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Abstract

Multimodal Dataset Distillation (MDD) seeks to condense large-scale image-text
datasets into compact surrogates while retaining their effectiveness for cross-modal
learning. Despite recent progress, existing MDD approaches often suffer from
Modality Collapse, characterized by over-concentrated intra-modal representa-
tions and enlarged distributional gap across modalities. In this paper, for the first
time, we identify this issue as stemming from a fundamental conflict between
the over-compression behavior inherent in dataset distillation and the cross-modal
supervision imposed by contrastive objectives. To alleviate modality collapse,
we introduce RepBlend, a novel MDD framework that weakens overdominant
cross-modal supervision via representation blending, thereby significantly enhanc-
ing intra-modal diversity. Additionally, we observe that current MDD methods
impose asymmetric supervision across modalities, resulting in biased optimiza-
tion. To address this, we propose symmetric projection trajectory matching, which
synchronizes the optimization dynamics using modality-specific projection heads,
thereby promoting balanced supervision and enhancing cross-modal alignment.
Experiments on Flickr-30K and MS-COCO show that RepBlend consistently
outperforms prior state-of-the-art MDD methods, achieving significant gains in
retrieval performance (e.g., +9.4 IR@10, +6.3 TR @10 under the 100-pair setting)
and offering up to 6.7 x distillation speedup. Our code is publicly available at
https://github.com/zhangxin-xd/RepBlend.

1 Introduction

The unprecedented expansion of large-scale datasets has catalyzed recent breakthroughs in deep
learning [6, 2, 1], but has also introduced considerable storage and computational overhead [20, 22].
Thus, reducing dataset size to streamline the development process has emerged as an important
research focus. Among various solutions, Dataset Distillation (DD) [50] has emerged as a com-
pelling strategy, achieving high compression ratios by synthesizing a compact surrogate dataset
that approximates the training efficacy of the original dataset. The effectiveness of DD has been
demonstrated across various modalities, including images [4, 57], text [30, 32], videos [11, 51],
and graphs [29, 58]. These unimodal successes motivate its extension to increasingly prominent
multimodal scenarios [37, 28, 35, 5].

The pioneering effort in multimodal dataset distillation (MDD) is MTT-VL [53], which first validates
the feasibility of extending existing vanilla DD techniques to the image-text setting. Building on
this baseline, LoRS [55] further proposes to mine cross-modal similarity to calibrate the supervision
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Figure 1: Multimodal embedding distributions across various distillation methods. We extract image
and text embeddings from a finetuned CLIP [37] and project them into a shared representation space
using DOSNES [31]. Red triangles and blue circles denote image and text embeddings, respectively.
Left: Embeddings from randomly sampled data in the original dataset exhibit a well-spread and
modality-aligned distribution. Middle: The distilled dataset generated by a SOTA MDD method
(LoRS [55]) suffers from Modality Collapse, where image and text embeddings are poorly aligned
and concentrated in separate regions. Right: Our method effectively mitigates modality collapse,
resulting in a distribution with improved cross-modal alignment and higher representational diversity.

from matched and mismatched pairs, thereby achieving better adaptation to high-variance image-text
data. Despite achieving promising results, existing studies remain confined to the data structure level,
without probing the underlying conflict between DD and contrastive learning. Specifically, to prevent
significant performance deterioration, vanilla DD prioritizes capturing representative features under
limited distillation budgets, often sacrificing diversity and distributional coverage [14, 18, 15]. While
this compromise is tolerable in unimodal classification tasks, naively applying such strategies to
multimodal contrastive learning, which places great importance on instance-level discriminability,
inevitably leads to Modality Collapse. As illustrated in Figure 1 (middle), the distilled dataset exhibits
pronounced intra-modality aggregation and inter-modality separation.

This modality collapse leads to two critical issues. First, it induces excessive intra-modal similarity,
where embeddings within each modality become increasingly concentrated as distillation progresses.
This over-concentration gradually suppresses representational diversity, making semantically distinct
instances harder to separate, and eroding the fine-grained discrimination ability within each modality.
Second, it widens the inter-modal gap, resulting in a large divergence between the feature distributions
of different modalities. Insufficient cross-modal interaction fragments the embedding spaces and
weakens semantic alignment, compromising the correct matching of positive pairs and the separation
of negative pairs across modalities.

