
FAN: Fourier Analysis Networks

Yihong Dong1∗ , Ge Li1∗ , Yongding Tao1, Xue Jiang1, Kechi Zhang1, Jia Li ♂1,
Jinliang Deng2, Jing Su3, Jun Zhang3, Jingjing Xu3

1School of Computer Science, Peking University
2The Hong Kong University of Science and Technology 3ByteDance

dongyh@stu.pku.edu.cn, lige@pku.edu.cn

Abstract

Despite the remarkable successes of general-purpose neural networks, such as
MLPs and Transformers, we find that they exhibit notable shortcomings in model-
ing and reasoning about periodic phenomena, achieving only marginal performance
within the training domain and failing to generalize effectively to out-of-domain
(OOD) scenarios. Periodicity is ubiquitous throughout nature and science. There-
fore, neural networks should be equipped with the essential ability to model and
handle periodicity. In this work, we propose FAN, a novel neural network that
effectively addresses periodicity modeling challenges while offering broad applica-
bility similar to MLP with fewer parameters and FLOPs. Periodicity is naturally
integrated into FAN’s structure and computational processes by introducing the
Fourier Principle. Unlike existing Fourier-based networks, which possess particular
periodicity modeling abilities but face challenges in scaling to deeper networks and
are typically designed for specific tasks, our approach overcomes this challenge to
enable scaling to large-scale models and maintains the capability to be applied to
more types of tasks. Through extensive experiments, we demonstrate the superior-
ity of FAN in periodicity modeling tasks and the effectiveness and generalizability
of FAN across a range of real-world tasks. Moreover, we reveal that compared to
existing Fourier-based networks, FAN accommodates both periodicity modeling
and general-purpose modeling well.

1 Introduction

The flourishing of modern machine learning and artificial intelligence is inextricably linked to the
revolutionary advancements in the foundational architecture of general-purpose neural networks.
For instance, multi-layer perceptron (MLP) [Rosenblatt, 1958, Haykin, 1998] plays a pivotal role in
laying the groundwork for current deep learning models, with its expressive power guaranteed by the
universal approximation theorem [Hornik et al., 1989]. Recent claims about the impressive perfor-
mance of large models on various tasks are typically supported by Transformer architecture [Vaswani
et al., 2017, Touvron et al., 2023, OpenAI, 2023]. In this context, the community’s enthusiasm for
research on neural networks has never diminished. Some emerged neural networks demonstrate
notable capabilities in specific fields [Gu and Dao, 2023, Liu et al., 2024], sparking widespread
discussion within the community.

Beneath the surface of apparent prosperity, we uncover a critical issue that remains in existing
general-purpose neural networks: they struggle to model the periodicity from data, especially in OOD

∗Equal Contribution
†This work was supported by a cooperation project between Peking University and ByteDance Company.

During this time, Yihong was also an intern at ByteDance.
‡The code is available at https://github.com/YihongDong/FAN

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/YihongDong/FAN

KAN TransformerMLP FAN (Ours)

𝑦 = 	sin(𝑥)

Figure 1: The performance of different neural networks within and outside the domain of their
training data for the sine function, where x is a scalar variable.

scenarios. We showcase this issue through an empirical study as illustrated in Figure 1. The results
indicate that existing neural networks, including MLP [Rosenblatt, 1958], KAN [Liu et al., 2024],
and Transformer [Vaswani et al., 2017], face difficulties in fitting periodic functions, even on a simple
sine function. Although they demonstrate some proficiency in interpolation within the domain of
training data, they tend to falter when faced with extrapolation challenges of test data. This signifies
that their generalization capacity is primarily dictated by the scale and diversity of the training data,
rather than by the learned principles of periodicity to perform reasoning.

Periodicity is an essential characteristic in various forms of reasoning and generalization, as it provides
a basis for predictability in many natural and engineered systems by leveraging recurring patterns
in observations. Besides periodic phenomena, non-periodic phenomena can also be contextualized
or explained within some larger or more macro-periodic framework. Although some Fourier-based
networks exhibit particular periodic modeling abilities, they are primarily tailored for specific tasks
[Silvescu, 1999, Liu, 2013] and do not work well as the networks deepen [Liu et al., 2020], which
limits their applicability to the general task such as language modeling [Uteuliyeva et al., 2020].
However, our goal is to exploit periodicity to benefit a broader range of tasks including language
modeling. To achieve this, we aim to develop a neural network that accommodates modeling and
reasoning capabilities for periodicity while maintaining the capability to be applied to more types of
tasks.

In this paper, we propose Fourier Analysis Network (FAN), a novel neural network built upon the
principle of Fourier Analysis. By leveraging the power of Fourier Series, we enable the neural
network to model periodic patterns and extrapolate beyond them, offering the network a way to
model the general principles from the data. FAN follows two core principles, the first ensures that its
periodic modeling capacity scales with network depth, while the second guarantees periodic modeling
is available throughout the network. These principles allow it to scale to deeper networks, a capability
where existing Fourier neural networks fall short. As a result, FAN exhibits exceptional capabilities
in periodicity modeling, while maintaining broad applicability to the general task, which holds great
potential as a substitute for MLP, with fewer parameters and FLOPs.

To verify the effectiveness of FAN, we conduct extensive experiments from three main aspects: 1)
For periodicity modeling, FAN achieves significant improvements in fitting both basic and complex
periodic functions, compared to existing neural networks (including MLP, KAN, and Transformer),
particularly in OOD scenarios. 2) FAN shows superior performance in various real-world tasks,
such as symbolic formula representation, time series forecasting, and language modeling. Using
FAN outperforms the representative models in various tasks, including MLP, KAN, LSTM, Mamba,
and Transformer. 3) Compared to existing Fourier-based networks, FAN accommodates both period-
icity modeling and general-purpose modeling well. The advantageous characteristics and promising
results indicate that FAN has the potential to become a basic component for building fundamental
large models.

2 Preliminary Knowledge

Fourier Analysis [Stein and Weiss, 1971, Duoandikoetxea, 2024] is a mathematical framework that
decomposes functions into their constituent frequencies, revealing the underlying periodic structures
within complex functions. At the heart of this analysis lies Fourier Series [Tolstov, 2012], which
expresses a periodic function as an infinite sum of sine and cosine terms. Mathematically, for a

2

function f(x), its Fourier Series expansion can be represented as:

f(x) = a0 +

∞∑
n=1

(
an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

))
, (1)

where T is the period of the function, and the coefficients an and bn are determined by integrating
the function over one period:

an =
1

T

∫ T

0

f(x) cos

(
2πnx

T

)
dx, bn =

1

T

∫ T

0

f(x) sin

(
2πnx

T

)
dx. (2)

The power of Fourier Series lies in its ability to represent a wide variety of functions, including
non-periodic functions through periodic extensions, enabling the extraction of frequency components.
Building on this math foundation, FAN aims to embed the periodic characteristics into network
architecture, enhancing generalization capabilities and performance on various tasks, particularly in
scenarios requiring the identification of patterns and regularities.

(a) MLP Layer (b) FAN Layer

Activation Function Activation FunctionCosine Sine

𝑾 𝑾

Learnable Weights

𝜙 𝑥 = 	 [cos(𝑊!𝑥)	||	sin(𝑊!𝑥)	||	𝜎(𝐵!̅ +𝑊!̅𝑥)]	Φ 𝑥 = 	𝜎(𝐵# +𝑊#𝑥)	

Figure 2: Illustrations of FAN layer ϕ(x) vs. MLP layer Φ(x).

3 Fourier Analysis Network (FAN)

In this section, we first construct a naive neural network modeled by the formula of Fourier Series.
Then, by modifying and improving it, we design FAN adhering to two core principles. Finally, we
discuss the difference between the FAN layer and MLP layer.

Consider a task involving input-output pairs {xi, yi}, with the objective of identifying a function
f(x) : Rdx → Rdy that approximates the relationship such that yi ≈ f(xi) for all xi, where dx and
dy denote the dimensions of x and y, respectively. We first construct a shallow neural network fS(x)
that represents Fourier Series expansion of the function, specifically F{f(x)}, as described in Eq.
(1), we can express fS(x) as follows:

fS(x) ≜ a0 +

N∑
n=1

(
an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

))
,

(I)
= a0 +

N∑
n=1

(
wc

n cos
(
win

nx
)
+ ws

n sin
(
win

nx
))

,

(II)
= B + [wc

1, w
c
2, · · · , wc

n] cos([w
in
1 ||win

2 || · · · ||win
n]x)

+ [ws
1, w

s
2, · · · , ws

n] sin([w
in
1 ||win

2 || · · · ||win
n]x)

= B +Wc cos(Winx) +Ws sin(Winx),

(III)
= B +Wout[cos(Winx)|| sin(Winx)],

(3)

3

Table 1: Comparison of FAN layer and MLP layer, where dp is a hyperparameter of FAN layer
and defaults to 1

4doutput in this paper, dinput and doutput denote the input and output dimensions of the
neural network layer, respectively. In our evaluation, the floating point of operations (FLOPs) for any
arithmetic operations are considered as 1, and for Boolean operations as 0.

