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ABSTRACT

We introduce Direct Models, a flow-matching framework that enables single-step
generation by learning a direct mapping from initial noise x0 to all intermediate
latent states along the generative trajectory. Our method is trained end-to-end
and does not rely on multi-stage distillation. It leverages a progressive learning
scheme where the mapping from x0 to xt+δt is composed as an update from x0 to
xt plus the velocity at time t. This formulation allows the model to learn the entire
trajectory in a recursive, data-consistent manner while maintaining computational
efficiency. Experimentally, we show that Direct Models achieves state-of-the-art
sample quality among single-step flow-matching methods.

1 INTRODUCTION

Diffusion models and flow matching methods have recently achieved remarkable success across
a wide range of applications, including image synthesis (6), audio generation (8), and 3D shape
modeling (11). Despite their effectiveness, a significant limitation of these approaches lies in their
reliance on iterative sampling or inference procedures, which are computationally expensive and can
limit real-time deployment.

To address this bottleneck, recent works have explored distillation techniques to compress multi-step
diffusion or flow-matching models into efficient single-step samplers. Notable examples include
(14; 18), which rely on a sequential training procedure: first training a high-quality teacher model
and then performing a distillation step. This two-phase approach nearly doubles the overall training
time compared to methods that train the model directly.

In contrast, this work proposes a novel end-to-end training approach that directly learns a one-step
diffusion-like generative model without relying on teacher models or distillation. Our method offers a
more practical and efficient solution for fast sampling, avoiding the overhead inherent in multi-stage
training pipelines and results in high-quality samples (see Figure 1).

To address these challenges, we propose a new class of Direct Models, a residual-based formulation
that enables both single-step sampling and end-to-end training. The key idea is to directly model
the full flow map through a time-indexed residual field, allowing us to query any intermediate latent
xt without requiring numerical integration. This direct access to latents motivates the name of our
approach.

At the core of our method lies a simple recursive structure: the residual displacement at time t+ δt is
expressed as a combination of the residual at time t and the local velocity at that point. This recursive
formulation not only serves as a training objective but also acts as a structural prior, encouraging
consistency across time steps while remaining efficient and fully self-supervised.

Our main contributions are as follows:

• We propose Direct Models, a novel direct residual model for one-step flow generation that
enables efficient single-step sampling without iterative inference.

• We introduce a recursive training framework, derived straightforwardly from the finite-
difference formulation of the flow, which enforces local velocity consistency and enables
end-to-end training of the model.
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Figure 1: Generations of multi-step flow-matching models and single-step Direct Models. Top row:
128-step generation by a vanilla flow matching model. Bottom row: Generations with our single-step
model. Direct Models generates high-quality images across a wide range of inference budgets,
including using a single forward pass, drastically reducing sampling time by up to 128× compared to
diffusion and flow-matching models. The same starting noise is used within each column.

• We demonstrate that Direct Models achieves superior sample quality compared to existing
single-step, end-to-end generative approaches, closing the gap with iterative methods while
maintaining fast inference.

2 PRELIMINARIES: CONTINUOUS-TIME GENERATIVE MODELS

Modern generative modeling has been significantly shaped by methods that transform simple source
distributions into complex data distributions through continuous-time dynamics. Two prominent
families in this space are diffusion-based models (e.g., (20; 6; 21)) and flow-based approaches,
particularly those based on flow matching (9; 10). These frameworks parameterize sample trajectories
using neural differential equations, typically in the form of an ODE, to transport mass smoothly from
a source distribution (e.g., Gaussian noise) to a target data distribution.

In this work, we adopt a flow matching viewpoint, leveraging its optimal transport-inspired formu-
lation to model deterministic sample paths. Notably, recent studies (e.g., (7)) have emphasized the
close relationship between diffusion and flow-based models, observing that flow matching can be
viewed as a deterministic instance of more general stochastic diffusion processes. As such, we view
these paradigms as conceptually intertwined and refer to them in parallel where appropriate.

Formally, consider a pair of distributions: a base distribution µ0 and a target distribution µ1. The
goal is to learn a velocity field vθ(x, t), parameterized by a neural network, that defines the evolution
of a sample over time

d

dt
ϕ(x, t) = vθ(ϕ(x, t), t),with ϕ(x, 0) = x0, x0 ∼ µ0. (1)

Solving this ODE from t = 0 to t = 1 generates a trajectory that ideally maps µ0 into µ1.

