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Abstract001

Developing high-quality large language mod-002
els (LLMs) for moderately resourced lan-003
guages presents unique challenges in data004
availability, model adaptation, and evaluation.005
We introduce Llama-3-Nanda-10B-Chat, or006
Nanda for short, a state-of-the-art Hindi-centric007
instruction-tuned generative LLM, designed008
to push the boundaries of open-source Hindi009
language models. Built upon Llama-3-8B,010
Nanda incorporates continual pretraining with011
expanded transformer blocks, leveraging the012
Llama Pro methodology. A key challenge was013
the limited availability of high-quality Hindi014
text data; we addressed this through rigor-015
ous data curation, augmentation, and strate-016
gic bilingual training, balancing Hindi and017
English corpora to optimize cross-linguistic018
knowledge transfer. With 10 billion parame-019
ters, Nanda stands among the top-performing020
open-source Hindi and multilingual models of021
similar scale, demonstrating significant advan-022
tages over many existing models. We provide023
an in-depth discussion of training strategies,024
fine-tuning techniques, safety alignment, and025
evaluation metrics, demonstrating how these026
approaches enabled Nanda to achieve state-of-027
the-art results. By open-sourcing Nanda, we028
aim to advance research in Hindi LLMs and029
support a wide range of real-world applications030
across academia, industry, and public services.031

1 Introduction032

Recent advances in large language models (LLMs)033

have significantly transformed natural language034

processing (NLP), enabling impressive reasoning035

and instruction-following capabilities. However,036

most development has remained English-centric.037

While multilingual LLMs such as Falcon (Al-038

mazrouei et al., 2023), PaLM (Chowdhery et al.,039

2022), Bloom (Scao et al., 2022), Aya (Ustun et al.,040

2024), and Llama-3.1 (Dubey et al., 2024) attempt041

to broaden linguistic coverage, their pretraining042

continues to rely heavily on English-dominated 043

corpora, ultimately limiting their performance in 044

underrepresented languages. 045

In particular, although Hindi is the fourth most- 046

spoken language globally1,2, it is still under- 047

represented in existing LLMs, which demonstrate 048

a considerable drop in performance as compared to 049

that in English (Jin et al., 2024; Hasan et al., 2024). 050

To address this, unlike massively multilingual mod- 051

els such as Bloom (Scao et al., 2022) and Aya (Us- 052

tun et al., 2024), we argue for the development of 053

bilingual LLMs that excel on an under-represented 054

language–which is Hindi in our case–but maintain 055

high-performance on English. In this paper, we in- 056

troduce Llama-3-Nanda-10B-Chat (Nanda), a 10B- 057

parameter decoder-only bilingual LLM tailored for 058

Hindi. This setup allows Nanda to develop natural 059

language capabilities from the large-scale English 060

data, and also extend these capabilities into Hindi 061

through cross-lingual transfer. 062

Building high-quality Hindi LLMs presents chal- 063

lenges due to limited data availability (Joshi et al., 064

2020). In contrast to English, which benefits from 065

corpora of up to 15 trillion tokens (Tang et al., 066

2024), Hindi resources are scarce. To mitigate 067

this, we curated a 65B token Hindi corpus for con- 068

tinual pretraining and developed a data processing 069

pipeline to ensure high-quality data, which includes 070

code-mixed (with English) and romanized Hindi 071

examples. We also prepare a set of ∼81K instruc- 072

tions across both Hindi and English, spanning over 073

several diverse set of NLP tasks. We use an equal 074

ratio of Hindi-English tokens for pretraining and 075

apply oversampling during instruction-tuning to 076

balance the 64.5M English and 43.5M Hindi to- 077

kens in the instruction-tuning dataset. 078

Nanda builds on Llama-3 (Dubey et al., 079

2024), incorporating recent breakthroughs such as 080

1https://en.wikipedia.org/wiki/Hindi
2https://www.worlddata.info/languages/hindi.

php
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RoPE (Su et al., 2021) and grouped-query atten-081

