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ABSTRACT

Current semantic segmentation models are very data-hungry and require massive
costly pixel-wise human annotations. Generative data augmentation, which scales
the train set using generative models, provides a potential remedy. However, ex-
isting text-centric methods struggle to generate complex in-distribution data due
to the limitations of text descriptions. In this paper, we propose MatchMask, a
novel mask-centric generative data augmentation approach tailored for label-scarce
semantic segmentation. It leverages a few labeled semantic masks to generate
diverse, realistic, and well-aligned image-mask training pairs for semantic segmen-
tation models. Specifically, to adapt existing text-to-image models for semantic
image synthesis, we first propose a Gradient Probe Method to investigate the role
of each layer in the diffusion model. On this basis, we introduce a Layer-Timestep
Adaptive Adapter (LT-Adapter) comprising layer-adaptive cross-attention fusion
and time-adaptive LoRA scaling to enable efficient adaption for the critical layers.
Meantime, we design a robust relative filtering principle to suppress incorrectly syn-
thesized regions. Moreover, the proposed approach is extended to MatchMask++
in the semi-supervised setting to take advantage of additional unlabeled data. Ex-
perimental results on VOC, COCO and ADE20K demonstrate that MatchMask
remarkably enhances the performance of segmentation models, surpassing prior
data augmentation techniques in various benchmarks, e.g, 67.5%→74.3% mIoU
on VOC. Our code will be made publicly available.

1 INTRODUCTION

Semantic segmentation aims to assign pixel-level dense semantic labels for an image. It has been
extensively investigated and inspired many downstream applications like autonomous driving and
medical imaging. Despite the rapid progress of deep neural networks, training a semantic segmenta-
tion model usually requires a large number of images with pixel-level annotations. The pixel-wise
manual labeling is costly, laborious, and even infeasible, precluding its deployment in some scenes.
To avert the labor-intensive procedure, data augmentation Shorten & Khoshgoftaar (2019); Shorten
et al. (2021) is an effective manner to expand the diversity of existing data. However, standard
image-centric transforms (e.g, flip, crop) He et al. (2016); Yun et al. (2019); DeVries (2017) offer
limited variation, yielding no substantive novel content.

With the advent of generative models Rombach et al. (2022); Goodfellow et al. (2014), Generative
Data Augmentation (GDA) has emerged as a promising alternative. It scales the train set by producing
synthetic samples with labels based on advanced generative models. Compared to traditional image-
centric data augmentation, GDA offers a more extensive variety of data. Recent advancements in
text-to-image diffusion models present phenomenal power in generating highly realistic images
from textual descriptions. On this basis, DiffuMask Wu et al. (2023b) uses text-guided cross-
attention information to localize class-specific regions and finally obtain a pixel-wise mask. Dataset
Diffusion Nguyen et al. (2024) carefully designs the text prompts, cross-attention, and self-attention
of SD to produce images paired with their corresponding segmentation masks. DatasetDM Wu
et al. (2023a) extends text-guided image synthesis to perception data generation by leveraging the
rich latent code of the diffusion model and a unified perception decoder. One key characteristic
of these state-of-the-art methods is text-centric, which uses text as the sole input condition and
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Figure 1: Comparisons between image-, text-, mask-centric data augmentation. Mask-centric
paradigm could generate more diverse data than image-centric transforms, and more informative,
realistic, well-aligned image-mask pairs than text-centric perspective.

suffers from several drawbacks: 1) The expressiveness of textual descriptions is limited, struggling
to precisely convey intricate scenarios or layouts (e.g, scenes in ADE20K). 2) The choice of text
prompts is subjective and heuristic (e.g, ”a photo of a [class name] [background description]” used
in DiffuMask), and may not align with the distribution of downstream datasets, producing inferior
data for model training. 3) It is challenging to generate images that accurately match our mental
imagery via text prompts alone (e.g, missing or unexpected objects, object relation errors). Moreover,
such methods often produce misaligned image-mask pairs (e.g, table class in Fig. 1 and more in
Fig. 11), resulting in incorrect supervision for model training. Unlike classification tasks typically
involving one class per image, semantic segmentation handles more complex scenes with multiple
classes and spatial relationships, demanding higher standards for generated data that text-centric
approaches struggle to meet.

To this end, we present a novel paradigm: mask-centric generative data augmentation for semantic
segmentation via only a few densely labeled samples. We can utilize existing masks as conditions to
generate numerous images with diverse characteristics. This mask-centric perspective can produce
informative and complex images that better align with the distribution of the target data, making it a
more effective data augmentation technique than text-centric methods.