A practical and efficient instantiation of this idea is given by Conditional Flow Matching (CFM),
which sidesteps density estimation by using known correspondence pairs (x0, x1) ∼ (µ0, µ1). Rather
than relying on stochastic score-based gradients, the model is trained to approximate the ground-truth
transport velocity along straight-line paths

xt = (1− t)x0 + tx1. (2)

The true instantaneous velocity along this path is simply x1 − x0, and the model vθ(x, t) is trained
to match this velocity using the loss

L(θ) = Ex0,x1,t

[∥∥vθ

(
(1− t)x0 + tx1, t

)
− (x1 − x0)

∥∥2] . (3)
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This supervised objective encourages the model to replicate the optimal displacement between samples
at intermediate points in time, by constructing a continuous flow without requiring likelihoods or
sampling noise. Once trained, generation consists of drawing x0 ∼ µ0 and integrating the ODE
equation 1 forward using the learned dynamics. This process can be efficiently implemented with
standard ODE solvers such as Euler or Runge–Kutta methods.

3 METHOD: ONE-STEP FLOW VIA DIRECT MODELS

3.1 FORMULATION

We introduce a one-step generative model by directly parameterizing the flow map ϕ(x, t). A natural
formulation is to define the flow as ϕ(x, t) = x+ w(x, t), where the residual field w(x, t) represents
the displacement from the initial point. However, this formulation allows the displacement magnitude
to vary arbitrarily with time, which we found to cause unstable training (see Section 5). To impose a
form of temporal consistency, we instead define the flow as

ϕ(x, t) = x+ t · w(x, t), (4)

where w(x, t) ∈ Rd is now interpreted as a normalized direction of displacement, and the scaling
by t ensures that the overall displacement grows smoothly from zero to its final value. This parame-
terization encourages the magnitude ∥t · w(x, t)∥ to vary linearly with time, providing a stable and
interpretable structure for learning. This formulation provides a single-step trajectory, in contrast to
the continuous ODE integration approach commonly used in flow matching.

In the flow matching framework, the temporal derivative of the trajectory satisfies

d

dt
ϕ(x, t) = v(ϕ(x, t), t), (5)

where v(xt, t) is the target velocity field at the point xt = ϕ(x, t). To incorporate this into our model,
we compute the time derivative of ϕ(x, t) as defined in Equation equation 4

d

dt
ϕ(x, t) = w(x, t) + t · ∂w(x, t)

∂t
. (6)

We approximate the time derivative of w(x, t) using the forward difference with a discrete δt step

∂w(x, t)

∂t
≈ w(x, t+ δt)− w(x, t)

δt
. (7)

By substituting this approximation into the derivative of ϕ(x, t), we obtain

d

dt
ϕ(x, t) = w(x, t) + t · w(x, t+ δt)− w(x, t)

δt
. (8)

By matching this expression to the target velocity v(xt, t), we then have

w(x, t) + t · w(x, t+ δt)− w(x, t)

δt
= v(xt, t), (9)

which can be rearranged into the equation

t · w(x, t+ δt)− w(x, t)

δt
= v(xt, t)− w(x, t). (10)

Finally, by multiplying both sides by δt
t we have

w(x, t+ δt)− w(x, t) =
δt

t
· (v(xt, t)− w(x, t)), (11)

and by isolating w(x, t+ δt), we arrive at

w(x, t+ δt) =
t− δt

t
· w(x, t) + δt

t
· v(xt, t). (12)
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3.2 TRAINING DIRECT MODELS VIA LOCAL VELOCITY PROPAGATION

To learn the flow map parameterized by a model wν , with parameters ν, we leverage the recursive
structure implied by the progressive velocity propagation equation

w(x, t+ δt) =
t− δt

t
· w(x, t) + δt

t
· v(xt, t) . (13)

This relation connects the residual field w at two consecutive time steps through the velocity field v.
We exploit this property to define a consistency-based training loss for wν , encouraging it to align
with the propagated velocity information.

In our formulation, we train two models jointly:

• vθ(x, t): a velocity field trained using the standard Conditional Flow Matching (CFM) loss,
• wν(x, t): a residual displacement field trained using a recursive propagation loss derived

from Equation equation 13.

