E-MMAD: Multimodal Advertising Caption Generation Based on Structured Information

Anonymous ACL submission

Abstract

With multimodal tasks increasingly getting popular in recent years, datasets with large scale and reliable authenticity are in urgent demand. Therefore, we present an e-commercial multimodal advertising dataset, E-MMAD, which contains 120 thousand valid data elaborately picked out from 1.3 million real product examples in both Chinese and English. Noticeably, it is one of the largest video captioning datasets in this field, in which each example has its product video (around 30 seconds), title, caption and structured information table that is observed to play a vital role in practice. We also introduce a fresh task for vision-language research based on E-MMAD: e-commercial multimodal advertising generation, which requires to use aforementioned product multimodal information to generate textual advertisement. Accordingly, we propose a baseline method on the strength of structured information reasoning to solve the demand in reality on this dataset.

1 Introduction

Vision-and-Language has been drawing increasing attention from both computer vision and natural language processing communities, for there exists various multimodal information in real human life. As one of the most important tasks of vision-and-language (Uppal et al., 2021), multimodal text generation (Lin et al., 2021) is aimed to generate high-level text by fusing different modal effective information, such as video captioning (Lei et al., 2020a; Yang et al., 2019; Krishna et al., 2017).

However, there are few studies of multimodal text generation making full use of realistic multimodal inputs. One of the reasons is the lack of corresponding publicly available datasets, which can provide real-life multimodal information to help generate. Existing video-text generation datasets are mostly single modal input and are collected by manual batch-written templated descriptions such as MSR-VTT (Xu et al., 2016), Vatex (Wang et al., 2019). While in practice, information can also be divided into structured information and unstructured information. Humans tend to use richer structured information to generate appropriate text. This information can make the description rigorous and reliable. In this case, a large-scale and reliable dataset with structured information are in urgent demand.

In this paper, we elaborately collect a large-scale e-commercial multimodal advertising dataset for multimodal text generation research, E-MMAD. To support in-depth research, we collect a rich set of product annotations. The E-MMAD dataset consists of 120,984 product instances in both Chinese and English, in which each example has a product video, a title, structured information and a caption. Figure 1 illustrates a sample of our E-MMAD dataset. As is shown in Figure 1, E-commercial multimodal advertising generation task is typically more challenging than existing multimodal text generation, as the advertising description is vivid and information sources are abundant. More importantly, the caption needs to cover the information mentioned in the structured information table but missed in the video.

In response to the realistic demand for advertising generation, we propose the e-commercial multimodal advertising generation task and approach, which is qualified for better performance in generating appropriate text by making full use of the rich information. In addition, considering that various types of information are often encountered in the process of model training and generalization, it will be difficult for the model to train. And in the generalization process, since a considerable part of the nouns do not appear in the training, the caption quality generated by the model is not good enough. For example, when faced with unknown information including new brand names appearing in structured information, the model is not able to effectively identify and judge. So we propose...
2 Related Work

2.1 Multimodal video-text generation datasets

There are various datasets for multimodal video-text generation that cover a wide range of domains, such as movies (Rohrbach et al., 2015), cooking (Das et al., 2013; Zhou et al., 2018a), and Activities (Xu et al., 2016). MSR-VTT (Xu et al., 2016) is a widely-used dataset for video captioning, which has 10,000 videos from 257 activities and was collected in 2016. MSVD (Chen and Dolan, 2011) was collected in 2011, containing 1970 videos. ActivityNet (Caba Heilbron et al., 2015) has 20,000 videos but is used for Dense Video Captioning (Krishna et al., 2017), which means to describe multiple events in a video. TVR (Lei et al., 2020b) is collected from movie clips whose text is mainly character dialogue. Vatex (Wang et al., 2019) is a famous dataset released in 2019, whose caption is written by batch manpower. Compared with some mainstream datasets in Table 1, our dataset also provide an additional structured information table. And the generated caption needs to include the information mentioned in the structured information.

2.2 Video Captioning Approaches

Video caption/description is one of the important tasks in multimodal text generation. Early video captioning methods are all based on templates...
includes too many modal particles, and foundation, neither from the structured advertising description comes from no point, and the video displaying about information table nor from the video. The product advertising description in the structured information table. Live broadcast. Product advertising description plagiarize the title or too short. which is not true and specific. Unqualified data standard

- Live broadcast. (the character is performing, not only displays products)
- The video content is not that to the point, and the video displaying about specific product is insufficient.
- The product advertising description includes too many modal particles, and the advertisement is exaggerated, which is not true and specific.
- Product advertising description plagiarize the title or too short.
- There exist spelling errors and grammatical errors.
- The information in the product advertising description comes from no foundation, neither from the structured information table nor from the video.
- A lot of repetitive and redundant words in the structured information table.