Recognizing these limitations, we propose RepBlend, a novel framework for MDD aimed at alleviat-
ing modality collapse. First, we theoretically identify that the collapse results from the joint effect of
the over-compressive nature of DD, where optimization converges toward a small set of dominant fea-
tures, and the cross-modal contrastive supervision, which further reinforces this convergence, leading
to intra-modal collapse. To address this issue, RepBlend introduces Representation Blending within
each modality to weaken the overly strong cross-modal supervision, thereby promoting intra-modal
diversity. Furthermore, we observe that existing MDD approaches exhibit asymmetric supervision
between modalities, with the image branch receiving significantly weaker update signals than the
text branch. To address this, we propose Symmetric Projection Trajectory Matching, a mechanism
that aligns the optimization trajectories of both projection heads, thereby enhancing cross-modal
alignment and improving overall distillation efficiency. Extensive evaluations on Flickr-30K and
MS-COCO demonstrate that RepBlend consistently surpasses existing MDD methods. Notably,
under the 100-pair setting on Flickr-30K, it achieves improvements of +9.4 in IR@10 and +6.3 in
TR@10, along with a 6.7 x distillation speedup over the SOTA baseline. Beyond these benchmarks,
RepBlend also exhibits strong generalization to other multimodal scenarios, such as audio-text.

Our contributions are summarized as follows:

* For the first time, we identify the modality collapse issue in current MDD solutions, where
the distilled dataset exhibits high intra-modal similarity and a large inter-modal gap. Through
theoretical analysis, we attribute this to a mutually reinforcing effect between the over-
compression behavior of dataset distillation and the cross-modal supervision enforced by
contrastive objectives.
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Figure 2: Left: Increasing intra-modal similarity as distillation progresses. We run optimization for

3000 iterations and track the intra-modal cosine similarity, which increases from 0.512 to 0.522 (red
curve). Though small in magnitude, this rise leads to a more than twofold increase in concentration
ratio (CR)” due to the high dimensionality of the embedding space. Right: Modality collapse
undermines the effectiveness of learned soft cross-modal correspondence. The non-matching image-
text pairs exhibit nearly uniform similarity scores, forming horizontal and vertical stripes.

* We propose Representation Blending to mitigate modality collapse by weakening the
overly strong cross-modal supervision and enhancing intra-modal representational diversity.
Furthermore, we introduce Symmetric Projection Trajectory Matching to enable more
balanced multimodal distillation, which not only strengthens cross-modal alignment but
also improves overall distillation efficiency.

2 Preliminaries and Related Works

Dataset Distillation (DD) [50] aims to synthesize a compact surrogate dataset that emulates the key
properties of the original large-scale dataset. These properties include distributional characteristics,
such as feature-level statistics [60, 48, 49] and batch normalization parameters [57, 42, 15], and
training dynamics, including gradients [61, 59] and optimization trajectories [4, 7, 14, 18, 25]. While
DD achieves promising results on unimodal benchmarks, extending it to multimodal scenarios
remains challenging due to unique data structures and learning strategies [53, 55]. We begin by
formalizing the problem of Multimodal Dataset Distillation (MDD).

Problem Formulation. Given a large-scale image-text dataset D = {(x;, 7;), yl}y:)‘l, where
x; € R%m and 7; € R%x denote the i-th image and its paired caption representation’, and each pair
is independently sampled from a natural data distribution P. Each y; € {0, 1}/P! is a one-hot vector

indicating the correspondence between x; and the caption set {7; }L-Z‘l, with the ¢-th entry activated.

Similar to DD, MDD also aims to minimize the loss on original dataset using the model trained on its

distilled synthetic counterpart S = {(&;, 7;), Qi}ﬁ‘lz

S*=arg;nin EP[E(fes(wﬁ),y)} s.t. 93=arg;nin E [L(fe(x,7),9)], (1)

(,7)~ (&,7)~S

where |S| < |D|, and £ denotes the contrastive learning loss. The model fg(-) represents a CLIP-
style network parameterized by 6. Each distilled sample consists of a synthetic image-text pair
(%;,7), where &; € Réme and 7, € Rbex, accompanied by a learned soft label y;.

MDD vs. Vanilla DD. According to the Equation 1, the generalization from vanilla DD to MDD
involves two key modifications: 1) introducing soft ground-truth vectors y;, and 2) optimizing under
a contrastive learning loss £ for image-text alignment. While learning soft labels is common in
vanilla DD [7], optimizing y; in MDD is more challenging, as both image and text representations
are updated simultaneously. Besides, in practice, the contrastive loss £ is typically instantiated as
InfoNCE [33], extended InfoNCE (eNCE), or weighted BCE (wBCE) [55], all aiming to strengthen
positive alignments while penalizing mismatched pairs. However, these extensions only make the
multimodal adaptation feasible, overlooking the essence of dataset distillation: effective information

!Given the discrete nature of text, all subsequent analysis is conducted in the representation space, while
images remain processed in the pixel space. Here, dimg = W x H X 3 and diexe = 768 (for BERT [10]).

2CR measures how tightly the features are clustered, based on how much of the hypersphere is covered at the
given cosine similarity. (Refer to Appendix C for more calculation details).



condensation. More specifically, they prioritize cross-modal alignment, while failing to preserve
intra-modal diversity and discriminability under severe data compression.

