outputs (Wang
et al., 2023). Analyzing the specific mechanism for each head is not the focus of this paper and is
left for future works.

4.2 RE-WEIGHTING COEFFICIENT LEARNING

Optimization In standard multi-head attention mechanisms, the outputs of all attention heads are
aggregated with equal weighting. We propose that re-weighting these relative aggregation weights to
values less than 1 can mitigate the RAG-suppression effect from our discovered heads. To implement
this, we modify the forward computation by multiplying the output of each head, A(") | in the set
S by a learnable scalar, (LR | referred to as the re-weighting coefficient. The modified output for
each head is:

alh) = 7R gk foreach AGM € S. 2)

To optimize these re-weighting coefficients for RAG-suppression heads, we freeze the original pa-
rameters of the LLM and train only the re-weighting coefficients to minimize the loss on a proxy
task. Importantly, the loss is calculated only over the latter half of the sequence, optimizing the co-
efficients to enhance in-context retrieval capacities rather than predicting the next token. Formally,
our adopted loss can be written as:

2n—1

L=— Z log p(zi41]71.4) 3)

i=n

Figure 2] illustrates a re-weighting process during optimization. Notably, the re-weighting process
shown in this figure adds extra multiplication operations in a forward pass. In practice, when coeffi-
cient learning ends, we re-scale Wg ") (the output projection matrix in head A®™) by 7" which
is equivalent to Eq.[2]and does not add any extra computation during inference.

Inference on Downstream Tasks We highlight several points .
regarding the inference process of our proposed PEAR on Input of Layer |
downstream RAG tasks:

1. In downstream RAG tasks, the re-weighting coeffi- E@ ,,,,,, AL
cients are task-independent and remain fixed. A(l'a ------ 2D
am
2. RAG-suppression heads are optimized once for each a®m
LLM via the proxy task. For a new RAG task, head QG
discovery and coefficient learning do not need to be
repeated. \r

Multi-Head Attention
Output in Layer [

In theory, our approach, PEAR, introduces zero additional over-
head during inference on downstream RAG tasks, as it does
not incorporate extra computational modules; instead, it only Figure 2: Suppose in layer [,
adjusts the aggregation weights of specific heads. In practice, A" is discovered as a RAG-
however, the re-weighting process involves an additional mul- suppression head.  PEAR re-
tiplication, which results in zero additional overhead in infer- Wweights its output with a learnable
ence time and memory usage. Additionally, the learning of re- scalar 7).

weighting coefficients is independent of the LLM architecture,

thus making our method compatible with various position em-

bedding algorithms.
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Table 2: Discovered RAG-suppression heads in Llama2-Chat-7B-4k, OPT-6.7B-2k and Baichuan-
13B-chat-4k, respectively.

Model Name (1, h) for discovered A
(26, 28), (11, 6), (14, 15), (30, 9), (18, 9), (15, 10), (13, 9), (12, 10), (15, 14), (10, 18),
Llama2-7B-chat-4k (15, 25), (19, 15), (29, 15), (14, 0), (10, 2), (31, 17), (8, 22), (17, 0), (20, 26), (9, 13),

(13,14),(7,9), (10, 1), (15, 12), (11, 9), (15, 7), (9, 16), (26, 9), (28, 22), (15, 2)
(29, 19), (0, 22), (0, 6), (26, 16), (26, 15), (30, 19), (0, 18), (23, 30), (0, 10), (31, 31),
(28, 6), (30, 30), (21, 27), (0, 17), (31, 25), (12, 23), (22, 16), (0, 0), (23, 0), (0, 1), (24, 31), (23, 8)
(26, 22), (33, 25), (28, 26), (32, 13), (23, 20), (25, 24), (19, 20), (38, 16), (22, 21), (21, 12),
(3,24), (39, 39), (20, 27), (37, 21), (0, 32), (24, 39), (39, 28), (39, 20), (27, 24), (2, 20), (36, 10)

OPT-6.7B-2k

Baichuan-13B-chat-4k

Layer

Layer

Layer
.

