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Abstract

We present IntPhys 2, a video benchmark designed to evaluate the intuitive physics1

understanding of deep learning models. Building on the original IntPhys bench-2

mark [37], IntPhys 2 focuses on four core principles related to macroscopic objects:3

Permanence, Immutability, Spatio-Temporal Continuity, and Solidity. These condi-4

tions are inspired by research into intuitive physical understanding emerging during5

early childhood. IntPhys 2 offers a comprehensive suite of tests, based on the6

violation of expectation framework, that challenge models to differentiate between7

possible and impossible events within controlled and diverse virtual environments.8

Alongside the benchmark, we provide performance evaluations of several state-of-9

the-art models. Our findings indicate that while these models demonstrate basic10

visual understanding, they face significant challenges in grasping intuitive physics11

across the four principles in complex scenes, with most models performing at12

chance levels (50%), in stark contrast to human performance, which achieves near-13

perfect accuracy. This underscores the gap between current models and human-like14

intuitive physics understanding, highlighting the need for advancements in model15

architectures and training methodologies.16

1 Introduction17

Understanding intuitive physics is a fundamental aspect of human cognition [34, 3, 6, 4, 44], enabling18

individuals to effectively navigate and interact with the physical world. In recent years, there has been19

a growing interest in replicating this intuitive understanding within artificial systems [10, 49, 35, 38].20

However, despite advances in machine learning and computer vision, current models still fall short21

of human capabilities in this domain [37, 50, 25, 13, 12, 8, 11]. The IntPhys benchmark [37] was22

originally introduced to address the challenge of evaluating intuitive physics understanding in AI23

models, providing a standardized framework for assessment. However, the benchmark had some24

limitations, focusing on simple environments that lacked the variations and complexities found in the25

real world. Furthermore, recent work [19] has shown that the benchmark has become saturated, with26

predictive models such as V-JEPA[9] achieving high performance on it, highlighting the need for a27

more challenging and diverse intuitive physics benchmark.28

In this paper, we present IntPhys 2, an expanded and more comprehensive benchmark designed to29

push the boundaries of intuitive physics understanding in artificial systems. IntPhys 2 evaluates four30

key conditions inspired by human cognition: Object Permanence [3], Object Immutability [51, 52],31

Spatio-Temporal Continuity [42], and Solidity [42]. These conditions are carefully selected to32

encompass a broad range of physical principles, thereby providing a rigorous assessment of model33

capabilities. The dataset contains 1416 videos that are divided in 3 different splits. The videos in34

the Debug and Main splits are released along with their respective metadata while the last split is an35

Held Out set, in which we release only the videos to avoid training data contamination. Unlike its36
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Figure 1: Example of a scene in IntPhys2. Each scene consists of a set of four videos. Two pairs
depict possible outcomes, while the other two represent impossible outcomes. The presence of an
obstacle or occluder determines the outcome: a possible outcome in the first pair becomes impossible
in the second, and vice versa. In this example, a silver ball rolls down a path. If a brick obstacle is
present, the ball should collide with it and change its trajectory. If the ball passes through the brick
obstacle without altering its path, this outcome is deemed impossible. Conversely, when no obstacle
is present, the ball’s trajectory should remain unchanged, making this the likely outcome.

predecessor that contained very basic and not fully realistic scenes, IntPhys 2 utilizes the full potential37

of Unreal Engine,1 using photorealistic environments made with dynamic shadows and lighting to38

better simulate real-world settings. IntPhys 2 improves upon the original IntPhys benchmark by39

introducing more realistic occlusions through the use of both fixed and moving cameras. Movement-40

based occlusions are more natural, capturing situations such as those that occur when an observer41

moves their head to look away and then back to the original point of view. By incorporating both fixed42

and moving cameras as well as using more complex scenes, IntPhys 2 provides a more comprehensive43

evaluation framework for intuitive physics understanding.44

Using IntPhys 2, we performed a comprehensive performance evaluations of state-of-the-art predictive45

models and Multimodal Large Language Models (MLLMs)[15]. While these models have achieved46

notable advancements, our findings indicate that they continue to struggle with the nuances of simple47

intuitive physics properties such as permanence and immutability, particularly in comparison to human48

performance, which remains consistently strong across all conditions. This disparity highlights the49

ongoing challenges in bridging the gap between artificial and human cognition, emphasizing the need50

for continued research and innovation in this critical area.51

Our key contributions are as follows:52

• A novel benchmark dataset for intuitive physics, featuring diverse scenarios with varying53

complexity levels. IntPhys 2 advances beyond existing benchmarks by incorporating photo-54

realistic scenes with sophisticated visual elements (including complex lighting, shadows,55

occlusions, and textures), and employing both fixed and dynamic camera perspectives to56

simulate natural viewpoint changes.57

• A comprehensive evaluation of state-of-the-art AI systems, including predictive models and58

Multimodal Large Language Models (MLLMs), establishing new baselines and identifying59

specific challenges in intuitive physics reasoning.60

1As a reminder, any use of content or technologies made available by Unreal and/or Epic Games, or any
other provider, should comply with their applicable terms (such as the Content License Agreement available at
https://www.unrealengine.com/en-US/eula/content or any other direct agreement one may have with
Epic / Unreal)
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2 Benchmark Design61

From an early age, humans develop an innate ability to grasp basic physical principles [34, 3, 6, 4, 44],62

such as object permanence [3] (objects persist in space and time, even when they are out of sight),63

immutability [51, 52] (objects maintain their shape and structure), spatio-temporal continuity [42]64