3 Methodology

In this section, we introduce RepBlend, a novel approach for MDD. We begin by identifying the
phenomenon of Modality Collapse, which emerges when vanilla DD methods are naively applied to
multimodal settings. Through theoretical and empirical analysis, we uncover its underlying causes.
To address this issue, we propose Representation Blending to enhance intra-modal diversity. In
addition, we introduce Symmetric Projection Trajectory Matching, which balances the distillation
process across modalities and further strengthens cross-modal alignment. The overall pipeline of
RepBlend is outlined in Algorithm 1.

3.1 Modality Collapse

LoRS [55] is a representative MDD method built upon Equation 1, where £ is defined as:
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Here, B C S denotes a sampled batch. 9;; represents the cosine similarity between the normalized
image and text embeddings, where &; = Normalize(f™(&;))’ and 7] = Normalize(f***(7;)),
with fimeE(.) and f**'P(.) denoting the image encoder and text projection head, respectively. The
threshold (3 is used to determine positive and negative pairs, o(-) denotes the sigmoid function, and ~
is the temperature. £(-, -) refers to the binary cross-entropy loss. While this supervision primarily
aims to mine cross-modal relationships, it inadvertently reinforces intra-modal similarities, ultimately
leading to Modality Collapse, as shown in Figure 1, where instances within each modality excessively
concentrate. Without loss of generality, the following analysis focuses on the image modality.

Proposition: Cross-modal supervision reinforces intra-modal similarity. During dataset distillation,
if {&,,, 7.} and {&,,, T, } exhibit some non-negligible similarity, i.e., Ynm = Ymn > 3, then the

direction of their subsequent updates 865, 8(335’ is determined by

Wpm Wmn ~ ~/

72 [U(ynm)/t - gn7n][0(gmn)/t - gmn]i_rlrj'rna (3)

which indicates that the optimization is guided
by positive pairs 7| 7/, promoting concentra- 05250
tion in similar directions. A detailed derivation is 05225
provided in Appendix B. When distilling a large
dataset into a compact one, the optimization pro-
cess tends to be dominated by a few salient fea-
tures [9, 15, 18, 43]. Once this convergence trend 05100
emerges, cross-modal supervision further rein- 05075 F
forces it: modality-specific diversity is implicitly A=00 12001 =005 _ R
suppressed, and intra-modal representations are
increasingly aligned toward a limited set of dom-
inant directions. As illustrated in Figure 2 (left),
the intra-modal similarity consistently increases
throughout the distillation process.
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Figure 3: As the noise level A increases, intra-
modal similarity (blue bars) shows a slight de-
cline, while the modality gap (yellow bars) rises
markedly. In contrast, our representation blend-
ing (RB) leverages in-distribution samples to si-
In addition to the aggravated intra-modal similar- multaneously reduce intra-modal similarity and

ity, modality collapse also exacerbates the cross- jnter-modal gap, effectively mitigating modality
modal representation gap, as features from each  collapse during distillation.

modality become increasingly centralized within

compact regions of the shared embedding space. Consequently, the similarities between non-matching
image-text pairs converge toward a uniform distribution. Such behavior undermines the utility of
soft label distributions, which are designed to encode fine-grained relational information beyond

3In LoRS [55], no image projection head is used.



the binary supervision provided by one-hot labels. As illustrated in Figure 2 (right), non-diagonal
similarity values exhibit a near-uniform pattern, where image embeddings produce nearly constant
similarity scores across all non-matching text embeddings (manifesting as horizontal stripes), and
vice versa for text samples (vertical stripes).

3.2 Mitigating Modality Collapse via Representation Blending

As analyzed in Equation 3, modality collapse arises from overly strong cross-modal supervision,
which implicitly encourages intra-modal concentration and undermines representational diversity. To
alleviate this constraint, one potential approach is to inject directional signals that deviate from 7/,
and 7. To empirically validate this hypothesis and explore a viable remedy, we conduct a controlled
perturbation experiment on Flickr-30K [36]. In particular, we adopt two key metrics following [26]:
the intra-modal similarity (Sim) and the modality gap (Gap), defined as,

1 IS| 1 IS| S|
PR ~I1T =1 _ ~/ ~/
Slm77\8|(|8|—1)zmi z;, Gap7®||2mi72‘rj\\2. @
i i=1 j=1

We inject Gaussian noise into the text representations,
Fm0 = Nommalize (/0 (1 = N +A&,0) ), 77 = Normalize ( /(1= ) +A&,))

m

where A,, and A,, are independently sampled random noise from A(0, 1), and X controls the noise
level. We evaluate Sim and Gap under varying levels of A\. As shown in Figure 3, a slight increase
in noise reduces intra-modal similarity (blue bars), indicating enhanced modality-specific diversity.
These results support our hypothesis that perturbing in the representation space can effectively
counteract modality concentration.