Despite the potential of the mask-centric augmentation pipeline, another underestimated issue is the
training of mask-to-image synthesis models with only a small number of labeled samples. Existing
state-of-the-art semantic image synthesis models rely on abundant densely annotated image-mask data
to align semantic layout and generated image, which contradicts the original goal of generative data
augmentation. For example, FreestyleNet Xue et al. (2023) fine-tunes the entire U-Net parameters
in Diffusion models, which results in heavy overfitting in the few-shot setting (seeing Fig. 2). One
potential solution is to use PEFT (Parameter-Efficient Fine-tuning) techniques such as LoRA Hu et al.
(2021). However, despite its popularity, the optimal placement of LoRA layers remains undetermined.
Most works apply LoRA empirically to specific layers (e.g, encoder blocks Zhang & Agrawala
(2023)), which is heuristics and overlooks task-specific differences, leading to sub-optimal results
for specific tasks. To customize an effective fine-tuning approach for the semantic image synthesis
task, we investigate the contribution of each model layer by proposing the Gradient Probing Method,
which analyzes layer-specific gradients during training to evaluate their impact. Our study provides
a couple of interesting observations: 1) Only a minority of parameters are highly correlated with
spatial control. These critical parameters are dataset-agnostic and consistent across different datasets
(shown in Fig. 3). 2) The same attention layer in different blocks exhibits varying effects. In general,
the initial and final few blocks in U-Net play a more prominent role (seeing Fig. 5). It makes sense
because of the high feature resolution of these blocks, which is advantageous for spatial control.

Based on these observations, we propose a simple yet effective Layer-Timestep Adaptive Adap-
tater (LT-Adapter) for efficient semantic image synthesis adaption using only a tiny densely labeled
data set. We design a LoRA-style adapter with 0.7M parameters for the founded critical layers while
freezing the original models. In addition, to capture the varied impact of different layers and timesteps
in diffusion models, we introduce layer-adaptive cross-attention fusion and timestep-adaptive LoRA
scaling. We also present a relative filtering startegy to remove inaccurate regions in generated images,
preventing negative effects on segmentation model training.
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(a) (b)
Training Steps
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Figure 2: Quantitative and qualitative results of generated images on ADE20K using 200 samples.
(a): The trend of FID during training. (b): Visualizations of sampled images during training. Existing
semantic image synthesis works struggle to work in few sample scenarios, leading to overfitting and
loss of pre-trained priors. Our LT-Adapter can learn spatial information well while retain diversity.

Figure 3: Visualizations of important layers for semantic image synthesis task on ADE and VOC. The
x-axis represents the index of each layer in pre-trained models. The y-axis represents checkpoints at
different epochs.

Our study mainly focuses on two label-scarce cases: (1) the data-limited scenario: with only few
labeled image-mask pairs, addressed by MatchMask; (2) the semi-supervised scenario: consist-
ing of a limited amount of labeled data in conjunction with additional unlabeled data, solved by
MatchMask++. We employ the proposed data augmentation method on a wide range of semantic
segmentation benchmarks. It significantly boosts the performance of segmentation models in label-
scarce scenarios, achieving over a 4.6% mIoU improvement in the data-limited setting and 6.8% in the
semi-supervised setting, surpassing image-centric transform and text-centric methods. Furthermore,
MatchMask can be flexibly integrated with existing semi-supervised semantic segmentation methods
to enhance their performance (e.g, improve Unimatch from 78.3% to 79.6% mIoU on VOC).

Our contributions are summarized as follows:

• New Roadmap: We propose MathcMask, a novel mask-centric generative data augmenta-
tion for label-scarce semantic segmentation, which can produce more superior training data
compared to prior image-centric and text-centric techniques.

• New Insight: We observe that only a few fixed layers are critical for the semantic image
synthesis task and the varying effect in different blocks by the proposed Gradient Probe
Method, which provides valuable insights for future PEFT research.

• New Method: We customize an effective fine-tuning approach named LT-Adapter for the
semantic image synthesis task, enabling it to work in few-shot settings.

• Stronger practicality and performance: Experimental results on various benchmarks
demonstrate the effectiveness and superiority of our data augmentation approach.
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2 RELATED WORKS

2.1 GENERATIVE DATA AUGMENTATION

Data augmentation is a universal method to improve the generalization ability of deep neural networks
in the case of insufficient training data. Classical data augmentation techniques are performed at the
image level, such as geometric transformations He et al. (2016), color space transformations Jurio
et al. (2010), and mixing images Hendrycks et al. (2019); Ghiasi et al. (2021). Despite its simplicity,
the augmented data lacks diversity due to the reliance on limited source images. With the advance
of deep generative models Ho et al. (2020); Rombach et al. (2022), Generative Data Augmentation
(GDA) has emerged as a promising alternative. It can produce diverse synthetic samples with labels
based on the powerful generative models, which have been widely explored in the classification
task Azizi et al. (2023); Kingma et al. (2014); Trabucco et al. (2023); You et al. (2024); He et al.
(2022). In the semantic segmentation field, pioneering GAN-based works like DatasetGAN Li et al.
(2022a) and BigDatasetGAN Li et al. (2022a) utilize the feature space of pre-trained GANs and
design a shallow decoder for generating pixel-level labels for segmentation tasks. However, the
quality of the synthesized data is often dissatisfactory due to the limited representation ability of
early GAN models. Recent works Nguyen et al. (2024); Wu et al. (2023b) leverage text-to-image
models to generate more diverse images paired with masks. However, these works mainly follow the
text-centric paradigm, making them challenging to capture complex scenes in semantic segmentation.
Additionally, the synthetic data tend to be out-domain and poorly aligned. FreeMask Yang et al.
(2024) enhances segmentation via generating mask-based data but is designed for the fully-supervised
setting. In this paper, we shed new light on a novel mask-centric GDA paradigm to generate more
favorable data for semantic segmentation with only a few densely labeled samples.