MLP Layer FAN layer

Formula Φ(x) = σ(Bm +Wmx) ϕ(x) = [cos(Wpx)|| sin(Wpx)||σ(Bp̄ +Wp̄x)]

Num of Params (dinput × doutput) + doutput (1− dp

doutput
)× ((dinput × doutput) + doutput)

FLOPs 2× (dinput × doutput)
+FLOPsnon-linear × doutput

(1− dp

doutput
)× 2× (dinput × doutput)

+FLOPsnon-linear × doutput

where B ∈ Rdy ,Win ∈ RN×dx , and Wout ∈ Rdy×2N are learnable parameters, (I) follows that
the computation of an and bn computed via Eq. (2) is definite integral, (II) and (III) follows the
equivalence of the matrix operations, [·||·] and [·, ·] denotes the concatenation along the first and
second dimension, respectively.

To fully leverage the advantages of deep learning, we can stack the aforementioned network fS(x) to
form a deep network fD(x), where the i-th layer, denoted as li(x), retains the same structural design
as fS(x). Therefore, fD(x) can be formulated as:

fD(x) = lL ◦ lL−1 ◦ · · · ◦ l1 ◦ x, (4)

where l1 ◦ x denotes the application of the left function l1 to the right input x, that is l1(x). However,
we discover that the direct stacking of fS(x) results in the primary parameters of the network fD(x)
focusing on learning the angular frequency (ωn = 2πn

T), thereby neglecting the learning of the Fourier
coefficients (an and bn), as follows:

fD(x) = lL(lL−1 ◦ lL−2 ◦ · · · ◦ l1 ◦ x)
= BL +WL

out[cos(W
L
in (l1:L ◦ x)|| sin(WL

in (l1:L ◦ x))]
(5)

where l1:L ◦x is defined as lL−1 ◦ lL−2 ◦ · · · ◦ l1 ◦x, WL
in (l1:L ◦x) is used to approximate the angular

frequencies, and WL
out is used to approximate the Fourier coefficients. We can find that the capacity

of fD(x) to fit the Fourier coefficients is independent of the depth of fD(x), which is an undesirable
outcome. It will limit the network’s representation ability, hindering to address the complex tasks.

To this end, we design FAN based on the following principles: 1) the capacity of FAN to represent the
Fourier coefficients should be positively correlated to its depth; 2) the output of any hidden layer can
be employed to model periodicity using Fourier Series through the subsequent layers. The first one
enhances the expressive power of FAN for periodicity modeling by leveraging its depth, while the
second one ensures that the features of FAN’s intermediate layers are available to perform periodicity
modeling.

Suppose we decouple fS(x) as follows:

fS(x) = fout ◦ fin ◦ x, (6)

where

fin(x) = [cos(Winx)|| sin(Winx)], (7)
fout(x) = B +Woutx. (8)

To satisfy both principles, the inputs of the intermediate layers in FAN necessitate to employ fin and
fout simultaneously, rather than applying them sequentially.

Finally, FAN is designed on this basis, with the FAN layer ϕ(x) defined as below:

ϕ(x) ≜ [cos(Wpx)|| sin(Wpx)||σ(Bp̄ +Wp̄x)], (9)

where Wp ∈ Rdx×dp ,Wp̄ ∈ Rdx×dp̄ , and Bp̄ ∈ Rdp̄ are learnable parameters (with the hyperpa-
rameters dp and dp̄ indicating the first dimension of Wp and Wp̄, respectively), the layer output
ϕ(x) ∈ R2dp+dp̄ , and σ denotes the activation function. Under this definition, the MLP layer can be

4

KAN TransformerMLP FAN

𝑦 = 𝑥	𝑚𝑜𝑑	5

KAN

Transformer

MLP

FAN

𝑦 =
𝑒!"# $

1 + cos%(2𝑥)

Figure 3: The performance of FAN in periodicity modeling compared to MLP, KAN, and Transformer
(Part I), where the green line represents the test data within the domain of training data, while the
blue line represents the test data outside the domain of training data.

regarded as a special form of Eq. (9), when Wp are learned to be zero metrics, which provides a way
for FAN to maintain general-purpose modeling abilities as MLP.

The entire FAN is defined as the stacking of the FAN layer ϕ(x) as follows:

FAN(x) = ϕL ◦ ϕL−1 ◦ · · · ◦ ϕ1 ◦ x, (10)

where

ϕl(x) =

{
[cos(W l

px)|| sin(W l
px)||σ(Bl

p̄ +W l
p̄x)], if l < L,

BL +WLx, if l = L,
(11)

The difference between FAN and MLP. The illustrations of FAN layer ϕ(x) vs. MLP layer Φ(x)
are shown in Figure 2. Note that the FAN layer ϕ(x) computed via Eq. (9) can seamlessly replace
the MLP layer Φ(x) computed via Eq. (12) in various models with fewer parameters and FLOPs,
achieved by sharing the parameters and computation of Sin and Cos parts. The number of parameters
and FLOPs of the FAN layer compared to the MLP layer are presented in Table 1. The reduction
ratio of parameters and FLOPs is about dp

doutput
, which is set to 1

4 by default in this paper.

4 Experiments

In this section, we first verify the superiority of FAN in periodicity modeling tasks (Section 4.1).
Second, we demonstrate the effectiveness and generalizability of FAN across a range of real-world
tasks (Section 4.2). Finally, we conduct further analysis of FAN (Section 4.3), including comparisons
with Fourier-based networks, running time, hyperparameter impact, and more. See Appendix B for
more experiments and the experimental details can be found in Appendix C.

4.1 Periodicity Modeling

Setup. In periodic modeling tasks, we select periodic functions with practical significance and
compare the models’ performance in learning the underlying principles of periodicity. Specifically,
we generate data from periodic functions over a large domain, using a portion of this domain as
training data and the entire domain as test data, i.e., a part of test data would be out of the domain of

5

Figure 4: Comparison of training and test losses for different models on the tasks of learning complex
periodic functions.

training data. We compare FAN and its variant FAN (Gated)§, with MLP, KAN, and Transformer.
The input of this task is scalar.

Results. Figure 3, as well as Figure 6 in Appendix, show the performance of FAN and other baselines
in periodicity modeling. The results indicate that existing neural networks, including MLP, KAN,
and Transformers, exhibit notable deficiencies in their ability to model periodicity. Although they
attempt to fit these periodic functions, their ability limits their performance in modeling a large
domain of periodicity, including the test data within and outside the domain of the training data. In
contrast, FAN significantly outperforms baselines in all these tasks of periodicity modeling. Moreover,
FAN performs exceptionally well on the test data both within and outside the domain, indicating that
our specialized design of FAN can effectively model and understand periodicity rather than merely
memorize the training data.

We also compare the training process of different models on the tasks of learning complex periodic
functions, as shown in Figure 4, which leads to the following findings. 1) FAN far exceeds the
other baselines in both convergence speed and final effects. 2) FAN (Gated) often achieves faster
convergence than FAN, but the final performance remains comparable. 3) Although the baselines
show stabilization or gradual reductions in training loss as the number of epochs increases, their
modeling may have diverged considerably from the distribution of the test data, resulting in a sharp
increase in test loss. This phenomenon further demonstrates the shortcomings of these models in
capturing periodicity.

4.2 Application of Real-world Task

1) Symbolic Formula Representation is a common task in both mathematics and physics. We
follow the experiments conducted in KAN’s paper [Liu et al., 2024], adhering to the same tasks, data,
hyperparameters, and baselines. In addition to the original baselines, we also include Transformer for
comparison in this task.

Results. Figure 7 in Appendix shows the performance of different models applied to common
functions in mathematics and physics. We can observe that while KAN remains competitive with
FAN when the number of parameters is small, its performance declines clearly as the number of
parameters increases, which exhibits a U-shaped trend [Liu et al., 2024]. In contrast, as the number
of parameters becomes large, FAN consistently outperforms the other baselines, including MLP,
KAN, and Transformer, in fitting these functions, despite many of these functions being only partially
periodic or even implicitly periodic. This may be attributed to FAN’s ability to capture and model both

§FAN (Gated) is a variant of FAN that adds gates to control the tendency of the layer, with the formula
defined as ϕg(x) = [g · cos(Wpx)||g · sin(Wpx)||(1− g) · σ(Bp̄ +Wp̄x)], where g is a learnable parameter.

6

periodic and non-periodic features and the advantages of fewer parameters. These results indicate
that although FAN enhances its ability to model periodicity, it does not compromise its capacity to fit
non-periodic functions.