However, as noise level continues to grow, the injected perturbation begins to introduce semantically
meaningless signals, which hinders cross-modal alignment. This is evidenced by the growing
modality gap (yellow bars), accompanied by a performance drop of 1.9% in IR@1 and 2.1% in
TR@]1 at A = 0.01 under 100 distilled pairs on Flickr-30K dataset. To mitigate this issue, we propose
replacing the random perturbation with a structure-preserving variant using in-distribution samples.
Specifically, we blend representations from different synthetic instances:

7lend = Normalize (fP((1 — A) Ty + ATi)), 72" = Normalize (f*F((1 — N7, + A7), (5)

m

where 1 < ¢, 7 < |S|. This operation resembles the idea of MixUp, but is applied in the representation
space. As shown in the last group of Figure 3, we can maintain a low level of intra-modal similarity
and small modality gap. Note that although here we illustrate the formulation on text, the same
operation is also applied to image side in practice.

3.3 Enhancing Cross-modal Alignment via Symmetric Projection Trajectory Matching

In prior MDD practices, methods such as MTT-VL [53] and LoRS [55] follow a de facto protocol
wherein the text encoder is frozen and the image projection layer is omitted. The image encoder and
the text projection head are trained to generate expert trajectories for distillation. In this setup, the
image encoder is initialized with pretrained weights from ImageNet-1K [8], while the text projection
head is trained from scratch. This design is motivated by two key considerations: 1) the prohibitive
computational and memory cost of optimizing and storing expert trajectories for large-scale text
encoders such as BERT [10]; and 2) the fact that text distillation operates in the representation space,
where supervision is applied only through the projection head, thus, matching at the encoder level
cannot propagate supervision to the representation space. LoRS [55] minimize the objective in
Equation 1 through trajectory matching, which is formulated as follows:
2).

2 Y
2)/ (Job.. - ot
where Ogﬁr{;E and O?tg:tp denote the T'-step finetuned weights of the image encoder and text projection

head using S, initialized from B%WE and G%lmp, respectively. The objective is to align the T-step
synthetic trajectory with the M -step real trajectory by minimizing the /5 distance between their
terminal weights, given the same initialization.

SRR SN, T _ gi+M
¥, 7%, y* = argmin (HBS.WE — 05
z,7.9 - }

2
T pt+M
9 + Heslcxll’ epmup

2
¢ pt+M
9 + ‘ | oDnmp GDmuP




LoRS LoRS + SM 3 Image [ Text

!
3 2" 4, o Text ! Gap:0.290
S S o RS}
SROT L e = 0.95 . + Image | 'g 101
S R = ) A '2 1.016ap:0.327
£ £ 0.90 - p: 0.
S S 28 0.90 0.91
5 S 085 i€E oo
§ 0.9 g -
= = 0.80 'sS
12 E
508 S o075 -u S o8
2 2 g
S Text 8 .70 R RS
Lo7 < W |18
= o6 Image g o6s i 07
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 .
. 0 "
Iteration Iteration ! LoRS LoRS+SM

Figure 4: Current MDD methods adopt asymmetric distillation. Left: The loss on the image side
shows much smaller variation than that of the text side, fluctuating mildly around 1.0 without notable
reduction. Right: The update norm relative to initialization is significantly lower for the image
modality in LoRS (0.69) compared to the text modality (0.90), suggesting insufficient representation
transfer. The update norm is computed in the shared representation space for both modalities. After
incorporating symmetric matching (SM), both image and text modalities exhibit more balanced and
synchronized update dynamics, leading to more effective cross-modal alignment (reduced Gap).

However, the aforementioned trajectory matching is asymmetric. As shown in Figure 4 (left), the
trajectory matching losses of the image and text modalities exhibit divergent trends: the text-side
loss decreases steadily, whereas the image-side loss quickly plateaus and remains relatively high.
This is primarily because the image encoder contains significantly more parameters than the text
projection head, thus, even small per-parameter errors can accumulate into a large overall mismatch.
This imbalance is further evidenced in Figure 4 (right), the norm of updates relative to initialization
for the image modality is significantly smaller than that of the text, indicating insufficient distillation
on the image side. While the representation blending introduced in Section 3.2 helps narrow the
modality gap, its effect is still constrained by the inherently asymmetric distillation. To address this
imbalance and further enhance cross-modal alignment, we propose a symmetric distillation strategy
by matching trajectories of projection head for both modalities:

2)/ (o - o52]; ). ©

Here, the image encoder is initialized with ImageNet-1K pretrained weights and kept frozen. While
the added image projection head incurs slight computational overhead, it enables projection-based
matching that significantly enhances the overall efficiency of the distillation process (as discussed
in Section 4.4). As shown in Figure 4, symmetric projection matching leads to a more consistent
decrease in loss for both image and text branches. Moreover, the increased magnitude of updates
suggests stronger supervision signals across modalities, resulting in a more balanced and effective
distillation process. With symmetric distillation, the modality gap is further narrowed from 0.318 (in
Figure 3) to 0.290, indicating enhanced cross-modal alignment.
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4 Experiments

In this section, we conduct extensive experiments on multiple benchmark datasets to demonstrate the
effectiveness of the proposed RepBlend framework. We first present the experimental setup, including
the datasets, baseline methods, and implementation details. The main results are summarized in
Table 1, Table 2, and Table 3. In addition, we also provide detailed ablation studies to evaluate the
individual contribution of each component. All experiments are conducted using two NVIDIA RTX
3090 GPUs and one NVIDIA H100 GPU.