(objects move smoothly through space and time), and solidity [42] (objects occupy space and cannot65

pass through one another). These principles allow us to predict and interpret the behavior of inanimate66

objects in our environment, forming the foundation for more complex reasoning and decision-making67

processes. To systematically assess the development of these intuitive physics principles, the violation68

of expectations(VOE) [31, 41] paradigm has been leveraged. This paradigm, which has been69

extensively used in studies with human infants[5, 43], involves presenting them with scenarios70

where objects either behave in accordance with or violate these fundamental physical principles.71

By measuring infants’ gaze time to these scenarios, researchers can infer their understanding of72

intuitive physics. Such a framework has been one of the main inspirations for IntPhys [37], and73

IntPhys 2 builds upon this foundation by adhering to the methodological framework established by74

its predecessor, employing a quadruplet video structure for each scene. This design comprises two75

possible and two impossible videos per scenario, configured such that the possible video of one76

scenario serves as the impossible video in another, and vice versa. This systematic arrangement77

is instrumental in mitigating low-level perceptual biases, thereby requiring models to engage with78

high-level temporal dependencies and underlying physical principles. By maintaining this rigorous79

structure, IntPhys 2 offers a robust and unbiased framework for assessing the depth of intuitive80

physics understanding in machine learning systems, preventing models from relying on shortcuts or81

latching onto spurious features and ensuring that model performance is more correlated with genuine82

cognitive capabilities rather than the exploitation of dataset-specific artifacts.83

IntPhys 2 introduces several key advancements over previous benchmarks and datasets in the domain84

of intuitive physics understanding [25, 50, 37] that are illustrated in Figure 2. These enhancements85

are designed to provide a more rigorous and comprehensive evaluation of AI models, addressing86

limitations observed in earlier works. The core differences are as follows:87

• Focus on Occlusions: Unlike previous benchmarks that may have included a variety of88

scenarios, IntPhys 2 exclusively considers occlusions. This focus allows for a more targeted89

assessment of a model’s ability to maintain their understanding in the presence of visual90

obstructions.91

• Dynamic Camera Movements: To create occlusions, IntPhys 2 employs static and dynamic92

camera movements. This approach not only increases the complexity of the scenes but also93

mimics real-world conditions where objects may be temporarily obscured from view due to94

changes in perspective.95

• Enhanced Realism: The scenes in IntPhys 2 are crafted with improved realism, providing96

a more lifelike and challenging environment for models to navigate. This enhancement97

ensures that the benchmark more accurately reflects the complexities of the real-world.98

• Diverse Scene Variety: IntPhys 2 significantly expands the diversity of scenes and tasks99

considered. Unlike traditional datasets that often feature a single scene per physical prop-100

erty, IntPhys 2 includes multiple tasks within each condition, offering a broader range of101

challenges and reducing the risk of overfitting to specific scene types.102

• Increased Short-Term Memory Demand: The benchmark places a stronger emphasis on103

the need for short-term memory, requiring models to retain and utilize information over brief104

intervals effectively. This demand is critical for accurately predicting and understanding the105

dynamics of occluded objects.106

We designed the benchmark with three distinct data splits to facilitate comprehensive evaluation107

(Table 1). The first split, known as the Debug set, includes five scenes with static camera setups and108

brightly colored assets. Each scene features a quadruplet of videos, supplemented by three additional109

videos that, while identical in configuration, display subtle variations due to environmental factors110

such as cloud movement or wind. These variations, though easy to miss to human observers, introduce111

minor pixel-level discrepancies that can influence model performance. This split is primarily intended112

for model calibration and to evaluate sensitivity to such noise. Ideally, a model should be robust113

to these negligible variations, demonstrating its ability to generalize beyond minor environmental114

fluctuations. We demonstrate ways to use this subset for qualitative analysis of predictive models in115
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Table 1: IntPhys2 benchmark splits. We release three separate splits. The first is intended for
debugging only and provide some measurement on the model’s sensitivity to the video generation
artifacts (such as mp4 compression or cloud moving the background of the scene). The second is
the main evaluation set with three different sub-splits ("Easy", "Medium", "Hard"). The third is a
held-out split that we release without additional metadata.

Split Scenes Videos Description Purpose

Debug Set 5 60 Static cameras, bright assets, 3 generations Model calibration

Main Set 253 1,012 Static and moving cameras: 3 sub-splits: Main evaluation set
- Easy: Simple environments, colorful shapes
- Medium: Diverse backgrounds, textured shapes
- Hard: Realistic objects, complex backgrounds

Held-Out Set 86 344 Moving cameras, Mirrors hard sub-split, includes distractors Main test set

Figure 2: Benchmark Comparison. Our analysis compares four benchmarks: GRASP [25],
InfLevel [50], IntPhys [37], and IntPhys2 (Ours). The benchmarks differ in their number of videos
(simulated, real, test, development, debug, main, held-out), experimental setups, and physical
properties assessed (permanence, immutability, continuity, solidity, inertia, gravity, collision, support).
The density plots illustrate the distribution of occlusion durations (in seconds) for each benchmark.
In contrast to other benchmarks, IntPhys2 covers a higher range of occlusion durations, allowing
for a better assessment of a model’s short-term memory. Camera settings vary between static and
moving configurations. Example frames from each benchmark are shown on the right.