2.2 LABEL-SCARCE SEMANTIC SEGMENTATION

Semantic segmentation requires very costly pixel-wise human annotations and how to achieve it using
scarce annotated samples emerges as a popular topic. Semi-supervised semantic segmentation (SSSS)
has been proposed to alleviate the burden of time-consuming manual labeling leveraging limited
labeled data along with larger amounts of unlabeled data, including self-training Zou et al. (2020);
Yang et al. (2022) and consistency regularization Yang et al. (2023); Wang et al. (2024). Self-training
generates pseudo-labels for unlabeled images and leverage them for iterative re-training. Consistency
regularization makes predictions invariant to perturbations under different data augmentations. In this
paper, we attempt to expand the limited train set by GDA. Apart from SSSS setting, we also consider
the more challenging data-limited scene, where no unlabeled data are available.

2.3 SEMANTIC IMAGE SYNTHESIS

Semantic image synthesis aims to generate realistic images from given semantic layouts or segmenta-
tion maps, including GANs-based Isola et al. (2017); Wang et al. (2018); Park et al. (2019); Liu et al.
(2019); Sushko et al. (2020) methods and diffusion-based methods Wang et al. (2022b;a); Nichol et al.
(2021); Zhang & Agrawala (2023); Mou et al. (2023); Xue et al. (2023). GAN-based methods tackled
this problem under a conditional GAN framework by exploring different conditioning mechanisms in
GANs to do stochastic generations that correspond to the input label map. These methods often face
challenges in generating diverse and fully controlled images, primarily due to the limitations in the
training data and the inherent instability in GAN training processes. Diffusion-based methods mainly
rectified specific blocks in the U-Net Ronneberger et al. (2015) architecture to enhance semantic
consistency. However, most existing works require a large amount of image-mask pairs for training,
while the applicability in scenarios with few training samples are barely explored.

Several works have investigated the utilization of pre-trained models to achieve layout-controllable
text-to-image synthesis. Some training-free approaches Parmar et al. (2023); Chefer et al. (2023);
Feng et al. (2022); Hertz et al. (2022); Couairon et al. (2023) modify cross-attention maps to control
the condition the denoising process but shows inferior performance. Other training-based methods
adopt transfer learning to text-to-image diffusion models via either fine-tuning all the parameters Xue
et al. (2023); Lv et al. (2024) or introducing and optimizing partial parameters Mou et al. (2023) but
heavily rely on abundant annotated data. In this paper, we explore the importance of each layer in
pre-trained models and propose a more efficient manner for adaption.
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Figure 4: Overview of our framework. The proposed MatchMask includes (1) training LT-Adapter
on few labeled samples; (2) mask-to-image data generation; (3) training segmentation model with
augmented data. We further present MatchMask++ for the semi-supervised setting to utilize additional
unlabeled data.

3 METHOD

In this section, we first briefly review the architecture of typical Stable Diffusion Rombach et al.
(2022)). Then, we introduce the proposed Gradient Probe Method, LT-Adapter and Relative Filtering
Strategy. Finally, we present the pipeline of MatchMask and MatchMask++.

3.1 ARCHITECTURE OF DIFFUSION MODELS

The typical Stable Diffusion model consists of an auto-encoder Kingma & Welling (2013) and
a conditional latent diffusion model (LDM) Rombach et al. (2022). The auto-encoder enhances
efficiency by mapping the pixel space into latent space. The diffusion network is designed in U-Net
style, comprising input blocks, middle blocks, output blocks, and other layers. To realize text-to-
image generations, the encoded text feature is integrated into the intermediate layers of U-Net via
the cross-attention layer. Given text features c and latent image features f , the cross-attention block
first computes Q = Wqf , K = Wkc, V = Wvc through three projection layers to map them into
unified dimension d, and then calculate a weighted sum over value features as:

Attention(Q,K,V) = Softmax
(
QKT

√
d

)
V (1)

To inject semantics into the layout and achieve semantic image synthesis, FreestyleNet rectifies the
attention maps of each text embedding using the corresponding segmentation mask. The processed
layout segmentation map M ∈ RH×W×C , which represents the binary mask for each concept, serves
as the attention mask for cross attention to force each concept in the text prompts focus on the
corresponding regions. For ease of reading, we denote QKT

