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Abstract
Transformers can “learn” to solve data-fitting
problems generated by a variety of (latent) mod-
els, including linear models, sparse linear models,
decision trees, and neural networks, as demon-
strated by Garg et al. (2022). These tasks, which
fall under well-defined function class learning
problems, can be solved using iterative algorithms
that involve repeatedly applying the same func-
tion to the input potentially an infinite number of
times. In this work, we aim to train a transformer
to emulate this iterative behavior by utilizing a
looped transformer architecture (Giannou et al.,
2023). Our experimental results reveal that the
looped transformer performs equally well as the
unlooped transformer in solving these numerical
tasks, while also offering the advantage of having
much fewer parameters.

1. Motivation
Tranformers (Vaswani et al., 2017; Brown et al., 2020; De-
vlin et al., 2019) have become the model of choice in the
field of natural language processing (NLP) and other do-
mains requiring sequence-to-sequence modeling. Their abil-
ity to learn in-context as an emergent property (Wei et al.,
2022a) of large language models (LLMs) has garnered sig-
nificant attention from the community (Min et al., 2022;
Olsson et al., 2022; Li et al., 2023), yet the reason why
LLMs are capable of learning in context remains unclear.
In an effort to unravel this intriguing behavior of large lan-
guage models (LLMs), Garg et al. (2022) take a step forward
by delving into the investigation of how transformers be-
have when trained to tackle specific function class learning
problems. Perhaps not surprisingly, transformers showcase
exceptional performance across all examined tasks, almost
matching or sometimes surpassing the capabilities of con-
ventional solvers. One of the tasks they scrutinized is linear
regression, i.e. solving w in minw ∥Xw − y∥22. To solve
this linear regression problem, the transformer could, for in-
stance, learn an approximation to the ordinary least squares
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solution on a single forward pass. The computation of the
matrix inverse, as required in the ordinary least squares so-
lution (XTX)−1XTy, is more difficult for transformers
to learn compared to matrix multiplication (Charton, 2021;
von Oswald et al., 2022). This is attributed to the increased
number of layers and heads required in the inverse opera-
tion (Giannou et al., 2023). Nevertheless, gradient descent
offers as an alternative solution for linear regression, which
requires only the matrix multiplication: XT (Xw− y), but
is applied repeatedly. The iterative and recursive nature of
gradient descent aligns with the recently proposed looped
transformer architecture (Giannou et al., 2023). Motivated
by this observation, we ask the following question:

Is it possible to train a looped transformer to acquire
the iterative learning algorithm and attain compara-
ble performance to standard (unlooped) transformers
while utilizing fewer parameters?

The answer is positive. In the following sections, we will in-
vestigate the looped format in section 3.1. Subsequently, in
section 4, we proceed to analyze and compare the empirical
performance of unlooped and looped transformers.

2. Problem Setting
Let F denote a class of functions defined on Rd. Let DF
denote a probability distribution over F and let DX denote a
probability distribution on Rd. We generate a random learn-
ing prompt P as follows. A function f is sampled from DF
and inputs {x1, · · · ,xk} as well as the test sample xtest are
sampled from DX . The output of xi is computed by f(xi).
The prompt is then P = (x1, f(x1), · · · ,xk, f(xk),xtest)
and the goal of a learning system is to predict f(xtest). Let
M be a learning system and let M(P ) denote its predic-
tion (note it is not given f explicitly). The performance of
M is measured by the squared error ℓ(M(P ), f(xtest)) =
(M(P )−f(xtest))