Eligible data standard

- The video is clear enough for viewing and contains the part of product information.
- Commodity displaying lens should be above 50%.
- Tone description words are concise, vivid and reasonable.
- Each part of the multi-modal information should be closely related and not conflicted with each other.
- Videos should show product attributes as much as possible.
- The length of product advertising description should be between 20 words and 100 words.
- Videos are free of violence, pornographic factors and commodities conform to Taobao commodity standards.

3 Datasets

In this section, we will introduce our dataset in detail, including the statistic analysis, collecting process, and comparison.

3.1 Data Collection

1) Dataset sources. Our dataset sources are the Chinese largest e-commerce website shopping platform (www.taobao.com), from which we have collected nearly 1.3 million commodity examples with structured information. It comprised more than 4,000 merchandise categories to guarantee the diversity of the dataset, such as clothes, furniture, office supplies, etc. The information of each commodity data sample includes structured information, commodity displaying video, title of product and commodity advertising description. Different from previous works (Wang et al., 2019; Xu et al., 2016; Chen and Dolan, 2011), The sources of datasets are derived from what merchants themselves numerous design and select, which comply with the standard rules of the authenticity of product advertisements and are supervised by false product advertising rules of Taobao. Specifically, videos visually display the commodity performance and application.

In addition, we fully consider ethical privacy issues to ensure that the dataset has no potential negative effects and legal issues (Gebru et al., 2018). All data is collected in Taobao shopping platform, which is a public platform for the general public. All information, even the characters in the video, is ensured to comply with Taobao laws including personal privacy, legal prohibitions, false information, protection of minors and women, and so on.

In consideration of data and ethics, we perform programmatic screening and manual cleaning again in accordance with the established data cleaning rules. Figure 2 shows our data collection process.

2) Data filtering. The intention for data filtering is to determine whether the product advertising description is closely related to the product displaying video, and whether the structured information of the product is in accordance with the composition of the product advertising description and ethical considerations. The product attributes structured information and product displaying video will be valid only if human being can write similar product advertising descriptions with them. We use programs to screen and judge at first, traversing the values of structured information. Our screening basis is the proportion of structured information words in the product advertising description. When the proportion is up to n words or more, the
data will be reserved as valid data. After copywriters’ continuous attempt to generate advertising descriptions with structured information words that account for different proportions, we finally determine the structured information with more than five words in the product advertising description as valid data and form 207,852 machine-screened data. By virtue of this, we respectively test different groups of random data to formulate screening and judgment rules. Several times our different copywriters have tested and discussed to make the manual evaluation criterion. Consequently, testers sample 100 examples randomly according to the judgment rules of Figure 2, and the pass rate is mostly about 60%. In this case, we validate the manual screening rules and draw the conclusion that random subjective factors hardly have any influence. So far, the manual data screening and judging rules have been formed, as is shown in Figure 2.

3) Data annotation. We invited 25 professional advertising copywriters as data screening and annotation staff to conduct manual screening under the rules of Figure 2 and the Toronto Declaration. Manual screening of all data also ensures that each piece of data complies with the Toronto Declaration and Taobao laws to protect gender equality, racial equality, etc. In order to ensure the reliability of the data, we use the following two methods to sample and verify: (1). Add verification steps. We will send back samples that have been annotated right answers to annotators from time to time to check their work quality. (2). Multiple people Choices. The data is sent to different people randomly. Only if the answers of multiple people are consistent, can they be passed. Finally, 120,984 valid data has been generated. Simultaneously, we also translate the filtrated valid data into English so that both Chinese and English versions can be provided in the dataset. To ensure the quality of the English version, we use the WMT2019 Chinese-English translation champion, Baidu machine translation. We also monitor the translation quality in the manual screening section, such as random checking in batch translation, using text error correction to monitor retranslation, and back translation comparison. Of course, we mainly encourage and urge people to study natural language research in the Chinese e-commerce market.

After the consumption of 25-people toil for manual data labeling and cleaning, 120,984 carefully chosen valid data have finally been generated.