2) Time Series Forecasting plays a critical role in various real-world applications. We employ four
public datasets of this task to assess the model performance on time series forecasting, including
Weather [Wu et al., 2021], Exchange [Lai et al., 2018], Traffic [Wu et al., 2021], and ETTh [Zhou
et al., 2021] datasets. For each dataset, we input 96 previous time steps and forecast the subsequent
time steps of {96, 192, 336, 720}. In this task, we choose the sequence models as baselines, including
LSTM, Mamba, and Transformer.

Table 2: Average performance on different public datasets and
output lengths in time series forecasting tasks, where Input
Length = 96 and the bold value indicates the best performance.

Model Num of Params Average

MSE ↓ MAE ↓
LSTM 12.51M 1.083 0.726
Mamba 12.69M 1.002 0.668
Transformer 12.12M 0.994 0.689
w/ FAN (Gated) 11.07M 0.845 0.637
w/ FAN 11.06M 0.839 0.631

Improvements ↓ 1.06M ↓ 15.6% ↓ 8.4%

Results. As shown in Table 2
(See Table 6 in Appendix for com-
plete results), we compare the
performance of Transformer with
FAN and other baselines for time
series forecasting tasks. The re-
sults indicate that Transformer with
FAN outperforms other representa-
tive sequence models in these tasks.
The improvements of Transformer
with FAN and FAN (Gated) over the
standard Transformer are notable,
with the average relative improve-
ments ranging from 15.0% to 15.6% for MSE and from 7.6% to 8.4% for MAE. It suggests that
incorporating explicit periodic pattern encoding within neural networks improves time series fore-
casting performance in real-world applications.

3) Language Modeling is a fundamental task in natural language processing. We conduct language
modeling using the SST-2 [Socher et al., 2013] dataset and evaluate the model’s performance on its
test set, as well as on the related datasets such as IMDB [Maas et al., 2011], Sentiment140 [Sahni
et al., 2017], and Amazon Reviews [Linden et al., 2003]. These four classic datasets all belong to the
field of sentiment analysis. The comparisons are between Transformer with FAN and FAN (Gated),
along with the classic sequence models, including LSTM, Mamba, and Transformer.

Table 3: Performance of different sequence models on language modeling tasks, where the models
are trained on the training set of SST-2 and evaluated on the other datasets, the bold value indicates
the best performance on each column, the bold italic indicates the second-best performance, and the
improvements represent relative improvements of using FAN based on standard Transformer.

Model Num of Params SST-2 (test) IMDB Sentiment140 Amazon Reviews

Loss ↓ Acc ↑ Loss ↓ Acc ↑ Loss ↓ Acc ↑ Loss ↓ Acc ↑
LSTM 120.14M 0.4760 80.60 0.6449 64.38 0.8026 59.79 0.5791 71.52
Mamba 129.73M 0.4335 79.59 0.6863 62.03 0.7871 58.74 0.6163 67.19
Transformer 109.48M 0.4297 81.19 0.5649 69.94 0.8891 57.79 0.5563 71.55
w/ FAN (Gated) 95.33M 0.4250 80.39 0.5817 70.12 0.7941 61.94 0.4835 76.89
w/ FAN 95.32M 0.4094 81.54 0.5225 73.98 0.8257 60.93 0.4748 77.63
Improvements ↓ 14.16M ↓ 4.72% ↑ 0.43% ↓ 7.51% ↑ 5.78% ↓ 7.13% ↑ 5.43% ↓ 14.65% ↑ 8.50%

Results. We report the performance comparison between different sequence models across four senti-
ment analysis datasets, as shown in Table 3. The results indicate that Transformer with FAN achieves
clear improvements compared to the standard Transformer and other baselines, such as LSTM and
Mamba, especially for zero-shot OOD performance on IMDB, Sentiment140, and Amazon Reviewers
datasets. Using FAN achieves the relative improvements up to 14.65% and 8.50% in terms of Loss
and Accuracy respectively, while reducing parameter numbers by about 14.16M. It indicates the
potential of periodicity modeling to enhance both effectiveness and generalization on cross-domain
language modeling and sentiment analysis tasks.

7

4.3 Further Analysis of FAN

Comparison with Fourier-based Networks. We compare FAN with Fourier-based networks in
terms of their periodicity modeling abilities and general-purpose capabilities for language modeling.
Some previous works have explored the application of Fourier-based Networks in specific tasks
[Oreshkin et al., 2020, Tancik et al., 2020, Sitzmann et al., 2020, Han et al., 2022], but these studies
primarily involved shallow/small-scale models (i.e., fewer than 1M parameters). Assessing their
general modeling capabilities requires evaluating their effectiveness in deeper/larger architectures,
we categorize these Fourier-based networks into three main types and systematically evaluate them
within the 12-layer Transformer. Specifically, we compare with: 1) Fourier Neural Network (FNN)
[Silvescu, 1999] using the cosine or sine function or their linear combinations as the activation
function, such as SIREN [Sitzmann et al., 2020]. 2) Fourier Series Neural Network (FSNN) is
defined as Eq. (3), which shares the parameters and computation of sine and cosine part. 3) Fourier
Transform Neural Network (FTNN) is a type of neural network that employs Fourier Transform to
process the intermediate output in the neural network, such as FNO [Li et al., 2021].

Figure 5: Comparison FAN with Fourier-based
Networks on complex periodicity modeling (y =

esin(πx)2+cos(x)+(x mod 3)−1) and language modeling.

Table 4: Comparison FAN with Fourier-based
Networks on language modeling tasks, where
each of them replaces the MLP layer in the stan-
dard transformer and ID means in-domain.

Model Num of Params Loss ↓
Train ID Test OOD Test

MLP 109.48M 0.2574 0.4297 0.5649

FNN 109.48M 0.6933 0.7103 0.7135
FSNN 95.32M 0.6931 0.7210 0.7249
FTNN 300.56M 0.2449 0.4547 0.8128
FAN 95.32M 0.2434 0.4094 0.5225

As shown in Figure 5, only FAN achieves excellent performance on both tasks, indicating the
superiority of our specially designed architecture of FAN. In contrast, FNN and FSNN cannot fit
language modeling tasks, which aligns with previous work [Uteuliyeva et al., 2020, Liu et al., 2020]
and our findings derived from Eq. (3)-(5). Moreover, FTNN performs poorly on complex periodic
modeling tasks, akin to MLP. This may be attributed to the fact that FTNN does not incorporate
the Fourier principle into the network but applies Fourier Transform as an intermediate processing
step, which disadvantages FTNN in capturing periodicity. From Table 4, FAN also achieves fewer
parameters and better performance than FTNN in language modeling tasks.

Table 5: Comparison of actual runtime between FAN and MLP under different input/output dimen-
sions (e.g., 8192×8192 indicates both input and output dimensions are 8192).

1024×1024 2048×2048 4096×4096 8192×8192

MLP 0.064 ms 0.114 ms 0.212 ms 0.938 ms
FAN 0.128 ms 0.133 ms 0.211 ms 0.704 ms

Runtime of FAN. We analyze the actual running time of FAN layer compared to MLP Layer with
different input and output dimensions, as shown in Table 5. The experimental results show that MLPs
exhibit smaller runtimes when the input and output sizes are small, due to PyTorch’s optimization of
MLP. However, as the input and output sizes continue to increase, matrix computations become the
main contributor to runtime. At this point, FAN’s fewer parameters and reduced FLOPs begin to show
significant advantages. Note that FAN can be further optimized from the underlying implementation.

The impact of hyperparameter dp. In our experiments, we fix dp = 1
4dh intuitively for FAN,

where dh denotes the dimension of hidden layers. As shown in Figure 8 of Appendix, we investigate
the impact of varying dp empirically on task performance by changing itself. The results indicate that
performance initially improves as dp increases, but then decreases beyond a certain point. This trend
may be attributed to the number of potential periodic features specific to each task. Furthermore,
there remains room for further improvements with the better setup of dp.

8

5 Related Work

In this section, we outline the two most relevant directions and associated papers of this work.

Learning Periodicity with Neural Networks. Periodic functions are one of the most basic func-
tions of importance to human society and natural science [Newton, 1687, Osborn and Sensier, 2002,
Kwasnicki, 2008, De Groot and Franses, 2012, Zhang et al., 2017]. However, commonly used neural
networks, such as MLPs and transformers, struggle with modeling periodicity. This limitation is
attributed to the lack of inherent “periodicity” in their inductive biases. Some previous works [Sil-
vescu, 1999, Liu, 2013, Parascandolo et al., 2016, Uteuliyeva et al., 2020] proposed merely using
standard periodic functions themselves or their linear combinations as activation functions, which
only work well on some shallow and simple models. On this basis, work [Liu et al., 2020] introduced
the Snake function, i.e., x+ sin2(x), as the activation function. However, it can fit periodic functions
to a certain extent, but its effect is limited especially for OOD scenarios, as demonstrated in Appendix
D. Therefore, although some previous studies have attempted to integrate periodic information into
neural networks, their actual performance and range of applications remain heavily constrained.