2. In this work, we focus on transformer-
based learning systems and compare them with other known
learning systems depending on the tasks. Specifically, we
look at the GPT-2 decoder model (Radford et al., 2019) with
L layer. By default L = 12 for the unlooped transformer,
following Garg et al. (2022)’s setting, and L = 1 for the
looped transformer.
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Figure 1. How to train a transformer to learn an iterative learning algorithm? Here we consider the task of training a transformer to
solve linear regression tasks in context. The prompt {x1, y1,x2, y2, · · · ,xk, yk,xtest} is passed into the auto-regressive model. As
the auto-regressive model is designed to predict the next word, we anticipate that at xi, the model learns to predict the ”next word,”
represented by yi. However, since the xi’s are generated independently, the next word at yi becomes unpredictable. Consequently, we
disregard the output at yi (denoted as zi in the figure). The standard (unlooped) transformer utilized in this work is a decoder transformer
model consisting of L layers, where each colored block represents a transformer layer. To learn an learning algorithm, we propose a
looped transformer, where in each loop iteration, the input is added to the recurrence. On the Right, we can see looped transformer
extrapolate the number of loop iterations, thus showcasing algorithmic behavior.

3. Looped Transformer Design
3.1. Looped Transformer with Inputs Injection

For an algorithm-emulated looped transformer, we antici-
pate the following characteristics in the looped architecture:
1) As loop iterations progress, the looped transformer should
maintain or improve the performance; 2) the loop iterations
have the potential to continue indefinitely without deteri-
oration in performance. With slight reuse of the notation,
let P be the inputs to the transformer model M(·), and let
Yt be the output after applying M(·) for t iterations. In a
general form, a looped transformer can be represented as
Yt+1 = M(Yt;P ), ∀t. Lines of work (Lan et al., 2019;
Dehghani et al., 2018) have investigated a specific vari-
ant known as the weight-tying form: Yt+1 = M(Yt) with
Y0 = P , and t < T < ∞ for some constant T . How-
ever, when considering the limit as t approaches infinity,
the role of the initial input Y0 diminishes, and the solution
becomes essentially random or unpredictable (Bai et al.,
2019; Bansal et al., 2022). To incorporate the input P
into the solution of the looped transformer, we instead set
Yt+1 = M(Yt + P ). It’s worth noting that the method of
injecting the input is not restricted to addition alone. Ex-
perimental results have shown looped transformer match
or outperform the unlooped transformer (Fig. 1 left), and
extrapolate loop iterations (Fig. 1 right).

3.2. Training strategy

Following the problem setting in section 2, let the prompt to
the transformer be P = (x1, f(x1), · · · ,xk, f(xk),xtest),
with P i denote the prompt prefix with i in-context samples
P i = (x1, f(x1), · · · ,xi, f(xi),xi+1). The output of the

looped transformer after t looping iterations is

Yt(P
i|θ) = Mθ(Mθ(· · ·Mθ(︸ ︷︷ ︸

t iterations

Y i
0 + P i) + P i) · · ·+ P i)

where the transformer M is parameterized by θ, and Y i
0 is a

zero tensor with the same shape as P i. Then we train the
transformer by minimizing the following expected loss:

min
θ

EP

[
1

T

T+b∑
t=b

1

k + 1

k∑
i=0

(
Yt(P

i|θ), f(xi+1)
)]

,

where we only measure the loss of the transformer over all
prompt prefixes with loop iteration b to b+T . This truncated
loss is inspired by the truncated backpropagation through
time (TBPTT) (Hochreiter & Schmidhuber, 1997; Hinton &
Sutskever, 2013) for computation saving.

4. Experimental Results
4.1. Performance on different tasks

We focus on the data-fitting problems generated by four
latent models: 1) linear model with d = 20, k = 100; 2)
sparse linear model with d = 20, k = 100, non-sparse entry
s = 3; 3) decision tree with depth= 4, and input dimension
d = 20; 4) 2 layer ReLU neural network with the hidden
number of neurons to be 100, and input dimension d = 20.
The parameters in the above functions are sampled from
N (0, Id), and the in-context samples xi ∼ N (0, Id) as well.
The performance of the unlooped and looped transformer,
along with other baselines, are shown in Fig. 2. Details of
the baselines are in (Garg et al., 2022).