3.2 Dataset Analysis
Among the 207,852 data we send for annotation, there are 120,984 eligible samples passing the screening. We make an elaborate analysis on these valid data and the result is shown in Figure 3. In addition to this, Figure 3 reveals the distribution of the product videos’ duration and advertising descriptions. By Table 1 comparison, we can find that

- The numbers in dataset
- The time of video statistics
- The proportion of structured information
- The word cloud of classes

Figure 3: Statistics about the five different forms of data in our dataset. The data statistics are presented in terms of video, structured information, and the main classes of the dataset contained, respectively. Our product advertising descriptions are not only at least twice longer than others, but also root in more vivid and realistic ones used in practice. The whole statistics about the structured information in our dataset is displayed in Figure 3(d). What’s more, there exist average 21 structured information words in each sample and 6.2 words of them are finally displayed in its product advertising description. The (e) shows the abundance of our datasets source classes.

3.3 Dataset Comparison
In Table 1, we make a comparison between our dataset and others from the following several
Table 1: Comparison with other datasets. Each column represents a different piece of information about the dataset. 

<table>
<thead>
<tr>
<th>Name.</th>
<th>Data Size</th>
<th>Video Time</th>
<th>Length</th>
<th>Classes</th>
<th>Modality</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR-VTT(Xu et al., 2016)</td>
<td>10,000</td>
<td>10s - 20s</td>
<td>9</td>
<td>257</td>
<td>Video to Text</td>
<td>×</td>
</tr>
<tr>
<td>MSVD(Chen and Dolan, 2011)</td>
<td>1,970</td>
<td>9s</td>
<td>8</td>
<td>-</td>
<td>Video to Text</td>
<td>×</td>
</tr>
<tr>
<td>TVR(Lei et al., 2020b)</td>
<td>21,800</td>
<td>9s</td>
<td>13</td>
<td>-</td>
<td>Multimodal to Text</td>
<td>×</td>
</tr>
<tr>
<td>VaTeX(en/zh)(Wang et al., 2019)</td>
<td>41,269</td>
<td>10s</td>
<td>15/13</td>
<td>600</td>
<td>Video to Text</td>
<td>×</td>
</tr>
<tr>
<td>Ours(en/zh)</td>
<td>120,984</td>
<td>30s</td>
<td>97/67</td>
<td>4,863</td>
<td>Multimodal to Text</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1: Comparison with other datasets. Each column represents a different piece of information about the dataset. 

Data Size, Video Time, Length, Classes respectively represent the total number of videos in the dataset, the range of video lengths in the dataset, the average length of the captions in the dataset and the number of video types in the dataset. Modality indicates the use of the dataset, e.g. from Video to Text, Multimodal to Text. SI means whether the dataset contains structured information.

perspectives: dataset scale, dataset diversity and dataset reliability.

1) Dataset scale: As shown in Table 1, the size of our E-MMAD is the largest multimodal dataset among those we have already known so far, with the longest video duration and text length, and the richest structured information in the dataset.

2) Dataset Diversity: In terms of types, our dataset consists of 4,863 categories, which is currently the most various data sources in the datasets. Our dataset is also available in Chinese and English two versions, to support multi-language research, which cannot be satisfied by a single language dataset. At the same time, our Chinese and English corpus is richer in vocabulary, which can generate more natural and diversified video descriptions.

3) Dataset Reliability: Compared with other manual batch-written descriptions (Wang et al., 2019) and mechanically generated data, our data annotation is derived from the real society. Each of them is an exclusive description genuinely written by corresponding store. Besides, the videos in our dataset are from the real product shooting scene, other than clips from Youtube or movies. We firmly believe that only resorting to reliable dataset, can we train models better. Therefore, we invest considerable amount of manpower and time in order to promote our dataset quality.

3.4 Dataset Significance

To the extent of our knowledge, the dataset we propose is the largest multi-modal dataset so far, and the information involved is also the most diverse, which can better optimize and improve the performance of multi-modality models and promote their generalization ability to adapt to different scenarios in real world. For subsequent work, with the abundant and diverse information involved, our dataset can be dedicated to several multi-modality domain tasks, such as Video Retrieval (Lei et al., 2020b), Product Search (Chang et al., 2021) and so on. In our future work, we will build more versatile e-commerce datasets which can cover most tasks in this field based on this dataset.

4 Method

In this work, we present a novel approach called the Multi-modal Fusion and Generation algorithm as shown in Figure 4, which extracts feature representations from three sources: the product title, structured information(structured words) and the displaying video’s frames and fuse them to generate captions. And to process various information, our model use a method of conceptualizing information. That is to pre-process the data, conceptualize and extract information from the complex information to highly conceptualize network features. For the restoration of complex information in the generation phase, we only need to perform the inverse conceptualization operation at the end.