√
d

as A ∈ R(H×W )×C , and the rectified
cross-attention then turns into:

Attention(Q,K,V) = Softmax

(
Â√
d

)
V,where Âk

i,j =

{
Ak

i,j, Mk
i,j = 1

-inf, Mk
i,j = 0

(2)

3.2 GRADIENT PROBE METHOD

Despite the impressive results of previous semantic image synthesis models, they heavily rely on
massive annotated data and struggle to work with limited data due to expensive fine-tuning, e.g,
FreestyleNet fine-tunes the entire U-Net model. Research on model pruning Liu et al. (2018); He
et al. (2018); Luo et al. (2017) proves that not all parameters are necessary for the downstream task.
Here, we propose the Gradient Probe Method to pinpoint the critical parameters for semantic image
synthesis in pre-trained diffusion models, which use a few samples to fine-tune Stable Diffusion
following FreestyleNet in the early training stage as pre-trained models align layout information
before overfitting.
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Figure 5: Important scores of to k, to out in
cross attention layer at different U-Net blocks.

Figure 6: Visualizations of important layers.

Gradient descent Amari (1993) is a fundamental optimization algorithm used to minimize a loss
function L(θ) with respect to the model parameters θ. Parameters with consistently high gradient
magnitudes are likely to be more influential for the task. The basic update rule for gradient descent is:

θ ← θ − η∇θL(θ) (3)

where η is the learning rate,∇θL(θ) is the gradient of the loss function with respect to the parameters.

In the context of a diffusion model, let θ = {θ1, θ2, . . . , θL} represent the model parameters, where
θi corresponds to the parameters of the i-th layer. During training, considering the instability of the
gradient at every step, we calculate the epoch-level gradient of each parameter set θi and compute the
importance score Si for each layer:

Si =
∥θi − θ′i∥
∥θ′i∥

(4)

where θ′i denotes the parameters of the i-th layer in pre-trained models. Layers with higher scores Si

are considered more critical for the semantic image synthesis task.

We provide the importance score of each layer in Fig. 3, where we can observe that only a few
parameters are salient. These salient parameters are consistent across different datasets, which
validates that not all parameters are necessary for spatial alignment. The visualization in Fig. 6
indicates that layers related to time and cross attention showcase remarkable priority. Besides, we
investigate the cross attention layer (e.g, to v, to out) in different blocks (from the first input block to
the last output block). Results in Fig. 5 demonstrate the varying effects of these layers. The initial
and final few blocks (with high resolution) in U-Net play a more prominent role than the middle
blocks (with low resolution). It makes sense because high-resolution feature maps typically contain
sufficient spatial information and are more suitable for rectified cross-attention.

3.3 LAYER-TIMESTEP ADAPTIVE ADAPTATER

Based on the identified vital layers, we can perform a more focused model adaptation to enhance
efficiency and effectiveness. Rather than directly fine-tuning selected layers, we leverage Low-Rank
Adaptation (LoRA) Hu et al. (2021) to adapt these layers dynamically because: 1) LoRA is more
parameter-efficient than fine-tuning partial layers (e.g, only 0.7M trainable parameters in our setting);
2) LoRA acts as a form of regularization, preventing overfitting and promoting generalization,
particularly in few-shot scenarios. Considering the varied impact of different layers and timesteps in
diffusion models, we propose a Layer-Timestep Adaptive Adaptater, as shown in Fig. 7.

Layer-adaptive cross-attention fusion. Fig. 5 indicate that the same layer parameters in different
blocks showcase different impacts on spatial control. Therefore, we introduce a layer-adaptive fusion
strategy for cross-attention. Specifically, the input of each cross-attention block is fed into a linear
layer to predict an adaptive fusion parameter α. Then, the original attention Attnori (calculated by
Eq. (1)) and rectified attention Attnrec (calculated by Eq. (2)) are merged as:

Attention = αAttnori + (1− α)Attnrec (5)

6
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Figure 7: Comparison between the vanilla cross attention, rectified cross attention and our LT-Adapter.
We introduce both layer-wise and timestep-wise scale factor for more effective adaption.

This layer-adaptive cross-attention fusion allows each token to interact with both local spatial maps
and global contextual information dynamically, facilitating the synthesis of high-quality details.

Timestep-adaptive LoRA scaling. Prior work reveals that the reliance on the given condition differs
at various timesteps Lv et al. (2024). Motivated by this, we design a timestep adaptive scale factor
for LoRA. The time embedding is processed by a linear layer and sigmoid activation to obtain scale
factor β. The LoRA adaption update rule for selected parameters θi ∈ Rn×m turns into:

θ′i = θi + β∇θi (6)

where ∇θi = ABT,A ∈ Rn×d,B ∈ Rd×m, d≪ n is the LoRA operation.