The velocity field vθ is trained using the standard Conditional Flow Matching (CFM) loss. Given a
sample pair (x0, x1) ∼ (µ0, µ1) and a uniformly sampled time t ∼ U [0, 1], we define the intermediate
point

xt = (1− t) · x0 + t · x1. (14)
The CFM objective encourages the predicted velocity to match the ground-truth displacement between
x0 and x1 at this intermediate point

LCFM(θ) = Ex0,x1,t

[
∥vθ(xt, t)− (x1 − x0)∥2

]
. (15)

The residual field wν is trained using a local velocity propagation loss derived from Equation equa-
tion 13. Given the sample x0 ∼ µ0, a small step size δt and t′ ∼ U [δt, 1 − δt], we define the
propagation loss as

Lprop(ν) = Ex0,t′

[∥∥∥∥wν(x0, t
′ + δt)−

(
t′ − δt

t′
· sg[wν(x0, t

′)] +
δt

t′
· vθ(x′

t, t
′)

)∥∥∥∥2
]
, (16)

with x′
t = x0 + t′ · sg[wν(x0, t

′)], where sg[·] denotes a stop-gradient operator. Notice that we define
the residual field model wν only with respect to the samples x0 from the initial distribution µ0. In
this way, at inference we can directly map these samples to any point along the trajectory in one
step, and, in particular, to the target distribution samples x1. Although wν(x0, t

′) may be initially
uninformative at the beginning of the training, the propagation loss remains effective, removing the
need for explicit scheduling of t′. This simplifies training, improving stability and practicality without
compromising performance. Importantly, the training of the velocity v is decoupled from the training
of w, which enables both components to be learned jointly and in parallel. As a result, the overall
training time is approximately equivalent to that of a single generative model.

Our training algorithm is outlined in Algorithm 1.

3.3 SAMPLING FROM DIRECT MODELS

Sampling from our direct flow map model is straightforward and efficient. Given an initial sample
x0 ∼ µ0, the corresponding transformed sample x1 can be obtained via a single forward pass of the
residual field

x1 = x0 + wν(x0, 1). (17)
This one-step sampling eliminates the need for iterative procedures, making the approach practical
and fast for inference.

4 EXPERIMENTS

4.1 SETTINGS

In this section, we compare our method against several existing approaches. All models are trained
from scratch using the same architecture and implementation framework to ensure a fair comparison.

4
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Algorithm 1 Training Direct Models via Local Velocity Propagation

1: Initialize parameters θ for vθ, ν for wν

2: for each training step do
3: Sample pair (x0, x1) ∼ (µ0, µ1)
4: Train velocity model vθ with CFM loss:
5: Sample t ∼ U [0, 1]
6: Compute xt = (1− t)x0 + tx1 and
7: Minimize

LCFM = ∥vθ(xt, t)− (x1 − x0)∥2

with respect to θ
8: Update θ
9: Train residual field wν with local propagation loss:

10: Sample t′ ∼ U [δt, 1− δt]
11: Compute x′

t = x0 + t′ · sg[wν(x0, t
′)]

12: Minimize

Lprop =

∥∥∥∥wν(x0, t
′ + δt)−

(
t′ − δt

t′
· sg[wν(x0, t

′)] +
δt

t′
· vθ(x′

t, t
′)

)∥∥∥∥2
with respect to ν

13: Update ν
14: end for

Specifically, we adopt the DiT-B diffusion transformer architecture from (16). Our experiments
include unconditional generation on the CelebAHQ-256 dataset (12) and class-conditional generation
on ImageNet-256 (2). For the results reported in Table 1, we use the AdamW optimizer with a fixed
learning rate of 5× 10−5 and no weight decay. Additionally, all models operate in the latent space
provided by the sd-vae-ft-mse autoencoder (17). Further implementation details are provided
in Appendix 5. We release the full code in the supplementary materials.

4.2 COMPARED METHODS

We compare our method to several prior end-to-end approaches, following the same evaluation setup
as in (3). Consistency Training (23) is an end-to-end method that trains a one-step model directly
on empirical pairs (xt, xt+δ), with time discretization bins increasing progressively during training.
Extensions such as iCT (22) and sCT (13) build on (23) with modified training optimizations, further
improving performance. Shortcut Models (3) propose a generative framework that conditions on
both the current noise level and desired step size, enabling efficient and flexible sampling across
different inference budgets. Finally, Live Reflow (3) is an end-to-end model trained simultaneously
on flow-matching and Reflow-distilled targets. The model is conditioned separately on each type of
target, and new distillation targets are generated at every training step via full denoising, making the
method computationally expensive.

4.3 EVALUATION

We follow the evaluation protocol from (3). Models are evaluated by generating samples using 1
diffusion step for our method, and 128, 4, and 1 steps for the baselines. We report the FID-50k score,
a standard metric in generative modeling. FID is computed using statistics from the full dataset, with
no compression applied to the generated images. All images are resized to 299× 299 using bilinear
interpolation and clipped to the (−1, 1) range. During evaluation, we use the Exponential Moving
Average (EMA) of the model parameters.