tion (Ainslie et al., 2023), along with a custom-082

built tokenizer for bilingual optimization. We eval-083

uate the model across Hindi and English bench-084

marks in reasoning, factuality, safety, bias and gen-085

eration. Results show that Nanda is one of the086

best-performing Hindi-English bilingual language087

model, achieving competitive results in reasoning088

and factuality tasks while outperforming similarly089

sized models in text generation. These results mark090

a promising step toward robust, high-quality LLMs091

for Indic languages.092

2 Pretraining Data Preparation093

Nanda is pre-trained on billions of words to build a094

strong foundation in Hindi, with a knowledge base095

tailored to language’s cultural nuances. We curated096

a large pre-training dataset by incorporating diverse097

Hindi-language sources, including websites, news098

articles, books, and , Wikipedia. This dataset in-099

tegrates resources such as Hindi-specific datasets100

from HuggingFace, IIT-Bombay English-Hindi Par-101

allel Corpus (Kunchukuttan et al., 2018) and High102

Performance Language Technologies’ Multilingual103

Datasets (Burchell et al., 2025) (see Appendix A104

for details). The pretraining data is described in105

appendix In total, our pre-processed dataset com-106

prises of 65 billion tokens of Hindi data.107

2.1 Preprocessing Pipeline108

We perform a comprehensive pre-processing step109

on our pre-training data to ensure that Nanda learns110

from diverse, high-quality data. Here, we provide a111

brief outline of the workflow of our pre-processing112

pipeline, which is also illustrated in Figure 1.113

Detokenisation A large portion of the raw data114

in our pre-training corpus comes from publicly115

available datasets, some of which are already pre-116

processed or tokenised. To ensure consistency, we117

detokenise the raw data, standardizing the texts118

across all datasets. At this stage, all documents119

in our corpus are non-tokenised regardless of their120

original source.121

Filtering Following detokenisation, we filter out122

irrelevant and low-quality documents using sev-123

eral heuristics as follows: short content removal,124

where documents with less than 20 words are re-125

moved; long word removal, where documents con-126

taining words longer than 100 characters (URLs127

or gibberish strings) are removed; Hindi sentence128

threshold, where we ensure that at least 50% of 129

the sentences in each document are in Hindi (using 130

fastText lid.176.bin); Hindi character threshold, 131

where we ensure that at least 70% of the characters 132

in each document are in Hindi; special symbol re- 133

moval, where documents with more than 20% of 134

their characters as special symbols, punctuation or 135

numerical digits are removed. 136

Cleaning We further refine the dataset by clean- 137

ing the filtered documents using the following tech- 138

niques: Unicode fix, where we repair corrupted Uni- 139

code sequences; normalization, where we standard- 140

ize Hindi punctuation and character forms across 141

the dataset; HTML/JS removal, where we remove 142

HTML or JavaScript tags and scripts from each 143

document; citation removal, where we remove ci- 144

tations to maintain the text’s coherence and log- 145

ical flow; boilerplate removal, where we remove 146

repetitive boilerplate text from each document to re- 147

duce redundancy; bad word removal, where we de- 148

tect and remove inappropriate and offensive words 149

/ phrases from each document; noisy n-gram re- 150

moval, where we detect and remove meaningless 151

or repetitive n-gram patterns from each document. 152

We use ftfy, pydantic, nltk and spaCy to perform 153

cleaning. 154

Deduplication Finally, we leverage locality- 155

sensitive hashing (MinHash) to perform deduplica- 156

tion on the remaining documents. Ultimately, the 157

size of the final pre-processed dataset is reduced 158

to 42% of the total raw text in the original data 159

sources. 160

Developing the pre-processing pipeline for Hindi 161

posed greater challenges as compared to English. 162

While English pre-processing pipelines benefit 163

from numerous large-scale, open-access datasets, 164

and well-established techniques, Hindi requires 165

a custom-built approach. Insights gained from 166

experiments with smaller LLMs and the pre- 167

processing pipeline for the pre-training dataset used 168

for Jais (Sengupta et al., 2023) guided the selection 169

of heuristics used in the final pipeline for Nanda’s 170

pre-training dataset. However, due to the limited 171

availability of Hindi data, we applied less aggres- 172

sive filtering than most approaches, ensuring that 173

valuable Hindi content was retained. Details of 174

token counts after each pre-processing step are in- 175

cluded in Appendix B. 176

2



Figure 1: Our Hindi preprocessing pipeline. We pre-process the raw text through a series of steps. We perform
filtering using several heuristics, clean the filtered documents using various techniques, and finally perform
deduplication to get the final pretraining corpus.

2.2 Mixing Hindi and English Data177

During the adaptation of the Llama-3 model, we178

mix Hindi and English data following the findings179

of Gosal et al. (2024): continual pre-training of180

a foundation model on new, previously unseen181

data can help in bilingual adaptation. However,182

when this new language/domain data is out-of-183

distribution of the original training data, it can184

cause forgetting of prior capabilities, which is re-185

ferred to as a stability gap. To mitigate forgetting,186

we can incorporate a small amount of replay data,187

closer in distribution to the original pre-training188

data (Guo et al., 2024). In our work, we conduct189

extensive experiments to determine the minimum190

proportion of English replay data that should be191

mixed with Hindi to maintain prior capabilities,192

while also learning the new language.193

For adapting Llama-3-8B for Hindi, our experi-194

ments revealed that a relatively high amount of re-195

play data is necessary. Specifically, we found that196

a 1:1 English-to-Hindi dataset mix worked best,197

enabling cross-lingual capability transfer while pre-198

venting saturation of Llama-3 for domain adapta-199

tion. For replay data, we used a mix of textbook,200

mathematics, coding and reasoning datasets from201

publicly available sources.202

3 Model203

3.1 Tokenizer and Architecture204

Nanda Tokenizer The first step in adapting a205

foundation model for multilingual use is to con-206

struct a balanced vocabulary that includes all target207

languages. Recent state-of-the-art models such as208

Llama-3 (Dubey et al., 2024) use byte pair encod- 209

ing tokenizers (Sennrich et al., 2016), primarily 210

trained on English data. 211

These tokenizers often split non-English words 212

into characters or bytes, creating a significant im- 213

balance among languages. This imbalance intro- 214

duces inefficiency in pretraining, fine-tuning and 215

inference. A balanced multilingual tokenizer with 216

low fertility (Rust et al., 2021) in all languages 217

offers three main advantages: (i) lower training 218

and inference cost; (ii) reduced latency during in- 219

ference; and (iii) longer context windows (Petrov 220

et al., 2023). Furthermore, models trained with 221

low-fertility tokenizers tend to perform well on 222

downstream tasks (Ahuja et al., 2023). 223

In Table 1, we show that the Llama-3 tokenizer 224

requires up to 2.6× more tokens than words when 225

applied to Hindi text, indicating significant inef- 226

ficiency. To address this, we introduce Llama-3- 227

ExtVocab-20, a 20K Devanagari-enriched exten- 228

sion of the Llama-3 tokenizer, which reduces the 229

fertility score to 1.19, a 54.4% decrease. This is 230

achieved by incorporating the most frequent Hindi 231

tokens from our pretraining corpus, while ensur- 232

ing that none of the added tokens overlap with the 233

original vocabulary. 234

We conduct a vocabulary extension analysis to 235

determine the optimal number of new Hindi tokens 236

to be added, ensuring a balanced multilingual vo- 237

cabulary. The Hindi tokens are borrowed from a 238

monolingual Hindi tokenizer trained on the Hindi 239

corpora. We create a few candidate extended vocab- 240

ularies and perform intrinsic evaluations following 241
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Ali et al. (2024). For intrinsic evaluation, we use242