4.1 Experimental Setup

Datasets and Networks. We evaluate our method on two widely-used image captioning datasets:
Flickr-30K [36] and MS-COCO [27], which contain approximately 31k and 123k images respectively,
with each image paired with five human-annotated captions. For the image encoder, we experiment
with NFNet [3], RegNet [38], ResNet-50 [19], and ViT [12]. For the text encoder, we consider
both BERT [10] and DistilBERT [40]. To further demonstrate the generalizability of our approach
across modalities, we extend our evaluation to the AudioCaps [23] audio-text benchmark, utilizing
EfficientAT [41] as the audio encoder. Model performance is primarily evaluated using Recall at K
(R@K) in cross-modal retrieval tasks. Given a query from one modality, we retrieve the top-K most
similar samples from the other modality and measure the retrieval accuracy. We denote text-to-image
retrieval as IR@K, and image-to-text retrieval as TR @K.



Algorithm 1 Blending Representations to Mitigate Modality Collapse in MDD

Require: Original large dataset D; CLIP-style network { fimeE, flexE = gimeP & £1extPY. req] trajectories
set Op,,,» a.nd. @plem,., realitrajectory matching length M, synthetic trajectory matching length
T'; total optimization iteration number Iter

1: Initialize S with |S| randomly sampled image-text pairs and one-hot groundtruth labels
2: Load pretrained weights into encoders (frozen); randomly initialize projection heads
3: for it =1 to Iter do
4 Sample 0 .05  and OtDng .65 from ©p,,, and Op,,
5. Initialize 05,  and O, using 03, and 05,
6: fori =1toT do
7: for mini-batch B = {(&, %), % })>, € S do
8: Calculate image representaion { f™eE(z;)}
9: >Blending in representation space
10: {fimeE(z,), 7} = RepBlend ({ f™E (%), 7 })
11: Compute loss L5 using Equation 2
12: Update projection head weights Hfstfgp and 65
13: end for
14: > Symmetric projection trajectory matching
15: Optimize S = {(&;, 7). Y, }lj‘i‘l according to Equation 6
16: end for
17: end for

Ensure: Synthetic dataset S

Baselines. The comparison encompasses a range of SOTA approaches, including coreset selection
methods such as Random sampling, Herding [52], K-Center [16], and Forgetting [47], as well as
recent advances in dataset distillation tailored for vision-language models, including MTT-VL [53],
TESLA-VL [55], and LoRS [55]. A detailed description of these methods can be found in the
Appendix E. For fairness, both LoRS [55] and our method synthesize one fewer pair per distillation
budget (e.g., 99 pairs for a budget of 100) to account for the additional similarity-matrix overhead.

Implementation Details. We construct a CLIP-style architecture using the aforementioned image
and text encoders. The image encoder is initialized with ImageNet-pretrained weights [8], while the
text encoder is initialized with the official pretrained weights provided by the corresponding language
model. After feature extraction, the outputs from both branches are passed through separate linear
projection layers to obtain the final embeddings. During buffer generation, distillation, and evaluation
training, the encoders are frozen and only the projection layers are optimized. We collect 20 expert
trajectories, each consisting of 10 training epochs. The hyperparameter settings follow those used in
LoRS [55] and can be found in Table 7 and Table 8 in Appendix F.

4.2 Main Results

The results on Flickr-30K [36] and MS-COCO [27] are presented in Table 1 and Table 2, respec-
tively. Our method consistently outperforms all baseline methods, across all distillation budgets and
evaluation metrics. Notably, on Flickr-30k, under the extremely low-data regime of 100 training
pairs (0.3%), our method achieves an IR@1 of 11.5%, substantially surpassing LoRS (8.3%) and
MTT-VL (4.7%). Similarly, our TR@ 10 reaches 55.5%, a considerable gain over the best baseline
LoRS (49.2%). These trends hold consistently across all pair settings. Under the 500-pair scenario
(1.7%), our method improves the IR@ 10 from 41.6% (LoRS) to 55.9% and TR@10 from 53.7% to
66.7%, reflecting a relative gain of over 30%. On MS-COCO, a dataset known for higher complexity
and variability, our method continues to exhibit superior performance. Under the 100-pair setting
(0.8%0), our approach achieves IR@10 =22.3% and TR@10 = 28.0%, substantially outperforming
LoRS, which attains 12.2% and 19.6%, respectively. At a higher budget of 500 training pairs (4.4%o),
our method maintains its advantage, achieving the highest IR@10 (30.6%) and TR@10 (32.9%)
among all evaluated methods. Besides, we also extend our method to a larger-scale setting using
the LLaVA-cc3m dataset, which serves as the pretraining dataset for LLaVA and consists of 558k
image-text pairs. We use approximately 60% of the data (about 334k pairs) for training and reserve a