By incorporating both layer-wise and timestep-wise adaptivity, the proposed strategy enables fine-
grained adaptation of critical layers, leading to improved model performance and robustness in
few-shot semantic image synthesis tasks.

3.4 RELATIVE FILTERING STRATEGY

Despite impressive results, synthetic images still display artifacts in some cases (e.g, inferior appear-
ance and unexpected objects in the background in Fig. 8) due to the inherent drawback of pre-trained
models, which will degrade segmentation performance during training. A common solution is to
filter uncertain pixels by taking the final softmax output as confidence Sohn et al. (2020). However,
this approach heavily depends on a trained segmentation model, which is unreliable and accumulates
incorrect supervision in data-limited scenarios due to the confirmation bias Arazo et al. (2020).

We present a more robust relative filtering strategy, which identifies the outliers by comparing relative
differences across several synthetic images generated by the same mask. The underlying rationale is
that these homologous images should yield consistent predictions, regardless of confirmation bias in
segmentation models. More formally, given a semantic mask SM , we produce K images based on
it. Then we predict the pseudo mask PMk for each image with a segmentation model (trained in
label-scarce setting), and perform majority voting to obtain the merged output:

ˆPM(i, j) = argmax
c∈{0,1,...,C}

K∑
k=1

1{PMk(i, j) = c} (7)

where C is the number of classes, 1 is the indicator function, (i, j) is pixel index. The merged mask
reflects the prototype of K images, and we can filter outlier pixels by ignoring the mismatched region
between PMk and ˆPM . The filtered semantic mask for k-th synthetic image turns into:

SMfiltered
k (i, j) =

{
SM(i, j), ifPMk(i, j) = ˆPM(i, j),

255, else
(8)

By leveraging relative differences across homologous images, noisy regions can be effectively
neglected. For example, in Fig. 8 (highlight in the red boxes), the confusing dog paw (in the first row)
and redundant sheep (in the second row) are successfully filtered. This voting-style strategy enhances
robustness and diminishes the impact of confirmation bias in the segmentation model.
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Table 1: Quantitative results of MatchMask on VOC, COCO and ADE dataset in the data-limited
setting. The numbers under each dataset represent the fully supervised results.

Train DataMethods Dataset Segmenter real synthetic mIoU

Number of Labeled Samples (#): 92 183 366 732
Baseline # - 51.7 58.6 67.5 73.6

MatchMask VOC DeepLabV3+ - 5×# 52.5 58.0 66.6 70.7
MatchMask (79.9) (ResNet101) # 5×# 57.1 65.4 72.1 75.9

∆ ↑ # 5×# +5.4 +6.8 +4.6 +2.3

Number of Labeled Samples (#): 232 463 925 1849
Baseline # - 22.3 29 36.0 42.8

MatchMask COCO DeepLabV3+ - 5×# 21.2 28.3 35.8 39.7
MatchMask (57.3) (ResNet101) # 5×# 24.5 32.5 39.7 44.8

∆ ↑ # 5×# +2.2 +3.5 +3.7 +2.0

Number of Labeled Samples (#): 200
Baseline # - 18.6

MatchMask ADE Mask2former - 5×# 19.6
MatchMask (52.4) (Swin-B) # 5×# 21.4

∆ ↑ # 5×# +2.8

3.5 MATCHMASK AND MATCHMASK++

By leveraging the proposed LT-Adapter and Relative Filtering Strategy, we can generate diverse
and high-quality training data using only scarce labeled samples. This data augmentation pipeline
in the data-limited scenario is called MatchMask. For the relevant semi-supervised setting, which
has access to additional unlabeled data, we further introduce MatchMask++, as shown in Fig. 4.
Specifically, based on a model trained on labeled data (enhanced with MatchMask augmentation),
pseudo-labeling is employed to extract more realistic masks from the unlabeled data. These pseudo
masks are then used for data augmentation with our adapted mask-to-image model. Notably, 1) there
is no need to retrain the LT-Adapter; 2) despite possible noise in the pseudo masks, the augmented
image-mask pairs retain excellent quality, as the mask-to-image model aligns its output with the noisy
masks (seeing Fig. 9), ensuring effective supervision for the segmentation model.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metric. We conduct experiments on both object-centric PASCAL VOC Ev-
eringham et al. (2010), MS COCO Lin et al. (2014) and scene-centric ADE20K Zhou et al. (2017)
benchmarks. PASCAL VOC 2012 contains 21 categories (one background category), with 10,582
training images and 1449 validation images. COCO 2017 includes 118,000 training images and
5,000 validation images, covering 80 object categories and a background category. ADE20K includes
150 semantic categories, with 20,210 training images and 2,000 validation images, which are highly
challenging due to the complex taxonomy. In few shot settings, we adopt the number of few labeled
samples following semi-supervised segmentationYang et al. (2023) for VOC (92/183/366/732) and
COCO (232/463/925/1849), and randomly select 200 samples (about 1%) for ADE20K. The mean
Intersection over Union (mIoU) is adopted as the evaluation metric in our experiments.