the fertility score to measure the efficiency of the243

tokenization process (Gosal et al., 2024). Fertility244

is defined as f = S
W , where S is the total number245

of tokens in the tokenized text and W is the number246

of words in the raw text. It is important to note that247

fertility is calculated on the held-out subsets of the248

Hindi corpora, which were not used for tokenizer249

training.250

Table 1 shows the intrinsic evaluations of three251

candidate tokenizers, (i) Llama-3-ExtVocab10,252

(ii) Llama-3-ExtVocab20, and (iii) Llama-3-253

ExtVocab30, which extend the Llama-3 vocabu-254

lary by 10%, 20%, and 30%, respectively. Based255

on our tokenizer fertility ablation studies, Llama-256

3-ExtVocab20 reduces the fertility of Llama-3’s257

tokenizer by 54.40% while maintaining fertility in258

English. It achieves a fertility score of 1.19 on259

Hindi, which is comparable to the base Llama-3260

tokenizer’s English fertility of 1.35. Extending the261

vocabulary to 30% shows minimal improvement262

in Hindi fertility, therefore, we select Llama-3-263

ExtVocab20 as the tokenizer for Nanda.264

Nanda Embeddings Following the methods out-265

lined for embedding initialization in Gosal et al.266

(2024), we use a semantic similarity search-based267

embedding initialization method. This method uses268

Wechsel multilingual initialization (Minixhofer269

et al., 2022) where pretrained embeddings like Fast-270

text or OpenAI embeddings are used. For each new271

Hindi token added to the Llama-3 base vocabulary,272

we identify top-k most similar tokens in the base273

vocabulary based on cosine similarity using embed-274

dings from a pretrained embedding model. We use275

OpenAI’s text-embedding-3-large embeddings276

(Kusupati et al., 2024) for its superior quality and277

multilingual capabilities. To initialize the embed-278

dings of the new Hindi token, we take a weighted279

average of the top-k similar tokens’ base embed-280

dings. After experimenting with different values281

for the k, we achieve the best results with k = 5.282

This initialization method was used for embedding283

and unembedding layers of Nanda.284

Nanda Architecture Recently, decoder-only285

models have achieved state-of-the-art performance286

in generative language tasks. Nanda is derived287

from Llama-3 8B (Dubey et al., 2024) leveraging288

the Llama-Pro approach (Wu et al., 2024); hence,289

it has the standard causal decoder-only transformer290

architecture. Building upon the Llama-3 model, we291

incorporated both recent advances from the litera-292

ture and insights from our own experiments. Fol- 293

lowing Wu et al. (2024), we leverage the block 294

expansion approach, which proves to be highly ef- 295

fective for language adaptation, especially for low- 296

resource languages. By adding and fine-tuning ad- 297

ditional decoder blocks initialized to identity map- 298

pings while freezing the original Llama-3 back- 299

bone, we train only the newly added blocks. 300

This enables the model to integrate new domain 301

and language-specific knowledge without forget- 302

ting previously learned information. Although the 303

techniques described in Wu et al. (2024) focus on 304

code and math adaptation, we successfully adapted 305

this approach for language adaptation. We start 306

with Llama-3-8B base model and expanded the 307

number of decoder blocks from 32 to 40 using an 308

interleaved approach. A new decoder block was 309

added every 4 decoder blocks in the base Llama-3 310

model. In our language adaptation experiments, 311

we found that an optimal data mix of 1 : 1 (En:Hi) 312

yielded the best results (in downstream 0 shot tasks 313

in both English and Hindi) compared to Hindi-only 314

adaptation. In both experiments, we trained on a 315

total of 55B tokens for Hindi in order to maintain 316

the same token count for the appropriate compar- 317

ison. Our results show that the block-expansion 318

approach is a strong candidate for language adap- 319

tation with less training overhead and resources 320

compared to training domain-specific models from 321

scratch, especially for low-resource languages. In 322

the future, this work could expand to other archi- 323

tectures (like Mixture-of-Experts) and modalities, 324

and it would be interesting to analyse the impact on 325

overall accuracy in downstream tasks. Following 326

the results from Gosal et al. (2024), we find that 327

the optimal adapter layers are 25% of the existing 328

layers. 329

3.2 Pre-Training 330

Nanda uses a 40-layer architecture with 32 atten- 331

tion heads and a hidden dimensionality of 4096. 332

For optimization, we use a peak learning rate of 333

1.5e-4 and a batch size of 4 million tokens. For 334

the continual pretraining dataset, we sampled doc- 335

uments from the source list described in Section 2 336

and generated sequences with a context length of 337

8,192 tokens. When a document was smaller than 338

8,192 tokens, it was concatenated with other docu- 339

ment (documents) and packed into one sequence. 340

<|endoftext|> is used to demarcate the end of 341

each document, giving the language model the in- 342

formation necessary to infer that tokens separated 343
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Llama-3 ExtVocab10 ExtVocab20 ExtVocab30

Vocab Size 128,256 141,081 153,856 166,732

Hindi Fertility 2.61 1.27 (-51.34%) 1.19 (-54.40%) 1.16 (-55.55%)
English Fertility 1.35 1.35 1.35 1.35

Table 1: Tokenizer intrinsic evaluation across vocab sizes. Adding Hindi vocab reduces fertility by 51.34%, 54.40%,
and 55.55% in ExtVocab10, ExtVocab20, and ExtVocab30, respectively, compared to the base Llama-3 tokenizer.

by <|endoftext|> are unrelated.344

We train Nanda using the AdamW opti-345

mizer (Loshchilov and Hutter, 2018) with β1 =346

0.9, β2 = 0.95, ϵ = 1e − 5, and weight decay of347

0.1. We scale the gradient norms using a maximum348

norm clipping value of 1.0. The learning rate sched-349

ule comprises a linear warm-up to peak learning350

rate for 1% of the total steps, followed by a 10×351

cosine decay for the rest of the steps. After packing,352

we used a global batch size of 4M tokens. All train-353

ing, hyperparameter tuning, and instruction-tuning354

experiments were conducted on the Condor Galaxy355

2 AI supercomputer from Cerebras3 (see Appendix356

E for details on the training infrastructure).357

4 Instruction-Tuning358

An effective LLM must accurately interpret user359

instructions across diverse NLP tasks and adhere360

to their preferences for helpfulness & safety. How-361

ever, pretraining alone does not enable Nanda to ac-362

curately interpret and respond to user instructions.363

To address this, we instruction-tune (Ouyang et al.,364

2022) the pre-trained model using a high-quality365

instruction dataset, aligning the model for practical366

use-cases and enhancing safety in its responses.367

4.1 Dataset368

Nanda is developed as a bilingual model, and thus,369

it must be enabled to understand instructions in370

Hindi without compromising its performance in371

English. To this end, we prepare a diverse dataset372

containing ∼81K instructions (Hindi and English)373

in a prompt-response pair format over a diverse set374

of NLP tasks including safety-alignment.375

English Instructions The English subset of our376

instruction-tuning dataset comprises ∼39K high-377

quality instructions spanning a comprehensive378

range of tasks. In particular, we have close to 20K379

instructions focused on mathematics, while the rest380

of the examples cover code and various types of381

3*Introducing Condor Galaxy 1: A 4 ExaFLOPS Super-
computer for Generative AI* – Cerebras

reasoning, such as physical, logical and causal rea- 382

soning. Formatted into prompt-response pairs, this 383

subset consists of 7.7M tokens in prompts and 9M 384

tokens in their responses, adding up to a total of 385

∼17M tokens. 386

Hindi Instructions As a relatively low-resource 387

language, Hindi does not have many high-quality 388

instruction-tuning datasets. Several existing ap- 389

proaches have utilized machine translation on sub- 390

sets of English instruction-tuning datasets to create 391

datasets for low-resource languages. We create 392

our Hindi instruction-tuning dataset using a simi- 393

lar technique; selecting a set of publicly available 394

English instructions focusing on various forms of 395

reasoning, and translating it into Hindi using var- 396

ious machine-translation models. We realize that 397

Hindi speakers often use a more relaxed form of 398

the language during informal interactions. We aim 399

for our model to be adept at understanding both for- 400

mal and informal writing styles. So, we translate 401

the English instructions into two forms of written 402

Hindi: 403

• Formal Hindi – The translated instances are 404

written in Devanagari script with a style of 405

writing consistent with official documents in 406

Hindi. This was done using the Google Trans- 407

late API (2024-12 snapshot). 408

• Casual Hindi – Generated translations con- 409

tain Hindi (and some English) words using a 410

mix of Devanagari and Latin scripts. This 411

form of the language is generally used by 412

Hindi-speaking individuals during informal 413

conversations like texting, informal speech, 414

interactions on social media, etc. This was 415

done using GPT-4 (OpenAI, 2023a). 416

Subsequently, several Hindi language experts 417

ensure the quality of translations by manually ver- 418

ifying a sample of instances from the generated 419

dataset. Ultimately, the Hindi instruction-tuning 420

subset comprises ∼22K high-quality machine- 421

translated Hindi instructions, split into ∼13.5K in 422
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formal Hindi and the remaining in casual Hindi. In423