4.1 Conceptualization

During the training process, we pre-conceptualize the true product descriptions. The formula is as follows:

\[ \text{Values}_{\text{gr}} = \text{SW.values} \cap \text{GR.tokens} \]  
\[ k_{\text{gr}} \in \text{SW.keys} \]  
\[ \forall \text{token}_{\text{gr}} \rightarrow k_{\text{gr}} \]  
\[ \forall \text{token}_{\text{gr}} \in \text{Values}_{\text{gr}} \]

In the generation process, the raw caption with conceptualized information generated by the model is de-conceptualized to obtain the final caption. The
de-conceptualization is as follows:

\[ \text{Values}_{rc} = SW.keys \cap RC.tokens \]

\[ v_{gr} \in SW.values \]

\[ rc_token \rightarrow v_{gr} \]

\[ \forall rc_token \in \text{Values}_{rc} \]

Among them, \( A \rightarrow B \) means replacing token \( A \) with token \( B \). \( A \in C \) means token \( A \) is an element of set \( C \). \( GR.tokens \) and \( RC.tokens \) are the sets of corresponding n-gram phrases in ground truth and raw caption, respectively. \( SW.values \) and \( SW.keys \) respectively correspond to the sets of keys and values in the structured information. In terms of the model input, for the structured words part, we only extract the key components, and reference the title as the basis to determine the priority of each key according to the order in which the structured information appears in the title.

4.2 Representation

**Textual Information.** Given a product title as a list of \( K \) words, conceptualized product attributes as a list of \( N \) keys, we embed these words and keys into the corresponding sequence of \( d \)-dimensional feature vectors using trainable embeddings(\cite{zh_box, devlin2018bert}). In addition, since the keys of structured words are prioritized, we use position embedding to represent the priority of the keys.

**Visual Information.** Given a sequence of video frames/clips of length \( S \), we feed it into pre-trained 3D CNNs(\cite{ji20123d}) to obtain visual features \( V = \{v_1, v_2, \ldots, v_K\} \in \mathbb{R}^{S \times d}, \) which are further encoded to compact representations \( R \in \mathbb{R}^{S \times d} \), which have the same dimension as the representation of textual information via a Visual Embedding Layer. The Visual Embedding Layer can be formalized as follows:

\[ f_{VEL}(v) = \text{BN}(g \circ \hat{v} + (1 - g) \circ \hat{v}) \]

\[ \hat{v} = W_1 v^\top \]

\[ \hat{v} = \tanh(W_2 \hat{v}) \]

\[ g = \sigma(W_3 \hat{v}) \]

where \( \text{BN} \) denotes batch normalization, \( \circ \) is the element-wise product, \( \sigma \) means sigmoid function, \( W_1 \in \mathbb{R}^{d \times d} \) and \( \{W_2, W_3\} \in \mathbb{R}^{d \times d} \) are learnable weights.

4.3 Multimodal Fusion

After embedding all information from each modality as vectors in the \( d \)-dimensional joint embedding space, we use a stack of \( L \) transformer layers with a hidden dimension of \( d \) to fuse the multi-modal information consisting of a list of all \( K + N + S \) modalities from \( \{v_{\text{frames}}\}, \{v_{\text{words}}\} \) and \( \{v_{\text{keys}}\} \). Through the self-attention mechanism in transformer, we can model inter- and intra-modality context. The output from our Multimodal Information Fusion and Reinforcement module is a list of
where $V_{\tan X}$ GPU. The proposed model is implemented

5.1 Implementation Details

In this section, we will show a series of experiments of our proposed model on E-MMAD, including ablation studies, comparison experiments and state-of-the-art video caption methods and human evaluation.

5.4 Generation Decoder

Our model’s decoder is a left-to-right Transformer decoder, which is similar to the model architecture of (Chen et al., 2019). The decoder access multimodal fusion outputs at each layer with a multi-head attention (Vaswani et al., 2017). Specifically, the decoder applies a multi-headed self-attention over the caption textual feature. After that, the position-wise feedforward layer was used to produce a distribution probability of each generation tokens for the final generated caption. There is a description of part of the formula for the decoder module:

$$h_0 = V_{\text{cap}} \cdot W_t + P_{\text{e}} \cdot W_p$$  \hfill (11)

$$h_i = \text{Trans} \_ \text{Block} (h_{i-1})$$  \hfill (12)

$$P(w) = \text{Softmax} (h_n W_e^T)$$  \hfill (13)