To compare with the unlooped transformer, we utilize an
identical transformer as in (Garg et al., 2022) with the ex-
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(a) Linear Regression.
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(b) Sparse Linear Regression.
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(c) Decision Tree.
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(d) 2-layer ReLU NN.

Figure 2. Evaluating the trained transformer on in-context learning a) linear functions, b) sparse linear functions, c) random decision
tree, and d) 2-layer ReLU Neural Network. The looped transformer demonstrates the ability to achieve performance on par with or even
surpass the unlooped transformer (referred to as ”Transformer” in the legend). This superior performance is accomplished while utilizing
only 1/12th of the parameters employed by the unlooped transformer.

ception of the number of layers. Specifically, we employ a
GPT-2 model with an embedding dimension of D = 256
and h = 8 attention heads, unlooped with L = 12 layers
while looped with L = 1 layer. In terms of the number of
parameters, the unlooped transformer uses 9.48M param-
eters1, and the looped transformer uses 0.79M. We follow
the same training strategy: train for 500, 000 iterations, with
Adam optimizer, learning rate 0.0001. For the looped trans-
former, we set T = 20, and the curriculum for b will start
with 0, and gradually increase to 350 for maximum. Both
the unlooped and the looped transformer follow the training
curriculum in terms of d and k, as specified in (Garg et al.,
2022). When measuring the performance, we evaluate 1280
prompts and report the 90% confidence interval over 1000
bootstrap trails. Of all the tasks we looked at, the looped
transformer constantly match the unlooped transformer, ex-
cept for the sparse linear regression tasks, which we will
discuss in the next paragraph.

Looped Transformer Does Better in Sparse Linear Re-
gression Lasso (Tibshirani, 1996) is a strong baseline
for solving sparse linear regression problems. In this
experiment, we did a hyperparameter search over α ∈
{1e− 4, 1e− 3, 0.01, 0.1, 1}, where α is the ℓ1 parameter,
and pick the best α = 0.01, same as in (Garg et al., 2022).
Notice that while the transformer achieves an error rate
that nearly matches the Lasso performance, looped trans-

1The difference of the number of parameters reported here and
in (Garg et al., 2022) (22.4M) are due to they also report the word-
to-embedding parameters, despite not being utilized in the model.
Hence, we exclude these parameters from the overall count.

former achieves better than unlooped ones, and matches the
Lasso performance almost perfectly. We conjuncture that
this performance gain is due to the recurrent architecture of
the looped transformer being better at learning the iterative
behavior of the Lasso algorithm.

4.2. Analyze Looped Transformer Model

In this section, we explore the impact of varying the num-
ber of layers (L) and embedding dimension (D) on looped
transformer. These experiments specifically focus on the
linear regression task, with d = 5 and k = 10, and training
iterations 100,000. The remaining hyperparameters remain
consistent with those in section 4.1.

In Fig. 3 (top), we plot the squared error for the unlooped
transformer, and the looped transformer with L layers, ap-
plying t iterations. From the figure, we can see the larger L
is, the faster it will converge. To achieve the performance
of an unlooped transformer with L layers, the looped trans-
former needs more than L loop iterations. For instance, it
took the looped transformer with 1 layer to loop for more
than 50 iterations in order to achieve an 8-layer unlooped
transformer’s performance. This suggests the unlooped
transformer and the looped transformer are learning differ-
ent functions for each layer (iteration).

Figure 3 (bottem) illustrates the squared error of the looped
transformer for various combinations of L and D. When
L = 1, increasing the value of D results in improved con-
vergence until reaching a saturation point at D = 256. Like-
wise, when D = 256 and L varies, the looped transformer
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Figure 3. For linear function with d = 5, k = 10, we test on
transformers with (top): unlooped and looped transformer with
D = 256 and h = 8, but different L, and (bottom): looped
transformer with different L and D, h = 8.

demonstrates comparable convergence performance, exhibit-
ing differences primarily in the speed of convergence.

