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ABSTRACT

Machine unlearning as an emerging research topic for data regulations, aims to
adjust a trained model to approximate a retrained one that excludes a portion of
training data. Previous studies showed that class-wise unlearning is effective in
forgetting the knowledge of a training class, either through gradient ascent on
the forgetting data or fine-tuning with the remaining data. However, while these
methods are useful, they are insufficient as the class label and the target concept
are often considered to coincide. In this work, we expand the scope by considering
the label domain mismatch and investigate three problems beyond the conventional
all matched forgetting, e.g., target mismatch, model mismatch, and data mismatch
forgetting. We systematically analyze the new challenges in restrictively forgetting
the target concept and also reveal crucial forgetting dynamics in the representation
level to realize these tasks. Based on that, we propose a general framework, namely,
TARget-aware Forgetting (TARF). It enables the additional tasks to actively forget
the target concept while maintaining the rest part, by simultaneously conducting
annealed gradient ascent on the forgetting data and selected gradient descent on the
hard-to-affect remaining data. Empirically, various experiments under our newly
introduced settings are conducted to demonstrate the effectiveness of our TARF.

1 INTRODUCTION

In response to data regulations [32, 58], machine unlearning [7, 61, 69] has emerged to eliminate the
influence of training data from a trained model [69]. The intuitive goal is to forget the specific data as
if the model had never used it during training [6]. To achieve that, a direct way [61] is to retrain the
model from scratch by excluding the data to be unlearned, termed exact unlearning. Considering the
intensive computational cost, much attention has been paid to approximate unlearning [22, 37, 8, 16],
which adjusts the trained model for approximating the behaviors of the retrained one. Focusing
target granularity as semantic clusters, recent studies [45, 38, 8, 16] showed class-wise unlearning is
effective in forgetting the knowledge of a training class, either through reverse optimization [64, 37]
on the class data or fine-tuning on the remaining data [22] to realize catastrophic forgetting [3, 39].

Despite the promising achievements, the previously studied scenario [68, 22, 8, 38, 16] mainly
assumed the target concept1 to coincide with the class label, overlooking that the practical unlearning
request [4, 29, 42] may violate the taxonomy of the pre-training tasks. Raised by the model users,
the reported cases to be unlearned can involve different concerns from original tasks, spanning
from privacy, fairness, copyright, or the hazardous capabilities [46], which can not always be the
conventional matched scenario where all the identified correspond to one pre-training class. In
contrast, those cases may be only a semantic subset within a class, for which the model developer
needs to unlearn the small set considering reserving model utility on the other parts. In addition,
sometimes the user would identify limited cases of the target concept. With a conservative attitude
for protecting the reputation of serving [4, 50, 46] (e.g., IP conflicts), the developer tends to unlearn a
larger semantic cluster when those instances are from the same class or across different classes.

In this work, we decouple the target concept with the class label, to model the unlearning scenarios
for research explorations. To be specific, we consider the different label domains of the forgetting
data LD, the model output LM , and the target concept LT in unlearning. We introduce two relations

1refer to the semantic category of data instances that the user tend to forget from the model.
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Taking the CIFAR-100 [43] dataset with its classes and superclass (two different label domains for modeling different taxonomy of unlearning
from pre-training tasks) as an example, we instantiate four tasks given the same forgetting data with the class labels of “boy” and “girl”: a)
all matched forgetting (conventional scenario): unlearn “boy” and “girl” with the model trained on the classes; b) target mismatch forgetting:
unlearn “people” with the model trained on the classes; c) model mismatch forgetting: unlearn “boy” and “girl” with the model trained on the
superclass; d) data mismatch forgetting: unlearn “people” with the model trained on the superclass. More discussion is provided in Appendix E.

Figure 1: Illustrations of decoupling the class label and the target concept.

between two label domains, i.e., L1 matches L2 (L1 = L2) and L1 is the subclass domain of L2

(L1 ≺ L2)2 , then modeling scenarios corresponding to the target concept being larger or smaller
than the class unit. As the reported forgetting data are included in the target concept, e.g., LD ⪯ LT ,
we have all matched LD = LT = LM ; target mismatch LD = LM ≺ LT ; model mismatch
LD = LT ≺ LM ; and data mismatch LD ≺ LT = LM settings (task instances refer to Figure 1).

Given the aforementioned tasks, we identify new challenges with the mismatched label domains
(refer to Figure 2). Unlike the accurate unlearning approximation in the conventional all matched
task [22, 38, 8], the representative unlearning methods [68, 64] exhibit different performance gap
with the retrained reference in the other tasks. Specifically, the under-entangled feature representation
(when LM ≺ LT ) or the under-representative forgetting data (when LD ≺ LT ) results in insufficient
forgetting, while the entangled feature representation (when LT ⪯ LM ) prevents the decomposition
of target concept with the retaining part. The former requires target identification in the remaining
dataset, while the latter requires explicit target separation over the entangled feature representation.

Based on the above analysis, we propose a novel framework, namely, TARget-aware Forgetting
(TARF), for unlearning. In general, we consider two parts (refer to Eq. 3), i.e., annealed forgetting
and target-aware retaining, which collaboratively enable the target identification and separation
for these forgetting tasks. Specifically, the algorithmic framework (refer to Figure 4) incorporates
an annealed gradient ascent and target-aware gradient descent in a dynamical manner. First, it
actively unlearns the identified forgetting data, and constructs the contrast information to filter out the
remaining data which is hard to be affected. Then, simultaneously learning the selected retaining
data with gradient descent deconstructs the entangled feature representation. Ultimately, the learning
objective can progressively approach standard retraining using the aligned retaining data (refer
to Figure 5). We present comprehensive experiments on different setups of benchmarks and also
real-world applications to verify the effectiveness. Our main contributions can be summarized as,

• Conceptually, we introduce new settings that decouple the class label and the target concept,
which investigate the label domain mismatch in class-wise unlearning (in Section 3.1).

• Empirically, we systematically reveal the challenges of restrictive unlearning with the
mismatched label domains, and demonstrate that the representation gravity in forgetting
dynamics is critical for achieving the forgetting target in the new tasks (in Section 3.2).

• Technically, we propose a general framework, namely, TARF, to realize the target identi-
fication and separation in unlearning. It consists of annealed forgetting and target-aware
retaining which collaboratively approximate retraining on the retaining data (in Section 3.3).

• Experimentally, we conduct extensive explorations to validate the effectiveness of our
framework and perform various ablations to characterize algorithm properties (in Section 4).

2L1 ≺ L2: For any label y ∈ L1, there exists a label y′ ∈ L2 that an instance labeled with y can also be
labeled with y′, but not all instances labeled with y′ can be labeled with y.
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2 PRELIMINARIES

Problem setup. Following the literature [61, 69], we mainly consider the multi-class classification
as the original training task for class-wise unlearning. Let X ⊂ Rd denote the input space and
Y = {1, . . . , C} denote the label space, where C is the number of classes, the training dataset
D = {(xi, yi)}Ni=1 generally consists of two subsets in machine unlearning, e.g., the forgetting
dataset Df and the retaining dataset Dr = D\Df. Building upon the model fθ∗ : X → Y trained on
D with the loss function ℓ, the general goal of this problem is to find an unlearned model θ∗un, which
approximates the behaviors of the model θr that retrained on Dr from scratch,

θ∗un = argmin
θ

1

|D|
∑

(x,y)∼D

R(θ, θr, x, y) s.t. θr = argmin
θ

1

|Dr|
∑

(x,y)∼Dr

ℓ(fθ(x), y)︸ ︷︷ ︸
Lretrain

,
(1)

where R indicates a general risk measure for model behavior consistency [22, 61], which can be
instantiated by an averaged gap with various evaluation metrics [38, 16] (e.g., unlearning accuracy
(UA), retaining accuracy (RA), and others related to privacy) in experiments to pursue the unlearning
efficacy and the model utility [69]. The specific metric definitions can be referred to in Section 4.1.

Table 1: Notation summary and training set data parti-
tion corresponding to four major forgetting tasks.

Notation Explanation Scenario Data Partition

Df : given forgetting dataset
Dt : dataset of target concept
Dun : =D\Df, remaining data

Dr,Dfr : true/false retaining dataset

All matched Df = Dt Dun = Dr
Target mismatch Df ⊂ Dt Dun = Dfr ∪ Dr
Model mismatch Df = Dt Dun = Dr
Data mismatch Df ⊂ Dt Dun = Dfr ∪ Dr

Dataset partition in mismatched setting.
As the target concept is decoupled from
the class label, we adopt Dt to indicate the
dataset of the target concept, Df to indicate
the given forgetting dataset, and summarize
the notations in Table 1. We can find that
the previous assumptions of Df = Dt and
Dr = D\Df only hold in all matched setting. In model mismatch forgetting, the former is still held
while we notice that there exists affected retaining data in Dar having the same class label with
that in Df; in target mismatch forgetting and data mismatch forgetting, Df ⊆ Dt and the remaining
dataset Dun = D\Df include both true retaining dataset Dr ⊆ Dun and the false retaining dataset
Dfr = Dt\Df, where the data belong to the target concept but included in the remaining dataset.
Considering specific task feasibility, we assume that the number of classes in Dun belonging to the
target concept is known in target mismatch forgetting, and the retrained model for every task is trained
using Dr = D\Dt. More details about unlearning request construction are provided in Appendix E.4.

Different focus from prior methods. Existing studies [38, 8] generally assume that Df = Dt and
Dr = D\Df. The common approximation unlearning methods either focus on retaining or forgetting
objectives. The former, represented by Fine-tuning (FT) [68], fine-tunes the model θo onDr to induce
catastrophic forgetting over Df. Later advances assign random labels [22] on Df to enforce forgetting
or adopt L1-norm [38] to infuse weight sparsity in approximation. The latter, represented by gradient
ascent (GA), reverse gradient updates on Df. And another line of works [37] utilizes the influence
function [41] to erase the influence. More recently, adversarial perturbation [8] on Df is employed to
shrink the decision boundary for the target class. From a different view, we explore the label domain
mismatch that relaxes the previous assumption. More discussion on related work is in Appendix B.

3 TARF: TARget-aware Forgetting

3.1 EXPLORING MISMATCHED TAXONOMY IN UNLEARNING

Given its technical nature of mitigating the data influence from a trained model, unlearning is given a
broader significance in the context of trustworthiness [4], where the requests can be varied beyond
the withdrawal from data owner [60], and may be applied in mitigating bias [70] to improve fairness,
erasing harmful content [46] to ensure safety usage, or removing inappropriate content [19] for social
good. Recently, a series of studies [22, 68, 38, 16, 8] have several proposals on forgetting a training
class of the models, and demonstrated it can be successfully achieved by partially scrubbing the class
data or fine-tuning on the retaining data to realize catastrophic forgetting [18, 24]. However, a general
scenario considered in previous works is that the target concept is aligned with the taxonomy of the
pre-training tasks, which may not always hold in practical scenarios with the previous meanings (du
e to the space, we leave more discussion in Appendix E.5). This naturally motivates the question,
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We conduct various unlearning methods for the four tasks. In conventional all-matched forgetting, all the methods can perform similarly to
Retrained. In contrast, we can find that model mismatch forgetting can be affected by the trained model, coupling the behaviors on the forgetting
and affected retaining data, leaving less accuracy gap between them. In target or data mismatch forgetting, the class labels cannot fully represent
the target concepts, leaving false retaining data (belongs to the target concept) not completely forgotten. Full results can refer to Figure 8.

Figure 2: The challenges of restrictive unlearning with the mismatched label domains.

What if the class labels and target concept do not coincide in unlearning?

In Figure 2, we conduct the unlearning on the four forgetting tasks as instantiated in Figure 1 (full
results refer to Figure 8). As a result, those unlearning methods, e.g., the representative FT, GA, and
the recent L1-sparse [38] and BS [8] show different performance gaps compared with the retrained
models except in the conventional all matched setting. It can be found that the affected retaining data
(which is under the same superclass as the model trained on) are entangled with the forgetting part
when LT ≺ LM , as demonstrated by the less accuracy gap between forgetting and affected retaining
data than that of Retrained in the left-middle panel of Figure 2; and the false retaining data (which
belong to the target concept but are not identified) are under-represented by the given forgetting data
when LD ≺ LT , as evident by the non-zero accuracy on target concept in the right panel of Figure 2.