appendix G. The second split, termed the main set, comprises 253 scenes resulting in a total of 1,012116

videos. This set is designed for zero-shot evaluations and serves as the primary basis for comparing117

models. It is further divided into three sub-splits: an easy sub-split with simple environments and118

shape-based colorful assets, a medium sub-split featuring more diverse backgrounds and simple119

shapes with complex textures, and a hard sub-split characterized by highly diverse backgrounds120

and assets shaped like real objects. The final split, is a held-out set for which metadata (containing121

the ground truth about the plausibility of the events in the video) is not released. Solving this hard122

subset requires an understanding that is robust to complex settings and that does not use metadata as123

additional help. While the main set allows one to track progress more granularly and can be more124

lenient on models, solving the held-out set is what will truly mean that a model understands intuitive125

physics in complex settings.126

3 Evaluation protocol : measuring intuitive physics understanding127

Human Evaluation. To assess the gap between human and AI performance in understanding128

intuitive physics, we conducted a human annotation task. This task was designed to evaluate the129

ability of human participants to judge the physical plausibility of videos generated by a simulation130

engine, similar to those used in video game development. The evaluation involved the 1,416 videos,131

each with a duration of around 10 seconds. To ensure a comprehensive assessment, each video was132
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rated by three different annotators. The order of video presentation was randomized for each annotator133

to mitigate order effects and maintain the integrity of the evaluation process. To prevent attention134

fatigue and maintain high-quality ratings, each annotator was limited to evaluating a maximum of135

96 videos. Prior to the main annotation task, annotators were shown only a set of 10 videos that136

were all physically plausible. This familiarization phase was designed to acquaint annotators with137

the types of videos produced by the simulation engine and to establish a baseline understanding of138

physical plausibility within the context of the task. Annotators were only informed that the initial set139

of 10 videos they saw depicted scenes where objects behaved in physically plausible ways. Following140

this, annotators were tasked with evaluating additional videos, some of which might contained errors141

that resulted in physically implausible object behavior. Annotators were instructed to watch each142

video carefully and in its entirety, considering the plausibility of object behavior based on real-world143

physics. They rated each video using a Likert scale, ranging from 1 (completely implausible) to 4144

(very plausible). Then, we aggregated the results using a majority vote between the three annotators.145

This structured approach to human evaluation was crucial for obtaining reliable data on human146

performance, which serves as a benchmark for comparing the capabilities of current and future AI147

models in understanding intuitive physics.148

Evaluating multimodal large language models. Our evaluation methodology for MLLMs diverges149

slightly from our human evaluation since current models 1) are not yet able to process eight videos150

in their input context 2) do not have long term visual memory 3) are not learning from previous151

context. To compensate for this lack of memory, we employed more detailed prompts for MLLMs152

asking only wether the video despite a plausible scenario. The prompts included explicit instructions153

about the video source being a simulator and that the model should base its answer solely on the154

events happening in the video, not on the quality of the simulation itself. To assess the models’155

sensitivity to prompts, we evaluated each model point-wise using the prompts presented in Table156

5. The first prompt is concise and open-ended, requiring the model to respond with a simple "yes"157

or "no". In contrast, the second prompt is more specific, guided, and is expecting a binary digit as158

response. Anecdotally, MLLMs can be sensitive to the format of the requires output[30], so we made159

a version of the second prompt in which we require a "yes/no" answer instead of the binary digit160

format. However, prompting is not the sole source of variance; sometimes, even with a temperature161

setting of 0, models can produce different answers to the same prompt and input data. Therefore, we162

ran each prompt at least twice to evaluate any variance in predictions. Ideally, the accuracy should163

remain consistent in such cases. To give MLLMs an advantage to compensate for their short-term164

memory limitations, we decided to show the best accuracy that can be obtained by a model across165

multiple different runs, instead of doing a majority vote like we did in the human evaluation. Lastly,166

since the number of frames that can be fed into an MLLM depends on its input context size, we had167

to run several experiments using a different number of input frames.168

Evaluating prediction-based models. Inspired by the Violation of Expectation framework, Garrido169

et al. [19] introduced a model-based evaluation setup that measures how much a model is surprised170

when viewing an unexpected event compared to an expected event. A higher surprise indicates that171

the events violated the model’s expectations, with impossible videos expected to elicit more surprise172

than possible ones. A proxy for surprise is the prediction error over a video for models that can173

predict the future [37, 40, 38, 19]. We split a video into overlapping windows (typically 16-32 frames)174

that the model can process. For each window, the model predicts the target part based on the context,175

and the prediction error measures the model’s surprise. Comparing surprise across videos probes the176

model’s understanding, and we adapt the protocol for longer contexts as described in appendix F.177

The adaptation introduces constraints: events necessary for prediction must be in the context, and178

models must remember occluded objects. Models handling 16 frames at a time require a suitable179

framerate for prediction in order to balance memory and motion fluidity. Different experimental180

settings have different baseline prediction errors, making surprise comparisons challenging. Paired181

videos with identical content except for a physics-breaking event allow for controlled comparisons as182

the surprise difference can be attributed to the physics-breaking event, enabling precise probing of183

physics understanding, and giving rise to two evaluation protocols: pairwise and single video settings.184

While we have described protocols designed for certain families of models, playing to their respective185

strengths, other protocols are possible. For example, in InfLevel-lab [50], models trained for action186

recognition are probed by measuring how out of distribution impossible videos are. This has however187

not yielded evidence of understanding in models. We thus chose to focus on models that have188
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either demonstrated previous understanding [19] or ones that can be probed akin to humans. The189

popularity of multimodal LLMs and predictive models also adds to the relevance of IntPhys 2 to190

current paradigms.191

4 Experiments192

In our evaluation, we investigated the capabilities of several state-of-the-art MLLMs, including both193

open-source and proprietary options. Our study featured the Gemini series (Gemini 1.5 Pro and194

Gemini 2.5 Pro Flash Preview [21]), as well as the latest versions of GPT4-o and Qwen-VL 2.5 [2].195