Fourier-based Neural Network. Previous studies have explored Fourier-based networks, but these
networks generally perform well on specific tasks, while their performance on more general tasks
tends to be poorer [Zuo and Cai, 2005, Tan, 2006, Uteuliyeva et al., 2020, Jiang et al., 2022, Chen
et al., 2022]. Fourier Neural Networks employ the cosine [Silvescu, 1999, Ngom and Marin, 2021] or
sine function [Parascandolo et al., 2016, Sitzmann et al., 2020] or their combination [Liu, 2013] as
the activation function. Some work employs Fourier Transform to process the intermediate output of
network [Li et al., 2021, Lee-Thorp et al., 2022], but they did not address the challenges of periodicity
modeling. Some researches focus on leveraging the network to simulate the formula of Fourier Series
[Rafajłowicz and Pawlak, 1997, Halawa, 2008, Lee et al., 2021], which generally possesses a similar
principle as Eq. (3). However, this leads to the same problem as in Eq. (5), i.e., they are hard to
serve as building blocks for deep neural networks, which limits these approaches’ capabilities. More
detailed discussion can be found in Appendix G.

In this paper, we design FAN to address these challenges, which performs exceptionally well on
periodicity modeling and maintains broad applicability on real-world tasks.

6 Discussion

In this section, we have a broad discussion on expressive power, extrapolation capability, and applica-
tion scope of FAN as follows: ❶ FAN theoretically possesses the equal expressive power as MLP
since it also adheres to Universal Approximation Theorem, which guarantees its capacity for func-
tional approximation (refer to Appendix E for the detailed explanation). Moreover, FAN introduces
an important enhancement by incorporating periodicity, a feature absent in MLPs. By leveraging
this special design, FAN not only retains the capabilities of MLP but also enhances its ability to
capture periodic characteristics in data. ❷ We observe that existing networks often exhibit divergent
predictions in OOD scenarios, as shown in Figures 3, 4, and 6 for periodicity modeling tasks. In
contrast, FAN demonstrates strong OOD extrapolation ability in both periodicity modeling and some
real-world tasks. This extrapolation ability indicates that the network is no longer restricted to the
paradigms present in training dataset, but instead exhibits a kind of “transboundary thinking”. This
could be an important avenue for improving generalization and learning efficiency. ❸ Beyond tasks
that explicitly require periodicity modeling, FAN also has utility in a broader range of applications,
which has been evidenced by our extensive experiments on real-world tasks, such as symbolic
formula representation, time series forecasting, language modeling, and image recognition, where
FAN achieve competitive or superior performance than Transformers and other baselines. In fact,
many machine learning tasks may harbor hidden forms of periodicity, even without explicitly includ-
ing periodicity, such as mathematical operations and logic reasoning. If the neural network lacks
the ability to model periodicity, it could impair the learning efficiency [Dong et al., 2025b]. From a
deeper perspective, periodicity is not just a data feature but reflects a form of structural knowledge —
one that allows for the transfer and reuse of abstract rules and principles across different contexts.

9

7 Conclusion and Future Work

In this paper, we have proposed Fourier Analysis Network (FAN), a novel network that addresses
periodicity modeling in existing networks while maintaining the general-purpose modeling capability.
Experimental results demonstrate that FAN successfully fit both basic and complex periodic functions,
whereas other general-purpose networks failed. Moreover, using FAN exhibit clear improvements
in real-world tasks, such as symbolic formula representation, time series forecasting, and language
modeling, outperforming neural networks such as MLP, KAN, LSTM, Mamba, and Transformer.
These promising results, especially the stronger performance and the fewer parameters and FLOPs
compared to MLP, suggest its potential to become a key component of foundational models. Some
works have demonstrated the superiority of using FAN in diverse tasks, including gravitational wave
analysis [Zhao et al., 2024], EEG-based emotion recognition [Wang et al., 2025], and large language
modeling [Dong et al., 2025b], etc. In future work, we aim to further broaden the applicability of
FAN.

8 Acknowledgement

This research is supported by the National Key R&D Program under Grant No. 2023YFB4503801,
the National Natural Science Foundation of China under Grant No. 62192733, 62192730, 62192731,
the Major Program (JD) of Hubei Province (No.2023BAA024). Moreover, we would like to thank
Lecheng Wang and Xuanming Zhang for their participation in discussions related to this work.

References
Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in

the brain. Psychological review, 65(6):386, 1958.

Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1998.

Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pages 5998–6008, 2017.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. CoRR,
abs/2307.09288, 2023.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y. Hou, and Max Tegmark. KAN: kolmogorov-arnold networks. CoRR, abs/2404.19756,
2024.

Adrian Silvescu. Fourier neural networks. In IJCNN, pages 488–491. IEEE, 1999.

Shuang Liu. Fourier neural network for machine learning. In ICMLC, pages 285–290. IEEE, 2013.

10

Ziyin Liu, Tilman Hartwig, and Masahito Ueda. Neural networks fail to learn periodic functions and
how to fix it. In NeurIPS, 2020.

Malika Uteuliyeva, Abylay Zhumekenov, Rustem Takhanov, Zhenisbek Assylbekov, Alejandro J.
Castro, and Olzhas Kabdolov. Fourier neural networks: A comparative study. Intell. Data Anal.,
24(5):1107–1120, 2020.

Elias M Stein and Guido Weiss. Introduction to Fourier analysis on Euclidean spaces, volume 1.
Princeton university press, 1971.

Javier Duoandikoetxea. Fourier analysis, volume 29. American Mathematical Society, 2024.

Georgi P Tolstov. Fourier series. Courier Corporation, 2012.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in neural information processing
systems, 34:22419–22430, 2021.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
temporal patterns with deep neural networks. In SIGIR, pages 95–104. ACM, 2018.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI, pages
11106–11115. AAAI Press, 2021.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, pages 1631–1642. ACL, 2013.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In ACL, pages 142–150. The Association for
Computer Linguistics, 2011.

Tapan Sahni, Chinmay Chandak, Naveen Reddy Chedeti, and Manish Singh. Efficient twitter
sentiment classification using subjective distant supervision. In COMSNETS, pages 548–553.
IEEE, 2017.

Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-to-item collabo-
rative filtering. IEEE Internet Comput., 7(1):76–80, 2003.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: neural basis
expansion analysis for interpretable time series forecasting. In ICLR. OpenReview.net, 2020.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. In NeurIPS, 2020.

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. In NeurIPS, 2020.

Bing Han, Cheng Wang, and Kaushik Roy. Oscillatory fourier neural network: A compact and
efficient architecture for sequential processing. In AAAI, pages 6838–6846. AAAI Press, 2022.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew M. Stuart, and Anima Anandkumar. Fourier neural operator for parametric
partial differential equations. In ICLR. OpenReview.net, 2021.

Isaac Newton. Philosophiae naturalis principia mathematica. William Dawson & Sons Ltd., London,
1687.

Denise R. Osborn and Marianne Sensier. The prediction of business cycle phases: Financial variables
and international linkages. National Institute Economic Review, 182(1):96–105, 2002. doi:
10.1177/002795010218200110. URL https://doi.org/10.1177/002795010218200110.

11

https://doi.org/10.1177/002795010218200110

Witold Kwasnicki. Kitchin, juglar and kuznetz business cycles revisited. Wroclaw: Institute of
Economic Sciences, 2008.

Bert De Groot and Philip Hans Franses. Common socio-economic cycle periods. Technological
Forecasting and Social Change, 79(1):59–68, 2012.

Liheng Zhang, Charu Aggarwal, and Guo-Jun Qi. Stock price prediction via discovering multi-
frequency trading patterns. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, page 2141–2149, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450348874. doi: 10.1145/3097983.3098117.
URL https://doi.org/10.1145/3097983.3098117.

Giambattista Parascandolo, Heikki Huttunen, and Tuomas Virtanen. Taming the waves: sine as
activation function in deep neural networks. 2016.

Wei Zuo and Lilong Cai. Tracking control of nonlinear systems using fourier neural network. In
Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.,
pages 670–675. IEEE, 2005.

HS Tan. Fourier neural networks and generalized single hidden layer networks in aircraft engine fault
diagnostics. 2006.

Song Jiang, Tahin Syed, Xuan Zhu, Joshua Levy, Boris Aronchik, and Yizhou Sun. Bridging self-
attention and time series decomposition for periodic forecasting. In CIKM, pages 3202–3211.
ACM, 2022.

Hanlong Chen, Luzhe Huang, Tairan Liu, and Aydogan Ozcan. Fourier imager network (FIN): A
deep neural network for hologram reconstruction with superior external generalization. Light:
Science & Applications, 2022.