3.2 SYSTEMATIC EXPLORATION ON FORGETTING DYNAMICS

The mismatch of label domains affects the construction of model representation in unlearning, which
requires us to explore it further to understand the underlying mechanism of the performance gaps.
We delve into the relationship between the representation and forgetting dynamics, for which we first
derive the formal analytical results (a full proof can refer to Appendix D) as follows, and then provide
empirical verification in Figure 3 with corresponding interpretations on different kind of mismatch.
Assumption 3.1 (Representation similarity). Let s1 and s2 be two disjoint yet semantically related
subsets of a dataset D trained on a model fθ, x1 ∈ s1 and x2 ∈ s2 refer to samples drawn from them.
Given the representation of an input x at an intermediate layer be h(x), the gradient differences at
representation level can be controlled by assuming ℓh(·) is Lipschitz smooth with constant Cℓ, then
we have ||∇ℓh(x1)−∇ℓh(x2)|| ≤ Cℓ||h(x1)− h(x2)|| = Cℓdh(x1, x2) for a local region.
Theorem 3.2 (Gravity effects on forgetting dynamic). Let θ0 be the well-trained model parameters for
unlearning, and we perform unlearning on s1 via a gradient ascent update, i.e., θt+1 = θt+∇Ls1(θ

t)
for epoch t, then we can the following dynamics given ∆Ls1,s2(θ

t+1) = (Ls1(θ
t+1)− Ls2(θ

t+1)),

∆Ls1,s2(θ
t+1) ≤ (Ls1(θ

t)−Ls2(θ
t))+ηλmax(Jθt(x1))CℓEdh(x1, x2)·||∇Ls1(θ

t)||+O(η2), (2)

where λmax(Jθt) is the largest eigenvalue of the Jacobian matrix Jθ = ∂h(x)
∂θ . Note that when t→ 0,

the RHS mainly relies on the term measuring representation similarity as (Ls1(θ
t)− Ls2(θ

t))→ 0.

Remark 3.1. (Intuitive implication) The Theorem 3.2 connects the unlearning behaviors with the
representation-level relationship in forgetting dynamics, specifically on Eq. (2) where the leading term
shows the magnitude of loss change can be proportional to their representation distance. Intuitively, if
two portions of data occupy nearby/far-apart regions in the latent space, pushing the model to forget
the one will inadvertently/loosely affect the other, reflecting a gravity-style co-movement. This idea
forms the basis of our later understanding of challenges in mismatch scenarios and our useful cues.

Target or data mismatch. In both tasks, we have LD ≺ LT , which means that the forgetting data is
a subset of the target concept, i.e., Df ⊂ Dt. As indicated in right of Figure 3, partially relying on
the forgetting or remaining data can not fully represent the target concept due to under-entangled
representation, and leaves non-zero accuracy on false retaining data as shown in Figure 2.

Remark 3.2. (Insufficient representation) Given LD ≺ LT that indicates Df ⊂ Dt, we can have Df
as s1 and Dt\Df as s2 corresponds to Theorem 3.2, in which the sample (xu, yu) ∼ s2 and sample
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We present the tSNE visualization of the learned features from the pre-trained model trained by (left) superclass and (right) classes. We also
show the averaged loss value of forgetting data, concept/class-aligned data, and the remaining data during GA on the two representations. In
addition, the cluster-wise instance distance and accuracy dynamics can refer to Figure 9. Note that we only show the 5 classes in tSNE as the
large number of remaining classes (e.g., 95 in yellow), we also provide the full results of the unlearned representations in the Appendix G.2.

Figure 3: Forgetting dynamics on entangled/under-entangled feature representations of trained model.

(x, y) ∼ s1 exhibit weak gravity effects on the forgetting dynamics due to the under-entangled or
biased representation with large latent distance dh(x

u, x), i.e., the ∆Ls1,s2(θ
t+1)−∆Ls1,s2(θ

t) in
Eq. 2 indicating loss update gap of two subsets can be also relatively large, that aligns with Figure 3.
The forgetting set covers only part of target concept can’t govern the whole concept forgetting.

Model mismatch forgetting. In this task, we have LD = LT while LT ≺ LM . Regarding the model
trained by the superclass, it can be found in the left of Figure 3 that the features of forgetting data and
affected retaining data are closely entangled, showing that the unlearning of the forgetting data can
unavoidably affect the representation of the other part. In contrast, it is also notable in the left-middle
of Figure 2 that the accuracy gap between forgetting data and affected retaining data is expected to be
large in the retrained reference. We provide the following interpretation based on Theorem 3.2.

Remark 3.3. (Decomposition lacking) Given LT ≺ LM that indicates the broader representation
region forDz := Dt∪Dar within the same class z (hereDar ⊂ Dr refer to the set of affected retaining
data as illustrated in left-most of Figure 2), the entangled representation results in small latent distance
dh(x

u, x) for the samples of (xu, yu) ∼ Dz and sample (x, y) ∼ Dt, so ∆Ls1,s2(θ
t+1)−∆Ls1,s2(θ

t)
is as small as evident in left of Figure 3, requiring bidirectional operation to disentangle it, as the
representation is overly entangled that forgetting updates on target concept may spill over onto others.

Forgetting dynamics with representation distance. Despite the issues revealed by the observations
under label domain mismatch, the forgetting performance varying obviously on different representa-
tions also provides clues on addressing them. Notably, we can find that GA achieves better forgetting
efficacy on the data mismatch forgetting as the feature representation of the forgetting data and false
retaining data is entangled. Through the effect of actively forgetting the given data on the other parts
of data, we can also utilize the representation gravity defined as follow to identify false retaining data,

Definition 3.3 (Representation gravity). Given the empirically supported gravity effects in Theo-
rem 3.2, we can have Icon(x, y, θ) to reflect the similarity d(xu, x) in the model θt with a small t,
e.g., Icon(x, y, θ) = |ℓ(fθ(x), y)− ℓ(fθt(x), y)|, or we can calculate class-wise accuracy change.

It is empirically demonstrated in Figure 3 (also the latent representation distance and class accuracy
trends in Figure 9), the corresponding changes in accuracy and loss values show that generally the
smaller the distance in representation level, the similar forgetting dynamics the model would have on
prediction. Regarding the issues of insufficient representation and decomposition missing, we can
utilize the gravity effects to identify the unidentified forgetting data in the remaining set, and reveal
the needs of deconstructing entangled representation by simultaneously considering two parts.

3.3 ALGORITHM FRAMEWORK OF TARF

The previous revealed insufficient representation and decomposition lacking in mismatched scenarios
motivates a general unlearning framework, capable of utilizing the early forgetting dynamics to
identify potential target samples and conduct restrictive representation deconstruction. It naturally
leads to two components design, e.g., annealed forgetting and target-aware retaining that organically
fits the requirement for early identification, feature deconstruction, and over-forgetting prevention.

Based on the intuition, we introduce the whole framework of TARget-aware Forgetting (TARF), to
enable the mismatched class-wise unlearning tasks. Given the identified forgetting data, we illustrate
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the overall process in Figure 4, and introduce its dynamic learning objective as follows:

LTARF = k(t) ·
(
− 1

|Df|
∑

(x,y)∼Df

ℓ(f(x), y)

)
︸ ︷︷ ︸

Annealed Forgetting Lf(k)

+
1

|Dun|
∑

(x,y)∼Dun

ℓ(f(x), y) · τ(x, y, t)

︸ ︷︷ ︸
Target-aware Retaining Lu(τ)

,
(3)

where k(t) serves as an annealing strategy to control the strength of the forgetting part. Along with
training, we expect the overall objective to approximate the retraining ones LTARF → Lretrain through,

Lf(k)
t→T−−−→ 0, Lu(τ)

t→T−−−→ Lretrain, (4)

given the initially provided forgetting data Df and the remaining set Dun. Specifically, we design the
two dynamic hyperparameters k(t) and τ(x, y, t) as follows,

k(t) = max

[
k · (T − t− t0)

T
, 0

]
, t ∈ [0, T ]; τ(x, y, t) =

{
0 Icon(x, y, θt1) > β or t < t1,

1 Icon(x, y, θt1) < β and t ≥ t1,
(5)

where T indicates the total training time (e.g., epochs), and the value of k(t) decreases with the
training process, β can be estimated by the information about the specific unlearning request and the
rank of loss/accuracy change (e.g., setting the threshold β as the lowest value of top-10% data with in
a descending order, to select the most influenced part) at t1, t0 and t1 respectively control the end
time of active forgetting and the begin time of retaining part. The whole process can refer to Figure 4
for an intuitive understanding how the previous objective controlled by k and τ organically consists
of three phases to tackling the revealed challenges in mismatched unlearning, and we also provide a
functionality explanation about those factors in Appendix F and guidance based on empirical results.

Target-aware Retaining

Annealed Forgetting

Unlearn Process

Phase I Phase II Phase III

𝒟fr

𝒟f Identified 𝒟r

𝒟 𝒟 𝒟

Identified 𝒟rGiven 𝒟f

Target Identification Target Separation Retraining Approximation

Forget Forget & Retain Retain

The overall framework consists of two objective parts, e.g., annealed forgetting
and target-aware retaining, which can be regarded as three phases to enable all the
class-wise unlearning tasks through the view of the unlearning process. (a) Phase I
utilizes the gradient ascent to construct dynamic information for all class data; (b)
Phase II simultaneously considers gradient ascent on forgetting data and gradient
descent on remaining data that is hard to affect to separate target concept; (c) Phase
III conducts gradient descent on the selected data to approximate the retraining.

Figure 4: Overview of the proposed framework TARF.

Phase I: Target Identification. Be-
fore t1, since τ(x, y, t) = 0, Eq. 3
can be formalized as, LTARF-Phase-I =
k(t) · (− 1

|Df|
∑

(x,y)∼Df
ℓ(f(x), y)), in

which the retaining part is waiting for
the dynamic information revealed by
this phase. As shown in Figure 3, the
false retaining data in Dfr can be identi-
fied due to the similar forgetting dynam-
ics with the forgetting data. We utilize
the class label information in our main
tasks as it is also available for unlearn-
ing. We can obtain the accuracy drop
of each class and estimate β (refer to
Appendix F for details). In Figure 5(a),
we show the selected classes in accuracy
drop and identification efficacy. Specif-
ically, the left shows that classes belonging to the target concept (blue) experience a significantly
larger accuracy drop than the remaining classes (yellow), which serves as a effective indicator for
target identification; the right presents the performance using different amounts of given forgetting
classes. The two subplots demonstrate the efficacy of target identification using forgetting dynamics.

Phase II: Target Separation. After phase I, the retaining part is engaged with the forgetting part
with the identified data Dfr and the remaining retaining data Dr. By simultaneously considering
the forgetting and retaining part as Eq. 3, LTARF-Phase-II encourages the model to deconstruct the
target concept and reconstruct the feature representation of the retaining part, which can effectively
decouple the entangled feature in the model mismatch forgetting. In the first panel of Figure 5(b),
we compare the accuracy gap on RA and UA, which indicates the success (refer the dashed line of
Retrained reference) of disentanglement. It validates the rationality of our method, which jointly
applies gradient ascent and decent to deconstruct the entangled representation, achieving the expected
accuracy gap (e.g., isolating the target concept with affected retaining data as shown in Figure 2).

Phase III: Retraining Approximation. After t0, we focus on retaining in the current phase,
which approximates the retraining objective as follows, LTARF-Phase-III =

1
|Dun|

∑
(x,y)∼Dun

ℓ(f(x), y) ·
τ(x, y, t), where we use τ at t1 to indicate the identified hard-to-effect retaining data, and continually
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We show (a) accuracy changes in target identification in target mismatch forgetting, unlearning performance
using different forgetting classes in data mismatch forgetting; (b) accuracy gap of retaining and forgetting part of
the same class, as well as the need of reconstruction.