We also evaluated three prediction-based methods: VideoMAEv2 [47] which predicts pixels directly,196

Cosmos-Predict1-4B [1] which predicts in the latent space of an autoencoder, and V-JEPA [9] which197

predicts in latent space. The main results are presented in Table 2. Notably, there is a meaningful198

gap between human and current model performances. The best model, Gemini 2.5 Flash, performed199

only slightly above random chance, except on the easy subset of our benchmark, where it achieved200

64% accuracy. Table 3 provides more fine-grained results across four different conditions. The201

permanence condition appears to be the easiest for both models and humans, as objects are not202

moving by themselves. While there is no consistent trend for fixed versus moving camera scenarios203

among models, humans tend to perform slightly better in fixed camera settings. Overall, the gap204

between human and model performance remains significant across each split and data category.205

Table 2: Accuracy values showing best model performance across difficulty levels. Most of the
models were run a dozen of time with a different set of hyper-parameters. For a given model, we only
report its best run in this table while the human performance is computed from a majority vote.

Model Type Easy Medium Hard Overall Held Out IntPhys[37]

Human - 96.17 97.8 95.5 96.44 92.44 -

GPT4-o[33] MLLMs 57.69 54.75 54.17 53.75 53.19 -
Qwen-VL 2.5[2] MLLMs 50.96 53.25 51.49 52.27 49.12 -
Gemini-1.5 Pro[21] MLLMs 58.65 53.0 52.67 52.27 52.10 55.81
Gemini-2.5 Flash[21] MLLMs 64.42 56.75 54.46 55.63 56.10 56.39

VideoMAEv2-g [47] Predictive 50.00 53.50 52.73 51.19 52.91 59.40
Cosmos-4B [1] Predictive 46.00 52.00 48.05 49.41 48.84 85.42
V-JEPA-h + RoPE [9, 19] Predictive 52.00 51.50 52.34 51.58 54.65 98.30

Table 3: Accuracy across property and camera type. For each model report the accuracy of each
subset based on the best one across a set of hyperparameters. The smaller size of each subsets
contributes to volatility in performance.

Permanence Immutability Continuity Solidity
Model Fixed Moving Fixed Moving Fixed Moving Fixed Moving

GPT4-o 59.62 58.82 58.65 59.56 54.81 57.35 56.73 55.32
Qwen-VL 2.5 53.85 54.41 56.73 53.68 52.88 54.41 50.96 51.06
Gemini-1.5 Pro 55.77 55.88 56.73 56.73 54.80 54.80 56.73 56.73
Gemini-2.5 Flash 64.42 58.82 59.62 63.97 54.81 55.15 55.77 56.38
VideoMAEv2-g[47] 59.62 45.59 54.81 50.67 71.15 52.94 46.15 56.38
Cosmos-4B [1] 51.92 41.18 50.96 48.32 53.85 50.00 48.08 55.32
V-JEPA-h + RoPE [9, 19] 55.77 58.82 51.92 52.01 53.85 55.88 51.92 51.06

Human 100.0 99.26 97.11 90.44 99.04 94.44 96.15 95.21

4.1 Results: Multimodal Large Language Models206

A key differentiator among these models is their language component. To assess the sensitivity of207

these models to the prompt, we performed an ablation study over the different prompts described208

in Table 5. Another key element is the method of processing video input and how many frames the209

model is fed with. The Gemini models are designed to accept MP4 videos directly, whereas the other210

models require video content to be converted into sequences of image frames. This required us to211
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Figure 3: Evaluation of model’s sensitivity. (left) We conducted an ablation study examining various
factors, including sensitivity to different prompts and the model’s variability in responses to identical
inputs, as well as the difficulty level of the data. (right) We illustrate how a model’s performance
varies with the number of frames it receives. Our findings indicate that most models struggle to
effectively make use of an increased number of input frames.

adopt a customized approach for each model: for those unable to process MP4s directly, we employed212

uniform subsampling of frames according to the model’s input capacity. Conversely, for the Gemini213

models, we extended the video length to ensure the model received an adequate number of frames,214

as their API subsamples video at a rate of 1 frame per second. This allows us to run our ablations215

using either 10 frames, 30 frames, 60 frames, or 120 frames. Our evaluation included a series of216

ablation studies, which assessed the impact of various prompts, the number of frames inputted into217

each model, performance across different data difficulty levels, and sensitivity to randomness. To218

ensure consistency, we maintained a temperature setting of 0 across all models during testing.219

The results of our evaluation are presented in Table 2 and 3, showcasing the optimal performance220

outcomes for each model across the various factors we examined. In Figure 3, we present an ablation221

analysis focusing on several key factors: robustness to generation artifacts, number of frames, and222

prompt. The first plot on the left utilizes the Debug set in IntPhys2, which contains three videos of223

the exact same scene. Even if these videos appear identical to humans, models can be very sensitive224

to any compression artifact noise. The model is considered correct only if it gives the correct answer225

for all 3 videos generated from the same scene. Thus, this accuracy shows the model’s performance226

as well as its robustness to imperceptible noise. Interestingly, Gemini 1.5 Pro seems much more227

consistent in its answers than Gemini 2.5 Flash. The second plot in Figure 3 provides insights into228

how the number of frames influences model performance. Our analysis reveals that most models229

experience a decline in performance when additional frames are introduced, suggesting a limitation in230

handling extended contexts[27]. The last plot showcases a prompt ablation, in which we can clearly231

see that the prompt selected can have a huge impact on performance. The best prompt for one model232

might not be the best one for another. Interestingly, it seems that models like gemini 2.5-flash perform233

better when being asked to answer by a yes/no answer than a binary digit. Qwen2.5-VL is not even234

able to follows the instruction correctly for the 0/1 prompt. These evaluations highlight the difficulties235

in making fair evaluations of MLLMs, as a given choice of hyperparameters can significantly change236

their performance. However, even the best models are still close to random performance, highlighting237

that current models have not learned a good physical world model, which might result in higher238

variance due to the randomness of the answers.239

4.2 Results: Predictive models240

We evaluate three prediction-based methods — two aimed at predicting pixels, one predicting241

in a latent space. For the former category, we use Cosmos-Predict1-4B [1] (Cosmos-4B) and242