—a = 35
” . b . .V2 -
0 10 20 30 i 0 10 20 30 0 10 30

20
Head Head Ilead
(a) Llama2-7B-chat-4k (b) OPT-6.7B-2k (c) Baichuan-13B-4k

Figure 3: Heatmaps of A scores for each head across three LLMs (n = 10).

5 EXPERIMENTS

5.1 SETUP

In this section, we introduce the LLMs we used for experiments, the baseline methods for enhanc-
ing context awareness, the setups for the proxy tasks, hyperparameters for learning re-weighting
coefficients.

Models and baselines We conducted experiments with three LLMs, each employing a different
position embedding algorithm: Llama2-7B-chat-4k (Touvron et al.| [2023) using RoPE (Su et al.|
2023), OPT-6.7B-2k (Zhang et al.,|2022) using learnable position embeddings, and Baichuan-13B-
4k (Baichuan, [2023)) using Alibi position embeddings (Press et al., 2022).

We also compared several competitive baseline methods for enhancing LLMs’ context aware-
ness, including Attention Buckets (AB, (Chen et al., 2024)), Ms-PoE (Zhang et al., 2024), and
MOoICE (Lin et al.| [2024). Details on these methods can be found in Section@

Detailed setups of proxy task For head discovery, we constructed 200 task samples. In the case
of the Llama and OPT models, we repeat the discovery process four times with varying values of n:
10, 15,25, 50. For the Baichuan model, the n values are 10, 20, 50, 80. We found that each model
has a group of heads with significantly large A7 values, leading us to select the K values based
on the observed group sizes: 30, 22, and 21, respectively. Table [2] presents the discovered RAG-
suppression heads for the LLMs under study. Figure [3]illustrates A7 values when n = 10 for each
model. Further detailed results can be found in Appendix [A]

For the re-weighting coefficient learning stage, we constructed 500 task samples, setting n to 50 for
all models.

Hyperparameters for re-weighting coefficient learning We employed the AdamW optimizer
with a learning rate of 0.005 and parameters (31, 82) = (0.9,0.999). T are initialized at 1.0. Train-
ing was performed for a single epoch using BF16 precision on an A100-PCIE-40GB GPU.
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Table 3: Performance comparison of Llama2-7B-chat-4k and its enhancements across three RAG
tasks.

Method 2WikiMultiHopQA1 MuSiQue! Qasper{ Avg. T
Llama2-7B-chat-4k 29.50 6.50 17.00 17.67
+ Ms-PoE (Zhang et al., 2024) 27.50 9.00 18.00 18.17
+ AB (Chen et al.,[2024) 31.00 11.00 16.50 19.50
+ MoICE (Lin et al.;, 2024 30.00 10.00 15.50 18.50
+ PEAR (Ours) 35.00 8.50 18.00 20.50

Table 4: Practical inference time (in seconds) and GPU memory cost (in GB) per test sample for
different methods. For a fair comparison, Flash-Attention (Daol 2024)) was not applied. The experi-
ments were conducted on a single HS800-80G GPU.

Method 2WikiMultiHopQA | MuSiQue| Qasper| Avg.|
Llama2-7B-chat-4k 0.63/31.33 0.70/31.33 1.23/31.33 0.88/31.33

+ Ms-PoE (Zhang et al.|[2024)  0.95 (+0.32) /39.21 (+7.88)  1.11(+0.41)/39.21 (+7.88)  1.84 (+0.61)/34.59 (+3.26)  1.30 (+0.42) /37.67 (+6.34)
+ AB (Chen et al.[[2024) 2.50(+1.87) /66.19(+34.86)  2.70(+2.00) / 66.19 (+34.86)  5.67(+4.44) /66.34(+35.01)  3.62(+2.74)/66.24(+34.91)
+ MoICE (Lin et al.[[2024) 2.91(+2.28) /79.13(+47.80)  3.06(+2.36) / 79.12(+47.79)  5.86(+4.63) / 79.10(+47.77)  3.94(+3.06) / 79.12(+47.79)
+ PEAR (Ours) 0.63 (+0.00) /31.33 (+0.00)  0.70 (+0.00) / 31.33 (+0.00)  1.23 (+0.00) / 31.33 (+0.00)  0.88 (+0.00) / 31.33 (+0.00)

5.2 COMPARISON WITH BASELINES ON RAG TASKS

We compare PEAR against various baselines on RAG tasks we constructed using three datasets:
2WikiMultihopQA (Ho et al., 2020), MuSiQue (Trivedi et al.| 2022), and Qasper (Dasigi et al.,
2021). The first two datasets require the model to answer questions based on multiple documents,
while the third focuses on questions related to NLP research papers, formulated and answered by
NLP researchers. We truncate the context to 4,000 tokens for the first two datasets; the third dataset
has an average context length of 3,619 tokens.