Figure 5: Target identification and target separation for unlearning under mismatch.

reconstruct the representations. Since the general goal of unlearning considered in our work is similar
to retraining, this phase can prevent excessive forgetting. In the second panel of Figure 5(b), we
compare the performance using different lengths of this phase to show retrain approximation. Note
that in Phase-II, our TARF may induce over-deconstruction (larger Acc Gap than that of the dashed
line for Retrained reference), so it demonstrates the necessity of our Phase-III focusing purely on
retraining to approximate the Retrained reference by using different epochs of this stage.

Remark 3.3. Note that the three-phase are interpreted from a unified framework rather than an
ad-hoc pipeline. Each phase builds on the previous insights: Phase I identifies potential forgetting
targets, Phase II separates entangled representation, and Phase III approximates retraining on those
generalizable knowledge. The whole process enables a flexible framework for all mismatch scenarios.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and models. In our experiments, we mainly explore unlearning for conventional image
classification tasks. To build an easy-to-adopt testbed for our new settings, we adopt the benchmarked
datasets, e.g., CIFAR-10/CIFAR-100 [43] with their superclass information (refer to Tables 13, 14
and 15) in the main experiments. Note the coarse-to-fine label structure of CIFAR-10 is obtained
by grouping based on semantic proximity [11] to enable the controllable experiments. We train two
models based on the original classes and its superclass respectively, and instantiate four tasks (as
illustrated in Figure 1). More details are summarized in Appendix E.4. Following [38, 16], we use
ResNet-18 [30] as the main architecture to obtain original models with standard learning, and then set
it to be the basis for unlearning. And we also adopt TinyImageNet and ImageNet [44] for large-scale
experiments, and adopt ImageNette [33] and TOFU [53] for case studies of real-world applications.

Evaluation metrics. The general goal of unlearning considered in this work is to approximate the
Retrained model. To give a comprehensive evaluation, we adopt 5 specific evaluation metrics in
classification tasks following previous works [38, 16]. We utilize Unlearning Accuracy (UA) to
evaluate the accuracy of the unlearning targeted subset; Retaining Accuracy (RA) to evaluate the
accuracy of the retaining subset; Testing Accuracy (TA) to evaluate the generalization ability of the
model; Membership Inference Attack (MIA) to evaluate the efficacy of unlearning by the confidence-
based predictor. Note that any single indicator does not represent optimally in the approximation
of a Retrained reference. All the above will be compared with that of the Retrained model and
summarized in a "Gap" value (averaged gap with Retrained, i.e., 1

4

∑
|Rθun −Rθr |) to indicate the

overall performance (the lower the better), and we also adopt TIME to present the computational
time. Detailed evaluations of different scenarios and other information are provided in Appendix C.2.

4.2 PERFORMANCE EVALUATION

In this part, we present the main comparison results with those considered as baselines in the four
unlearning tasks. We also report results under multiple runs in Appendix G.7 with std values.
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Table 3: Main Results (%). All are trained on the same backbone and initialization (except for the
reference Retrained from scratch). Bold numbers are superior results, and we also indicate the
second-best results of “Gap” for readability, ↓ indicates smaller values are better (Complete results
with mean and std values in Appendix G.7). Note that TARF is generally robust across various tasks.

Type / D Dataset CIFAR-10 CIFAR-100
Method / Metrics UA RA TA MIA Gap↓ TIME↓ UA RA TA MIA Gap↓ TIME↓

All matched

Retrained (Ref.) 0.00 99.51 94.69 100.00 - 43.3 0.00 97.85 76.03 100.00 - 43.2
FT [68] 1.07 98.62 92.36 100.00 1.07 4.43 0.67 96.32 72.34 100.00 1.47 5.02
RL [66] 4.13 97.65 91.23 100.00 2.36 4.88 1.00 96.09 72.00 100.00 1.70 4.96
GA [36] 0.49 95.24 88.17 99.78 2.88 0.25 1.33 94.74 68.56 99.89 3.01 0.06
IU [37] 0.22 88.15 82.38 99.96 5.99 0.45 0.00 37.61 29.58 100.00 26.67 0.51
BS [8] 25.04 87.94 80.90 88.67 15.43 0.82 4.60 90.18 63.66 99.55 6.27 0.78
L1-sparse [38] 0.00 94.20 89.77 100.00 2.56 4.39 0.00 94.60 71.57 100.00 1.93 4.39
SalUn [16] 0.00 91.32 86.87 100.00 4.00 5.65 0.00 75.34 62.14 100.00 9.10 5.75
SCRUB [45] 0.00 99.94 91.00 100.00 1.03 2.88 0.00 99.98 76.75 100.00 0.71 3.23

TARF (ours) 0.00 98.23 91.95 100.00 1.01 4.21 0.00 96.90 72.53 100.00 1.11 4.68

Model
mismatch

Retrained (Ref.) 87.76 99.58 95.91 20.57 - 43.8 88.22 98.58 78.50 25.78 - 43.8
FT [68] 94.67 98.53 93.56 9.56 5.33 4.29 92.67 95.02 79.34 16.33 4.58 4.86
RL [66] 53.69 97.85 92.39 96.60 28.84 4.82 80.11 95.83 79.83 99.00 21.35 4.93
GA [36] 5.76 86.99 82.20 94.98 45.68 0.25 6.78 94.83 76.96 97.78 39.68 0.06
IU [37] 23.69 87.34 82.57 89.87 39.74 0.44 34.67 96.83 79.08 86.44 29.14 0.49
BS [8] 10.29 50.77 49.39 95.96 62.05 0.79 18.11 95.90 72.28 95.22 37.14 0.89
L1-sparse [38] 93.11 94.76 91.63 14.44 5.15 4.24 90.22 94.78 78.81 18.88 3.25 5.00
SalUn [16] 8.91 93.95 84.38 99.32 43.69 6.04 66.33 78.83 70.78 77.00 25.15 5.97
SCRUB [45] 95.14 99.81 94.22 15.38 3.61 3.06 91.44 99.74 79.23 21.11 2.45 4.12

TARF (ours) 91.11 97.49 92.49 17.82 2.90 4.31 86.67 97.05 80.07 26.00 1.21 4.81

Target
mismatch

Retrained (Ref.) 0.00 99.38 93.85 100.00 - 52.1 0.00 97.85 73.72 100.00 - 53.2
FT [68] 50.43 98.47 91.65 50.44 25.78 4.38 58.18 96.32 72.53 46.76 28.54 5.00
RL [66] 51.25 97.56 90.90 56.23 24.95 4.79 58.89 96.05 72.20 46.98 28.81 4.93
GA [36] 40.82 97.01 89.51 64.32 20.80 0.26 21.38 96.64 70.22 90.67 8.86 0.05
IU [37] 44.51 88.07 81.80 58.73 27.29 0.44 30.62 37.19 29.58 63.69 42.93 0.50
BS [8] 53.62 88.65 75.39 76.33 26.62 0.82 40.44 98.32 68.66 85.16 15.20 0.97
L1-sparse [38] 49.47 93.61 88.83 51.24 27.26 4.38 56.09 94.63 72.00 48.04 28.25 4.78
SalUn [16] 46.63 91.08 86.31 60.94 25.38 5.90 59.64 75.52 62.37 65.96 27.35 5.81
SCRUB [45] 49.98 99.94 92.10 50.18 25.53 2.89 59.64 99.99 75.32 44.89 29.90 3.52

TARF (ours) 0.06 97.57 90.81 100.00 1.23 4.23 0.31 97.35 73.68 100.00 0.21 4.85

Data
mismatch

Retrained (Ref.) 0.00 99.54 95.56 100.00 - 52.1 0.00 98.50 80.15 100.00 - 53.2
FT [68] 96.79 98.49 93.26 6.48 48.41 4.32 82.62 95.66 79.77 37.24 37.15 4.93
RL [66] 76.47 97.68 91.93 49.81 33.04 4.76 89.78 96.82 79.90 70.76 30.49 4.97
GA [36] 8.69 96.41 90.78 93.03 5.89 0.25 6.00 97.65 79.23 98.04 2.43 0.05
IU [37] 22.84 95.50 89.54 88.57 11.08 0.44 31.51 98.96 78.20 88.09 11.46 0.48
BS [8] 16.70 61.21 49.76 92.24 22.37 0.82 15.38 98.50 72.28 96.22 6.76 0.96
L1-sparse [38] 95.76 94.31 91.08 9.52 48.99 4.78 88.31 94.91 79.02 22.49 42.64 5.03
SalUn [16] 51.77 93.87 90.46 63.52 24.75 5.72 72.93 78.87 71.04 54.13 36.89 5.72
SCRUB [45] 97.13 99.89 95.03 10.99 46.76 2.94 95.50 99.79 79.68 15.11 45.54 3.68

TARF (ours) 0.00 98.17 93.09 100.00 0.96 4.22 0.00 95.01 78.98 100.00 1.17 4.78

In conventional benchmarks, all the retrained models (termed Retrained) are trained with the fully
aligned retaining data. In Table 3, we can find the previous unlearning methods achieved satisfactory
performance in conventional all matched forgetting, but did not perform well on the other three newly
considered tasks with the label domain mismatch. Note that UA of Retrained (Ref.) in the model
mismatch scenario is not equal to 0 since it is evaluated with superclass label. Specifically, since
the previous methods partially rely on forgetting data or remaining data, it results in ineffective or
excessive forgetting due to the insufficient representation or decomposition missing. For example, FT
can retain a similar RA with the Retrained but be less effective in forgetting, while GA reaches the
lowest UA across different tasks but sacrifices too much performance on the retaining dataset. In
contrast, TARF can generally perform better (or comparable with the best method). We also present
Table 2 to show a fine-grained evaluation on unlearning target within superclass in model mismatch.

Table 2: Fine-grained evaluation on superclass.
Model Mismatch Method UA-F UA-R RA TA MIA Gap

CIFAR-10
(UA-F: automobile,

UA-R: truck)

Retrained (Ref.) 77.48 98.04 99.58 95.91 20.57 –
FT 92.09 97.25 98.53 93.56 9.56 5.96
RL 48.69 58.69 97.85 92.39 96.60 29.88
GA 0.00 11.52 86.99 82.20 94.98 52.94
BS 7.79 12.45 50.77 49.39 95.96 65.20
L-sparse 91.40 94.82 94.76 91.63 14.44 6.47
SCRUB 91.07 99.21 99.81 94.22 15.38 4.37
TARF (ours) 85.24 96.98 97.49 92.49 17.82 3.42

CIFAR-100
(UA-F: boy,girl;

UA-R: man,woman,baby)

Retrained (Ref.) 77.56 95.25 98.58 78.50 25.78 –
FT 90.33 94.23 95.02 79.34 16.33 5.53
RL 74.04 84.16 95.83 79.83 99.00 18.38
GA 5.64 7.54 94.83 76.96 97.78 47.38
BS 17.00 18.85 95.90 72.28 95.22 43.06
L-sparse 86.69 92.58 94.78 78.81 18.88 4.56
SCRUB 81.26 98.23 99.74 79.23 21.11 2.65
TARF (ours) 74.70 94.65 97.05 80.07 26.00 1.36

For verification on large-scale datasets, we
evaluate the method on Tiny-ImageNet and
ImageNet-1k with lager models. Due to the
space, we show the results on ImageNet-1k
in main text, and leave other results in Ap-
pendix G.5, as well as forgetting multiple classes
in Appendix G.9. It shows that our TARF can
achieve satisfactory performance with respect to
the overall gap with Retrained references.

For case study on real-world application, we
apply our TARF in the scenario of concept re-
moval with stable-diffusion [31] and personal information removal with LLama3.2 [25]. Considering
the practical data mismatch forgetting on where users report some undesirable examples to represent
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Table 4: Results (%). Comparison with the unlearning baselines on ImageNet-1k. All matched
forgetting: unlearn 1 class; Target mismatch forgetting: unlearn three classes belonging to "fish".