Implementation Details. For mask-to-image synthesis, we adopt the Stable Diffusion V1-4 Rombach
et al. (2022) as the pre-trained model, and only fine-tune the proposed LT-Adapter with a batch size of
4. We train for 100k iterations with a base learning rate of 4e-5. Image generation uses 50 PLMS Liu
et al. (2022) sampling steps with a classifier-free guidance Ho & Salimans (2022) scale of 2. These
experiments can be completed on a single NVIDIA A100 GPU with 80GB memory. For the semantic
segmentation task, all our experiments were conducted within the mmsegmentation Contributors
(2020) framework to ensure consistency and fairness in comparison. We adopt DeepLabv3+ Chen
et al. (2018) model with ResNe101 He et al. (2016) for VOC and COCO, and Mask2former Cheng
et al. (2022) with Swin-B Liu et al. (2021) for ADE20K dataset. The synthetic image number for
each mask is set to 5 (K=5) as default. More details are presented in the Appendix.
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Table 2: Comparison to text-centric methods on VOC with 366 labeled samples.

Methods Paradigm Synthetic Data Synthetic Only Joint Training

Dataset-Diffusion 40k 54.2 62.5
Dataset-Diffusion* 40k 58.5 64.3
DatasetDM

Text-centric
40k 60.2 68.2

MatchMask Mask-centric 1.1k 64.6 71.4
MatchMask Mask-centric 1.8k 66.6 72.1

4.2 MAIN RESULTS

Data-Limited Setting. We first report the results of MatchMask in the data-limited setting, where
only a few labeled samples are available. The baseline model is trained only using few densely
annotated real training images, and then compared to the counterpart of using synthetic images alone.
As shown in Tab. 1, on all three datasets, using synthetic training images yields comparable or even
better results than real training images (e.g, 51.7% vs. 52.5% on VOC). The performance can be
further boosted by joint training using both real and synthetic images. For example, the maximum
improvement for VOC, COCO, and ADE is 6.8%, 3.7%, and 2.8% mIoU, validating the superiority
of this data augmentation method.

Table 3: Comparison to image-centric methods on VOC
with 366 labeled samples. R and S represent real and
synthetic data, respectively.

Methods Train Data mIoU

crop 64.8
crop,flip 65.9
crop,flip,color

R : 366
67.5

crop,MatchMask R : 366 71.5
crop,flip,MatchMask + 72.0
crop,flip,color,MatchMask S : 1.8k 72.1

Table 4: Results of MatchMask in
the semi-supervised setting.

Method VOC ADE

Without unlabeled data
Baseline 67.5 18.6
+MatchMask 72.1 21.4

With unlabeled data
Self-Training 72.6 22.7
+MatchMask 73.5 22.9
+MatchMask++ 74.3 24.6

Comparison with other data augmentation methods. Tab. 2 presents a comparison between
MatchMask and text-centric augmentation techniques. Dataset-Diffusion and DatasetDM rely on
text prompts generated by GPT-4 Achiam et al. (2023), while Dataset-Diffusion* employs an image
captioning model BLIP Li et al. (2022b) to generate captions for all images in the dataset. Despite
using a much larger synthetic dataset (40k images), the text-based methods show a substantial
performance gap compared to MatchMask, which leverages only 1k-2k images. The superior
performance of MatchMask can be explained by 1) its ability to produce more informative and
realistic images and 2) the higher accuracy of image-mask pairs created in a mask-centric manner.

In Tab. 3, we compare MatchMask with traditional image-centric augmentation techniques, such as
cropping, flipping, and color jitter following Wu et al. (2023a). The results suggest that image-level
transformations provide only marginal improvements due to the constrained variability of the source
images. However, when integrated with MatchMask, performance increases significantly by 6-7% in
mIoU, highlighting MatchMask’s superior ability to to enhance data diversity.

Semi-supervised setting. In this setup, we propose MatchMask++ to benefit from additional
unlabeled data. Our baseline follows a self-training strategy, using labeled data along with pseudo
masks on unlabeled data, which are predicted by a model trained on the labeled data (MatchMask
augmented). Results in Tab. 4 indicate that MatchMask excels in both cases, and MatchMask++ can
further enhance the results to 74.3% and 24.6% IoU on VOC and ADE using unlabeled data.

Table 5: MatchMask combined with Unimatch.

Method Unimatch +MatchMask +MatchMask++

mIoU 78.3 79.0 79.6

Table 6: Ablation study of filtering strategies.

Strategy Original Confidence Filter Relative Filter

mIoU 64.7 64.9 66.6

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Source Mask Synthetic Data-1 Synthetic Data-2 Synthetic Data-3

Figure 8: Visualizations of augmented data pairs generated by
source masks with noise filtering on VOC and ADE.

Mask

Real

Pseudo

Real

Pseudo

Image

Figure 9: Visualizations of
real/pseudo mask based generation.