5
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Table 1: Comparison of various training objectives applied to the same architecture (DiT-B).
We report FID-50k scores (lower is better) for 128, 4, and 1-step denoising. Direct Models achieves
high-quality samples using a single training phase and a one-step inference process. Results in
parentheses indicate settings beyond the intended use of the corresponding objective.

End-to-End Methods CelebAHQ-256 ImageNet-256 (Class-Conditional)
128-Step 4-Step 1-Step 128-Step 4-Step 1-Step

Diffusion (6) 23.0 (123.4) (132.2) 39.7 (464.5) (467.2)
Flow Matching (9) 7.3 (63.3) (280.5) 17.3 (108.2) (324.8)
CT (23) 53.7 19.0 33.2 42.8 43.0 69.7
iCT (22) - - 21.7 - - 43.3
sCT (13) - - 19.3 - - 41.6
Live Reflow (3) 6.3 27.2 43.3 46.3 95.8 58.1
Shortcut Models (3) 6.9 13.8 20.5 15.5 28.3 40.3
Direct Models (Ours) - - 14.1 - - 34.4

Table 2: Effect of δt on image quality on CelebAHQ-256.

δt 0.005 0.01 0.05 0.1

FID ↓ 16.6 16.8 20.5 25.4

4.4 RESULTS

Direct Models achieves high-quality generation with just a single sampling step. It outperforms all
existing single-stage training approaches for one-step generation. Additional qualitative results are
presented in Appendix A.

5 ABLATION

In Table 2, we study the effect of the finite difference step size δt on image quality. We find that
smaller values of δt (0.005, 0.01) achieve the best FID scores, whereas larger step sizes (0.05, 0.1)
result in a clear deterioration in performance. These results highlight the importance of choosing a
sufficiently small δt to ensure accurate finite-difference approximations and stable training.

In Table 3, we report the FID scores of generated images when training with and without gradient
stopping. We observe that disabling gradient stopping results in (i) lower image quality and (ii)
approximately 20% additional computational overhead.

In Table 4, we compare the effect of two flow parameterizations during training: ϕ(x, t) = x+w(x, t)
and ϕ(x, t) = x + tw(x, t). Although these two formulations are mathematically equivalent, we
observe that training with ϕ(x, t) = x + w(x, t) leads to oscillating loss values and consistently
produces degenerate images. This observation aligns with the common practice in training diffusion
models and flow matching, where a normalized score or velocity is learned rather than the absolute
residual.

Table 3: Effect of applying gradient stopping during training (as in Equation 16) on image quality for
CelebAHQ-256.

w/o stopping gradient w/ stopping gradient

FID ↓ 42.6 16.8

6
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Table 4: Effect of flow ϕ(x, t) parametrization during training on image quality on CelebAHQ-256.

ϕ(x, t) = x+ w(x, t) ϕ(x, t) = x+ tw(x, t)

FID ↓ > 100 16.8

6 RELATED WORK

We briefly review existing approaches that enable single-step diffusion-based generation, which can
be broadly categorized into distillation-based methods and single-phase training methods.

6.1 DISTILLATION METHODS

In recent years, various techniques have been developed to distill generative models, particularly
diffusion models, into more efficient one-step sampling frameworks. These methods typically follow
a two-stage pipeline: first, a diffusion model is pretrained; then, a separate model is trained to
approximate the behavior of the full diffusion process using fewer inference steps.

Methods such as knowledge distillation (14) and rectified flows (10) generate synthetic training
pairs by fully simulating the reverse-time denoising ODE. To reduce the high computational cost
of full simulation, more efficient alternatives use bootstrapping strategies to partially initialize
the ODE trajectory (5; 24). Other works explore alternatives to the standard L2 loss, including
adversarial objectives (19) and distribution-matching approaches (26; 25). Progressive distillation
methods (18; 1; 15) further break the distillation process into multiple stages with increasing time
step sizes, reducing the need for long bootstrap paths.

The distillation method most similar to ours is BOOT (5). Both BOOT and our Direct Models aim
to map the initial noise directly to all intermediate latents. However, BOOT is based on a diffusion
formulation, while Direct Models adopt a flow-matching formulation, which is an independent class
of generative models with distinct derivations and training losses. Importantly, BOOT is a two-stage
distillation framework that relies on a pre-trained generative model, whereas Direct Models achieves
state-of-the-art performance through a single joint training stage. This demonstrates that joint training
is not only feasible but also highly effective, removing the sequential training bottleneck inherent in
two-stage distillation methods.