VideoMAEv2 [47]. While Cosmos is directly trained to predict the future, acting as a world model,243

VideoMAEv2 is trained to reconstructed masked tokens from a video. Using it to predict the future is244

thus different from its training objective, as is the case for the methods we discuss next. The latent245

prediction methods we evaluate are the V-JEPA + RoPE [9, 45] models trained in [19]. For exact246

hyperparameters uses, confer appendix F.3.247

We report the accuracy of models on the different subsets of IntPhys 2 in Table 2. We find that248

models exhibit performance close to chance (50%) across all subsets , as well on the held-out set.249
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Figure 4: Results for predictive models. (left) When measuring whether models exhibit a higher
surprise for impossible instances within a pair, we find that all tested models perform around
chance level. (middle) This translates to the harder setting of single video classification, where the
performance remains around chance. (right) Focusing on camera movements, one of the key chances
in IntPhys 2, we find that model also struggle across camera settings. Confidence intervals obtained
via bootstrapping.

This contrasts with the high accuracies that models obtain on IntPhys. Looking at per condition250

accuracy in Table 3, we further find that even when using more specific subsets of IntPhys 2—and251

thus using more specialized hyperparameters—the models struggle to surpass chance level. The252

exception is VideoMAEv2, which achieves a strong 71.15% accuracy on continuity for fixed camera,253

but these results should be contextualized against the small size of our subsets, which may introduce254

randomness in performance, meaning subset results should be taken with a grain of salt. In Figure 4,255

we further investigate the accuracy of models when classifying pairs or single videos. The latter is256

conceptually harder as the surprise must be as independent as possible from the general prediction257

difficulty of the video. It is however how humans are evaluated. We can see in the left and middle258

of Figure 4 that the accuracy is also close to random performance in single videos. In the right of259

Figure 4 we ablate further on models’ performance on the main subset of IntPhys 2. While the260

performance on the main set is close to random overall, it is possible that the models can perform261

better on certain subsets. This has been observed on InfLevel-lab, where models are able to perform262

well on one task, even when they perform close to random chance on others [19]. We thus isolate263

camera motion and find that even in the fixed camera setting—closest to existing benchmarks—264

the models perform close to chance level. These results demonstrate that models still struggle to265

understand intuitive physical concepts in complex scenarios, even if they are able to demonstrate a266

non-trivial understanding in simpler settings [19]. While multiple factors can explain this degradation267

in performance, a notable one is the stricter memory requirements. As illustrated in Figure 2, IntPhys268

2 poses stricter requirements on short term memory than existing datasets, a property that video269

models can struggle with.270

5 Related Work271

Intuitive physics understanding benchmarking. Benchmarking intuitive physics understanding272

has been a focus of various datasets and challenges. INTPHYS [37] tests machine perception of273

core physical phenomena through videos with possible and impossible physical events, inspired274

by developmental psychology experiments with infants. GRASP [25] provides a comprehensive275

evaluation framework for embodied AI that includes intuitive physics as one of its core domains.276

INFLEVEL [50] focuses on measuring intuitive physics understanding in simulation as well as in the277

real world. Other notable benchmarks include PHYRE [7], which challenges models to solve physics278

puzzles through counterfactual reasoning, and OOPS [18], which challenges models to predict when279

unintended physical actions occur in in-the-wild videos.280

Broader physics understanding benchmarking. To evaluate broader physical understanding,281

benchmarks have been developed to test complex physical phenomena, including rigid bodies, fluids,282

soft bodies, and their interactions. PHYSION [11] presents a comprehensive evaluation suite that283

assesses visual physical prediction based on object properties in a scene. CATER [22] focuses284
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on tracking and reasoning about moving objects, while CLEVRER [54] targets causal reasoning285

in video through descriptive, explanatory, predictive, and counterfactual questions. The Physical286

Interaction QA (PIQA) benchmark [13] tests physical commonsense knowledge through everyday287

human interactions. More recently, PHYSION++ [46] extends the original Physion benchmark to288

include more complex scenarios, and PHYSICS IQ [32] proposes a real-video benchmark to assess289

understanding of fundamental physical principles, including fluid dynamics, optics, solid mechanics,290

magnetism, and thermodynamics. More recently, Wang et al. [48] introduced a new synthetic291

benchmark for assessing the following properties velocity, acceleration, and collisions.292

Methods tackling physical understanding. Various computational approaches have been devel-293

oped to tackle physical understanding challenges. World models [23, 24] learn latent dynamics of294

environments to predict future states and plan actions. Generative models, particularly those based295

on graph neural networks [39], have shown promise in modeling physical dynamics by representing296

objects and their interactions. Joint Embedding Predictive Architectures (JEPA) [28] represent a297

self-supervised approach that learns to predict representations rather than raw observations. Large298

Language Models (LLMS) [16, 33] have demonstrated surprising capabilities in physical reasoning299

despite lacking explicit physical grounding. Hybrid approaches combining simulation-based rea-300

soning with neural networks [53, 29] have also shown promise in physical understanding tasks by301

leveraging both data-driven learning and explicit physical knowledge. More specialized methods302

have also been developed to tackle intuitive physics understanding, often relying on hardwired priors,303

trough the use of segmentation masks [35, 38] or de-rendering [40] for example.304