Type / D Dataset All matched Target mismatch
Method / Metrics UA RA TA MIA Gap↓ TIME↓ UA RA TA MIA Gap↓ TIME↓

ImageNet-1k

Retrained (Ref.) 0.00 79.77 77.64 100.00 - 7075.48 0.00 80.09 77.54 100.00 - 7777.54
FT [68] 0.00 70.18 71.98 100.00 3.82 608.11 0.79 70.26 72.07 100.00 4.02 608.62
RL [66] 81.38 70.22 71.79 19.46 44.29 969.44 79.69 69.98 71.77 23.03 43.14 972.02
GA [36] 0.00 66.25 67.36 100.00 5.95 8.76 0.00 31.21 37.74 0.00 47.17 17.38
BS [8] 0.00 31.15 36.33 100.00 22.48 9.03 0.00 21.57 27.56 99.97 27.13 23.75
L1-sparse [38] 0.00 67.98 70.70 100.00 4.68 603.21 0.00 67.24 70.28 100.00 5.03 601.27
SCRUB [45] 29.77 74.92 75.66 81.77 13.71 655.42 22.44 74.87 75.60 82.77 11.71 681.53

TARF (ours) 0.00 70.53 72.23 100.00 3.66 600.11 0.00 69.93 71.79 100.00 3.97 628.87

Dataset Model matched Data mismatch
Method / Metrics UA RA TA MIA Gap↓ TIME↓ UA RA TA MIA Gap↓ TIME↓
Retrained (Ref.) 79.15 80.00 70.29 25.69 - 6501.27 0.00 80.36 70.38 100.00 - 6493.16
FT [68] 83.31 70.38 64.05 19.00 6.68 695.42 0.00 69.99 63.76 100.00 4.24 693.18
RL [66] 87.62 69.43 63.26 15.23 9.13 959.84 88.21 70.33 63.81 12.21 48.15 956.13
GA [36] 0.00 66.62 58.91 100.00 44.56 17.44 0.00 15.35 14.34 0.00 55.26 17.58
BS [8] 0.00 45.81 40.84 100.00 54.28 19.69 0.00 13.00 12.10 100.00 31.41 23.70
L1-sparse [38] 82.00 67.94 62.58 19.15 7.29 1091.29 0.00 66.37 61.03 100.00 5.84 1071.41
SCRUB [45] 86.08 74.82 68.04 14.69 6.34 663.61 14.18 74.84 67.92 93.10 7.27 689.82

TARF (ours) 80.62 70.27 64.04 19.46 5.92 601.28 0.00 70.10 63.97 100.00 4.17 602.62

(a) SD (b) CL (c) TARF
Figure 6: Application on data mismatch concept
removal of image generation with stable diffusion.
Full results with more Tables are in Appendix F.3.

TOFU Setting/Request All-matched Target Mismatch
Metric QA Prob on F. (↓) QA Prob on R. (↑) QA Prob on F. (↓) QA Prob on R. (↑)

LLama3.2
1B-instruct

GA 0.0009 0.1604 0.0000 0.0000
TARF (GA) 0.0198 0.3218 0.1756 0.4301

NPO 0.0792 0.6824 0.0095 0.0104
TARF (NPO) 0.0762 0.6977 0.2597 0.4343

Setting/Request Representation Mismatch Data Mismatch
Metric QA Prob on F. (↓) QA Prob on R. (↑) QA Prob on F. (↓) QA Prob on R. (↑)

GA 0.0000 0.0000 0.0048 0.1768
TARF (GA) 0.0000 0.4034 0.1101 0.5942

NPO 0.0074 0.0105 0.2482 0.6856
TARF (NPO) 0.1421 0.3881 0.1238 0.6530

Setting/Request All-matched Target Mismatch
Metric QA Prob on F. (↓) QA Prob on R. (↑) QA Prob on F. (↓) QA Prob on R. (↑)

LLama3.2
8B-instruct

GA 0.0002 0.1814 0.0000 0.0000
TARF (GA) 0.0016 0.4730 0.1716 0.4854

NPO 0.0080 0.4924 0.0000 0.0000
TARF (NPO) 0.0113 0.6209 0.2703 0.5643

Setting/Request Representation Mismatch Data Mismatch
Metric QA Prob on F. (↓) QA Prob on R. (↑) QA Prob on F. (↓) QA Prob on R. (↑)

GA 0.0000 0.0000 0.0296 0.1826
TARF (GA) 0.0000 0.4839 0.0038 0.3909

NPO 0.0000 0.0000 0.1274 0.4949
TARF (NPO) 0.0987 0.5630 0.0201 0.5994

Table 5: Application on information removal on
LLM with TOFU [53] dataset for real-world ap-
plication. More discussions are in Appendix G.8.

the unwanted concept, we show the efficacy of unlearning the "springer" and "tench" in Figure 6. By
constructing the four relate settings using TOFU [53], we demonstrate the promising of our TARF.
Due to the limited space, we leave more details and discussions in Appendixes F.3 and G.8.

4.3 ABLATIONS AND FURTHER EXPLORATION

In this part, we provide further exploration of the three class-wise unlearning tasks and conduct various
ablation studies to characterize TARF. More results and discussions are provided in Appendix G.

Weighted control in annealed gradient ascent. To analyze the annealed gradient ascent, we present
the results on the left of Figure 7 to show the effects of initialized strength k on the all matched setting
(results on other settings can refer to Figure 17) using the CIFAR-100 dataset. The results show that
a proper k (e.g., about 0.05) can achieve a satisfactory performance. However, the larger k results in
lower retaining performance and higher Gap value as the strength increases feature deconstruction.
For the hyperparameters, we discuss the computational stability from a functionality understanding
and also synthesize a practical guideline in Appendix F.1 with the empirical results of ablation study.

Constant or dynamic gradient ascent for forgetting. In the middle-left of Figure 7, we study
whether we need the learning-rate-reduced k for the forgetting part. Specifically, we compare it
with using constant k and learning-rate-increased k on two model mismatch forgetting tasks. The
results demonstrate that annealed gradient ascent can achieve more similar performance with the
Retrained on forgetting data. The gradient ascent is considered simultaneously with gradient descent
for restricting the forgetting region, while we adopt the annealed one since the unlearning target is to
approximate the retrained model instead of continually maximizing the loss of forgetting data.

Unlearning on models trained by different structures. In the middle-right of Figure 7, we
investigate forgetting on the models pre-trained using different structures, e.g., ResNet-18 [30],

9
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Figure 7: Ablation studies: Left: performance using different initialized k on all matched forgetting;
middle-left: effects of constant or different dynamic gradient ascent controlled by k(t); middle-
right: comparison of forgetting with different model structures; right: comparison of using different
operations on the selected forgetting data. More experimental details can refer to Appendix G.

VGG-16bn [63], and WideResNet-50 [73]. The results of TARF on the model mismatch forgetting
demonstrate that our TARF can achieve the lower performance gap than FT, evaluated with the
retrained reference. With the increasing model capacity on the original training tasks, we can also find
the model with a smaller capacity (e.g., VGG) makes it harder to decompose the entangled feature
representation for achieving the unlearning target, which increases the representation complexity.

Different operations on the selected forgetting data. In the right of Figure 7, we present the
ablation on the specific gradient operation on the identified false retaining data Dfr. We compare
using the gradient ascent (−k(t)) and cleaning (0) with the Retrained reference in target mismatch
forgetting. Except for the similar forgetting efficacy achieved by the three trials, major differences
exist in the performance evaluated by RA. The results show that gradient cleaning may be a better
choice for Dfr to not deconstruct the features too much and affect the retaining accuracy.

Broader explorations of unlearning with TARF. Beyond the performance comparison and ablation
on major benchmarks, we also conduct broader exploration on our TARF to give a balance view on
the unlearning capabilities. Specifically, we also investigate the performance robustness under varied
false-retaining set size for quantile-choice in Appendix F; discuss and check the computational cost of
TARF in target identification stage in Appendix F.2; verify the robustness of TARF under the weakly-
supervised scenario or more challenging multiple concept unlearning scenarios in Appendix G.

5 CONCLUSION

In this work, we decouple the class label and target concept in class-wise unlearning. By introducing
the label domain mismatch among forgetting data, model output, and target concept, we uncover
three additional tasks beyond the conventional all matched forgetting, e.g., target mismatch, model
mismatch, and data mismatch forgetting. We identify the insufficient representation and decomposi-
tion lacking of restrictively forgetting the target concept, and reveal the crucial forgetting dynamics
in the representation level for the feasibility of these unlearning requests. Based on that, we propose
the TARF that assigns an annealed gradient ascent on the identified forgetting data and the normal
gradient descent on the selected retaining data. By collaboratively considering the forgetting/retaining
target, TARF is more accurate in unlearning while maintaining the rest. We hope our work can
provide new insights and draw more attention toward the practical scenarios of machine unlearning.

Open challenge and future work discussion. Representation gravity, that relies on the forgetting
dynamics, is central to the ability of TARF to identify latent target concepts. In challenging regimes
where concepts are inherently ambiguous, weakly clustered, or attribute-entangled (e.g., certain
long-tailed or multi-attribute scenarios), the underlying representation structure itself becomes less
separable. This phenomenon affects all existing unlearning methods rather than TARF specifically, as
the ambiguity originates from the nature of the data rather than the mechanism. In our exploration,
we also observe a few preliminary cases where the gravity signal becomes weaker and the ranking
slightly noisier, though TARF continues to demonstrate consistent advantages over baselines with the
consideration of mismatched scenarios. We therefore view these situations as inherent difficulties
when the target concept is not well-defined in the representation space. At the same time, these cases
also suggest promising avenues for future research, such as incorporating external knowledge (e.g.,
text embeddings, semantic priors, or multi-modal cues) to assist more challenging target identification.
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understanding on machine unlearning and poses no foreseeable risks of misuse or harm. We confirm
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The whole Appendix is structured in the following manner. In Appendix A, we provide the anonymous
link to our source code and introduce the critical aspects of reproducibility. In Appendix B, we
provide a detailed discussion with related works of machine unlearning and other aspects. In
Appendix C, we review the representative baseline methods in machine unlearning, which are
considered in our experimental comparisons. And we also detailed the evaluation for different
unlearning scenarios with full results on challenge and representation analysis. In Appendix E, we
introduce the complete scenarios considering the mismatch issues in machine unlearning, going
beyond the four basic scenarios presented in the main text. In Appendix F, we formally present the
algorithm implementation of our proposed TARF with its variant, and further explanation of the
rationality of TARF in unlearning. In Appendix G, we provide additional experimental results to
characterize forgetting dynamics and the properties of TARF. In Appendix H, we discuss the potential
broader impact and limitations of our work.

LLM USAGE STATEMENT

In this paper, no large language models (LLMs) were used in the conception, execution, or analysis of
this work. All research ideas, experiments, and text were developed and written solely by the authors.

A REPRODUCIBILITY STATEMENT

We provide the link to our source codes to enhance the reproducibility of our experimental results:
https://anonymous.4open.science/r/TARF-83B5/. Below we summarize some criti-
cal aspects to facilitate reproducible results:

• Datasets. The datasets we used are all publicly accessible, which is introduced in Section 4.1.
For our newly introduced unlearning scenarios, we provide the specific dataset construction
in our code, implemented as described in Section 4.1 and Appendix E.4.

• Assumption. Following the previous work [68, 38, 16], We set our experiments to a tuning
scenario where a well-trained model is available, and all the training samples are available
but limited samples are labeled as "to be unlearned".

• Open source. The code repository will be available in an anonymous repository for the
reviewing purposes. We provide a series of unlearning methods considered in our work and
also the pre-trained model for unlearning.

• Environment. All experiments are conducted with multiple runs on NVIDIA Tesla V100-
SXM2-32GB GPUs with Python 3.8 and PyTorch 1.8. More detailed requirements can also
refer to the environment descriptions in our aforementioned source codes.