5. Discussion
Looped Transformer Achieve Algorithm-like Behavior
by Finding a Fixed Point Solution. (Looped) transformer
has the capability to approximate a solution, but not an
exact solution (like Gradient Descent). In this study, we
refrain from asserting that the looped transformer functions
precisely like an algorithm, but instead conjecture it to find
a fixed-point solution to the problem with a certain error
rate. Its capacity to extrapolate the number of loops enables
us to gain insights into how the looped transformer learns
to solve recursively solvable tasks.

Training Efficiency. To measure the looped transformer at
loop times b when b is large, we need to explicitly unroll the
transformer for b iterations, which is very inefficient in terms
of computation time. The selection of b and T depends on
the complexity of the task and requires further investigation.
In the future, our aim is to gain a deeper understanding of
the appropriate choices for b and T , and develop a faster
and accurate solver for the looped transformer.

Memory-Computation Trade-off During Inference.
The computation cost associated with the looped trans-
former is determined by the number of loop iterations re-
quired to reach the minimum error (find the fixed-point
solution). As shown in Fig. 3 (top), there is a memory-
computation trade-off between the unlooped and the looped
transformer. Also, Fig. 3 (bottom) illustrates the looped
transformers with different layers L and embedding size D
also exhibit different computation cost. In the future, we
would like to also understand how L and D, and potentially

the complexity of the task affect the computation cost of the
looped transformer.

6. Related Works
Weight Sharing models Weight sharing is the nature in
recurrent models such as RNN (Bengio et al., 2003) or
LSTM (Hochreiter & Schmidhuber, 1997). These sequence
modelings repeat the weights in the direction of sequence
processing, enabling possibly infinite lengths of sequence
inputs. Transformer (Vaswani et al., 2017; Devlin et al.,
2019) typically has a fixed context length. In order to ad-
just to a longer context without parameter increase, several
works (Dai et al., 2019; Wang et al., 2019; Hutchins et al.,
2022) propose to combine recurrent models with transform-
ers. Moreover, lines of works (Lan et al., 2019; Jaegle et al.,
2021; Dehghani et al., 2018) also propose to share weights
along the forward pass of the model. This weight sharing
is across a limited number of layers, or with a halting cri-
terion to exit the recurrence if needed. An extreme of the
weight sharing along the function forward is the implicit
model (Bai et al., 2019), where the function is repeatedly
applied for an infinite amount of times. The applications of
these implicit models are addressed in the next paragraph.

Deep Implicit Model Deep Implicit Models (Bai et al.,
2018; 2019; 2020; Winston & Kolter, 2020) employ black-
box solvers to find fixed-point solutions for implicit deep
models. Later, Bai et al. (2021) proposed the Jacobian
regularization to stabilize the training process. Nevertheless,
this approach requires extensive hyperparameter tuning and
still suffers from instability challenges. Implicit models are
demonstrated to solve math problems with extrapolation
ability (Decugis et al., 2022). This is a special case of using
the recurrent model to solve math tasks, as we will examine
more closely in the next paragraph.

Use Recurrent Models to Solve Math / Reasoning Task
Several works (Zhang et al., 2022; Zhou et al., 2022b; Wei
et al., 2022b; Zhou et al., 2022a; Bansal et al., 2022; Goel
et al., 2022; Zhang et al., 2023) explore the ability of deep
neural networks, including recurrent models, in solving
mathematical or reasoning tasks that involve iterative pro-
cesses. However, these math or reasoning tasks are with
finite states/choices. Regression problem, on the other hand,
is a relatively complex problem that involves continuous
output space. Garg et al. (2022) investigate the transformer’s
ability in solving continuous function class problems, and
later von Oswald et al. (2022) provide interpretations of this
learning ability through linear attention heads. Our work,
on the other hand, utilize the exact same architecture as
in Garg et al. (2022): decoder model with non-linear atten-
tions, and aim to provide empirical evidence and insights
into the learning dynamics of this architecture.
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