Marieme Ngom and Oana Marin. Fourier neural networks as function approximators and differential
equation solvers. Stat. Anal. Data Min., 14(6):647–661, 2021.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontañón. Fnet: Mixing tokens with
fourier transforms. In NAACL-HLT, pages 4296–4313. Association for Computational Linguistics,
2022.

E Rafajłowicz and M Pawlak. On function recovery by neural networks based on orthogonal
expansions. Nonlinear Analysis: Theory, Methods & Applications, 30(3):1343–1354, 1997.

Krzysztof Halawa. Fast and robust way of learning the fourier series neural networks on the basis
of multidimensional discrete fourier transform. In ICAISC, volume 5097 of Lecture Notes in
Computer Science, pages 62–70. Springer, 2008.

Jiyoung Lee, Wonjae Kim, Daehoon Gwak, and Edward Choi. Conditional generation of periodic
signals with fourier-based decoder. CoRR, abs/2110.12365, 2021.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
memorization: Data contamination and trustworthy evaluation for large language models. In ACL
(Findings), pages 12039–12050. Association for Computational Linguistics, 2024.

Yihong Dong, Xue Jiang, Yongding Tao, Huanyu Liu, Kechi Zhang, Lili Mou, Rongyu Cao, Yingwei
Ma, Jue Chen, Binhua Li, Zhi Jin, Fei Huang, Yongbin Li, and Ge Li. RL-PLUS: countering
capability boundary collapse of llms in reinforcement learning with hybrid-policy optimization.
CoRR, abs/2508.00222, 2025a.

Yihong Dong, Ge Li, Xue Jiang, Yongding Tao, Kechi Zhang, Hao Zhu, Huanyu Liu, Jiazheng
Ding, Jia Li, Jinliang Deng, and Hong Mei. Fanformer: Improving large language models through
effective periodicity modeling. CoRR, abs/2502.21309, 2025b.

Tianyu Zhao, Yue Zhou, Ruijun Shi, Peng Xu, Zhoujian Cao, and Zhixiang Ren. Compact binary
coalescence gravitational wave signals counting and separation using unmixformer, 2024. URL
https://arxiv.org/abs/2412.18259.

12

https://doi.org/10.1145/3097983.3098117
https://arxiv.org/abs/2412.18259

Jinfeng Wang, Yanhao Huang, Sifan Song, Boqian Wang, Jionglong Su, and Jiaman Ding. A
novel fourier adjacency transformer for advanced eeg emotion recognition, 2025. URL https:
//arxiv.org/abs/2503.13465.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor S. Lempitsky. Domain-adversarial training of neural
networks. J. Mach. Learn. Res., 17:59:1–59:35, 2016.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. CoRR, abs/1708.07747, 2017. URL http://arxiv.org/abs/
1708.07747.

Michael Weiss and Paolo Tonella. Simple techniques work surprisingly well for neural network
test prioritization and active learning. In Proceedings of the 31th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2022.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In ICML, volume 162 of
Proceedings of Machine Learning Research, pages 27268–27286. PMLR, 2022.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The missing
ingredient for fast stylization. CoRR, abs/1607.08022, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–
1780, 1997.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proc. IEEE, 86(11):2278–2324, 1998.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR (Poster).
OpenReview.net, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Li Wan, Matthew D. Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus. Regularization of neural
networks using dropconnect. In ICML (3), volume 28 of JMLR Workshop and Conference
Proceedings, pages 1058–1066. JMLR.org, 2013.

Peter Belcak and Roger Wattenhofer. Periodic extrapolative generalisation in neural networks. In
SSCI, pages 1066–1073. IEEE, 2022.

13

https://arxiv.org/abs/2503.13465
https://arxiv.org/abs/2503.13465
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1810.04805

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately present the paper’s contributions and
scope, with claims that are fully supported by the results and discussion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We demonstrate the superiority of using FAN in some mainstream tasks, and
we aim to further broaden the applicability of FAN in our future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [Yes]
Justification: he theoretical analysis of this paper is as follows: 1) In Section 3, we theo-
retically analyze that existing FSNNs and FNNs have problems in deep expansion while
FAN addresses it, and conduct experiments to prove it in Section 4.3. 2) In Table 1, the
theoretical analysis shows that FAN has fewer parameters and FLOPs than MLP, and we
conduct experiments to prove it in Tables 2, 3, and 5. 3) In Appendix E, we theoretically
analyze that FAN complies with Universal Approximation Theorem.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the experimental details in Appendix C, and make reproducible
source code available at https://anonymous.4open.science/r/FAN-D43C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

15

https://anonymous.4open.science/r/FAN-D43C

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide source code with comprehensive instructions and data acquisition
methods at (https://anonymous.4open.science/r/FAN-D43C).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the experimental details in Appendix C and open source code
(https://anonymous.4open.science/r/FAN-D43C)

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We follow previous work to report the average performance of 5 runs.

Guidelines:

• The answer NA means that the paper does not include experiments.

16

https://anonymous.4open.science/r/FAN-D43C
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://anonymous.4open.science/r/FAN-D43C

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides the information on computer resources in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms in every respect
with the NeurIPS Code of Ethics as outlined at https://neurips.cc/public/
EthicsGuidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

17

https://neurips.cc/public/EthicsGuidelines
https://neurips.cc/public/EthicsGuidelines
https://neurips.cc/public/EthicsGuidelines

Justification: Our work is foundational research without direct societal impacts, as it focuses
on fundamental algorithmic improvements rather than specific applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper focuses only on model design and algorithms without releasing any
high-risk models or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all existing assets used in our research. We cite the
original papers for all datasets and code packages utilized in our experiments, including
specific versions and URLs where applicable. All datasets are used in accordance with their
respective licenses.

Guidelines:

18

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide comprehensive documentation for our new code assets, including
detailed implementation instructions, usage guides, and experimental configurations in our
anonymized repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

19

paperswithcode.com/datasets

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Foundation Model Architecture
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A MLP

The MLP layer Φ(x) is defined as:

Φ(x) = σ(Bm +Wmx), (12)

where Bm ∈ Rdm and Wp̄ ∈ Rdx×dm are learnable parameters with the hyperparameter dm
indicating the first dimension of Wm, σ denotes the activation function, and MLP can be defined as
the stacking of the MLP layer Φ(x):

MLP(x) = ΦL ◦ ΦL−1 ◦ · · · ◦ Φ1 ◦ x, (13)

where

Φl(x) =

{
σ(Bl

m +W l
mx), if l < L,

BL +WLx, if l = L.
(14)

KAN

Transformer

MLP

FAN

𝑦 = (1	 +	sin(𝑥)) sin(2𝑥)

KAN

Transformer

MLP

FAN

𝑦 = sin	(𝑥	 + 	sin	(2𝑥))

KAN

Transformer

MLP

FAN

𝑦 = sin 𝑡 cos!(2𝑡) + cos 𝑡 sin!(3𝑡)

Figure 6: The performance of FAN in periodicity modeling compared to MLP, KAN, and Transformer
(Part II), where the green line represents the test data within the domain of training data, while the
blue line represents the test data outside the domain of training data.

B Additional Experiments

B.1 Additional Experiments on Periodicity Modeling Tasks.

More experimental results on periodicity modeling tasks are shown in Figure 6.

21

Figure 7: Comparisons of FAN with the baselines, including MLP, KAN, and Transformer, across
varying numbers of parameters on symbolic formula representation tasks.

Table 6: Performance of different sequence models on time series forecasting tasks, where Input
Length = 96, the bold values indicate the lowest value on each row, and Improve means the relative
improvements of using FAN and FAN (Gated) based on standard Transformer.

Dataset Output
Length

LSTM
(12.51 M)

Mamba
(12.69 M)

Transformer
(12.12 M)

Transformer with FAN (11.06 M)

Gated Default

MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓

Weather

96 1.069 0.742 0.552 0.519 0.413 0.438 0.292 0.380 0.313 0.431
192 1.090 0.778 0.700 0.595 0.582 0.540 0.535 0.550 0.472 0.525
336 0.992 0.727 0.841 0.667 0.751 0.626 0.637 0.602 0.719 0.581
720 1.391 0.892 1.171 0.803 0.967 0.715 0.845 0.706 0.732 0.670

Exchange

96 0.938 0.794 0.908 0.748 0.777 0.681 0.685 0.644 0.657 0.623
192 1.241 0.899 1.328 0.925 1.099 0.800 0.998 0.757 0.968 0.741
336 1.645 1.048 1.512 0.992 1.614 1.029 1.511 0.961 1.266 0.905
720 1.949 1.170 2.350 1.271 2.163 1.204 1.658 1.104 1.857 1.145

Traffic

96 0.659 0.359 0.666 0.377 0.656 0.357 0.647 0.355 0.643 0.347
192 0.668 0.360 0.671 0.381 0.672 0.363 0.649 0.353 0.657 0.354
336 0.644 0.342 0.665 0.374 0.673 0.360 0.665 0.358 0.656 0.353
720 0.654 0.351 0.662 0.364 0.701 0.380 0.682 0.369 0.673 0.363

ETTh

96 0.999 0.738 0.860 0.697 1.139 0.853 0.842 0.736 0.873 0.707
192 1.059 0.759 0.849 0.700 1.373 0.932 0.885 0.748 0.914 0.741
336 1.147 0.820 1.005 0.745 1.261 0.924 0.980 0.770 0.999 0.793
720 1.206 0.847 0.994 0.758 1.056 0.819 1.002 0.798 1.031 0.818

Average
(Improve) – 1.083 0.726 1.002 0.668 0.994 0.689 0.845

↓ 15.0%
0.637
↓ 7.6%

0.839
↓ 15.6%

0.631
↓ 8.4%

B.2 Additional Experiments on Image Recognition Tasks.