B DISCUSSION ABOUT RELATED WORK

In this section, we discuss the related literature on machine unlearning, and provide more detailed
comparisons of some work with their approaches and motivations.

B.1 MACHINE UNLEARNING

Machine unlearning targets to adjust a trained model to scrub the data influence [41, 61, 69]. It
is initially proposed to protect data privacy [7, 6, 21], and a series of studies explore probabilistic
methods through the differential privacy [21, 27, 56, 67, 59]. Although having the provable guarantee
on the unlearning errors, the strong algorithmic assumptions hinders the practical effectiveness [38].
Current research [22, 65, 64, 16, 8, 70, 19, 74] focus more on developing more effective and
efficient unlearning methods to approximate the Retrained model, with the given trained model.
As for the assumption on data generation, prior works [22, 68, 38, 8] mainly consider all matched
forgetting targets, with similar features on the original training tasks. As for the assumption on label
generation, most prior works [6, 26, 64, 38, 16, 17] assume the accessibility on the fully identified
forgetting dataset, and the complementary is the remaining dataset. One recent related work [71]
considers unlearning with only a few forgetting samples but requires another generative model to
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generate approximated data. Our work considers a more practical scenario in which we can conduct
mismatched forgetting and use limited identified forgetting data with the remaining set. Another
work [62] proposes label-agnostic forgetting to enable supervision-free unlearning in deep models,
while effective, but the method shows the incompatibility of the assumption since it assumes access
to fully identified forgetting set and retaining set during optimization which is not aligned with our
formulation. With the increasing attention to safety and regulation in foundation models, machine
unlearning has received growing interest, machine unlearning also draw more research interests
and some recent studies [47, 55] also explore the post-adjustment for foundation model oriented
unlearning or concept erasure, and the focuses is structural specified and also follow the conventional
assumption having the well-aligned forgetting target. While such advances have pushed the field
forward, our work focuses on a fundamentally different challenge: label-domain mismatch, where the
target concept to be forgotten does not coincide with the model’s original class taxonomy. We aim
to provide a rigorous treatment of this overlooked yet practically important setting, including both
theoretical insights and a general unlearning framework capable of addressing these mismatches.

B.2 POSITIVE-UNLABELED LEARNING

Positive-unlabeled learning [15, 54] tries to learn a binary classifier from a few labeled positive
samples with the rest unlabeled ones. A series of PU algorithms [48, 13, 14] are developed to train
an accurate binary classifier, and can be roughly divided into two categories [1]. The first branch
is cost-sensitive learning, which is related to importance weighting [49]. Given the estimated class
prior, these methods [14, 40, 10] can develop an unbiased or consistent risk estimator for PU learning.
Another branch of PU learning adopts two heuristic steps to perform binary classification. Such
methods [48, 72] first identify reliable negative and positive examples from the unlabeled data, and
then conduct semi-supervised learning. The model trained using cost-sensitive learning can also be
a recognizer for positive or negative samples [34]. Different from PU learning focusing on binary
classification tasks, our work tries to enable more practical scenarios in class-wise unlearning [61]
where the class labels and target concepts are decoupled, and we consider the label domain mismatch.

C DETAILS ABOUT CONSIDERED BASELINES AND METRICS

In this section, we provide details about the considered representative baselines for machine unlearning
methods, as well as their general intuitions with specific objectives. For the specific hyperparameters
adopted in different methods, we keep the same setting with previous related works [38, 16], and
the specific values are listed in detail in our source codes. In addition, we introduce the evaluation
metrics in detail, corresponding to the implementations in different unlearning scenarios.

C.1 UNLEARNING METHODS

Finetune (FT). Utilizing the catastrophic forgetting [39] in the model (e.g., existed in the continual
learning), FT [68] fine-tunes the given trained model partially on Dr with few training epochs to
obtain the θ∗un with the following objective function,

LFT =
1

|Dr|
∑

(x,y)∼Dr

ℓ(f(x), y). (6)

Gradient Ascent (GA). Different from the normal gradient descent, GA reverses the gradient
signal on Df to conduct maximization with ascended gradients, resulting in the increasing loss of the
forgetting data to obtain the θ∗un. The objective is given as follows,

LGA = − 1

|Df|
∑

(x,y)∼Df

ℓ(f(x), y). (7)

With reverse optimization to maximize the loss on the specific data, the model can approximate θ∗ by
directly forgetting the learned knowledge represented by the forgetting data.
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Random Label (RL). Similar to GA, RL [22] assign the random labels Y ∗ on the forgetting data
in Df and fine-tune the given model with it to obtain the unlearned model θ∗un,

LRL =
1

|Df|
∑

(x,y)∼Df

ℓ(f(x), y∗). (8)

Instead of using the original training label on the forgetting data in Df, RL can destroy the learned
feature by using the random label y∗ on Df, which violate the minimized loss value.

Influence Unlearning (IU). IU adopts the influence function [41] to estimate the change if the
training point is removed from the training loss. It is designed for random data unlearning [61]
with the provable guarantee on the unlearning effects. In general, IU estimates the change in model
parameters of θ∗un− θ and adds the weight perturbation to the given model to obtain the unlearned one.
However, it usually requires additional model information and training assumptions for the theoretical
guarantee and may suffer hyperparameter tuning with inaccurate hessian estimation [38, 16].

Boundary Shrink (BS). BS [8] is recently proposed for class-wise unlearning, especially on the all
matched forgetting. It focuses on the decision spaces [23] of the given trained model. The critical
idea is to shift the original decision boundary to imitate the decision behavior of the model retrained
from scratch. Motivated by adversarial attacks [52], it proposes a neighbor searching method to
identify the nearest but incorrect class labels ynear for Df to guide the model to unlearn the existing
class and shift the decision boundary. Using the adversarial attack to find the nearest incorrect label,
the objective of BS can be formulated as follows,

LBS =
1

|Df|
∑

(x,y)∼Df

ℓ(f(x), ynear), (9)

where ynear is obtained by first perturbing the forgetting data and getting the newly predicted result as,

x′ = x+ ϵ · sign(∇ℓ(f(x), y))
ynear ← softmax(f(x′))

(10)

L1-sparse. Developed based on the conventional FT, L1-sparse [38] investigate the model sparsity
on machine unlearning. It figures out that model sparsification can benefit the unlearning performance
on different perspectives via first pruning and then conducting unlearning. By carrying out pruning
and unlearning simultaneously, L1-sparse proposes the sparsity-aware unlearning utilizing the L1

norm-based penalty. The objective is as follows with a hyperparameter γ,

LL1-sparse =
1

|Dr|
∑

(x,y)∼Dr

ℓ(f(x), y) + γ||θ∗||, (11)

and the general sparsity-aware penalty can also be added to different unlearning methods. In this
work, we mainly compare the L1-sparse FT as the previous work [38, 16] considered.

SalUn. With the concern on unlearning stability and cross-domain applicability, SalUn [16] intro-
duces the concept of weight saliency in machine unlearning. This innovation directs the attention
of unlearning into specific model weights for specific data that need to be unlearned. In general, it
first generates the gradient-based weight saliency map inspired by model sparsification [38] with
gradient-value thresholding, where the specific generation method is defined as,

ms = 1(|∇θℓ(θ;Df )|θ = θo| ≥ γ), θu = ms ⊙ (δθ + θo) + (1−m)⊙ θo, (12)

in which 1(g ≥ γ) is an element-wise indicator function that yields a value of 1 for the i-th element
if and 0 otherwise, | · | is an element-wise absolute value operation, and γ > 0 is a hard threshold.
and then conducts saliency-based unlearning using the generated saliency map. Specifically, SalUn
adopts RL [22] to fine-tune the forgetting data in Df on the salience map, and the extended objective
is given as follows,

LSalUn =
1

|Df|
∑

(x,y)∼Df

ℓθu(f(x), y
∗) + α

1

|Dr|
∑

(x,y)∼Dr

ℓ(f(x), y), (13)

More detailed operations can refer to [16], and we keep the same hyperparameter used in [16] to
conduct the class-wise unlearning tasks.
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SCRUB. SCRUB is a newly proposed unlearning algorithm based on a novel casting of the
problem into a teacher-student framework [45]. It is designed to meet the desiderata of unlearning:
efficiently forgetting without hurting the model utility. As the general target of SCRUB in forgetting
is application-dependent, it is proposed with a recipe that works across applications: SCRUB is first
to strive for maximal forget error, which is desirable in some scenarios like removing bias or restricted
contents but not in others like user privacy protection. To address the latter case, SCRUB is integrated
with a rewinding procedure that can reduce the forget set error appropriately when required.

Given the original model θo as the teacher model, the goal of SCRUB is formatting as training a
student model θu that selectively obeys the teacher. The overall objective can be divided into two
folds, the first is to remember Dr under the teacher model’s guide while the second is to forget Df by
disobeying the teacher model’s guide. To measure the degree to which the student model obeys the
teacher model, SCRUB utilizes the following distance measure,

d(x; θu) = DKL(p(f(x; θ
o))||p(f(x; θu))), (14)

where DKL is the KL-divergence and the overall measures of the distance between the student
model’s and teacher model’s prediction distribution. With the aforementioned distance, the objective
of SCRUB is as follows,

LSCRUB = min
θu

α

Nr

∑
xr∈Dr

d(xr; θ
u)+

γ

Nr

∑
(xr,yr)∈Dr

ℓ(f(xr; θ
u), yr)−

1

Nf

∑
xf∈Df

d(xf ; θ
u), (15)

where the first two parts can be regarded as a variant of distillation from a teacher model on Dr and
the third part is encouraging the student model to disobey the teacher model to forget the target data.

Table 6: Comparison with additional recent class-wise unlearning methods on CIFAR-100.

All Matched UA RA TA MIA Gap↓ Target Mismatch UA RA TA MIA Gap↓
Retrained (Ref.) 0.00 97.85 76.03 100.00 - Retrained (Ref.) 0.00 97.85 73.72 100.00 -
FT 0.67 96.32 72.34 100.00 1.47 FT 58.18 96.32 72.53 46.76 28.54
LAU 4.11 80.44 61.64 95.78 10.03 LAU 46.71 88.65 68.19 66.49 23.74
SFR-on 0.00 99.21 74.26 100.00 0.78 SFR-on 59.21 99.13 74.28 48.32 28.18
SG 0.00 95.21 71.23 100.00 1.86 SG 58.21 96.26 72.18 46.24 28.78
SCRUB 0.00 99.98 76.75 100.00 0.71 SCRUB 59.64 99.99 75.32 44.89 29.90
TARF 0.00 96.90 72.53 100.00 1.11 TARF 0.31 97.35 73.68 100.00 0.21
Model Mismatch UA RA TA MIA Gap↓ Data Mismatch UA RA TA MIA Gap↓
Retrained (Ref.) 88.22 98.58 78.50 25.78 - Retrained (Ref.) 0.00 98.50 80.15 100.00 -
FT 92.67 95.02 79.34 16.33 4.58 FT 82.62 95.66 79.77 37.24 37.15
LAU 80.00 96.74 79.86 45.78 7.86 LAU 85.73 96.96 80.00 40.40 36.76
SFR-on 92.12 99.21 79.21 20.65 2.59 SFR-on 92.68 99.21 79.23 18.21 44.03
SG 89.27 93.52 73.45 19.31 4.41 SG 87.52 93.25 73.21 23.08 44.16
SCRUB 91.44 99.74 79.23 21.11 2.45 SCRUB 95.50 99.79 79.68 15.11 45.54
TARF 86.67 97.05 80.07 26.00 1.21 TARF 0.00 95.01 78.98 100.00 1.17

In addition, we also incorporate three more recent unlearning methods into our comparison, e.g.,
LAU [62], SFR-on [35], and SG [12], in Table 6. These methods propose some advancements for
class-wise unlearning in different aspects while not considering the mismatched challenges. Both
have been evaluated under the same mismatched unlearning scenarios introduced in our paper, using
identical training budgets and evaluation protocols to ensure a fair comparison. The additional results
also validate the effectiveness and generality of our TARF framework across all tasks, as the unified
framework design enables target identification and separation. TARF maintains robust unlearning
performance, due to its flexible capabilities of handling various mismatched unlearning scenarios.
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C.2 EVALUATION METRICS REGARDING DIFFERENT SCENARIOS

In this part, we summarize the following list and tables of the evaluation metrics (adopted from the
previous work [38, 16]) and the used labels in different unlearning scenarios,

• Unlearning Accuracy (UA): the accuracy of the unlearned model θu on the dataset of target
concept Dt. UA = 1

|Dt|
∑

(x,y)∈Dt
1[ŷθ(x) = y]

• Retaining Accuracy (RA): the accuracy of the unlearned model θu on retaining dataset Dr.
RA = 1

|Dr|
∑

(x,y)∈Dr
1[ŷθ(x) = y]

• Testing Accuracy (TA): the accuracy of the unlearned model θu on test dataset Dtest excluding
the data belonging to the target concept. TA = 1

|Dtest\Dt|
∑

(x,y)∈Dtest\Dt
1[ŷθ(x) = y]

• Model Inversion Attack (MIA): the MIA success rate by a confidence-based MIA predictor
of the model θu on the dataset of target concept Dt. We follow [38] to implement it to find
how many samples in Dt can be correctly predicted as a non-training sample by the MIA
predictor against θu. First, we sample a balanced dataset from the retaining dataset Dr and
the test dataset excluding the forgetting data to train the MIA predictor, then it is used to
count the rate of true negative predictions for forgetting data of the target concept.