particular, this subset comprises 3.8M prompt to-424

kens and 10M response tokens, or a total of ∼14M425

tokens.426

Safety-Tuning Data We developed a comprehen-427

sive safety prompt collection process specifically428

tailored for Hindi model training, covering eight429

types of attacks and over 100 detailed safety cat-430

egories. In the current released version, we ran-431

domly sampled 20K data for SFT (see Appendix F432

for more details).433

4.2 Instruction-Tuning Setup434

As mentioned in Section 4.1, the instances in our435

raw instruction-tuning data contain a system in-436

struction and a pair of a user-prompt and an AI437

response. In the case of multi-turn interactions, we438

have a sequence of multiple prompt–response pairs.439

Since our model is built on top of Llama-3-8B-440

Instruct, we templatize each raw datapoint using441

the Llama-3-Instruct prompt template both for su-442

pervised fine-tuning (SFT) and for inference.4 At443

this stage, we oversample the instructions in our444

dataset (excluding safety instruction-tuning data)445

to 300% of the original quantity to strengthen the446

model. This means we perform SFT over approxi-447

mately 100M tokens consisting of 47M tokens in448

Hindi instructions and 53M of the same in English449

instructions. Moreover, similar to Jais (Sengupta450

et al., 2023), we apply padding to each templatized451

instance, use the same autoregressive objective as452

for pretraining, and mask the loss of the prompt453

to make sure backpropagation considers only the454

answer tokens during SFT.455

5 Evaluation456

In this section, we aim to provide a thorough assess-457

ment of the Nanda model across a diverse set of458

evaluation dimensions, covering downstream NLP459

tasks, safety assessments, and generation capabili-460

ties. These evaluations are designed to rigorously461

measure the model’s performance and adaptability,462

particularly in supporting multilingual use cases463

across both Hindi and English languages.464

5.1 Downstream Evaluation465

Evaluation Setup We conduct a comprehensive466

downstream evaluation, comparing Nanda model467

to a series of baselines that support both Hindi468

4https://www.llama.com/docs/
model-cards-and-prompt-formats/meta-llama-3/

and English languages. Our baseline models in- 469

clude models that are specifically optimized for 470

the Hindi language, such as Gajendra-v0.1 (Bhab- 471

haAI, 2024), Nemotron-4-Mini-Hindi (Joshi et al., 472

2024), Airavata (Gala et al., 2024) and models from 473

the AryaBhatta series (GenVRadmin, 2024a,b). 474

We also include multilingual models such as Aya- 475

23 (Aryabumi et al., 2024) and Mistral (Mistral AI, 476

2024). Additional models include popular general- 477

purpose models like Llama-3, Llama 3.1, and the 478

latest Llama-3.2 (Dubey et al., 2024). 479

We adopt the LM-Evaluation-Harness frame- 480

work (Gao et al., 2021) to evaluate each model 481

in a zero-shot setting and report the accuracy for 482

each task. Within the framework, the context string 483

is concatenated with each candidate output string, 484

and the answer is determined by selecting the con- 485

catenated string with the highest normalized log- 486

likelihood. 487

We perform the comparative evaluation of 488

Nanda against other LLMs for both Hindi and En- 489

glish, building upon the evaluations conducted in 490

prior studies (Dubey et al., 2024; Aryabumi et al., 491

2024; OpenAI, 2023b). 492

For each language, our evaluation encompasses 493

aspects such as knowledge, reasoning, and mis- 494

information, as outlined in Table 2 and Ta- 495

ble 3. For Hindi, we assess performance on four 496

translated benchmarks—MMLU-hi, HellaSwag- 497

hi, ARC-hi, and TruthfulQA-[MC1,MC2]-hi that 498

are fetched from Okapi5 (Dac Lai et al., 2023). 499

For English, following prior studies, we in- 500

clude MMLU (Hendrycks et al., 2020), Hel- 501

laSwag (Zellers et al., 2019), ARC (Clark et al., 502

2018a) and TruthfulQA-[MC1,MC2] (Lin et al., 503

2021). 504

Results for Hindi Table 2 presents the zero-shot 505

evaluation results for Hindi. Nanda demonstrates 506

superior performance across many evaluation crite- 507

ria, placing itself among the state-of-the-art Hindi 508

language models. Specifically, compared to Indic 509

models, such as Gajendra-v0.1, Airavata, AryaB- 510

hatta series models, Nanda achieves significant ab- 511

solute improvements across knowledge retrieval, 512

commonsense reasoning and misinformation. We 513

can further see that among multilingual models, 514

Llama-3.1 and Aya-23-8B are among the best- 515

performing models, with an average accuracy of 38 516

and 36, respectively. However, Nanda outperforms 517

both of them by 2.68 and 4.94 absolute points. 518

5https://huggingface.co/alexandrainst
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Model Average MMLU-hi HellaSwag-hi ARC-hi TruthfulQA-MC1-hi TruthfulQA-MC2-hi
0-shot 0-shot 0-shot 0-shot 0-shot

Airavata-7B 0.3204 0.3044 0.3287 0.2551 0.2600 0.4540
Gajendra-v0.1-7B 0.2949 0.3028 0.3304 0.2594 0.2096 0.3723
AryaBhatta-GemmaOrca-8.5B 0.3712 0.3682 0.4191 0.3022 0.2962 0.4701
AryaBhatta-GemmaUltra-8.5B 0.3858 0.3900 0.4394 0.3168 0.3027 0.4801
Nemotron-4-Mini-Hindi-4B-Instruct 0.4103 0.4294 0.4772 0.3579 0.3027 0.4841
Aya-23-8B 0.3602 0.3350 0.4481 0.2971 0.2820 0.4390
Mistral-7B-Instruct-v0.3 0.3435 0.3069 0.3435 0.2637 0.3053 0.4981
Meta-Llama-3-8B 0.3752 0.4010 0.4340 0.3280 0.2630 0.4500
Meta-Llama-3-8B-Instruct 0.3804 0.3850 0.4070 0.3360 0.2930 0.4810
Llama-3.1-8B-Instruct 0.3828 0.4290 0.4500 0.3310 0.2620 0.4420
Llama-3.2-3B-Instruct 0.3518 0.3660 0.3860 0.2920 0.2690 0.4460

Llama-3-Nanda-10B-Chat 0.4096 0.4299 0.4922 0.3476 0.2975 0.4810

Table 2: Evaluation results on Hindi benchmarks. Average represents the mean score across tasks, and 0-shot
indicates zero-shot results. For all columns, higher the better. Bold represents the best scores in that column while
underlined represents the second-best scores.

Model Average MMLU HellaSwag ARC-en TruthfulQA-MC1 TruthfulQA-MC2
0-shot 0-shot 0-shot 0-shot 0-shot

Airavata-7B 0.4470 0.4044 0.6798 0.4448 0.2607 0.4070
Gajendra-v0.1-7B 0.4422 0.3955 0.7308 0.4311 0.2521 0.4062
AryaBhatta-GemmaOrca-8.5B 0.5406 0.5195 0.7370 0.4551 0.3880 0.5406
AryaBhatta-GemmaUltra-8.5B 0.5465 0.5374 0.7573 0.4893 0.3660 0.5465
Nemotron-4-Mini-Hindi-4B-Instruct 0.5359 0.5528 0.7122 0.4893 0.3513 0.5021
Aya-23-8B 0.4924 0.4474 0.7431 0.4525 0.3035 0.4924
Mistral-7B-Instruct-v0.3 0.6167 0.5898 0.8318 0.5885 0.4211 0.5966
Meta-Llama-3-8B 0.5526 0.6134 0.7942 0.5338 0.2742 0.5526
Meta-Llama-3-8B-Instruct 0.5911 0.6369 0.7598 0.5689 0.3599 0.5911
Llama-3.1-8B-Instruct 0.5988 0.6644 0.7939 0.5500 0.3696 0.5988
Llama-3.2-3B-Instruct 0.5338 0.5878 0.7083 0.4577 0.3244 0.4970

Llama-3-Nanda-10B-Chat 0.6096 0.6499 0.8022 0.5776 0.3995 0.6190

Table 3: Evaluation results on English benchmarks. Average represents the mean score across tasks, and 0-shot
indicates zero-shot results. For all columns, higher the better. Bold represents the best scores in that column while
underlined represents the second-best scores.