Datasets generated with Unreal Engine. Unreal Engine has been widely adopted in the creation305

of synthetic datasets and benchmarks due to its advanced rendering capabilities and flexibility in306

simulating complex environments. For example, the CARLA simulator leverages Unreal Engine307

to provide a comprehensive autonomous driving benchmark, offering diverse driving scenarios and308

environmental conditions that are crucial for advancing research in autonomous vehicle perception309

and control [17]. Similarly, the AI2-THOR framework uses Unreal Engine to generate interactive310

environments for training and evaluating embodied AI agents, facilitating research in robotic manipu-311

lation and navigation [26]. UnrealCV also integrates with Unreal Engine to produce photorealistic312

images with ground truth annotations, supporting the development and evaluation of computer vision313

algorithms [36]. More recently, Bordes et al. [14] have used Unreal Engine for probing robustness of314

vision models. These projects highlight the engine’s utility in generating high-quality datasets that315

enable researchers to explore new frontiers in AI and machine learning.316

6 Conclusion317

Our evaluations on IntPhys 2 reveal significant limitations in current models’ intuitive physics318

reasoning capabilities, even for those that have shown promise in other benchmarks. The increased319

complexity and diversity of IntPhys 2, which mirrors real-world scenarios, exposes the models’320

inability to effectively process longer sequences, higher framerates, and utilize short-term memory.321

These limitations are evident in the almost-random performance of models on IntPhys 2, with only322

recent Multimodal Large Language Models like Gemini 2.5 Flash achieving non-trivial performance.323

Ultimately, IntPhys 2 highlights the need for novel model architectures and training methodologies324

that can bridge the gap between artificial and human cognition. By addressing the limitations of325

current models and the benchmark itself, we can pave the way for more robust and human-like AI326

systems that can approximate human intuitive physics understanding.327

Limitations While IntPhys 2 represents a significant advancement in benchmarking intuitive328

physics understanding, it also has limitations. Its reliance on synthetic environments may not fully329

capture the complexity of real-world physics, and the scope of physical principles covered is limited.330

Future research should focus on integrating real-world data, expanding the benchmark to include331

additional dimensions, and exploring more dynamic and interactive environments. Additionally, our332

experimental setting has limitations, including the number of video frames that models can process,333

which differs from human perception. Humans can process full videos and retain long-term context,334

whereas current models are limited to sub-sampling a specific number of frames and cannot process335

multiple videos in a single context. These limitations highlight opportunities for future research and336

development of more advanced model architectures.337
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MLLMs and predictions models.490
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• The answer NA means that the abstract and introduction do not include the claims492

made in the paper.493

• The abstract and/or introduction should clearly state the claims made, including the494

contributions made in the paper and important assumptions and limitations. A No or495

NA answer to this question will not be perceived well by the reviewers.496

• The claims made should match theoretical and experimental results, and reflect how497

much the results can be expected to generalize to other settings.498

• It is fine to include aspirational goals as motivation as long as it is clear that these goals499

are not attained by the paper.500

2. Limitations501

Question: Does the paper discuss the limitations of the work performed by the authors?502

Answer: [Yes]503

Justification: We do it in the conclusion.504
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• The answer NA means that the paper has no limitation while the answer No means that506

the paper has limitations, but those are not discussed in the paper.507

• The authors are encouraged to create a separate "Limitations" section in their paper.508

• The paper should point out any strong assumptions and how robust the results are to509

violations of these assumptions (e.g., independence assumptions, noiseless settings,510

model well-specification, asymptotic approximations only holding locally). The authors511

should reflect on how these assumptions might be violated in practice and what the512
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• The authors should reflect on the scope of the claims made, e.g., if the approach was514

only tested on a few datasets or with a few runs. In general, empirical results often515
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For example, a facial recognition algorithm may perform poorly when image resolution518
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tant role in developing norms that preserve the integrity of the community. Reviewers530

will be specifically instructed to not penalize honesty concerning limitations.531

3. Theory assumptions and proofs532
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a complete (and correct) proof?534

Answer: [NA]535
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Justification: The paper does not include theoretical results.536

Guidelines:537

• The answer NA means that the paper does not include theoretical results.538

• All the theorems, formulas, and proofs in the paper should be numbered and cross-539

referenced.540

• All assumptions should be clearly stated or referenced in the statement of any theorems.541

• The proofs can either appear in the main paper or the supplemental material, but if542

they appear in the supplemental material, the authors are encouraged to provide a short543

proof sketch to provide intuition.544

• Inversely, any informal proof provided in the core of the paper should be complemented545

by formal proofs provided in appendix or supplemental material.546

• Theorems and Lemmas that the proof relies upon should be properly referenced.547

4. Experimental result reproducibility548

Question: Does the paper fully disclose all the information needed to reproduce the main ex-549

perimental results of the paper to the extent that it affects the main claims and/or conclusions550

of the paper (regardless of whether the code and data are provided or not)?551

Answer: [Yes]552

Justification: Yes, all the experimental details are in the appendix and the code repository553

that will be released upon public release.554

Guidelines:555

• The answer NA means that the paper does not include experiments.556

• If the paper includes experiments, a No answer to this question will not be perceived557

well by the reviewers: Making the paper reproducible is important, regardless of558

whether the code and data are provided or not.559

• If the contribution is a dataset and/or model, the authors should describe the steps taken560

to make their results reproducible or verifiable.561

• Depending on the contribution, reproducibility can be accomplished in various ways.562