Figure 10: Ablation study on the hyper-parameter K.

Adaptive Strategies Train Val
Layer Timestep

57.2 47.2
✓ 58.0 47.5

✓ 58.3 47.8
✓ ✓ 58.7 48.0

Table 7: Ablation study of adaptive finetuning
strategies proposed in LT-Adapter on ADE.

Intergration with SSSS methods. As a data augmentation method, MatchMask has the potential to
integrate with existing semi-supervised semantic segmentation (SSSS) works to achieve better results.
In Tab. 5, we integrate MatchMask(++) with the classical Unimatch on VOC utilizing 366 labeled
samples. The results reveal a substantial improvement in SSSS performance, which is comparable to
fully supervised(79.6% vs. 79.9% mIoU).

4.3 ABLATION STUDIES

Effect of relative filtering strategy. In Tab. 6, we analyze the impact of relative filtering strategy and
compare it to confidence-based filtering. The results show that it delivers a notable improvement in
performance, outperforming confidence-based techniques. It proves that our majority voting-based
method is more robust and suffer less from the confirmation bias in unreliable models.

Effect of adaptive adaption strategies. In Tab. 7, we analyze the effect of the proposed layer-
adaptive and timestep-adaptive strategies on ADE. Inspired by Tumanyan et al. (2022), we evaluated
image quality by calculating the similarity between real and generated images using DINO’s dense
token representations. The results reveal that both strategies independently enhance performance,
with their combination leading to better results. We compare more fine-tuing strategies in Appendix.

Effect of the number of synthetic images. As present in Fig. 10, with the increase in synthetic data,
the model performance incrementally improves but eventually plateaus. To balance the trade-off
between performance and efficiency, we default to generating five images for each mask in this work.

5 CONCLUSION

In this paper, we present MatchMask, a novel mask-centric generative data augmentation approach
for label-scarce semantic segmentation. By leveraging the proposed Gradient Probe Method, LT-
Adapter and Relative Filtering Strategy, we can scale the train set with diverse and high-quality data.
It significantly enhances the segmentation performance in both data-limited and semi-supervised
scenarios. We hope it would offer novel insights for the community.
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A MORE IMPLEMENTATION DETAILS

Semantic image synthesis: During training, we resize all semantic masks to 512x512 following
FreestyleNet Xue et al. (2023). We freeze the entire model and only fine-tune the proposed LT-
Adapter with LoRA rank set to 4. The training can be completed within 27 hours for 100k iterations
on a single A100 GPU. In the mask-to-image synthesis stage, the output images are resized to the
original resolution of the input masks, with each mask generating 5 images as default.

Semantic segmentation model training. All the semantic segmentation models are trained in the
mmsegmentation codebase. For VOC and COCO, we adopt DeepLabv3+ Chen et al. (2018) model
with ResNe101 He et al. (2016), and Mask2former Cheng et al. (2022) with Swin-B Liu et al. (2021)
for ADE20K dataset. Images are randomly scaled to [0.5, 2.0] and cropped to 512x512. The batch
size is set to 8 for each GPU, and a total of 2 GPUs are used. We use AdamW optimizer with 1e-4
weight decay. The initial learning rate is 1e-4, with the polynomial learning rate decay lriter =
lrinit(1− iter

maxiter )
γ , where γ = 0.9. In the data-limited setting, we train VOC (92/182/366/732) for

3k/5k/8k/10k iterations, train COCO for 20k iterations and train ADE for 10k iterations. For the semi-
supervised setting, we extend training iterations to 20k for VOC and ADE. We use the default image
augmentation in mmsegmentation, such as RandomCrop, RandomFlip and PhotoMetricDistortion.

Table 8: Comparison to advanced image transforms on VOC.

Methods baseline Cutout Mosaic MatchMask
mIoU 67.5 68.1 67.6 72.1

B ADDITIONAL EXPERIMENTS

B.1 COMPARISON WITH ADVANCED IMAGE TRANSFORMS

In this section, we compare MatchMask with stronger image-level data augmentation, including
Cutout DeVries (2017) and Mosaic Bochkovskiy et al. (2020). Cutout randomly drops some regions
of the image. Mosaic combines the four images given into one output image. The output image is
composed of the parts from each sub-image. We compare them to our MatchMask on VOC with
366 labeled data. Results in Tab. 8 indicate that the performance gains from these two methods are
minimal and significantly inferior to our solution, validating the superior ability of MatchMask in the
label-scarce scenario.

B.2 COMPARISON WITH OTHER FINE-TUNING STRATEGIES

Baseline. Since our LT-Adapter is the extension of FreestyleNet in the few-shot setting, we treat it as
the baseline, which fine-tunes the entire U-Net. In addition, we incorporate three common fine-tuning
methods: (1) fine-tuning residual blocks in U-Net; (2) fine-tuning transformer blocks in U-Net; (3)
fine-tuning critical layers selected by our Gradient Probe Method. To be consistent with FreestyleNet,
we conduct experiments on ADE20K, randomly selecting 200 training samples (about 1%) as labeled
data and evaluating on the validation set to verify whether the model is overfitting.