• Gap: 1
4 ·

(
|UAθr −UAθun |+ |RAθr −RAθun |+ |TAθr − TAθun |+ |MIAθr −MIAθun |

)
Remark. We follow previous work [38] to adopt the TIME which report the wall-clock training
time required to perform unlearning from the original model initialization. The termination of each
unlearning methods is defined by the recommended hyperparameter for training epochs (e.g., early
stopping 10 epochs for FT-style method as performance plateaus or a fixed maximum epoch cap like
5 for GA-style method) on specific unlearning tasks.

Generally, in the evaluation phase, we adopt the same labels used in pre-training to measure the
unlearned model. Note that in the model mismatch forgetting, as the model is trained with superclass
labels, the UA is also calculated using the superclass label. Hence, the UA of the Retrained reference
is not equal to 0 as indicated in Table 3, and we compare the methods mainly on the averaged
performance "Gap" (calculated based on the previous four metrics) to the Retrained reference.

Table 7: The label used in evaluation metrics on different forgetting scenarios.

Used Label All matched Target mismatch Model mismatch Data mismatch

UA Class Label Class Label Superclass Label Superclass Label
RA Class Label Class Label Superclass Label Superclass Label
TA Class Label Class Label Superclass Label Superclass Label

MIA Class Label Class Label Superclass Label Superclass Label

In Table 7, we summarize the specific label used in different unlearning scenarios. To provide an
intuitive example that corresponds to the instantiated unlearning tasks like Figure 1, we present
Table 8 to give overall information about the data and labels considered in each metric.

Table 8: The evaluation data (label number) of different forgetting scenarios with CIFAR-100.

Data (classes number) All matched Target mismatch Model mismatch Data mismatch

UA (Dt) "boy", "girl" (2)
"boy", "girl", "man",
"woman", "baby" (5)

part of "people" (1), which is data
of "boy" and "girl" but with superclass label "people" (1)

RA (Dr) Other classes (98) Other classes (95)
other part of "people" (1) with

the rest superclasses (19) Other superclasses (19)

TA (Dtest) Other classes (98) Other classes (95)
other part of "people" (1) with

the rest superclasses (19) Other superclasses (19)

MIA (Dt) "boy", "girl" (2)
"boy", "girl", "man",
"woman", "baby" (5)

part of "people" (1), which is data
of "boy" and "girl" but with superclass label "people" (1)
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C.3 FULL RESULTS OF FIGURE 2 AND FIGURE 3
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Figure 8: Unlearning results across four tasks using different representative methods.
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Figure 9: Forgetting dynamics on entangled (left) and under-entangled (right) feature representations.
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D PROOF OF THEOREM 3.2

Here we provide the complete proof of Theorem 3.2. The proof sketch is from Taylor expansion [5]
on Ls1(θ

t+1)/Ls2(θ
t+1), subtracting two formulas, and bounding the differences term. It intuitively

reveals the data representation can affect the forgetting dynamic on the loss differences. As our
primary goal is to explore the new settings, we believe it worth future work to establish more
systematical theoretical analysis beyond the current gravity effects on the forgetting dynamics.

First, we can have the following assumption about the representation similarity of dh(·, ·), which is
also adopted and assumed in the various previous works [2, 9].
Assumption D.1 (Representation Similarity). Let s1 and s2 be two disjoint subsets of a dataset D
trained on a model fθ. Given the representation of an input x at an intermediate layer be h(x), the
gradient differences at representation level can be controlled by assuming ℓh(·) is Lipschitz smooth
with constant Cℓ, then we have ||∇ℓh(x1)−∇ℓh(x2)|| ≤ Cℓ||h(x1)− h(x2)|| = Cℓdh(x1, x2).
Theorem D.2 (gravity effects on unlearning update). Let θ0 be the well-trained model parameters for
unlearning, and we perform unlearning on s1 via a gradient ascent update, i.e., θt+1 = θt+∇Ls1(θ

t)
for epoch t, then we can the following dynamics given ∆Ls1,s2(θ

t+1) = (Ls1(θ
t+1)− Ls2(θ

t+1)),

∆Ls1,s2(θ
t+1) ≤ (Ls1(θ

t)− Ls2(θ
t)) + ηλmax(Jθt(x1))CℓEdh(x1, x2) · ||∇Ls1(θ

t)||+O(η2),
(16)

where λmax(Jθt) is the largest eigenvalue of the Jacobin matrix Jθ = ∂h(x)
∂θ . Note that when t→ 0,

the RHS mainly relies on the term measuring representation similarity as (Ls1(θ
t)− Ls2(θ

t))→ 0.

Proof. Let s1 and s2 be two disjoint subsets with associated empirical losses Ls1(θ) and Ls2(θ) for
model parameters θ. Suppose the representations hθ(x) of inputs x1 ∼ s1 and x2 ∼ s2 are similar:

Ex1∼S1,x2∼S2
∥hθ(x1)− hθ(x2)∥ ≤ ϵ.

Assume the loss ℓh(·) is Lipschitz smooth with constant Cℓ, and Jθt(x) = ∂hθ(x)
∂θ is the Jacobian of

the representation. Suppose an update θt+1 = θt +∆θt is applied (e.g., for unlearning). Then by
Taylor expansion we have,

Lsi(θ
t+1) = Lsi(θ

t) +∇Lsi(θ)
t(θt+1 − θt) +

1

2
(θt+1 − θt)THSi

(θt+1 − θt)

then subtracting expansions for s1 and s2,

Ls1(θ
t+1)− Ls2(θ

t+1) =
(
LS1(θ

t)− LS2(θ
t)
)
+ (∇Ls1(θ

t)−∇Ls2(θ
t))T∆θt

+
1

2
∆θt

T
(Hs1 −Hs2)∆θt

using the chain rule,

∇Lsi(θ) = Ex∼si [Jθt(x)T∇hℓ(h(x))],

then,

∇Ls1(θ
t)−∇Ls2(θ

t) = Ex1,x2

[
Jθt(x1)

T∇hℓ(x1)− Jθt(x2)
T∇hℓ(x2)

]
we can split this as,

Ex1,x2

[
Jθt(x1)

T (∇hℓ(x1)−∇hℓ(x2)) + (Jθt(x1)
T − Jθt(x2)

T )∇hℓ(x2)
]

then, by triangle inequality and operator norms,

∇Ls1 −∇Ls2 ≤ λmax(Jθt(x1)) · Ex1,x2∥∇hℓ(x1)−∇hℓ(x2)∥+O(ϵ),
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assuming ℓh(·) is Lipschitz smooth with constant Cℓ,

||∇ℓh(x1)−∇ℓh(x2)|| ≤ Cℓ||h(x1)− h(x2)|| = Cℓdh(x1, x2),

so

∇Ls1 −∇Ls2 ≤ λmax(Jθt(x1))CℓEdh(x1, x2),

and,
(∇Ls1(θ

t)−∇Ls2(θ
t))T∆θt ≤ λmax(Jθt(x1))CℓEdh(x1, x2) · ||∇Ls1(θ

t)||

combining everything and given ∆Ls1,s2(θ
t+1) = (Ls1(θ

t+1)− Ls2(θ
t+1)),

∆Ls1,s2(θ
t+1) ≤ (Ls1(θ

t)− Ls2(θ
t)) + ηλmax(Jθt(x1))CℓEdh(x1, x2) · ||∇Ls1(θ

t)||+O(η2).

The loss difference between s1 and s2 after an unlearning update on s1 is bounded above by a term
proportional to their representation similarity. This shows that representation similarity implies
loss entanglement, where unlearning one set will influence the loss on another if they share similar
representations.
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The left panel shows an example of two-layer label domains; The middle panel is the Venn diagram to show the
hierarchical relation; The right panel illustrates the potentials of three critical class-wise unlearning aspects.

Figure 10: Label domain mismatch with the two-layer illustration.

Table 9: Mismatching in the label domain of three critical aspects with a two-layer label structure.

No. Forgetting data Model output Target concept Comment

1 Class label Class label Class label All matched
2 Class label Class label Superclass Target mismatch
3 Class label Superclass Class label Model mismatch
4 Class label Superclass Superclass Data mismatch

5 Superclass Class label Class label Impractical since LD ≻ LT

6 Superclass Class label Superclass Similar to all matched
7 Superclass Superclass Class label Impractical since LD ≻ LT

8 Superclass Superclass Superclass All matched

E FULL DISCUSSION ABOUT LABEL DOMAIN MISMATCH

In this section, we discuss the full scenarios of label domain mismatch in class-wise unlearning [68,
22, 8, 38, 16]. Specifically, we will start by why focusing on class-wise unlearning, and then discuss
the motivation for investigating its label domain mismatch, with the newly introduced setting being
friendly for empirical analysis and further research. In addition, we provide detailed information on
our instantiated four tasks using the benchmarked datasets [43]. Finally, we discuss the commonalities
of mismatch forgetting scenarios and the general principle of unified framework design.

To begin with, machine unlearning [7, 65, 69, 61] is originally proposed in response to "the right to
be forgotten" to protect the data privacy, and recently deep machine unlearning is a timely research
topic associated with foundation models which use massive of data to train [45, 4]. The ensuing
data regulation concerns have also expanded the original privacy-protecting goal to more general
needs and scenarios [70, 53, 19]. As stated in [60, 45, 38], unlearning a subset of the training set
has received increasing attention (like removing sensitive information, and inappropriate content).
However, the previous scenarios mainly consider the coinciding class labels with the target concept
to be unlearned. Although achieving promising results in forgetting, it is still not enough in practice.

Considering the problem setups of unlearning, we have three critical aspects, e.g., the well-trained
machine learning model θ, and the reported data Df to be unlearned, as well as the target concept.
In previous studies, the three aspects are mainly considered to be under the same label taxonomy.
In other words, the unlearning tasks are aligned with the pre-training task, where the latter trains
a multi-class classification model, and the former aims to unlearn a training class. However, in
practice, the unlearning request may violate the taxonomy of the pre-training tasks, while the
specific target concepts always exhibit a unified property for specific forgetting data. It naturally
motivates us to consider different label domains of the three aspects of unlearning. As listed
in Table 10, the label domain of data LD, the label domain of model output LM , and the label
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domain of target concept LT . To begin with, we introduce the relations between two label domains,
i.e., L1 matches L2 (L1 = L2), L1 is the subclass domain of L2 (L1 ≺ L2)3 and L1 is the
superclass domain of L2 (L1 ≻ L2)4, and we have a practical assumption on the relation between
label domains of forgetting data and target concept, i.e., LD ⪯ LT , indicating that the reported
forgetting data should be included in the target concept (as intuitively illustrated in the middle panel
of Figure 10). Considering LD = LT , we can have two possibilities on LM , e.g., LM = LT

and LM ̸= LT , where the former is regarded as all matched when LD = LM = LT and the
latter is the model mismatch. To be more specific, we consider model mismatch forgetting as
LD = LT ≺ LM , since LM ≺ LT will have no additional effects on the unlearning when LD = LT

and we can regard it as similar to the all matched case. Considering LD ≺ LT , we can have
the target mismatch forgetting when LD = LM and data mismatch forgetting when LM = LT .