Nemotron-4-Mini-Hindi is the best performing519

model, outperforming Nanda as per average ac-520

curacy on log-likelihood evaluations. However, we521

observe that Nanda outperforms Nemotron-4-Mini-522

Hindi on generation evaluation in Hindi and En-523

glish (see Section 5.2) by a significant margin. This524

highlights the need for comprehensive and more525

holistic model evaluations to better understand its526

performance and capabilities.527

Results for English We also conducted an eval-528

uation for English, with the results shown in Ta-529

ble 3. Notably, Nanda achieves a slight improve-530

ment over existing English models. Additionally,531

we observe that, apart from the AryaBhatta series532

and Nemotron-4-Mini-Hindi model, other Hindi533

models, such as Gajendra-v0.1 and Airavata, ex-534

hibit significantly lower performance than estab-535

lished English models.536

5.2 Generation Evaluation537

In addition to downstream and safety evaluations,538

we also assess the models’ core capability for Hindi539

text generation. Consistent with prior studies (Peng540

et al., 2023; Vicuna, 2023), we adopt an LLM-as-a- 541

judge evaluation methodology using GPT-4o (Ope- 542

nAI, 2023b). The evaluation is based on the Vicuna- 543

Instructions-80 (Vicuna, 2023) dataset6, which was 544

manually translated into Hindi by professional 545

translators to ensure linguistic fidelity. 546

We generate model responses to the Hindi 547

prompts from the Vicuna-Instructions-80 dataset, 548

using a temperature of 0.3 and a repetition penalty 549

of 1.2. As baselines, we compare against open- 550

source multilingual models such as Llama-3-8B- 551

Instruct (Dubey et al., 2024) and Nemotron-4-Mini- 552

Hindi-4B-Instruct (Joshi et al., 2024) (Nemotron- 553

Hi-4B-Instruct). 554

GPT-4o serves as the evaluator, scoring each pair 555

of outputs on a scale from 0 to 10 based on quality, 556

relevance, and fluency in Hindi (see Appendix D 557

for our evaluation prompt). 558

Our generative evaluation results, summarized 559

in Figure 2, show that Nanda significantly outper- 560

forms all baselines in Hindi text generation. Built 561

upon the Llama-3 (8B) architecture, Nanda retains 562

6https://lmsys.org/blog/2023-03-30-vicuna/
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Model English Hindi

Airavata-7B 57.95 55.97
Gajendra-v0.1-7B 44.03 39.02
Aya-23-8B 49.48 63.79
AryaBhatta-GemmaOrca-8.5B 62.88 58.14
AryaBhatta-GemmaUltra-8.5B 61.55 50.47
Llama-3.1-8B-Instruct 90.99 87.01

Llama-3-Nanda-10B-Chat 85.97 87.96

Table 4: Evaluation results for Safety (% queries where
the generated response was safe). Bold represents the
best scores for that language

efficiency while introducing improvements that en-563

hance its alignment with the Hindi language, as564

illustrated in Figure 2:b. Furthermore, Nanda sur-565

passes Nemotron-Hi-4B-Instruct, demonstrating566

superior contextual understanding and generating567

more natural and fluent Hindi text in language-568

focused tasks.569

5.3 Safety Evaluation570

Following previous work (Wang et al., 2023a), we571

constructed a novel dataset for Hindi safety evalua-572

tion, aiming to identify biases and harmful content573

within the language model, specifically focused on574

Hindi and its cultural context. The evaluation re-575

sults from over 1056 risky questions are shown in576

Table 4. We can see that our model achieves similar577

safety performance to Llama-3.1-8B-Instruct and578

is much safer than the other models. Please refer579

to Appendix F for more details.580

6 Related Work581

Multilingual language models have evolved from582

English-centric pre-training (Devlin et al., 2019a;583

Radford et al., 2019; Raffel et al., 2023; Bider-584

man et al., 2023) to monolingual models in other585

languages (Faysse et al., 2024; Gutiérrez-Fandiño586

et al., 2022; Zeng et al., 2021; Sengupta et al., 2023;587

Phan et al., 2022; Koto et al., 2020; Ko et al., 2023)588

and multilingual training across a few or many589

languages (Nguyen et al., 2024; Mesham et al.,590

2021; Ogueji et al., 2021; Jude Ogundepo et al.,591

2022; Xue et al., 2021; Chung et al., 2023; Shli-592

azhko et al., 2023; Scao et al., 2022; Lin et al.,593

2022; Conneau et al., 2020; Khanuja et al., 2021;594

Oladipo et al., 2023; Alabi et al., 2022; Dabre et al.,595

2022). Models like mT5 (Xue et al., 2021) and596

umT5 (Chung et al., 2023), trained on the mC4 cor-597

pus, offer broad language coverage but primarily598

rely on unsupervised pre-training and require down-599

stream fine-tuning for specific tasks. Another line600

of work focuses on expanding language support 601

post hoc through methods such as continued fine- 602

tuning or vocabulary expansion (Yong et al., 2023; 603

Luukkonen et al., 2023; Lin et al., 2024b; Imani- 604

Googhari et al., 2023), though these approaches 605

often struggle to scale efficiently. While models 606

such as mBERT (Devlin et al., 2019b), XLM-R 607

(Conneau et al., 2020), and Bloom (Scao et al., 608

2022) include Hindi, the underrepresentation of 609

Hindi content limits their zero-shot performance 610

relative to monolingual models (Li et al., 2023). 611

In contrast to prior work that emphasizes either 612

pre-training or task-specific fine-tuning, our work 613

focuses on enabling instruction-following capabil- 614

ities in pre-trained multilingual models, allowing 615

them to generalize across tasks without the need for 616

downstream tuning. Appendix I presents a more 617

comprehensive discussion of related work. 618

7 Conclusion 619

We have introduced Nanda, a new state-of-the-art 620

Hindi-English bilingual instruction-tuned large lan- 621

guage model (LLM). It can perform a wide range 622

of generative and downstream language tasks in 623

both Hindi and English, ranging from common- 624

sense reasoning to natural language understand- 625

ing tasks such as sentiment analysis, irony detec- 626

tion, and hate speech detection. Its pre-trained 627

and fine-tuned capabilities outperform all known 628

open-source Hindi models of similar size and are 629

comparable to state-of-the-art open-source English 630

models that were trained on larger datasets. We 631

encourage researchers, hobbyists, and enterprise 632

developers alike to experiment with and develop 633

on top of our model, particularly those working on 634

multi-lingual and/or non-English applications. 635

Nanda represents an important evolution and ex- 636

pansion of the Hindi NLP and AI landscape. This 637

Hindi model, which was born in the UAE, repre- 638

sents an important strategic step for government 639

and commercial organizations towards the digital 640

revolution. By advancing Hindi language under- 641

standing and generation, empowering local play- 642

ers with sovereign and private deployment options, 643

and nurturing a vibrant ecosystem of applications 644

and innovation, this work supports a broader strate- 645

gic initiative of digital and AI transformation to 646

usher in an open, more linguistically inclusive, and 647

culturally-aware era. 648
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Limitations649

Nanda is trained on publicly available data, includ-650

ing curated Hindi data, and efforts have been made651

to reduce unintentional biases in the dataset. How-652

ever, some biases might still be present, as with all653

language models. Designed as an AI assistant for654

Hindi and English, its purpose is to enhance human655

productivity. It can respond to queries in these two656

languages but may not provide accurate responses657

in other languages.658

The current version of Nanda is not finetuned for659

generative tasks, such as summarization, transla-660

tion, and transliteration (STT). We plan to curate a661

suitabale STT dataset for finetuning and extensive662

testing in the future.663
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A Pretraining Data1226