$$PE_{(pos,2i)} = \sin \left( \frac{pos/10000^{2i/d_{\text{model}}}}{10000^{2i/d_{\text{model}}}} \right)$$  \hfill (14)

$$PE_{(pos,2i+1)} = \cos \left( \frac{pos/10000^{2i/d_{\text{model}}}}{10000^{2i/d_{\text{model}}}} \right)$$  \hfill (15)

where $V_{\text{cap}} = \{v_1, v_2, \ldots, v_x\}$ is the textual vector of caption, $n$ is the number of layers, $\forall l \in [1, n]$, and $W_t, W_p$ are the learnable weight for caption embedding feature and position encoding respectively. $\text{Trans} \_ \text{Block}$ represents a block of the decoder in the Transformer (Vaswani et al., 2017). We refer to (Vaswani et al., 2017; Radford et al., 2018, 2019; Chen et al., 2019) for a more detailed explanation of the model architecture.

5.2 Comparison with Other Approaches

During the comparison experiments, we uniformly divided the Chinese and English versions of our dataset into training set, validation set and test set in the ratio of 6:2:2 for training and testing. Since the current mainstream models do not use multimodal data for captioning, we use unimodal data for captioning on some classic and available methods, such as video caption, NLG, etc. Also, for the sake of fairness of comparison, we simply modify the input part(NACF*) of the above experimental model to accommodate multimodal data. As we can see from Table 2, the comparison of the results before and after the model modification shows that multimodal data can be substantially improved for text generation tasks. It indicates that multimodal information indeed helps captioning by modal information between the mutual enhancement. And as shown in Table 2 our algorithm achieves a better performance than other methods because our model makes better use of multimodal data in the means of fusing different modalities and structured information to reason.

5.3 Ablation studies

Multimodal Input. We perform ablation studies based on changing the input components of our proposed model as a way to validate the impor-
Table 2: Performance (%) comparison with our proposed model and others. The NACF* means that we concat the structured information with video feature directly. On the premise of fair comparison, the following methods are relatively classic and available, which are applicable on E-MMAD by our objective attempts.

<table>
<thead>
<tr>
<th>Method</th>
<th>Bleu1</th>
<th>Bleu2</th>
<th>Bleu3</th>
<th>Bleu4</th>
<th>Rouge_L</th>
<th>CIDEr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLG (Chen et al., 2019)</td>
<td>13.6</td>
<td>6.8</td>
<td>3.1</td>
<td>1.9</td>
<td>13</td>
<td>10.1</td>
</tr>
<tr>
<td>NACF (Yang et al., 2019)</td>
<td>18.9</td>
<td>7.9</td>
<td>3.9</td>
<td>2.2</td>
<td>15.3</td>
<td>14.8</td>
</tr>
<tr>
<td>NACF*</td>
<td>20</td>
<td>8.5</td>
<td>4.3</td>
<td>2.4</td>
<td>17.8</td>
<td>18.5</td>
</tr>
<tr>
<td>TVC (Lei et al., 2020b)</td>
<td>21.3</td>
<td>12.4</td>
<td>6.2</td>
<td>3.7</td>
<td>19.3</td>
<td>22.5</td>
</tr>
<tr>
<td>Ours (en)</td>
<td>25.0</td>
<td>16.6</td>
<td>9.6</td>
<td>7.2</td>
<td>25.3</td>
<td>29.1</td>
</tr>
<tr>
<td>CPM (zh) (Zhang et al., 2021a)</td>
<td>7.9</td>
<td>4.6</td>
<td>1.1</td>
<td>0.5</td>
<td>7.2</td>
<td>8.3</td>
</tr>
<tr>
<td>Ours (zh)</td>
<td>11.6</td>
<td>6.5</td>
<td>4.4</td>
<td>2.2</td>
<td>12.5</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Conceptual Operation. Considering that writing product descriptions in real life often involves a great number of unfamiliar words, which makes it hard for the model to identify and remember its feature when facing a new word, such as new brand name. The predecessor’s approach tend to use as much corpus and large model parameters as possible, which brings huge difficulties to natural language generation. In this case, we proposed the Conceptualization operation. As shown in Table 4, we conduct ablation experiments about Conceptualization on the Chinese and English datasets. As for models without conceptual operations, we use unconceptualized captions as the ground truth to train. And for the input of the model, we directly input unordered structured words. Experiments have proved that the Conceptualization operation can indeed bring a significant effect improvement, because this method can conceptualize and extract information from complex information in the dataset, and thus highly conceptualize network features. We expect this discovery to inspire the community.