For example, if the contribution is a novel architecture, describing the architecture fully563

might suffice, or if the contribution is a specific model and empirical evaluation, it may564

be necessary to either make it possible for others to replicate the model with the same565

dataset, or provide access to the model. In general. releasing code and data is often566

one good way to accomplish this, but reproducibility can also be provided via detailed567

instructions for how to replicate the results, access to a hosted model (e.g., in the case568

of a large language model), releasing of a model checkpoint, or other means that are569

appropriate to the research performed.570

• While NeurIPS does not require releasing code, the conference does require all submis-571

sions to provide some reasonable avenue for reproducibility, which may depend on the572

nature of the contribution. For example573

(a) If the contribution is primarily a new algorithm, the paper should make it clear how574

to reproduce that algorithm.575

(b) If the contribution is primarily a new model architecture, the paper should describe576

the architecture clearly and fully.577

(c) If the contribution is a new model (e.g., a large language model), then there should578

either be a way to access this model for reproducing the results or a way to reproduce579

the model (e.g., with an open-source dataset or instructions for how to construct580

the dataset).581

(d) We recognize that reproducibility may be tricky in some cases, in which case582

authors are welcome to describe the particular way they provide for reproducibility.583

In the case of closed-source models, it may be that access to the model is limited in584

some way (e.g., to registered users), but it should be possible for other researchers585

to have some path to reproducing or verifying the results.586

5. Open access to data and code587

Question: Does the paper provide open access to the data and code, with sufficient instruc-588

tions to faithfully reproduce the main experimental results, as described in supplemental589

material?590
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Answer: [Yes]591

Justification: The benchmark and code are available.592

Guidelines:593

• The answer NA means that paper does not include experiments requiring code.594

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/595

public/guides/CodeSubmissionPolicy) for more details.596

• While we encourage the release of code and data, we understand that this might not be597

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not598

including code, unless this is central to the contribution (e.g., for a new open-source599

benchmark).600

• The instructions should contain the exact command and environment needed to run to601

reproduce the results. See the NeurIPS code and data submission guidelines (https:602

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.603

• The authors should provide instructions on data access and preparation, including how604

to access the raw data, preprocessed data, intermediate data, and generated data, etc.605

• The authors should provide scripts to reproduce all experimental results for the new606

proposed method and baselines. If only a subset of experiments are reproducible, they607

should state which ones are omitted from the script and why.608

• At submission time, to preserve anonymity, the authors should release anonymized609

versions (if applicable).610

• Providing as much information as possible in supplemental material (appended to the611

paper) is recommended, but including URLs to data and code is permitted.612

6. Experimental setting/details613

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-614

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the615

results?616

Answer: [Yes]617

Justification: Yes, we specify all the data splits that we made. Our benchmark is only for618

evaluation only which reduce the number of hyper-parameters since we are not optimizing619

anything.620

Guidelines:621

• The answer NA means that the paper does not include experiments.622

• The experimental setting should be presented in the core of the paper to a level of detail623

that is necessary to appreciate the results and make sense of them.624

• The full details can be provided either with the code, in appendix, or as supplemental625

material.626

7. Experiment statistical significance627

Question: Does the paper report error bars suitably and correctly defined or other appropriate628

information about the statistical significance of the experiments?629

Answer: [Yes]630

Justification: Yes, we report errors bar for each models accross different seed, prompts or631

other factors of variations to ensure that we have a good view of a model’s performance. If632

not possible, we use bootstrapping to compute confidence intervals.633

Guidelines:634

• The answer NA means that the paper does not include experiments.635

• The authors should answer "Yes" if the results are accompanied by error bars, confi-636

dence intervals, or statistical significance tests, at least for the experiments that support637

the main claims of the paper.638

• The factors of variability that the error bars are capturing should be clearly stated (for639

example, train/test split, initialization, random drawing of some parameter, or overall640

run with given experimental conditions).641
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• The method for calculating the error bars should be explained (closed form formula,642

call to a library function, bootstrap, etc.)643

• The assumptions made should be given (e.g., Normally distributed errors).644

• It should be clear whether the error bar is the standard deviation or the standard error645

of the mean.646

• It is OK to report 1-sigma error bars, but one should state it. The authors should647

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis648

of Normality of errors is not verified.649

• For asymmetric distributions, the authors should be careful not to show in tables or650

figures symmetric error bars that would yield results that are out of range (e.g. negative651

error rates).652

• If error bars are reported in tables or plots, The authors should explain in the text how653

they were calculated and reference the corresponding figures or tables in the text.654

8. Experiments compute resources655

Question: For each experiment, does the paper provide sufficient information on the com-656

puter resources (type of compute workers, memory, time of execution) needed to reproduce657

the experiments?658

Answer: [Yes]659

Justification: Compute resources are described in the appendix.660

Guidelines:661

• The answer NA means that the paper does not include experiments.662

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,663

or cloud provider, including relevant memory and storage.664

• The paper should provide the amount of compute required for each of the individual665

experimental runs as well as estimate the total compute.666

• The paper should disclose whether the full research project required more compute667

than the experiments reported in the paper (e.g., preliminary or failed experiments that668

didn’t make it into the paper).669

9. Code of ethics670

Question: Does the research conducted in the paper conform, in every respect, with the671