Label Domain L Relation of Data LD, Model LM , and Target LT

All matched LD = LT = LM

Target mismatch LM = LD ≺ LT

Model mismatch LD = LT ≺ LM

Data mismatch LD ≺ LT = LM

Table 10: considering label domain relations of
three critical aspects in class-wise unlearning.

We summarize the mainly considered mismatch
cases in Table 10, which can serve as a general
reference for further research on constructing the
unlearning tasks. In the following, we further
explain the procedure of task instantiating and dis-
cuss the other potential scenarios with the typical
two-layer label structure considered in the main
text and an additional three-layer label structure.

E.1 A TWO-LAYER LABEL STRUCTURE OF MISMATCH

In Figure 10, we first show the illustration of a two-layer label structure and the three aspects of
unlearning, i.e., forgetting data, model outputs, and target concept. Without losing generality, we
utilize the class labels and superclass information (refer to the official information in CIFAR-100 [43])
for consideration. Then we have a two-layer label structure representing different knowledge regions.

Given two potential label domains in each aspect, we can totally get the 8 scenarios list in Table 9.
The first 4 scenarios are mainly considered and detailedly introduced in the main text. For the
rest 4 scenarios (i.e., No. 5-8), we consider some (i.e., No. 5 and No. 7) to be impractical as the
label domain of forgetting data is larger than the target concept, which means that the unlearning
requests identify more forgetting data than the true target concept. It should be more reasonable that
only limited forgetting data are identified by server users or internal examiner [42] in real-world
applications. Therefore, we mainly consider the forgetting data Df belongs a part of or equals to
the overall data Dt of the target concept. As for No. 6 and No. 8 cases, the former is similar to the
conventional all matched forgetting since the forgetting data has the same label domains with the
target concept while the model output has a fine-grained label domain (e.g., class label) that will not
affect the unlearning, and the latter is exactly same as the all matched forgetting.

E.2 A THREE-LAYER LABEL STRUCTURE OF MISMATCH

Since in more extreme cases, some unlearning requests would exhibit only several instances of
forgetting an abstract concept not aligned with the pre-training tasks. We then consider an extra label
layer (e.g., the sub-set level inside a class) to construct a three-layer structure beyond the previous
one. In Figure 11, we illustrate it with some samples and a Venn diagram.

Considering each aspect can have three potential label domains, we can totally get 27 scenarios in
Table 11. In general, we have three rough categories for analysis. First, due to the aforementioned
constraint that the target concept should include the forgetting data, we consider several cases (e.g.,
No. 14, 17, 18, 20, 22-24, and 26-27) to be impractical. Second, the three-layer structure also includes
a group of scenarios that also existed in the two-layer structure, so No. 1-4 and 19 are the same as the
four scenarios (i.e., all matched, target mismatch, model mismatch, and data mismatch). Third, for
the rest scenarios, we regarded them to be novel cases than those considered in the main text.

3L1 ≺ L2: For any label y ∈ L1, there exist label y′ ∈ L2 that instance being labeled with y can also being
labeled with y′, but not all instance being labeled with y′ can be labeled with y.

4L1 ≻ L2: For any label y ∈ L2, there exist label y′ ∈ L1 that instance being labeled with y can also being
labeled with y′, but not all instance being labeled with y′ can be labeled with y.
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The left panel shows an example of three-layer label domains extended from the ordinary setting considered in
our main text, where the sub-set is sampled from the "boy" class; The middle panel is the Venn diagram to show
the hierarchical relation; The right panel illustrates the potentials of three critical class-wise unlearning aspects.

Figure 11: Label domain mismatch with the three-layer illustration.
Table 11: Mismatching in the label domain of three critical aspects with a three-layer label structure.

No. Forgetting data Model output Target concept Comment

1 Sub-set Sub-set Sub-set All matched
2 Sub-set Sub-set Class label Target mismatch
3 Sub-set Class label Sub-set Model mismatch
4 Sub-set Class label Class label Data mismatch
5 Sub-set Sub-set Superclass Different
6 Sub-set Superclass Sub-set Different
7 Sub-set Superclass Superclass Different
8 Sub-set Class label Superclass Different
9 Sub-set Superclass Class label Different

10 Class label Class label Class label All matched
11 Class label Class label Superclass Target mismatch
12 Class label Superclass Class label Model mismatch
13 Class label Superclass Superclass Data mismatch
14 Class label Sub-set Sub-set Impractical since LD ≻ LT

15 Class label Sub-set Class label Similar to all matched
16 Class label Sub-set Superclass Different
17 Class label Class label Sub-set Impractical since LD ≻ LT

18 Class label Superclass Sub-set Impractical since LD ≻ LT

19 Superclass Superclass Superclass All matched
20 Superclass Class label Class label Impractical since LD ≻ LT

21 Superclass Class label Superclass Similar to all matched
22 Superclass Superclass Class label Impractical since LD ≻ LT

23 Superclass Sub-set Sub-set Impractical since LD ≻ LT

24 Superclass Sub-set Class label Impractical since LD ≻ LT

25 Superclass Sub-set Superclass Similar to all matched
26 Superclass Class label Sub-set Impractical since LD ≻ LT

27 Superclass Superclass Sub-set Impractical since LD ≻ LT

To be more specific, there are two groups of cases in the third part. For No. 5, 6, and 7, since they
also can be represented using a two-layer structure, the forgetting dynamics are similar to that in
target, model, and data mismatch forgetting. By contrast, in No. 8, 9, and 16, all three label domains
exist in the three aspects of class-wise unlearning, which is worthy of further discussion.

E.3 FURTHER EXPLORATION ON THE OTHER 6 DIFFERENT SCENARIOS

In this part, we further discuss the 6 different scenarios discovered by constructing the three-layer
label structure. We illustrated these forgetting tasks in Figure 12 and discuss them as follows,
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No. 6

Class Representation

mismatch

No. 8

Class Representation

mismatch
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Class Representation
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No. 5

Class Representation

mismatch

No. 9

Class Representation

mismatch

No. 7

Class Representation

mismatch

Figure 12: Illustration of 6 scenarios different from the four major tasks according to Table 11.

- No. 5&16 In the two scenarios, the model output has the most fine-grained label domain (e.g.,
sub-set as illustrated in Figure 11) for representation. At the same time, the target concept is broader
than both model output and identified forgetting data. Different from the aforementioned target
mismatch, the mismatch degree of this task is larger (e.g., superclass level) than the previous one (e.g.,
class level). In other words, the model output further loses the entanglement of feature representation
of the samples belonging to target concept (compared with the original setups of target mismatch).
To simulate the case, we employ the same model pre-trained by class in target mismatch, but enlarge
the target concept (consists of 7 classes with similar semantic features, instead of the original 5) and
change the forgetting data (2 class as the given forgetting data in No.5 and 3 classes in No.16).

- No. 8&7. Similar to the previous No. 5, the target concept in these tasks is also broader than the
label domains of the identified forgetting data. However, in these two scenarios, the model output is
varied which controls the entanglement of target samples. To construct these two forgetting tasks, we
respectively adopt the models pre-trained by class labels and superclass, and use the same forgetting
data (with 1 class) to investigate the performance change using our TARF and other baselines.

- No. 6&9. In the last two scenarios, the forgetting tasks are more similar to the previous model
mismatch forgetting. However, the distinguishable difference is that the label domain of model
outputs can be much different from the identified forgetting data. In the No. 6 task, the target concept
is aligned with the identified forgetting data, while since the remaining data is more than the original
model mismatch forgetting, the task separation could be harder than the previous. In the No. 9 task,
we can find that it is a complex scenario where the target concept is broader than the forgetting data
but included in the same superclass. In both tasks, we use 1 class data as the forgetting data.
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Table 12: Results (%) of unlearning with different model structures. All methods are trained on the
same backbone, i.e., the basis of unlearning initialization is the same (except for retraining from
scratch). Values are percentages. Bold numbers are superior results. ↓ indicates smaller are better.

CIFAR-100 Metric UA RA TA MIA Gap↓ Metric UA RA TA MIA Gap↓
Retrained

No. 5

0.00 97.85 73.72 100.00 -

No. 16

0.00 97.85 73.72 100.00 -
FT [68] 67.52 96.43 72.96 41.14 32.72 53.11 94.64 71.23 52.70 26.53
RL [66] 68.57 96.12 72.58 41.17 33.15 53.90 96.94 73.07 53.56 25.48
GA [36] 38.03 97.00 70.98 76.92 16.75 32.24 95.73 69.99 77.62 15.12
TARF (ours) 0.00 96.58 72.03 100.00 0.74 0.00 96.98 72.87 100.00 0.43

Retrained

No. 8

0.00 97.85 73.72 100.00 -

No. 7

0.00 98.50 80.15 100.00 -
FT [68] 74.09 97.19 74.01 36.71 34.58 95.16 94.98 78.68 13.06 46.77
RL [66] 76.04 96.76 72.88 36.00 35.49 91.51 96.98 80.11 47.24 36.46
GA [36] 49.47 98.92 72.94 77.96 18.34 15.91 98.64 80.27 93.82 5.59
TARF (ours) 0.00 96.22 72.43 100.00 0.73 0.00 96.54 79.23 100.00 0.65

Retrained

No. 6

88.22 98.52 84.42 22.22 -

No. 9

88.22 98.58 78.50 25.78 -
FT [68] 94.33 95.00 78.77 13.67 5.96 91.78 95.02 78.90 18.44 3.72
RL [66] 84.22 96.96 80.18 65.77 13.34 96.97 70.22 80.24 94.67 26.94
GA [36] 18.44 96.06 78.20 92.67 37.23 19.11 95.27 77.56 91.56 34.79
TARF (ours) 92.21 98.43 82.32 19.17 2.31 89.12 97.23 79.21 24.32 1.11

To further understand the properties of unlearning in these tasks, we conducted additional experiments
and summarized the results in Table 12. We can find the empirical results well demonstrate the
conceptual conjectures in the previous discussion, and the representative baselines exhibit varied
performance gap with the Retrained reference. Among them, our TARF can consistently achieve the
better performance regarding to the Gap.

E.4 SPECIFIC INFORMATION OF THE INSTANTIATED TASKS

For the four major scenarios (i.e., conventional all matched forgetting, target mismatch forgetting,
model mismatch forgetting, and data mismatch forgetting) considered in our work, we provide the
dataset construction and partition details in this section. Note that we focus on class-wise unlearning
in this work, which is different from random data forgetting that uniformly samples the forgetting
target of all classes in the training dataset.

Forgetting target. In previous works [68, 8], the target concept to be forgotten is mainly considered
as all matched where Dt = D{y = yf} has the same label domains (exactly same labels) with the
pre-training task and forgetting data Df = D{y = yf}. In contrast, we assume that the target concept
can be decoupled from the class label in practical unlearning requests. As illustrated in Figure 1,
we further instantiate with three forgetting tasks given Df = D{y = yf} with the superclass labels
Y ′ of Y (classes): i) model mismatch forgetting, e.g., Dt = D{y = yt} and yt ⊆ y′f where y′f ∈ Y ′

given the model trained on Y ′; ii) target mismatch forgetting, e.g., Dt = D{y = y′f} given the model
trained on Y; iii) data mismatch forgetting, e.g., Dt = D{y = y′f} given the model trained on Y ′.