5.4 Human Assessment

It is well-known that the human evaluation metrics for video captioning are required due to the inaccurate evaluation by automatic metrics. We especially focus on advertising generation, which depend on human aesthetics. So we invite the people involved in the data annotation and new advertising slogan designers to conduct the human evaluation. We select 200 samples from the test dataset and each evaluator evaluate each of these 200 samples to reflect the performance of our model by rating whether the caption generated by our model can be used as a description of the product. As the result shows in Table 5, the caption generated by our model has a certain degree of usability, whose results were generally recognized by people. Therefore, this is also acceptable that our experiments on Table 2 did not achieve high scores for mechanical evaluation indicators.

6 Conclusion and Future Work

This research sets out to provide an e-commercial multimodal advertising dataset, E-MMAD, which is one of the largest video captioning datasets in this field. Based on E-MMAD, we also present a fresh task: e-commercial multimodal advertising generation, and propose a baseline method on the strength of structured information reasoning to solve the realistic demand. We hope the release of our E-MMAD would facilitate the development of multimodal generation problems in the real world. However, there still exist limitations about our dataset and method that should be acknowledged. Moving forward, we are planning to extend E-MMAD to better performance and more diversified tasks by exploring new model structures, using different language data and so on.
References


### A Appendix Ablation Results Tables

**Source Link:** [https://github.com/E-MMAD/E-MMAD](https://github.com/E-MMAD/E-MMAD)

Table 3: Performance comparison with our proposed model by masking different parts of input and only using the remainder as input. Here "Title", "SW" and "Video" indicates commodity title, attribute structured word table and commodity displaying video respectively.

<table>
<thead>
<tr>
<th>Input</th>
<th>Bleu1</th>
<th>Bleu2</th>
<th>Bleu3</th>
<th>Bleu4</th>
<th>Rouge_L</th>
<th>CIDEr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW &amp; Video</td>
<td>22.8</td>
<td>14.8</td>
<td>6.9</td>
<td>5.5</td>
<td>22.2</td>
<td>25.3</td>
</tr>
<tr>
<td>Title &amp; Video</td>
<td>19.5</td>
<td>9.4</td>
<td>4.5</td>
<td>3.1</td>
<td>16.4</td>
<td>15.7</td>
</tr>
<tr>
<td>Video</td>
<td>15.9</td>
<td>6.4</td>
<td>3.4</td>
<td>2.1</td>
<td>15</td>
<td>13.2</td>
</tr>
<tr>
<td>Title &amp; SW</td>
<td>22.0</td>
<td>13.8</td>
<td>5.8</td>
<td>4.9</td>
<td>20.6</td>
<td>23.7</td>
</tr>
</tbody>
</table>

Table 4: Performance comparison of whether our proposed model has conceptual operations (CO).

<table>
<thead>
<tr>
<th>Operation</th>
<th>Bleu1</th>
<th>Bleu2</th>
<th>Bleu3</th>
<th>Bleu4</th>
<th>Rouge_L</th>
<th>CIDEr</th>
</tr>
</thead>
<tbody>
<tr>
<td>No CO (en)</td>
<td>23.8</td>
<td>15.4</td>
<td>8.1</td>
<td>6.4</td>
<td>24.2</td>
<td>27.3</td>
</tr>
<tr>
<td>No CO (zh)</td>
<td>9.9</td>
<td>5.5</td>
<td>2.8</td>
<td>1.5</td>
<td>10.1</td>
<td>12.4</td>
</tr>
<tr>
<td>With CO (en)</td>
<td>25.0</td>
<td>16.6</td>
<td>9.6</td>
<td>7.2</td>
<td>25.3</td>
<td>29.1</td>
</tr>
<tr>
<td>With CO (zh)</td>
<td>11.6</td>
<td>6.5</td>
<td>4.4</td>
<td>2.2</td>
<td>12.5</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Table 5: The results of the human evaluation, reflecting the proportion of the 200 examples where the model generated caption could be used as a product description that describes the reasonableness of the generated caption.

<table>
<thead>
<tr>
<th>Pass</th>
<th>Annotator1</th>
<th>Annotator2</th>
<th>Annotator3</th>
<th>Person1</th>
<th>Person2</th>
<th>Person3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>42%</td>
<td>44%</td>
<td>43%</td>
<td>48%</td>
<td>56%</td>
<td>53%</td>
</tr>
</tbody>
</table>