Image Recognition is a key computer vision task where image content is identified and categorized.
Our evaluation contains four public benchmarks of image recognition: MNIST [LeCun et al., 2010],
MNIST-M [Ganin et al., 2016], Fashion-MNIST [Xiao et al., 2017], and Fashion-MNIST-C [Weiss
and Tonella, 2022], where MNIST-M and Fashion-MNIST-C are the variants for robustness.

Table 7: Results on image recognition tasks, where OOD Accuracy means the performance on other
paired datasets and the Bold values indicate the highest values under the same metric.

Dataset Accuracy ↑ OOD Accuracy ↑
CNN w/ FAN CNN w/ FAN

MNIST 99.63 99.67 28.85 30.3
MNIST-M 94.52 94.23 82.85 83.55

Fashion-MNIST 94.15 94.47 49.82 51.88
Fashion-MNIST-C 88.61 88.82 91.45 91.59

Results. We apply FAN to image recognition tasks on four classic benchmarks, as shown in Table 7.
The results show that using FAN outperforms the standard CNN in most cases. We believe that there
are also some latent periodic features in image recognition tasks, and FAN’s ability to model these
periodic features can help CNN achieve competitive or superior performance, especially in OOD
scenarios.

22

B.3 Evaluation on LLMs with FAN

Table 8 reports the zero-shot results on the LM Eval Harness benchmark. The results show that
using FAN outperforms standard Transformer architecture across various tasks with the same training
tokens of 200B.

Table 8: Comparison of our approach with well-trained Transformer language models on LM Eval
Harness benchmark. Both of them are trained on 200B tokens and using FAN achieves better
accuracy.

Models arc challenge arc easy boolq hella-swag open bookqa piqa sciq wino-grande avg.
Transformer-1B 29.7 63.3 59.6 52.5 34.6 71.4 85.8 55.9 56.6
Ours 32.1 63.5 60.1 53.8 34.7 72.5 89.9 56.1 57.9

B.4 FAN for Solving SciML Problems

We conduct experiments on the SciML problem that includes the Fourier function class following the
work [Li et al., 2021]. The Burgers’ equation, a non-linear partial differential equation, is frequently
used in scientific computing to model shock waves and traffic flow, among other phenomena. The
detailed error rate on Burgers’ equation is listed in the Table 9. We can find that replacing the
MLP Layer with FAN Layer in Fourier Neural Operator (FNO) [Li et al., 2021] can achieve clear
improvements on each setting of resolution s of this task.

Table 9: The error rate on Burgers’ equation. The values in the table represent the Average Relative
Error for Burgers’ equation with lower values indicating better performance.

Model s = 256 s = 512 s = 1024 s = 2048 s = 4096 s = 8192

FNO 5.93% 6.14% 6.03% 6.75% 7.36% 9.93%
FNO with FAN 5.26% 5.17% 5.18% 6.73% 6.35% 7.06%

B.5 Comparison with Frequency-based Models in Time Series Forecasting Tasks

To compare with frequency-based models in Time Series Forecasting tasks such as FEDformer [Zhou
et al., 2022], we replace MLP with FAN in frequency-based models. We present the experimental
results in Table 10, where the results of FEDformer are cited from its paper directly. From the results,
we can find that FEDformer with FAN can outperform FEDformer in almost all cases.

Table 10: Results of comparison with frequency-based models in time series forecasting tasks.
Dataset Len FEDformer with FAN

MSE MAE MSE MAE

Traffic

96 0.587 0.366 0.577 0.357
192 0.604 0.373 0.601 0.366
336 0.621 0.383 0.620 0.378
720 0.626 0.382 0.619 0.370

Exchange

96 0.148 0.278 0.138 0.267
192 0.271 0.380 0.261 0.371
336 0.460 0.500 0.461 0.503
720 1.195 0.841 1.159 0.827

Electricity

96 0.193 0.308 0.184 0.298
192 0.201 0.315 0.199 0.313
336 0.214 0.329 0.212 0.325
720 0.246 0.355 0.239 0.347

23

B.6 Comparison with Directly Learning the Coefficients

We compare FAN with a baseline of directly learning the coefficients, which inputs sin(x) and
cos(x) and then uses the MLP Layer instead of the FAN Layer to model the Fourier coefficients. In
this setting, frequencies are fixed and only the coefficients are learned, which may limit the model’s
ability to capture patterns not aligned with these frequencies. Taking simple f(x) = x mod 5 as an
example, this setting may not even converge at all, because the frequency of x mod 5 is inconsistent
with sin(x) and cos(x). The experimental results of their loss are shown in Table 11.

Table 11: Comparison of FAN and directly learning the coefficients on fitting f(x) = x mod 5.
Epoch 50 100 150 200

Directly learning the coefficients 2.10 2.09 2.09 2.08
FAN 0.28 0.23 0.18 0.17

B.7 The influence of hyperparameters dp

We evaluate the influence of hyperparameters dp as shown in Figure 8.

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.42

0.44

0.46

0.48

0.50

0.52

Va
lu

e

SST-2 (Loss)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

Va
lu

e

IMDB (Loss)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.80

0.85

0.90

0.95

Va
lu

e

Sentiment140 (Loss)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

Va
lu

e

Amazon Reviews (Loss)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.804

0.806

0.808

0.810

0.812

0.814

Va
lu

e

SST-2 (Accuracy)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.7325

0.7350

0.7375

0.7400

0.7425

0.7450

0.7475

0.7500

Va
lu

e

IMDB Test Set (Accuracy)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.610

0.612

0.614

0.616

0.618

0.620

0.622

0.624

Va
lu

e

Sentiment140 (Accuracy)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.775

0.780

0.785

0.790

Va
lu

e

Amazon Reviews (Accuracy)

Transformer with FAN
Transformer

Figure 8: The influence of hyper-parameters dp on language modeling tasks. We use the red dashed
line to represent the performance of the standard Transformer.

B.8 The effectiveness of the FAN Layer for deep neural networks

We evaluate the effect of varying the number of FAN layers from 3 to 20 on periodicity modeling
tasks, employing residual connections to mitigate overfitting. The experimental results show that
both the best training loss and test loss still decrease slowly as the number of layers increases.

Furthermore, on Language Modeling tasks, we replaced 24 MLP Layers of Transformer with 24 FAN
Layers, i.e. Transformer with FAN, and it also achieved clear improvements on each task, especially
for OOD zero-shot evaluation scenarios. These findings indicate that FAN Layer is effective for deep
neural networks.

B.9 Experiments on Time Series Forecasting with Instance Normalization

We conduct experiments on time series forecasting tasks with instance normalization [Ulyanov et al.,
2016], and the results are shown in Table 12. We find that applying instance normalization before the
architecture can effectively improve the performance.

24

3 6 12 18
Layer Num

0.6

0.8

1.0

1.2

1.4

Lo
ss

 (L
og

 S
ca

le
)

Training Loss

FAN
MLP (3 Layer)

3 6 12 18
Layer Num

0.8

1.0

1.2

1.4

1.6

Lo
ss

 (L
og

 S
ca

le
)

Test Loss

FAN
MLP (3 Layer)

Figure 9: Performance of Deeper FAN on fitting y = esin
2(πx)+cos(x)+(x mod 3) − 1.

Table 12: Results on time series forecasting tasks with instance normalization, where Input Length
= 96, the bold values indicate the lowest value on each row, and the improve means the relative
improvements of using FAN and FAN (Gated) based on Transformer.