Table 1: Results on Flickr-30k [36]. Both distillation and validation are performed us-
ing NFNet+BERT. The model trained on full dataset performs: IR@1=23.16, IR@5=53.98,
IR@10=66.62; TR@1=33.8, TR@5=65.7, TR@10=76.9.

Pairs  Rati o Coreset Selection | Dataset Distillation
airs  Ratio  Metric
| Rand Herd [52] K-Cent [16] Forget [47] | MTT-VL [53] TESLA-VL [55] LoRS [55] Ours
IR@1 1.0 0.7 0.7 0.7 4710 054102 83102 11504
IR@5 4.0 2.8 3.1 2.4 157405 23402 241100 32.0.0.7
100 03% IR@10 6.5 53 6.1 5.6 246110 4.7 0.4 35.1+0.3 44.5. 06
: TR@1 1.3 1.1 0.6 1.2 9903 55405 11.8:102 1625
TR@5 5.9 4.7 5.0 4.2 283105 19.540.0 358106 41.7 0.9
TR@10 10.1 7.9 7.6 9.7 39.110.7 2894110 492 .5 55504
IR@1 1.1 1.5 1.5 1.2 46509 0.240.1 8.610.3 12705
IR@5 4.8 5.5 54 3.1 16.0+1 6 13200 253402 34706
o IR@10 9.2 9.3 9.9 8.4 255426 25402 36.6:0.3 47605
20007%  R@1 | 21 23 22 1.5 10240« 280 1450 186+
TR@5 8.7 8.4 8.2 8.4 287410 10441 5 38705 46.0- 5
TR@10 13.2 14.4 13.5 10.2 4194 9 174416 5345 60.0-0.¢
IR@1 24 3.0 35 1.8 6.6:0.3 11102 10.040.2 17006
IR@5 10.5 10.0 10.4 9.0 202410 73104 28907 42,505
500 1.7% IR@10 17.4 17.0 17.3 159 30.02.1 12.640.5 41.610.6 55906
: TR@1 5.2 5.1 4.9 3.6 133406 51400 155507 22.540.4
TR@5 18.3 16.4 16.4 12.3 328118 153105 3908104 53.2.0.3
TR@10 | 25.7 24.3 233 19.3 46.8 105 23.840.3 537103 66.7 0.3

Table 2: Results on MS-COCO [27]. Both distillation and validation are performed using
NFNet+BERT. The model trained on full dataset performs: IR@1=14.6, IR@5=38.9, IR@10=53.2;
TR@1=20.6, TR@5=46.8, TR@10=61.3.

Pai . o Coreset Selection | Dataset Distillation
airs  Ratio  Metric
‘ Rand Herd [52] K-Cent [16] Forget [47] ‘ MTT-VL [53] TESLA-VL [55] LoRS[55] Ours
IR@1 0.3 0.5 0.4 0.3 13401 034105 1.840.1 4103
IR@5 1.3 1.4 1.4 1.5 5403 1.000.4 7102 13905
100 0.8%o IR@10 2.7 3.5 2.5 2.5 9505 1.8:05 1224102 223,05
: TR@1 0.8 0.8 1.4 0.7 25403 2.0+0.0 33400 52405
TR@5 3.0 2.1 3.7 2.6 10.00.5 7705 122103 17909
TR@10 5.0 49 5.5 4.8 15704 1354003 19.61 0.3 28.0.03
IR@1 0.6 0.9 0.7 0.6 1.7401 0.1:0 2401 6.1.%
IR@5 2.3 2.4 2.1 2.8 6.5:0.4 0.240.1 93405 193.0.7
200 1.7%0 IR@10 4.4 4.1 5.8 49 123105 0.5+0.1 155102 29805
. TR@1 1.0 1.0 1.2 1.1 33400 0.7:0. 435101 6905
TR@5 4.0 3.6 3.8 3.5 1191056 3105 14203 218109
TR@10 7.2 7.7 7.5 7.0 194, 53105 226102 323,07
IR@1 1.1 1.7 1.1 0.8 25405 0.8:0.2 28405 6.2,
IR@5 5.0 53 6.3 5.8 89.0.7 3.6+056 9905 1993
IR@10 8.7 9.9 10.5 8.2 158115 6.7+0.0 16.5:0.7 30.6-
00 44% tRer | 19 19 2.5 2.1 5001 1704 53005 70000
TR@5 7.5 7.8 8.7 8.2 172403 59105 183415 22,0103
TR@10 12.5 13.7 14.3 13.0 26.0+1.0 102410 279414 329056

non-overlapping set of 10k pairs for validation®. In addition, we evaluate our approach with more
powerful encoders, including DiNo-v2 [34] (85,798,656 parameters) for vision and BGE-1.5 [54]
(109,482,240 parameters) for text. The results (shown in Table 3) demonstrate that our method
remains effective when scaling both model capacity and training data, and it significantly outperforms
the SOTA competitor. Moreover, our method also demonstrates strong generalizability to other
multimodal settings, such as audio-text benchmark. See Appendix H for details.