Source Lang.
IIT-B English–Hindi Parallel hi/en
High-Performance Language Tech hi
Hindi Wikipedia dump hi
Curated Web / News / Books hi

Table 5: Sources and their associated languages

B Token Counts During Preprocessing1227

Token Count Count
Raw tokens 136.2B
After cleaning 133.3B
After deduplication 65B

Table 6: Token statistics at various preprocessing stages

C Ablations1228

We train three base Llama model variants on1229

the identical Hindi-English corpus by varying the1230

adaptation techniques between a) direct contin-1231

ual finetuning (dc-ft) and b) block expansion (bl-1232

exp). The results in Table 7 demonstrate that our1233

block-expanded Llama-3-8B model consistently1234

outperforms its direct continual fine-tuning (dc-1235

ft) counterpart across all Hindi benchmarks. It1236

achieves substantial gains of +3 to +8.5 percentage1237

points, with the largest improvement observed on1238

MMLU-hi, indicating enhanced reasoning capabili-1239

ties. While Llama-2-13B (dc-ft) attains the highest1240

score on HellaSwag-hi, our block-expanded Llama-1241

3-8B closely matches this performance despite hav-1242

ing significantly fewer parameters. Notably, on1243

ARC-hi and TruthfulQA-hi, the block-expanded1244

model not only outperforms both baseline variants1245

but also does so with greater efficiency. These re- 1246

sults validate the effectiveness of block expansion 1247

as a parameter-efficient adaptation strategy that 1248

offers consistent performance improvements over 1249

standard direct continual fine-tuning. 1250

D Generation Evaluation Prompt 1251

The prompt provided to GPT-4o for doing the gen- 1252

eration evaluation is as follows: 1253

You are a helpful and precise assistant 1254

for checking the quality of two Hindi 1255

language assistants. Suppose the user 1256

speaks only Hindi and Hinglish (Hindi 1257

words written in English script), please 1258

evaluate both answers with your justifica- 1259

tion, and provide an integer score rang- 1260

ing from 0 to 10 after your justifications. 1261

When evaluating the answers, you should 1262

consider the helpfulness, relevance, ac- 1263

curacy, and level of detail of the answers. 1264

Do not consider only length as the pa- 1265

rameter in level of details, the answer 1266

must also be relevant. The score for an- 1267

swer 1 should be wrapped by <score1> 1268

and </score1>, and the score for an- 1269

swer 2 should be wrapped by <score2> 1270

and </score2>. 1271

E Training Infrastructure 1272

CS-2 systems are purpose-built network-attached 1273

AI accelerators. Each CS-2 features 40 GB of 1274

SRAM and a peak of 62.5 AI PetaFLOPs, pro- 1275

viding a total of 4 ExaFLOPs of AI compute across 1276

64 systems in the CG-2 supercomputer. Utilizing 1277

the weight streaming mode of the Cerebras soft- 1278

ware stack, the Condor Galaxy supercomputers can 1279

flexibly schedule multiple jobs based on hardware 1280

resource requirements and priority. The number 1281

of CS-2s allocated to a job can be dynamically ad- 1282

justed during training, with performance scaling 1283

linearly up to 64 CS-2s per job. This scalability 1284

is facilitated by the Cerebras software stack’s use 1285

of pure data parallelism to distribute the workload 1286

across multiple CS-2s. Jobs are managed by a pri- 1287

ority queue system, ensuring efficient allocation of 1288

computational resources. 1289

MemoryX is a large-capacity off-wafer memory 1290

service used to store all model weights, gradients, 1291

and optimizer states. SwarmX is a broadcast/re- 1292

duce fabric that connects the memory service Mem- 1293

oryX to each of the CS-2 systems in a wafer-scale 1294
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Model Variant MMLU-hi HellaSwag-hi ARC-hi TruthfulQA-hi
0-shot 0-shot 0-shot 0-shot

Llama-3-8B (dc-ft) 29.9 43.0 29.6 45.0
Llama-2-13B (dc-ft) 31.8 49.7 33.9 45.4

Llama-3-8B (bl-exp) 38.4 49.1 34.7 48.1

Table 7: Comparison between direct continual finetuning (dc-ft) and block expansion (bl-exp) with Llama base
models.

(a) Nanda vs Llama-3-8B-Instruct. (b) Nanda vs Nemotron-Hi-4B-Instruct.
Figure 2: Results for Nanda compared to baselines on Vicuna-80 questions, evaluated using GPT-4o as a judge

cluster. Swarm-X coordinates the broadcast of the1295

model layer weights, giving each CS-2 a local copy,1296

and it receives and aggregates (by addition) the in-1297

dependent weight gradients coming from the CS-21298

systems during backpropagation. At the end of1299

each iteration, the aggregated gradients are sent to1300

MemoryX for weight update.1301

F Safety1302

To ensure high-quality data, a team of five expert1303

annotators initially crafted “seed prompts” for di-1304

rect attack alignment based on previous work by1305

(Wang et al., 2023a), resulting in approximately1306

1,200 annotated examples focused both on gen-1307

eral and Hindi-specific scenarios. Building on this1308

foundation, our expert team guided a 20-member1309

outsourced annotation team, leveraging LLMs, to1310

generate an additional 50K attack prompts, ensur-1311

ing diversity, linguistic relevance, and thorough1312

coverage for Hindi.1313

We enrich the set of direct attack prompts in1314

SFT data with a collection of adversarial prompt1315

attack methods. Following (Lin et al., 2024a), we1316

adopt eight adversarial prompt attack methods to1317

construct the SFT data. These methods target the1318

following abilities of LLMs: in-context learning,1319

auto-regressiveness, instruction following, and do-1320

main transfer, resulting in 100K attack prompts.1321

To further improve the robustness and general-1322

izability of our model against adversarial prompt1323

attacks, we also adopt LLM-based methods for di-1324

versifying the attack prompts. This can also help1325

prevent over-fitting on the attack template used by1326

the works that proposed these attacks.1327

Moreover, in the over-refusal prompts task, an- 1328

notators generate 50K questions that closely re- 1329

semble potentially unsafe adversarial prompts but 1330

are deliberately crafted to be entirely safe. The 1331

primary motivation for this task is to address the 1332

overrefusal behavior commonly seen in LLMs (Cui 1333

et al., 2024), where models refuse to answer benign 1334

questions due to excessive caution. 1335

By including these prompts, we aim to train the 1336

model to better distinguish between genuinely un- 1337

safe queries and safe ones, thereby improving the 1338

model’s responsiveness while maintaining safety. 1339

Taxonomy Development The development of a 1340

detailed taxonomy was the first step in construct- 1341

ing this dataset. This taxonomy categorizes risk 1342

areas specific to Hindi, including regional bias, eco- 1343

nomic situation bias, and national/group character 1344

bias. The taxonomy defines specific harms, such 1345

as instances of prejudice against particular states in 1346

India or negative stereotypes about national char- 1347

acteristics. Example questions were curated to il- 1348

lustrate these biases, helping ensure the evaluation 1349

captures a broad range of potential issues. 1350

Data Collection and Translation The dataset in- 1351

corporates content sourced in English (Wang et al., 1352

2023a), initially focused on safety issues like dis- 1353

crimination, toxicity, and adult content, which were 1354

then translated into Hindi. The translation process 1355

was managed using both automated tools (such 1356

as Google Translate and GPT-4) and manual val- 1357

idation by native speakers to ensure the accuracy 1358

and cultural relevance of the translations. Each 1359

translated entry underwent a thorough validation 1360
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process to mitigate mistranslations or inadvertent1361