Dataset Output
Length

Transformer
(12.12 M)

Transformer with FAN (11.06 M)

Gated Default

MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓

Weather

96 0.1772 0.2301 0.1864 0.2352 0.1756 0.2247
192 0.2438 0.2844 0.2445 0.2834 0.2327 0.2760
336 0.3077 0.3267 0.3156 0.3320 0.3118 0.3291
720 0.4253 0.3982 0.3909 0.3782 0.4113 0.3906

Exchange

96 0.1433 0.2653 0.1157 0.2452 0.1436 0.2666
192 0.2563 0.3552 0.2539 0.3611 0.2651 0.3757
336 0.5273 0.5218 0.4329 0.4891 0.5092 0.5326
720 1.7401 0.9273 1.5783 0.9303 1.0599 0.7657

Traffic

96 0.6160 0.3449 0.6030 0.3334 0.6109 0.3319
192 0.6329 0.3479 0.6239 0.3404 0.6258 0.3370
336 0.6369 0.3485 0.6416 0.3487 0.6200 0.3380
720 0.6555 0.3577 0.6645 0.3574 0.6412 0.3525

ETTh

96 0.3881 0.4097 0.4082 0.4292 0.3833 0.4149
192 0.5766 0.4999 0.4695 0.4514 0.5039 0.4640
336 0.5782 0.5100 0.5556 0.5012 0.5417 0.4940
720 0.5841 0.5230 0.5070 0.4943 0.5272 0.4951

Average
(Improve) – 0.531 0.416 0.499

↓ 6.1%
0.406
↓ 2.2%

0.472
↓ 11.0%

0.399
↓ 4.1%

B.10 Layer-wise Spectral Analysis

We conduct experiments on layer-wise spectral analysis below. We perform a Fast Fourier Transform
(FFT) on each layer’s outputs and calculate four key metrics to quantify the spectral characteristics:

1. Spectral Centroid: Measures the ”center of mass” of the spectrum, indicating whether the
layer’s features are concentrated in low or high-frequency regions.

2. Spectral Sparsity (L1/L2 Norm): Quantifies how concentrated the spectral energy is within
a few frequency bins. A higher value implies a more structured and less noisy signal.

25

3. Spectral Entropy: Measures the uniformity and predictability of the spectrum. A lower
entropy indicates a more ordered and well-defined spectral structure.

4. Dominant Energy Ratio (Top-5): The proportion of total spectral energy contained within
the top 5 most dominant frequency components, indicating how focused the representation
is on key periodic features.

The results reveal a highly effective multi-stage learning process, which is more sophisticated than
a simple monotonic evolution of frequencies. We observe a clear three-stage “Deconstruction-
Exploration-Reconstruction” mechanism:

1. Initial Approximation (Layer 1): The first layer rapidly forms an initial, highly-focused
approximation of the signal, as shown by its very high Dominant Energy Ratio (96.1%).

2. Feature Deconstruction and Exploration (Layers 2–8): To model the function’s complex,
non-sinusoidal components (especially the x (mod 3) term, which requires a wide range
of Fourier series terms), the intermediate layers must first “deconstruct” the signal. This is
evidenced by a sharp increase in Spectral Entropy and a decrease in the Dominant Energy
Ratio. The network actively disperses energy across a broader spectrum to explore and
capture these challenging features, showcasing the flexibility afforded by its depth.

3. Integration and Reconstruction (Layers 9–11): In the final layers, the model’s task shifts
from exploration to integration. It “reconstructs” a final, efficient representation from the
features learned in the middle layers. This is marked by a dramatic decrease in both Spectral
Entropy and Spectral Centroid, alongside a sharp increase in the Dominant Energy Ratio
to a final value of 93.8%. The network converges to a “clean”, low-frequency, and highly
structured representation that is optimal for the final linear layer to map to the target output.

Table 13: Layer-wise spectral analysis of FAN layer outputs.
Layer Spectral Centroid Spectral Sparsity Spectral Entropy Dominant Energy Ratio (Top-5)
FAN Layer 1 4.1213 3.4767 1.2264 0.9612
FAN Layer 2 2.8760 5.0003 3.2549 0.7602
FAN Layer 3 2.8804 5.0626 3.1556 0.7807
FAN Layer 4 2.8810 4.7149 2.6616 0.8426
FAN Layer 5 3.0820 4.5832 2.2248 0.8753
FAN Layer 6 3.0815 5.2388 2.5560 0.8378
FAN Layer 7 2.6955 5.8367 3.0115 0.7806
FAN Layer 8 2.9132 5.5387 2.7301 0.8086
FAN Layer 9 2.7376 4.1371 1.6760 0.8986
FAN Layer 10 2.1266 3.1509 1.0673 0.9356
FAN Layer 11 1.7721 2.9775 0.9270 0.9375

B.11 Ablation Study

We conduct ablation studies on just cosine function, having FAN layers only in part of the network,
and freezing Wp. The results show that FAN demonstrates a clear advantage over the variants in
Periodicity Modeling and Language Modeling tasks.

Table 14: Results for ablation studies on the Periodicity Modeling task.
Periodicity Modeling Epoch=0 Epoch=100 Epoch=1000

training loss test loss training loss test loss training loss test loss
FAN cos 39.85 63.42 2.67 10.18 1.80 5.26
FAN replace first 1/3 part 39.54 46.15 2.95 6.81 1.37 45.44
FAN replace last 1/3 part 42.82 55.46 21.96 27.86 22.79 30.51
freezing Wp for FAN 40.52 60.20 15.57 89.09 1.13 156.25
FAN 39.62 61.02 2.75 7.43 1.05 4.15

26

Table 15: Results for ablation studies on the Language Modeling task.
Language Modeling Train Loss In-domain Test Loss OOD Test Loss
FAN cos 0.2419 0.4802 0.7727
FAN replace first 1/3 part 0.2693 0.4313 0.6700
FAN replace last 1/3 part 0.2417 0.4660 0.8052
freezing Wp for FAN 0.2376 0.4736 0.6324
FAN 0.2434 0.4094 0.6077

C Experimental Details

Baselines. In our experiments, we mainly compare FAN with the following baselines: 1) MLP
[Rosenblatt, 1958], 2) Transformer [Vaswani et al., 2017], 3) KAN [Liu et al., 2024], 4) LSTM
[Hochreiter and Schmidhuber, 1997], 5) Mamba [Gu and Dao, 2023], 6) CNN [LeCun et al., 1998].
Details of the baselines are given in Appendix F. Moreover, we also include the following variants of
FAN into our comparisons: I) FAN (Gated): a variant of FAN that adds gates to control the tendency
of the layer, with the formula defined as ϕg(x) = [g ·cos(Wpx)||g ·sin(Wpx)||(1−g)·σ(Bp̄+Wp̄x)],
where g is a learnable parameter. II) Transformer with FAN and Transformer with FAN (Gated):
we replace each MLP layer in Transformer with the FAN layer computed via Eq. (9) and the layer of
FAN (Gated), respectively. III) CNN with FAN: similarly, we replace each MLP layer in CNN with
the FAN layer.

C.1 Implementation Details.

We conduct our experiments on a single GPU of Tesla A100-PCIe-40G. Unless otherwise specified,
we use the following hyperparameters in the experiments. The model architecture consists of 3 to 24
layers, the activation function σ is set to GELU [Hendrycks and Gimpel, 2016], and the dimension of
the projection matrix Wp is set to dp = 1

4dh, where dh denotes the dimension of the hidden layers.
We employ the AdamW optimizer [Loshchilov and Hutter, 2019] for the model’s training process.

C.2 Setup of Periodicity Modeling

In periodicity modeling tasks, FAN, MLP, and KAN each consist of three layers with comparable
FLOPs, while the Transformer model comprises twelve layers. For consistency, we set the hidden
layer dimension (dh) to 2048 for FAN, MLP, and Transformer. In the case of KAN, we follow its
original paper [Liu et al., 2024], where the spline order (K) and the number of spline intervals (G) are
set to 3 and 50, respectively. We apply a learning rate of 1×10−5 for training all models. We ensured
that the data density of each period in tasks was consistent, meaning that each cycle contained a fixed
quantity of 10,000 training data points.

C.3 Setup of Symbolic Formula Representation

In symbolic formula representation tasks, we used the create dataset function from the official KAN
repository to generate the datasets. Each dataset contains 3000 training samples and 1000 test samples,
with all input variables randomly sampled from the range [-1, 1]. We followed the training settings
from the original KAN paper, training all methods using LBFGS and Adam for 1800 steps, and select-
ing the best-performing result from the two optimization approaches. For KAN, we increased the num-
ber of grid points to scale up the parameter size, covering G = {3, 5, 10, 20, 50, 100, 200, 500, 1000}.
For other methods, we scaled up the parameter size by increasing the number of layers and the
dimensions of hidden layers.

C.4 Setup of Time Series Forecasting

In time series forecasting task, we implement our model based on the codebase by [Wu et al., 2021].
Each model comprises 2 encoder layers and 1 decoder layer. We fix the hidden size for both the
Transformer and our model at 512, with the feedforward dimension set to 2048 (four times the hidden
size). The parameter sizes detailed in the main text correspond to the Exchange dataset; variations in

27

the number of variables across different datasets influence the linear layers in the model. We adjust
the hidden sizes of the other models to align with the Transformer parameters for fairness.