4.3 Ablation Study

Representation Blending & Symmetric Matching. We conduct an ablation study on the Flickr-30K
dataset using NFNet+BERT to evaluate the individual and combined contributions of the proposed
components: Representation Blending (RB) and Symmetric Projection Trajectory Matching (SM).
As shown in Figure 5, removing either module leads to consistent performance degradation across
all retrieval metrics (IR@1/5/10 and TR@1/5/10) and distillation budgets (100, 200, 500 pairs).
RB contributes by mitigating intra-modal collapse; as illustrated in Figure 3, it effectively reduces

4see https://huggingface.co/xinxin66/RepBlend/tree/main/datasets/cc3m.
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Table 3: Results when scaling to larger dataset and model. NFNet + BERT on LLaVA-cc3m: the model
trained on the full dataset performs: IR@1=9.13, IR@5=25.94, IR@10=36.34, TR@1=9.49, TR @5=26.08,
TR@10=37.07. DiNo-v2 + BGE-1.5 on MS-COCO: the model trained on the full dataset performs: IR@ 1=22.70,
IR@5=51.13, IR@10=65.26, TR@1=31.04, TR@5=61.96, TR@10=74.1.
Pairs  Methods | NFNet + BERT on LLaVA-cc3m | DiNo-v2 + BGE-1.5 on MS-COCO
| R@el IR@5 IR@I0 TR@I TR@5 TR@I0 | IR@l IR@5 IR@10 TR@l TR@5 TR@I10
LoRS [55] 1.56 533 8.77 1.01 4.04 6.81 ‘ 1.59 6.12 10.59 1.62 6.15 10.47

200

Ours 3.53 12.38 19.33 4.39 13.45 20.18 1252 3196  44.39 16.06  36.84 49.34
500 LoRS [55] 1.96 6.72 10.55 1.41 5.11 8.51 248 8.46 13.42 3.18 10.36 16.37
Ours 445 15.09 2231 5.14 14.89 22.97 13.37  33.09  45.69 16.90 39.38 52.14
800 LoRS [55] 1.67 5.87 9.69 1.68 6.11 10.25 2.95 9.90 15.69 4.56 13.66 20.63
Ours 5.26 16.31 24.23 5.42 16.13 24.16 13.68 33.58  45.93 17.14  39.76 52.92
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Figure 5: Ablation study of Representation Blending (RB) and Symmetric Projection Trajectory
Matching (SM) on Flickr-30K with NFNet+BERT.

intra-modal similarity and enhances representational diversity. SM further balances the learning
dynamics across modalities and improves cross-modal alignment, as evidenced in Figure 4. When
combined, RB and SM achieve the best overall performance, highlighting their complementary roles
in enhancing intra-modal diversity and cross-modal alignment.

Cross-Architecture Generalization. We further validate the generalization capability of RepBlend
across diverse architectures. Following the protocol of LoRS [55], we keep the text encoder fixed and
evaluate the dataset distilled with NFNet+BERT using alternative image encoders, including ResNet-
50 and RegNet. As shown in Table 4, RepBlend consistently maintains strong performance across
different encoder architectures. Moreover, we extend the evaluation to a broader set of architecture
combinations, such as ResNet-50+BERT, ViT+BERT, RegNet+BERT, and NFNet+DistilBERT, as
illustrated in Figure 6 and Figure 7 in Appendix I. Across all architectures, datasets, and distillation
budgets, RepBlend consistently outperforms the sota baseline, demonstrating its robustness and
architectural adaptability.

Zero-Shot Generalization. To further validate the effectiveness of our distilled dataset, we fur-
ther evaluate zero-shot ImageNet [8] classification and OCR-relevant retrieval on TextCaps [45].
Specifically, we randomly select 10 classes from ImageNet-1K and report Top-1 and Top-5 zero-shot
accuracies. For TextCaps, we measure retrieval performance on 3,166 validation samples. The results,
summarized in Table 5, show that under the same budget, models trained on our distilled dataset
outperform LoRS and narrow the performance gap to the full-dataset baseline.