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?672

Answer: [Yes]673

Justification:674

Guidelines:675

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.676

• If the authors answer No, they should explain the special circumstances that require a677

deviation from the Code of Ethics.678

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-679

eration due to laws or regulations in their jurisdiction).680

10. Broader impacts681

Question: Does the paper discuss both potential positive societal impacts and negative682

societal impacts of the work performed?683

Answer: [NA]684

Justification: no direct societal impact of the work performed.685

Guidelines:686

• The answer NA means that there is no societal impact of the work performed.687

• If the authors answer NA or No, they should explain why their work has no societal688
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• The conference expects that many papers will be foundational research and not tied694

to particular applications, let alone deployments. However, if there is a direct path to695

any negative applications, the authors should point it out. For example, it is legitimate696

to point out that an improvement in the quality of generative models could be used to697

generate deepfakes for disinformation. On the other hand, it is not needed to point out698

that a generic algorithm for optimizing neural networks could enable people to train699

models that generate Deepfakes faster.700

• The authors should consider possible harms that could arise when the technology is701

being used as intended and functioning correctly, harms that could arise when the702

technology is being used as intended but gives incorrect results, and harms following703

from (intentional or unintentional) misuse of the technology.704

• If there are negative societal impacts, the authors could also discuss possible mitigation705

strategies (e.g., gated release of models, providing defenses in addition to attacks,706

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from707

feedback over time, improving the efficiency and accessibility of ML).708

11. Safeguards709

Question: Does the paper describe safeguards that have been put in place for responsible710

release of data or models that have a high risk for misuse (e.g., pretrained language models,711

image generators, or scraped datasets)?712

Answer: [NA]713

Justification: We not train or introduce new models. There aren’t any safety risks in the data714

we are releasing715

Guidelines:716

• The answer NA means that the paper poses no such risks.717

• Released models that have a high risk for misuse or dual-use should be released with718

necessary safeguards to allow for controlled use of the model, for example by requiring719

that users adhere to usage guidelines or restrictions to access the model or implementing720

safety filters.721

• Datasets that have been scraped from the Internet could pose safety risks. The authors722

should describe how they avoided releasing unsafe images.723

• We recognize that providing effective safeguards is challenging, and many papers do724

not require this, but we encourage authors to take this into account and make a best725

faith effort.726

12. Licenses for existing assets727

Question: Are the creators or original owners of assets (e.g., code, data, models), used in728

the paper, properly credited and are the license and terms of use explicitly mentioned and729

properly respected?730

Answer: [Yes]731

Justification: The list of assets used will be available in our github repository.732

Guidelines:733

• The answer NA means that the paper does not use existing assets.734

• The authors should cite the original paper that produced the code package or dataset.735

• The authors should state which version of the asset is used and, if possible, include a736

URL.737

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.738

• For scraped data from a particular source (e.g., website), the copyright and terms of739

service of that source should be provided.740

• If assets are released, the license, copyright information, and terms of use in the741

package should be provided. For popular datasets, paperswithcode.com/datasets742

has curated licenses for some datasets. Their licensing guide can help determine the743

license of a dataset.744

• For existing datasets that are re-packaged, both the original license and the license of745

the derived asset (if it has changed) should be provided.746
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• If this information is not available online, the authors are encouraged to reach out to747

the asset’s creators.748

13. New assets749

Question: Are new assets introduced in the paper well documented and is the documentation750

provided alongside the assets?751

Answer: [Yes]752

Justification: Yes, we are also releasing a Datasheet for IntPhys2 that can be found in the753

appendix.754

Guidelines:755

• The answer NA means that the paper does not release new assets.756

• Researchers should communicate the details of the dataset/code/model as part of their757

submissions via structured templates. This includes details about training, license,758

limitations, etc.759

• The paper should discuss whether and how consent was obtained from people whose760

asset is used.761

• At submission time, remember to anonymize your assets (if applicable). You can either762

create an anonymized URL or include an anonymized zip file.763

14. Crowdsourcing and research with human subjects764

Question: For crowdsourcing experiments and research with human subjects, does the paper765

include the full text of instructions given to participants and screenshots, if applicable, as766

well as details about compensation (if any)?767

Answer:[Yes]768

Justification: We explain how we perform the human evaluation in section D769

Guidelines:770

• The answer NA means that the paper does not involve crowdsourcing nor research with771

human subjects.772

• Including this information in the supplemental material is fine, but if the main contribu-773

tion of the paper involves human subjects, then as much detail as possible should be774

included in the main paper.775

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,776

or other labor should be paid at least the minimum wage in the country of the data777

collector.778

15. Institutional review board (IRB) approvals or equivalent for research with human779

subjects780

Question: Does the paper describe potential risks incurred by study participants, whether781

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)782

approvals (or an equivalent approval/review based on the requirements of your country or783

institution) were obtained?784

Answer: [NA]785

Justification: [NA]786

Guidelines:787

• The answer NA means that the paper does not involve crowdsourcing nor research with788

human subjects.789

• Depending on the country in which research is conducted, IRB approval (or equivalent)790

may be required for any human subjects research. If you obtained IRB approval, you791

should clearly state this in the paper.792

• We recognize that the procedures for this may vary significantly between institutions793

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the794

guidelines for their institution.795

• For initial submissions, do not include any information that would break anonymity (if796

applicable), such as the institution conducting the review.797
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16. Declaration of LLM usage798

Question: Does the paper describe the usage of LLMs if it is an important, original, or799

non-standard component of the core methods in this research? Note that if the LLM is used800

only for writing, editing, or formatting purposes and does not impact the core methodology,801

scientific rigorousness, or originality of the research, declaration is not required.802

Answer: [NA]803

Justification: the core method development in this research does not involve LLMs as any804

important, original, or non-standard components.805

Guidelines:806

• The answer NA means that the core method development in this research does not807

involve LLMs as any important, original, or non-standard components.808

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)809

for what should or should not be described.810
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