Our experiments are conducted with Llama2-7B-chat-4k, as the baselines are tailored specifically
for RoPE. We evaluate the models’ performance using exact match scores, with results reported
in Table [3| Notably, our method achieves the highest average improvement across all three tasks.
Although PEAR does not achieve the top performance on the MuSiQue task, it outperforms the
original model by a large margin.

Additionally, we present inference time and memory costs for these datasets in Table ] PEAR does
not increase GPU memory usage and inference time costs. This makes it significantly more efficient
than other enhancement methods.

These experiments underscore the effectiveness and efficiency of PEAR in enhancing LLMs for
RAG tasks.

5.3 APPLICABILITY TO LLMS USING VARIOUS POSITION EMBEDDINGS

In this section, we demonstrate the applicability of PEAR to LLMs utilizing different position em-
beddings. We conduct a multi-document question-answering (MDQA) experiment based on data
from (Liu et al.,[2023)). Following |Liu et al.|(2023); |Chen et al.| (2024)), we position the gold docu-
ment (i.e., the document contains the ground truth answer) at various contextual positions to evaluate
the robustness of a context-awareness enhancement method. In our experiments, we set the max-
imum document count to 10 and assess the question-answering accuracy when the gold document
is placed as the 1st, 3rd, 5th, 7th, and 10th document, respectively. Since baseline methods are not
compatible with the OPT and Baichuan models, we compare PEAR only with the original models.
The results are presented in Table [5]

5.4 PEAR DOES NOT DIMINISH KNOWLEDGE CAPABILITIES IN LLMS

Previous research (Geva et al.| [2023; [Lv et al.| 2024al) has shown that certain attention heads store
or play a crucial role in eliciting parametric knowledge. This raises the question of whether PEAR
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Table 5: Experimental results on the MDQA task show that PEAR achieves the highest accuracy
in 24 out of 25 comparisons across three LLMs, demonstrating its broad applicability to various
position embeddings and its robustness in enhancing awareness to different contextual positions.

Gold Document Position

Position Embedding  Method Avg.
1 3 5 7 10

Llama2-7B-chat-4k 64.14 6595 6497 62.67 67.53 65.05

+ Ms-PoE (Zhang et al.|[2024) 66.06 6429 63.99 6222 64.75 64.34

RoPE + AB (Chen et al.[|2024) 66.36 66.14 6525 6320 6493 65.18

+ MoICE (Lin et al.|[2024) 6550 66.33 6561 64.11 6584 6548

+ PEAR (Ours) 62.71 67.01 68.32 6644 69.57 66.81

Learnable Embeddines OPT-6.7B-2k 19.07 1545 17.03 1654 22.61 18.14

8 4 PEAR (Ours) 20.23 17.18 17.60 17.22 22.87 19.02

Alibi Baichuan-13B-chat-4k 12.28 1345 1198 11.04 1296 12.34

+ PEAR (Ours) 14.16 14.84 13.67 12.77 13.94 13.88

enhances context awareness of LLMs at the expense of their ability to utilize this parametric knowl-
edge. To investigate this, we evaluated a PEAR-enhanced Llama2-7B-chat model using the MMLU
benchmark (Hendrycks et al.||[2021)), and the results are presented in Table@ The performance of the
enhanced Llama2-7B-chat and the original Llama2-7B-chat did not show a significant difference.
Consequently, we argue that PEAR, through its precise head discovery and effective re-weighting
learning approaches, does not compromise the knowledge capabilities of LLMs.

Table 6: Results on the MMLU benchmark showing that PEAR does not enhance LLMs’ context
capacities at the expense of knowledge ability.