Evaluation Metrics. To ensure comparability with FreestyleNet, we adopt Fréchet Inception Distance
(FID) Heusel et al. (2017) to assess the visual quality of generated images. To measure layout
consistency, unlike previous methods using a pre-trained segmentation model (e.g, UperNet101 Xiao
et al. (2018)) on the specific dataset to calculate mIoU between GT and predictions, which suffers
from model’s low performance and limited generalization, we propose a more effective evaluation
metric termed DINO-SIM. It is based on DINOv2 Oquab et al. (2023), which is a large pre-trained
self-supervised model and has powerful representation capabilities. The pixel-level features learned
by DINOv2 are well-suited for dense prediction tasks such as semantic segmentation. We use
DINOv2 to extract dense features from the generated/original images (resized to high resolution
840× 840) and compute the cosine similarity between these features to measure layout consistency.
This method provides improved accuracy and generalization compared to traditional metrics.

Results. In Tab. 9, we can observe that 1) Transformer blocks play a more significant role in spatial
information control than residual blocks, even though they have fewer trainable parameters; 2) The
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Table 9: Quantitative results on the ADE20K in the few samples setting.

Methods Trainable Params. FID ↓ DINO-SIM ↑
Few Samples (1%):

UNet 859M 29.1 44.7
Residual block 615M 32.2 40.1

Transformer block 242M 27.9 45.6
Critical layer 72M 27.4 46.2

LT-Adapter (Ours) 0.7M 27.6 48.0
All Samples:

UNet 859M 26.2 49.4
LT-Adapter (Ours) 0.7M 27.1 49.4

identified critical layers prove to be effective, yielding better results than incorporating task-irrelevant
layers; 3) Our LT-Adapter attains better layout consistency (higher DINO-SIM) with a remarkably
small number of parameters; 4) When using all samples, our model’s performance continues to
improve, demonstrating a scalable capability. With only 1% of the training data and 0.7 million
trainable parameters, our method achieves performance comparable to fully-supervised methods.

C DISCUSSIONS AND LIMITATIONS

Discussions: In this work, we propose a novel mask-centric generative data augmentation paradigm
for label-scarce semantic segmentation. We have validated its superior performance on various
benchmarks. The key design is the LT-Adapter to achieve mask-to-image synthesis via only few
densely labeled samples, which is based on the pre-trained Stable Diffusion model. We believe the
semantic image synthesis process can be further enhanced by adopting more powerful generative
models in the future. In addition, we directly produce K images for each mask in our experiments
while not focusing on the value of each sample for the model training. A potential improvement
direction is to select more hard samples for segmentation models (e.g, the classes showcase inferior
performance).

a small dog 
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a room with a 
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chairs

a bike parked 
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over a jump

Condition Image Mask Condition Image Mask

Dataset-Diffusion MatchMask

Figure 11: Visualizations of text-centric and mask-centric generative data augmentation.
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Limitations: While MatchMask has shown impressive performance for data augmentation, it still has
some limitations. First, the inference speed during image synthesis is unsatisfactory (e.g, 4s/image
on VOC or 6s/image on ADE) using PLMS sampling for 50 steps. This stems from the inherent
drawbacks of the diffusion model, and we believe future advances in generative paradigms or samplers
could address this. Additionally, although MatchMask could produce images based on the pseudo
mask, the synthetic image would become messy and unrecognizable if the mask is too noisy. The
potential solutions include combining with semi-supervised works to obtain more accurate pseudo
masks or designing some principles to neglect these unreliable samples.

D MORE VISUALIZATIONS

In Fig. 11, we provide additional qualitative results generated by our mask-centric MatchMask
and text-centric Dataset-Diffusion Nguyen et al. (2024). We can observe that 1) Dataset-Diffusion
sometimes generates delusive images that are not in the same domain as labeled images. This is the
intrinsic limitation of text-centric techniques because it is not trivial to ensure it via text alone. In
contrast, MatchMask fine-tunes LA-Adapter on a few source images, yielding in-domain images.
2) For the synthetic image-text pairs, MatchMask showcases higher quality than Dataset-Diffusion.
This is because Dataset-Diffusion follows a generate image then annotate it manner, which leverages
cross-attention between the words in the text and regions in the generated image to produce mask
annotation, yielding inferior performance. Differently, MatchMask follows the generate image to
match given mask manner, leading to more reliable training data.

In Fig. 12, we present the multiple images generated by the same mask on VOC, COCO and ADE.
Results show that MatchMask can produce images with diverse contents and styles, which is beneficial
for data augmentation.
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VOC COCO ADE

Figure 12: Visualizations of diverse synthetic images on VOC, COCO and ADE.
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