4.4 Computational Efficiency

In the proposed method, the training trajectories of image and text projection layers are used for
matching optimization. Although we introduce an additional image projection, it incurs negligible
computational overhead. In fact, as shown in Table 6, our method achieves significantly better
computational efficiency compared to prior work. Specifically, the time required to construct expert
trajectories is reduced from 70 minutes to 40 minutes per trajectory (1.75x speedup), and the
corresponding memory footprint decreases from 1.63 GB to 0.73 GB (2.23 x reduction). During the
distillation phase, our method accelerates training iterations from 11.5 seconds to 1.71 seconds per
iteration, yielding a 6.7 x speedup. Moreover, it lowers the peak GPU memory usage from 21.78 GB



Table 4: Cross-architecture generalization. The distilled data are synthesized with NFNet+BERT and
evaluated across architectures on Flickr-30K under the 500-pair setting.

Evaluate Model =~ Methods \ IR@1 IR@5 IR@10 TR@1 TR@5 TR@10
TESLA-VL [55] 30 0.2 108 0.5 170 +0.8 60 0.9 188 +0.7 277 +1.2
ResNet+BERT  LoRS [55] 33102 127403 204102 68.0> 196413 3llios
Ours 4.27“3 14.17(),3 23.6+[1 6 8.47(),3 23.1+[1 8 35.0+ 1.3
TESLA-VL [55] | 32105 11.1:1s 1750135 5.8.:01 18.6406 281410
RegNet+BERT  LoRS [55] 3.5 01 126035 21.1:04 68103 208:035 30203
Ours 3.97“3 13.9—(),4 24.0+u 6 7.970,,’, 24.2+[1 3 36.2+ 1.1

Table 5: Zero-Shot Generalization. Models trained on the distilled MS-COCO dataset under the
500-pair setting are evaluated on zero-shot ImageNet classification and TextCaps retrieval tasks.

Methods | ImageNet-10 Classification | TextCaps Retrieval

‘ ACC@1 ACC@5 ‘ IR@l JR@5 JR@10 TR@l TR@5 TR@I0
LoRS [55] 21.4 74.4 1.7 5.1 8.4 0.4 1.7 3.1
Ours 27.6 76.2 3.1 94 14.5 1.9 6.2 10.3

to 10.17 GB (2.14 x reduction). These results show that our projection-based design not only enables
effective multimodal distillation, but also leads to substantially improved computational efficiency.

5 Conclusion

In this work, we investigate the underexplored challenge Table 6: Study of computational efficiency.
of modality collapse in multimodal dataset distillation

(MDD), where intra-modal similarity is excessively am- Methods | LoRS [55] Ours
plified and inter-modal alignment is degraded. Through (R@L, TR@1L) (%) | (83,11.8)  (115162)
theoretical analysis and empirical evidence, we attribute Buffer

this phenomenon to the inherent over-compression be- Speed (min/traj) 70 40
havior of dataset distillation and its interplay with cross- Memory (GB/traj) 1.63 0.73
modal contrastive supervision. To mitigate these issues, Distillation

we propose RepBlend, a novel MDD framework incor- Speed (siter) L5 171

Peak GPU VRAM (GB) 21.78 10.17

porating two key components: Representation Blending
for enhancing intra-modal diversity and Symmetric Pro-
jection Trajectory Matching for achieving balanced and effective supervision across modalities.
Extensive experiments on Flickr-30K and MS-COCO confirm the superiority of RepBlend in both
retrieval performance and distillation efficiency.

Limitations and Future work. Despite the promising results of RepBlend, current MDD frame-
works, including ours, remain limited to pair-level modeling, which restricts fine-grained alignment
between text tokens and visual objects. Additionally, insufficient cross-instance interaction hampers
representation expressiveness and limits further gains in compression. In the future, we will explore
instance-aware, relation-enhanced strategies to overcome these challenges.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the proposed method and its core
contribution.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper provides the full set of assumptions and a complete and correct
proof.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This paper provides implementation details and algorithm descriptions for
reproduction. We also release our codes for reproduction in camera-ready version.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details necessary to reproduce the
results, including datasets, hyperparameters, optimizer type, and how they were chosen.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experiments were rigorously conducted with five repetitions each, and we
meticulously reported both the mean values and standard deviations for each experimental
trial.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper comprehensively details compute resources in both the experiments
section and supplementary materials, covering GPU type, memory, and storage specifics.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research aligns with the NeurIPS Code of Ethics, ensuring ethical standards
are upheld throughout the study.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is foundational research, and therefore, it does not have direct
societal impacts to discuss.

Guidelines:

18


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of data or models that have a high risk
for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper provides proper credit to asset creators, citing relevant papers and
explicitly mentioning license and terms of use. URLs are included where possible, and all
licenses are respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well-documented, providing com-
prehensive details alongside the assets, including training procedures, licenses, limitations,
and consent processes, ensuring transparency and reproducibility.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used in the development of the core methods; their usage was
limited to language polishing and did not influence the scientific contributions of this work.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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