Model | Humanities Social Science STEM Other Avg.
Llama2-7B-chat-4k 42.55 52.29 37.14 5247 4581
+ PEAR (Ours) 42.06 52.03 36.61  52.19 4541

5.5 ANALYSIS: THE EFFECT OF K

While we have demonstrated the effectiveness of PEAR from various angles, a key point for discus-
sion is the role of K, representing the number of heads to re-weight. Using Llama2-7B-chat as a
case study, we vary K and observe its impact on PEAR’s performance. Table[7] presents results on
RAG tasks, while Table [§] details analysis for MDQA tasks. The findings indicate that PEAR per-
forms optimally when K matches the inherent threshold of the model, i.e., the number of heads with
a significantly higher A7 than others. Re-weighting fewer heads fails to fully alleviate the suppres-
sion from RAG-suppression heads, while exceeding this optimal number can harm the performance
of non-RAG-suppression heads, ultimately diminishing overall effectiveness.

Table 7: The experiment results on the question answering task with ablation settings, which show
that our control over the number of suppression heads is effective.

Method 2WikiMultiHopQA MuSiQue Qasper Avg.
Llama2-7B-chat-4k 29.50 6.50 17.00  17.67
+ PEAR (K=10) 33.00 8.00 16.00  19.00
+ PEAR (K=20) 33.50 8.50 16.50  19.50
+ PEAR (K=30) 35.00 8.50 18.00  20.50
+ PEAR (K=40) 32.50 8.00 17.00  19.17
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Table 8: The experiment results on the MDQA task with ablation settings, which show that our
control over the number of suppression heads is effective.

\ Gold Document Position
1 3 5 710
Llama2-7B-chat-4k ‘ 64.14 6595 6497 62.67 6753 65.05

+ PEAR (K=10) 63.43 6626 66.82 64.67 67776 65.79
+ PEAR (K=20) 63.88 66.29 6644 65.65 6851 66.15
+ PEAR (K=30) 62.71 67.01 68.32 6644 69.57 66.81
+ PEAR (K=40) 62.90 66.00 67.16 66.59 68.40 66.21

Method Avg.

5.6 ANALYSIS: THE VALUE OF T -
(11,6)
Using Llama2-7B-chat as an example, we ‘o0
present the learned coefficients of PEAR 510
in Figure[] with heads ranked by their Am o
scores. Intuitively, most heads are opti- 019
mized to values less than one, which re- o1
duces their relative weight compared to oy
other heads within the same layer when e
multi-head outputs are aggregated. Due to 70
BF16 training precision, many 7s are opti- = ‘015
mized to the same value. However, using < “
FP32 precision for training did not signifi- s
cantly impact the results. e
9.16)
Notably, 7s for 9 heads, which have rela- ogisd
tively low Am, are greater than one. We e
do not attribute this to the precision of the o
discovery process, as constraining the re- 1)
weighting coefficients to be less than one 4510
led to suboptimal performance. Thus, a e 191
plausible explanation is that RAG suppres- e
sion is a complex, cooperative effect in- o5 o o z 1 T

1.
volving multiple heads, each with distinct wn

working mechanisms, as discussed in Sec-
tion[4.11 Figure 4: The learned coefficients of PEAR (on
Llama2-7B-chat and K = 40).

6 CONCLUSION

In this paper, we introduce PEAR, a position-embedding-agnostic method designed to enhance the
performance of LLMs on RAG tasks with zero inference overhead. Our method not only outper-
forms competitive baselines in both effectiveness and efficiency but also demonstrates broad appli-
cability across various LLMs. We also presented that PEAR improves context awareness in LLMs
without compromising their inherent knowledge capabilities. These benefits make PEAR a promis-
ing approach for a wide range of applications that require robust context abilities, such as in-context
learning and strict instruction following, which we leave for future research.
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Figure 5: Heatmaps of A scores for each head of llama2-7B-chat (n = 15, n = 25, n = 50).
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Figure 6: Heatmaps of A scores for each head of OPT-6.7B (n = 15,n = 25, n = 50).
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Figure 7: Heatmaps of A scores for each head of Baichuan-13B-chat (n = 20,n = 50, n = 80).
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