cultural insensitivity.1362

Annotation and Validation To ensure the qual-1363

ity of the dataset, we collaborated with outsourced1364

annotators who were provided with guidelines to1365

annotate harmful content. The annotations focus1366

on verifying whether translated content preserved1367

the intended meaning and accurately represented1368

harmful or biased elements in the Hindi context.1369

Annotations were then cross-checked to guaran-1370

tee consistency and reliability in labelling harmful1371

examples.1372

Safety Evaluation Protocol We employ the1373

LLM-as-a-judge framework (Li et al., 2024), using1374

GPT-4o as the judge LLM, to evaluate the safety1375

of model responses. Table 8 presents the distribu-1376

tion of safety evaluation questions across various1377

risk areas (Wang et al., 2024), where the answer to1378

each question is one of the following: Yes, No, or1379

Unable to understand.1380

Given a test query q, let rm,q denote the response1381

of model m to q, and let a represent the risk area1382

associated with q. A response rm,q is considered1383

safe if the judge LLM assigns acceptable answers1384

(Yes or No) to all evaluation questions under risk1385

area a.1386

Risk Area #Questions

Misinformation Harms 2
Human-Chatbot Interaction Harms 3
Malicious Uses 4
Discrimination, Exclusion, Toxicity, Hateful, Offensive 2
Information Hazards 3
Region-specific Sensitivity 5

Table 8: Distribution of Safety Evaluation Questions

Additional Safety Evaluation As an additional1387

layer of safety assessment, we perform a targeted1388

safety evaluation using 212 hand-crafted prompts,1389

written by native Hindi speakers to test Nanda’s1390

behavior in response to potentially harmful, cul-1391

turally sensitive, or adversarial inputs, particularly1392

focusing on edge cases that are often missed by1393

automated benchmarks. We design a set of do-not-1394

answer questions (Wang et al., 2023b) to test if1395

the model refuses harmful requests appropriately.1396

We use GPT-4o as the safety judge. We score each1397

model response on a scale of 1 to 5, where 1 in-1398

dicates an unsafe response and 5 indicates a very1399

safe response. Responses receiving a score of 41400

or higher were considered acceptable. A good re-1401

sponse should:1402

• Refuse to provide harmful content1403

• Be respectful and not preachy 1404

• Optionally may offer constructive alternatives 1405

• Be clear in its refusal 1406

Model Safety Pass Rate (%)

Airavata-7B 27.0
Gajendra-v0.1-7B 24.6
Aya-23-8B 37.7
AryaBhatta-GemmaOrca-8.5B 20.5
AryaBhatta-GemmaUltra-8.5B 30.3
Llama-3-8B-Instruct 77.0

Llama-3-Nanda-10B-Chat 89.3

Table 9: Targetted Safety Assessment

The results reveal that Nanda achieves the high- 1407

est safety pass rate at 89.3%, significantly outper- 1408

forming all other models. Llama-3-8B-Instruct fol- 1409

lows with a strong 77.0% pass rate, while the re- 1410

maining models lag behind, with scores ranging 1411

from 20.5% to 37.7%. In particular, AryaBhatta- 1412

GemmaOrca-8.5B (20.5%), Airavata-7B (27%), 1413

Gajendra-v0.1-7B (24.6%), and demonstrate rel- 1414

atively poor safety adherence. These findings high- 1415

light the superior safety alignment of Nanda, under- 1416

scoring the value of fine-grained safety evaluations 1417

using culturally relevant, language-specific adver- 1418

sarial prompts beyond automated benchmarks. 1419

G Model Card 1420

Table 10 shows the model card (Mitchell et al., 1421

2019) with details about Nanda. 1422

H Release Notes 1423

We release Nanda under Meta’s Llama-3 license, 1424

and users must adhere to the terms and condi- 1425

tions of the license,7 Meta’s acceptable use policy,8 1426

Meta’s privacy policy,9 and the applicable poli- 1427

cies, laws, and regulations governing the specific 1428

use-case and region. We encourage researchers, 1429

hobbyists, and enterprise developers alike to exper- 1430

iment with and to develop on top of the model – 1431

particularly those working on multi-lingual and/or 1432

non-English applications. 1433

H.1 Intended Use 1434

This model is one of the first of its kind in the Hindi 1435

LLM ecosystem and has shown to be the best in 1436

the world among open Hindi or multilingual LLMs 1437

7https://www.llama.com/llama3/license/
8https://www.llama.com/llama3/use-policy/
9https://www.facebook.com/privacy/policy/
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in terms of Hindi NLP capabilities. Some potential1438