In contrast, we propose an end-to-end approach that directly learns a one-step generative model,
removing the need for separate pretraining and distillation phases. This makes our method simpler
and more efficient than both full simulation-based techniques and multi-stage progressive distillation.

6.2 SINGLE-PHASE TRAINING METHODS

Few methods have been proposed for single-phase training that enable one-step generation. Consis-
tency Models (23), a pioneering approach in this area, directly map partially noised data points to their
fully denoised outputs in a single step. While initially developed for distillation, these models have
also been explored in end-to-end training scenarios. Extensions such as iCT (22) and sCT (13) build
on (23) with modified training optimizations, further improving performance. Shortcut Models (3)
propose a novel generative framework that conditions on both the current noise level and the desired
step size, enabling efficient and flexible sampling across different inference budgets.

A recent concurrent work, Mean Flows (4), introduces a one-step generative modeling approach that
captures the average flow along the trajectory. While (4) focuses on learning a direct mapping between
every pair of points along the flow, our method targets a direct mapping from the initial noise to all
intermediate latent states. Additionally, Mean Flows relies on computationally expensive Jacobian
matrix computations, whereas our approach uses a more efficient finite-difference approximation of
the flow.

Difference from Consistency Models (23; 13; 23) While we share the general concept of consistency
with (23; 13; 23), Direct Models differs significantly in its formulation. Conceptually, Direct Models
can be seen as the opposite approach: instead of mapping intermediate latents xt directly to the fully

7
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Figure 2: Visual illustration of the differences between prior work in terms of the learned trajectory
mappings. x0 denotes an initial Gaussian noise and x1 its corresponding noise-free image. Left:
Consistency models (23) . Middle: Shortcuts models (3). Right: Direct Models (ours).

denoised image x1, our method maps initial Gaussian noise x0 to all intermediate latent states xt, as
shown in Figure 2.

Difference from Shortcut Models (3) Shortcut models are arguably the most similar approach to
Direct Models. However, there are key differences: 1) Conceptually, Shortcut models learn direct
mappings between all pairs of latent states, including both the initial and final ones. In contrast,
Direct Models focuses on learning a direct mapping only between the initial Gaussian noise and
all intermediate latent states. 2) More importantly, our approach is grounded on a more principled
mathematical formulation. Specifically, we derive our method using finite differences of the flow, as
shown in Equation equation 13, which links the flow at neighboring timesteps to the velocity field.

7 LIMITATIONS AND FUTURE WORK

Our method has certain limitations. The current formulation is restricted to single-step inference, and
Direct Models could be further optimized by training a single network instead of two. A promising
direction for future work is to extend the framework to a unified model that allows flexible sampling
with a variable number of inference steps.

8 REPRODUCIBILITY STATEMENT

To support reproducibility, we provide a complete implementation of our method, including training
and evaluation scripts, as part of the supplementary materials.

9 CONCLUSION

We introduce Direct Models, a flow matching based generative model that enables both single-step
sampling and end-to-end training. By learning a time-indexed residual field to directly approximate
the full generative flow, our method achieves fast, high-quality generation. This makes Direct Models
a practical alternative to existing single-step generative modeling techniques.
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Figure 3: Representative examples generated unconditionally on the CelebA-HQ dataset at 256×256
resolution, using single-step generation with a DiT-B size model trained for 500,000 iterations.

A VISUAL RESULTS

Figures 3 and 4 show images generated by our method, trained on the unconditional CelebA-HQ and
class-conditioned ImageNet datasets, respectively.

B TRAINING DETAILS

Table 5 provides detailed training configurations.
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Figure 4: Representative examples generated unconditionally on the ImageNet dataset at 256×256
resolution, using single-step generation with a DiT-B size model trained for 800,000 iterations.
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Batch Size 64 (CelebA-HQ), 256 (Imagenet)
Training Steps 500,000 (CelebA-HQ), 800,000 (Imagenet)
Latent Encoder sd-vae-mse-ft
Latent Downsampling 8 (256x256x3 to 32x32x4)
Classifier Free Guidance 0 (CelebA-HQ), 1.5 (Imagenet)
Class Dropout Probability 0 (CelebA-HQ), 0.1 (Imagenet)
EMA Parameters Used For Evaluation? Yes
EMA Ratio 0.999
Optimizer AdamW
Learning Rate 0.00005
Weight Decay 0.0
Hidden Size 768
Patch Size 2
Number of Layers 12
Attention Heads 12
MLP Hidden Size Ratio 4
δt 0.01

Table 5: Hyperparameters used during training.
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