C.5 Setup of Language Modeling

In language modeling task, we employ the BERT tokenizer [Devlin et al., 2018] and an embedding
layer with a dimensionality of 768, except for Mamba, which adheres to its default settings as
specified in the original paper [Gu and Dao, 2023]. The architecture features 4, 24, and 12 layers with
hidden sizes of 1800, 768, and 768 for LSTM, Mamba, and Transformers, respectively. To mitigate
training stagnation in deeper LSTM models, we reduce the number of layers while increasing the
hidden size to balance the parameters. Importantly, Mamba’s layer count is twice that of a similarly
sized Transformer, as each layer consists of two Mamba blocks (Multihead attention block + MLP
block).

C.6 Setup of Image Recognition

In image recognition tasks, we employ the CNN as the baseline model, which consists of four
Convolutional Layers and two MLP Layers (It achieves a 0.37% error rate on MNIST without
augmentation, outperforming the SOTA CNN’s 0.63% [Wan et al., 2013]). We replace MLP with
FAN in CNN, i.e., CNN with FAN, as the counterpart, ensuring that they have similar parameters.
For each task, we use stochastic gradient descent with momentum (SGDM) as the optimizer, the
learning rate is set to 0.01, and the training process runs for 100 epochs.

Snake FAN (Ours)

𝑦 = 	sin(𝑥)

Figure 10: Comparisons of FAN with MLP (Snake) [Liu et al., 2020] in fitting periodic functions.

D Comparison of FAN and Snake Activation Function

We compare FAN with Snake, a previous approach used for improving the fitting of periodic functions
with neural networks. The results are shown in Figure 10.

28

E Compliance with the Universal Approximation Theorem

The Universal Approximation Theorem asserts that a feed-forward network with a single hidden
layer, containing a sufficiently large and finite number of neurons, can approximate any continuous
function defined on compact subsets of Rn, provided that the activation function is non-constant,
continuous, and nonlinear. In the case of the Fourier Analysis Network (FAN) layer, we define the
mapping as:

ϕ(x) =
[
cos(Wpx)

∥∥∥ sin(Wpx)
∥∥∥ σ(Bp̄ +Wp̄x)

]
,

where || denotes concatenation, and σ(·) represents a standard nonlinear activation function, such
as ReLU or GELU. The components cos(W px) and sin(W px) are non-constant, continuous, and
nonlinear functions, satisfying the requisite conditions for an activation function in the Universal
Approximation Theorem. Therefore, the FAN layer conforms to the Universal Approximation
Theorem, enabling it to approximate arbitrary continuous functions on compact subsets of Rn.

This proof demonstrates that the FAN layer, through its periodic components (sine and cosine func-
tions) and the nonlinear activation σ(·), satisfies the key conditions of the Universal Approximation
Theorem, ensuring its capability to approximate complex functional mappings.

F More Details of Baselines

In our experiments, we mainly compare FAN with the following baselines. 1) MLP [Rosenblatt,
1958]: the most classic model, which is widely used in the backbone of various models. 2) Trans-
former [Vaswani et al., 2017]: a prevalent model known for its self-attention mechanism, which
achieves outstanding performance on various tasks. 3) KAN [Liu et al., 2024]: an emerged model
specialized for symbolic formula representation, which uses the b-spline functions instead of fixed
activation functions. 4) LSTM [Hochreiter and Schmidhuber, 1997]: a well-known recurrent neural
network (RNN) that can capture long-term dependencies on sequential data. 5) Mamba [Gu and
Dao, 2023]: an emerged selective state space model (SSM) that achieves competitive performance
on some tasks with sequential inputs. 6) CNN [LeCun et al., 1998]: convolutional neural network
contains the convolutional layers, which are effective in processing image data.

For Fourier-based Networks, we mainly compare FAN with 1) Fourier Neural Network (FNN)
[Silvescu, 1999] using the cosine or sine function or their linear combinations as the activation
function, such as SIREN [Sitzmann et al., 2020]. 2) Fourier Series Neural Network (FSNN) is defined
as Eq. (3), which shares the parameters and computation of Sin and Cos part. 3) Fourier Transform
Neural Network (FTNN) is a type of neural network that employs Fourier Transform to process the
intermediate output in the neural network, such as FNO [Li et al., 2021].

G More Detailed Discussion with Fourier-based Neural Network

For FNNs [Silvescu, 1999, Liu, 2013, Parascandolo et al., 2016, Uteuliyeva et al., 2020], they face
challenges in scaling to deeper networks, i.e., the capacity of their deep networks to fit the Fourier
coefficients is independent of the network depth, as analyzed in Section 3. The depth scalability
limits their applicability to more complex, general-purpose tasks such as language modeling. Our
core differences are, ”we design FAN based on the following principles: 1) the capacity of FAN
to represent the Fourier coefficients should be positively correlated to its depth; 2) the output of
any hidden layer can be employed to model periodicity using Fourier Series through the subsequent
layers.” In Section 4.3, we conduct experiments to compare our approach with FNNs, and FNNs
cannot fit language modeling tasks, but our approach works well. We provide the analysis of FNNs
compared to FAN below. We mainly discuss the work [Silvescu, 1999, Liu, 2013, Parascandolo et al.,
2016], due to the work [Uteuliyeva et al., 2020] is a comparative study without proposing a new
method.

For work [Lee et al., 2021, Belcak and Wattenhofer, 2022], they focus on different purposes from our
work. And work [Lee et al., 2021] assumes all input signals have the period of 1 (as stated in page 3
of its paper), which we conducted experiments on the same setting in Appendix B.6, and it cannot fit
our periodicity modeling tasks.

29

Table 16: Comparison of parameters and FLOPs for different layers, where di = dinput (Input
dimension hyperparameter), do = doutput (Output dimension hyperparameter), dp = FAN layer hyper-
parameter (default 1

4do), dh = Hidden dimension hyperparameter, dc, ds = Layer hyperparameters of
cosine/sine branch dimensions, m = Layer hyperparameter of projections number, γ = FLOPs per
nonlinear activation (σ, cos, or sin).

Metric FAN Layer Layer of [Silvescu, 1999] Layer of [Liu, 2013] Layer of [Parascandolo et al., 2016]
Formula [cos(Wpx) ∥ sin(Wpx) ∥ σ(Bp̄ +Wp̄x)] Wf

∏
m cos(Wam

x+Bam
) +Bf Wfc cos(Wac

x+Bac
) +Bfc +Wfs sin(Was

x+Bas
) +Bfs Wf sin(Wax+Ba) +Bf

Num Params (1− dp

do
)(dido + do) m(didh + dh) + dodh + do di(dc + ds) + (dc + ds) + do(dc + ds) + 2do didh + dh + dodh + do

FLOPs (1− dp

do
)× 2dido + γdo 2mdhdi + dh(m− 1) + 2dhdo + γmdh 2di(dc + ds) + 2do(dc + ds) + γ(dc + ds) 2dh(di + do) + γdh

G.1 Limitation

First, we only demonstrate the effectiveness of FAN on some mainstream real-world tasks (including
symbolic formula representation, time series forecasting, language modeling, image recognition, etc.),
and we aim to further broaden the applicability of FAN in our future work. Second, although we have
explored the generalizability of FAN and confirmed that FAN outperforms the baseline method in
some real-world tasks, the boundaries of this model’s generalizability remain unknown. However, we
have not yet identified specific scenarios where it performs poorly. We leave this for our future work.

30

	Introduction
	Preliminary Knowledge
	Fourier Analysis Network (FAN)
	Experiments
	Periodicity Modeling
	Application of Real-world Task
	Further Analysis of FAN

	Related Work
	Discussion
	Conclusion and Future Work
	Acknowledgement
	MLP
	Additional Experiments
	Additional Experiments on Periodicity Modeling Tasks.
	Additional Experiments on Image Recognition Tasks.
	Evaluation on LLMs with FAN
	FAN for Solving SciML Problems
	Comparison with Frequency-based Models in Time Series Forecasting Tasks
	Comparison with Directly Learning the Coefficients
	The influence of hyperparameters dp
	The effectiveness of the FAN Layer for deep neural networks
	Experiments on Time Series Forecasting with Instance Normalization
	Layer-wise Spectral Analysis
	Ablation Study

	Experimental Details
	Implementation Details.
	Setup of Periodicity Modeling
	Setup of Symbolic Formula Representation
	Setup of Time Series Forecasting
	Setup of Language Modeling
	Setup of Image Recognition

	Comparison of FAN and Snake Activation Function
	Compliance with the Universal Approximation Theorem
	More Details of Baselines
	More Detailed Discussion with Fourier-based Neural Network
	Limitation