downstream uses are listed below:1439

• Research: This model can be used by re-1440

searchers and developers to advance the Hindi1441

LLM/NLP field.1442

• Commercial Use: It can be used as a founda-1443

tional model to further fine-tune for specific1444

use cases. Some potential use cases for busi-1445

nesses include (1) chat assistants, (2) down-1446

stream tasks such as NLU/NLG, (3) customer1447

service, and (4) process automation.1448

We believe that a number of audiences will ben-1449

efit from our model:1450

• Academics: those researching Hindi natural1451

language processing.1452

• Businesses: companies targeting Hindi-1453

speaking audiences.1454

• Developers: those integrating Hindi language1455

capabilities in apps.1456

H.2 Out-of-Scope Use1457

While Nanda is a powerful bilingual model catering1458

to Hindi and English, it is essential to understand1459

its limitations and the potential for its misuse. The1460

following are some examples from the long list of1461

scenarios where the model should not be used:1462

• Malicious Use: The model should not be used1463

for generating harmful, misleading, or inap-1464

propriate content. This includes but is not lim-1465

ited to (i) generating or promoting hate speech,1466

violence, or discrimination, (ii) spreading mis-1467

information or fake news, (iii) engaging in il-1468

legal activities or promoting them, (i) (iv) han-1469

dling sensitive information: the model should1470

not be used to handle or to generate personal,1471

confidential, or sensitive information.1472

• Generalization Across All Languages:1473

Nanda is bilingual and optimized only for1474

Hindi and English. It should not be assumed1475

to have equal proficiency in other languages1476

or dialects.1477

• High-Stakes Decisions: The model should1478

not be used for making high-stakes decisions1479

without human oversight. This includes med-1480

ical, legal, financial, or safety-critical deci-1481

sions, among others.1482

H.3 Biases, Risks, and Limitations 1483

The model is trained on a mix of publicly available 1484

and proprietary data, which in part was curated 1485

by our preprocessing pipeline. We used different 1486

techniques to reduce the bias that is inadvertently 1487

present in the dataset. While efforts were made to 1488

minimize biases, it is still possible that our model, 1489

like all LLM models, may exhibit some biases. 1490

The model is trained as an AI assistant for Hindi 1491

and English speakers, and thus, it should be used 1492

to help humans boost their productivity. In this 1493

context, it is limited to producing responses for 1494

queries in these two languages, and it might not 1495

produce appropriate responses for queries in other 1496

languages. 1497

Potential misuses include generating harmful 1498

content, spreading misinformation, or handling sen- 1499

sitive information. Users are urged to use the model 1500

responsibly and with discretion. 1501

I Additional Related Work 1502

Below, we discuss some more previous work on the 1503

following relevant topics: LLMs in general, multi- 1504

lingual models, instruction-tuning, and evaluation 1505

of LLMs. 1506

Multilingual Models Pre-training a language 1507

model typically involves using unsupervised learn- 1508

ing with large datasets. While much of this work 1509

has been centered on English (Devlin et al., 2019a; 1510

Radford et al., 2019; Raffel et al., 2023; Biderman 1511

et al., 2023), significant research has also been ded- 1512

icated to mono-lingual pre-training in languages 1513

other than English (Faysse et al., 2024; Gutiérrez- 1514

Fandiño et al., 2022; Zeng et al., 2021; Sengupta 1515

et al., 2023; Phan et al., 2022; Koto et al., 2020; Ko 1516

et al., 2023), as well as training models on a small 1517

number of languages (Nguyen et al., 2024; Mesham 1518

et al., 2021; Ogueji et al., 2021; Jude Ogundepo 1519

et al., 2022). 1520

There have also been massively multilingual pre- 1521

training efforts (Xue et al., 2021; Chung et al., 1522

2023; Shliazhko et al., 2023; Scao et al., 2022; Lin 1523

et al., 2022; Devlin et al., 2019a; Conneau et al., 1524

2020; Khanuja et al., 2021; Oladipo et al., 2023; 1525

Alabi et al., 2022; Dabre et al., 2022). Models 1526

based on the mC4 corpus (Xue et al., 2021), which 1527

cover approximately 100 languages, represent the 1528

broadest range of coverage in pre-trained models 1529

available today. Notable examples include mT5 1530

(Xue et al., 2021) and umT5 (Chung et al., 2023), 1531
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which are the largest publicly accessible multilin-1532

gual pre-trained models.1533

However, a key limitation of all these approaches1534

is that they focus on pre-training, requiring users1535

to perform downstream task fine-tuning for spe-1536

cific applications. In contrast, our work empha-1537

sizes equipping pre-trained models with instruction-1538

following capabilities.1539

Another important research direction focuses on1540

adapting pre-trained models to accommodate new1541

languages not included during the initial training1542

phase. These studies explore methods such as con-1543

tinued fine-tuning and embedding space adaptation.1544

For instance, previous work (Yong et al., 2023;1545

Luukkonen et al., 2023) has expanded language1546

coverage by gradually adding languages through1547

additional pre-training on monolingual datasets, a1548

method that does not scale efficiently. In a concur-1549

rent effort, (Lin et al., 2024b) extends language cov-1550

erage significantly by using vocabulary expansion1551

and further pre-training Llama-2 with Glot500-c1552

(ImaniGooghari et al., 2023).1553

Hindi has also been integrated into these multi-1554

lingual models, including earlier models such as1555

mBERT (Devlin et al., 2019b) and XLM-RoBERTa1556

(Conneau et al., 2020), as well as more recent large1557

language models such as Bloom (Scao et al., 2022).1558

However, due to the Hindi content being dwarfed1559

by other languages, these models tend to perform1560

substantially worse than dedicated monolingual1561

models and often exhibit limited generalization1562

abilities in zero-shot settings (Li et al., 2023).1563

Evaluating Large Language Models Large lan-1564

guage models are highly capable of generating co-1565

herent and fluent text but often struggle with factual1566

accuracy and reasoning abilities. To assess factual1567

accuracy, models like GPT-4 (OpenAI, 2023b) and1568

Llama (Touvron et al., 2023) use school exam-style1569

questions (Hendrycks et al., 2021) to gauge how1570

faithfully they can provide knowledge. Common-1571

sense reasoning is also critical and is tested through1572

datasets such as HellaSwag (Zellers et al., 2019),1573

WinoGrande (Sakaguchi et al., 2020), ARC easy1574

and challenge (Clark et al., 2018b), and Open-1575

BookQA (Mihaylov et al., 2018). For evaluating1576

reasoning through programming, benchmarks like1577

HumanEval (Chen et al., 2021) and MBPP (Austin1578

et al., 2021) are used.1579

In the domain of Hindi NLP, (Kakwani et al.,1580

2020) introduced IndicGLUE, the first Indic NLU1581

benchmark for 11 languages, while (Doddapaneni1582

et al., 2023) expanded upon this by releasing In- 1583

dicXTREME, covering all 22 Indic languages. On 1584

the natural language generation (NLG) side, (Ku- 1585

mar et al., 2022) developed the IndicNLGsuite, 1586

which supports five tasks across 11 languages. Ad- 1587

ditionally, (Gala et al., 2023) presented IN22, a 1588

machine translation benchmark for evaluating both 1589

conversational and general translation across all 1590

22 languages. More recently, (Singh et al., 2024) 1591

proposed IndicGenBench, a benchmark covering 1592

diverse tasks such as cross-lingual summarization, 1593

machine translation, and cross-lingual question an- 1594

swering. (Watts et al., 2024) evaluated models 1595

using LLMs and humans and observed that they 1596

agree fairly well on most Indic languages. 1597
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Model Details
Model Developers To be released upon acceptance.
Language(s) (NLP) Hindi and English
Variations Instruction-tuned model – 10B parameters.
Input Text-only data.
Output Model generates text.
Model Architecture Llama-3-8B-Base extended by 25% using the Llama-Pro approach.
Model Dates Nanda was trained between June 2024 and September 2024
Status This static model has been trained using an offline dataset. As we enhance

the model safety based on community feedback, upcoming iterations of
fine-tuned models will be made available.

License Llama 3
Intended Use

Intended Use Cases The Nanda 10B model is released with the aim to stimulate research and
development in the Hindi NLP community. It encourages researchers,
hobbyists, and businesses, especially those focusing on multi-lingual
or non-English applications, to explore and to build upon the model.
Feedback and collaboration opportunities are welcomed. The model is a
pioneering addition to the Hindi LLM ecosystem and has demonstrated
exceptional Hindi NLP capabilities compared to other open Hindi or
multilingual LLMs globally. Its applications span research advancements
in Hindi NLP, and the use of foundational models for fine-tuning.

Out-of-Scope Uses The Nanda 10B model is a powerful bilingual Hindi and English language
model, but it is important to recognize its limitations and the potential
for misuse. Using the model in ways that contravene laws or regulations
is strictly prohibited. This encompasses scenarios such as generating or
endorsing hate speech, disseminating false information, engaging in illegal
activities, managing sensitive data, attempting language generalization
beyond Hindi and English, and making critical decisions with high stakes.
Careful and responsible use of the model is advised to ensure its ethical
and lawful application.

Hardware and Software
Training Factors Training was performed on the Condor Galaxy 2 (CG-2) AI supercomputer

from Cerebras.
Training Data

Overview The training data consists of 65B tokens of Hindi pre-training data along
with 21.5M English and 14.5M of Hindi instruction-following tokens.

Evaluation Results
See downstream, general, and safety evaluation in (Section 5)

Biases, Risks, and Limitations
The model is trained on publicly available data, including curated Hindi data, and efforts
have been made to reduce unintentional biases in the dataset. However, some biases
might still be present, as with all language models. Designed as an AI assistant for
Hindi and English, its purpose is to enhance human productivity. It can respond to
queries in these two languages but may not provide accurate responses in other languages.
Caution is advised to prevent misuse, such as generating harmful content, spreading false
information, or managing sensitive data. Responsible and judicious use of the model is
strongly encouraged.

Table 10: Model card for Llama-3-Nanda-10B-Chat.
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