To ease the research investigation and empirical verification, we adopt the commonly used [45, 38,
16, 17] benchmark CIFAR-10 and CIFAR-100 for constructing the pre-training task for unlearning.
Specifically, the official class labels are kept as classes for ordinary setup, and we provide the
superclass information referring to the pre-defined lists [43] of CIFAR-100. Since there is no
official superclass information for CIFAR-10 dataset, we manually grouped the classes of CIFAR-10
according to their semantic feature similarity and finalized 5 superclass clusters consisting of 2 classes
in each. The full structured label layers information is summarized in Tables 14 and 15. For all the
unlearning scenarios where the label domain of model output is the superclass, we will first use the
superclass information to train the 20-class and 5-class classification models respectively. For the
specific data partition in unlearning requests, we randomly sampled two classes in CIFAR-100 and
one class in CIFAR-10 as forgetting data and kept the setup across the four forgetting tasks as well as
other experiments. For other additional experimental setups, we will state them at the near positions.
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Table 13: Basic setup about unlearning scenarios. More illustrations can be found in Appendix E.4.

Dataset Forgetting Data Setup All matched Model mismatch Target mismatch Data mismatch

CIFAR-10 “automobile” Training Class 10 5 10 5
Target Concept “automobile” “automobile” “vehicle” “vehicle”

CIFAR-100 “boy”, “girl” Training Class 100 20 100 20
Target Concept “boy”, “girl” “boy”, “girl” “people” “people”

Table 14: Full list of the 20-class classification on CIFAR-100 with its official superclass labels [43].

Superclass (20) Classes (5 for each superclass)

aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout

flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates

fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
household electrical devices clock, computer keyboard, lamp, telephone, television

household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach

large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor things bridge, castle, house, road, skyscraper

large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo

medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm

people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle

small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow

vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Table 15: Full list of the 5-class classification on
CIFAR-10 with its manually set superclass [43].

Superclass (5) Classes (2 for each superclass)

1 airplane, bird
2 automobile, truck
3 cat, dog
4 deer, frog
5 horse, ship

Table 16: Specific training set data partition cor-
responding to four major forgetting tasks.

Forgetting Tasks Identified Unidentified

All matched Df = Dt Dun = Dr
Target mismatch Df ⊂ Dt Dun = Dfr ∪ Dr
Model mismatch Df = Dt Dun = Dr
Data mismatch Df ⊂ Dt Dun = Dfr ∪ Dr

E.5 DISCUSSION ON THE PRACTICALITY OF LABEL DOMAIN MISMATCH

Machine unlearning is originally proposed in response to data regulations [7, 32], which are primarily
motivated by a desire to protect data owners’ right to withdraw from the learning process. However,
regarding its technical nature of mitigating the data influence from a trained model [69], unlearning is
actually given broader significance in the context of trustworthy AI [4,5], like studies for mitigating
bias and unfairness [6], addressing safety issues [7], erasing the NSFW generation [8,9]. It is worth
noting that these trustworthy requirements may generally exhibit different concerns from the original
training tasks. Motivated by the research problem raised in Section 3.1, our work focuses on a critical
problem from the assumption view, i.e., the unlearning request may have a different taxonomy from
the original tasks, for which we model the three mismatched scenarios for systematical exploration.

Here, we discuss some practical use cases for the three newly proposed settings. For example, 1) the
label domain mismatch may exist in some recommendation tasks [20] or other generative tasks like
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Taking the CIFAR-100 [43] dataset, we instantiate four unlearning tasks given the same forgetting data with the class labels of “boy” and “girl”:
a) all matched forgetting (conventional scenario): unlearn “boy” and “girl” with the model trained on the classes; b) target mismatch forgetting:
unlearn “people” with the model trained on the classes; c) model mismatch forgetting: unlearn “boy” and “girl” with the model trained on the
superclass; d) data mismatch forgetting: unlearn “people” with the model trained on the superclass.

Figure 13: Illustrations of class representation with the four unlearning scenarios.

image generation [19] with diversified user feedback (for which we have presented a case study on
concept-forgetting on Stable Diffusion in Appendix F). 2) When the users raise unlearning requests
for some representative disliked item with a message of "don’t recommend this kind of thing", it is
similar to target mismatch forgetting. In addition, 3) when debugging the pre-trained model with some
spurious correlation or safety concerns [4, 19, 46], it is similar to model or data mismatch forgetting
as we only have the forgetting cases (e.g., some figures including NSFW content or adversarial
features) that may not be aligned with the taxonomy of the pre-training task. We hope our exploration
can provide insights for further consideration of specific practical applications.

E.6 DISCUSSION ON THE SCENARIO COMMONALITIES AND FRAMEWORK PRINCIPLES

The three mismatch scenarios, i.e., target mismatch forgetting, data mismatch forgetting, and model
mismatch forgetting, share the common challenge of representation mismatch between the pre-trained
model, the identified forgetting data, and the target concept to be forgotten. It breaks the assumption
in all-matched scenarios that the three are matched [60, 69, 16, 38] and can result in extra-/ineffective-
forgetting in unlearning tasks, as demonstrated in our Figure 2. Specifically, in the target/data
mismatch forgetting, the target concept can be wider than the identified forgetting data; while in the
model mismatch forgetting, it can be smaller than the coarse-grained model representation.

To build a unified framework like our TARF, it requires considering the aforementioned two issues,
i.e., insufficient representation in target/data mismatch, and decomposition lacking in the model
mismatch. The former requires a flexible controller for forgetting strength while and latter requires
a simultaneous consideration on forgetting and retaining. Thus, based on the general equation in
Eq. (3), we set two sub-objectives (annealed forgetting and target-aware retaining) to decompose the
learned representation and control the forgetting strength by the instance-wise weighting mechanism
which selects the targeted-aware forgetting data. Then, TARF becomes a unified framework for
the three mismatched scenarios. Note that although TARF is illustrated with three phases to better
explain its functionality, while it is not three independent parts but unified in a general objective.

F ALGORITHM IMPLEMENTATION AND EXPLANATION

In this section, we present the pseudo-code of our proposed TARF and its variant, as well as additional
discussions to enhance the understanding of our methods. Here we summarize the detailed procedure
of algorithm implementation in Algorithm 1 and Algorithm 2. In detail, Algorithm 1 identifies the
potential target using the class labels, while Algorithm 2 can use the instance level information.
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As introduced in Section 3.3, the objective of our TARF is defined as follows,

LTARF = k(t) ·
(
− 1

|Df|
∑

(x,y)∼Df

ℓ(f(x), y)

)
︸ ︷︷ ︸

Annealed Forgetting Lf(k)

+
1

|Dun|
∑

(x,y)∼Dun

ℓ(f(x), y) · τ(x, y, t)

︸ ︷︷ ︸
Target-aware Retaining Lu(τ)

,
(17)

where k(t) and τ(x, y, t) are two training-time-related hyperparameters to deal with the mismatch
issues raised in our new settings. Specifically, we set a learning-rate-reduced k(t) as,

k(t) = k · (T − t− t0)/T, t ∈ [0, T ], (18)

where T indicates the total training time (e.g., epochs), and the value of k(t) decreases with the
training process. On the other hand, we have the following indicator to measure the model prediction
consistency with the training dataIcon(x, y, θ) = |ℓfθ (x, y)− ℓfθ∗ (x, y)|, with which we set τ(x, y, t)
as follows,

τ(x, y, t) =

{
0 Icon(x, y, θt1) > β or t < t1

∗Unconf. Retain,
1 Icon(x, y, θt1) < β and t ≥ t1

∗Conf. Retain,
(19)

where t1 is a time stamp to control the start of pursuing the retaining part. The overall two dynamic
hyperparameters can divide the whole unlearning process into three phases as illustrated in Figure 4.

Table 17: Sensitive check of quantile-based choice
on varied false-retain size using CIFAR-100.

Forgetting Support Size UA RA TA MIA Gap
Retrained (Ref.) 450 0.00 97.76 74.28 100.00 -
GA (large) 450 6.35 92.32 70.12 94.53 5.36
TARF (large) 450 0.00 96.42 72.13 100.00 0.87
Retrained (Ref.) 2250 0.00 98.03 73.42 100.00 -
GA (Small) 2250 35.07 91.81 66.39 75.91 18.10
TARF (Small) 2250 23.37 85.53 70.68 77.82 15.20

Remark on β. The intuition of setting β is
identifying those false remaining data in our
Phase-I: Target Identification based on the grav-
ity effects of forgetting dynamics. According
to the dynamic information revealed by Phase-I
(e.g., before t1), β is set to thresholding those
data most influential by unlearning the given
forgetting data, so is a computable value given
the pre-assumed forgetting range. For the task
feasibility, we will generally assume the amount of false remaining data or classes is known at our
target/data mismatch forgetting, following a similar setup in learning from label noise [28] where
the noise rate can be estimated and utilized as prior information. In the implementation, the β value
is estimated with the ranked accuracy difference of each class, once at time step t1 (e.g., the end of
Phase-I illustrated in Figure 4) and remain fixed afterward throughout training, as we already identify
those potential false remaining data. Specifically, we estimate β by ranking samples in the remaining
set. For example, setting β as the lowest Icon of top-5% data/class with the most loss/accuracy. In
Table 17, we further check the performance robustness of quantile-based choice under varied false-
retain size on CIFAR-100. When the false-retain set is very small, these data remain reliably captured
by the top quantiles due to their strong semantic and representation alignment with the forgetting
set, and the unlearning performance is good. In contrast, when the false-retain set is significantly
enlarged, the ranking could include a number of noisy samples as their semantic similarity to the
forgetting set is inherently weak. Although we can not achieve accurate forgetting (e.g., achieve
0% in UA), we can still perform better than plain gradient ascent on the given forgetting data. This
situation also corresponds to the challenging settings where representation-gravity cues become
ambiguous when the false-retain samples are disproportionately large and given forgetting data can
not be representative anymore. Nevertheless, across all feasible mismatch scenarios introduced in the
paper, the quantile-based ranking choice remains structurally robust, and quantile-based choice of β
can be valid if the forgetting dynamics can well capture the semantic representativeness.

Annealed Forgetting. For the forgetting target, we adopt the gradient ascent on the given forgetting
data to unlearn it. However, to approximate the retrained model, the intuition is not to pursue the
maximization of the risk on this part of the data but to destroy the learned feature on the given model.
So we introduce a learning-rate-reduced k(t) to realize the annealed gradient ascent where t0 = 1
is adopted for target or data mismatch forgetting, and the value of k(t) decreases with the training
process. Resulting in destroyed features, gradient ascent on this part of data also constructs the
dynamic information for differentiating the data of different consistency on its loss values, making
the risks of the false retaining data higher than the rest, and helping to filter retaining data.
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Target-aware Retaining. For the retaining part, we need to selectively learn the data from the
remaining set, since the complementary dataset may be biased with unidentified forgetting data.
Compared with other remaining data, the false retaining data is easy to be affected by similar feature
representation as indicated in Figure 3. Thus, we can have τ(x, y, t) where we can divide the
remaining set into unconfident/confident parts to note the estimated retaining data like Figure 5.
t1 = 2 is adopted at target and data mismatch tasks, and β can be estimated by the prior information
about the specific unlearning request and the rank of loss values. By simultaneously conducting
gradient ascent on forgetting data and selective gradient descent on confident retaining data, we can
better restrict the forgetting region and deconstruct the entangled feature representation (refer to the
middle of Figure 5 where we reveal the feature decomposition in deeper layers of model structure
using ResNet). Finally, with the partial objective of retaining, it can approximate the retrained
reference (refer to the right of Figure 5).

F.1 DISCUSSION ON THE FUNCTIONALITY OF HYPERPARAMETERS AND TUNING PRINCIPLE

Discussion on the computational stability. Conceptually, the hyperparameters introduced in TARF
are structurally constrained by their functionality, although they introduced extra tuning flexibility
to enable the capability of handling different mismatched scenarios. We can understand from an
induction view of our unlearning objective, where k and τ respectively control the strength of
forgetting and the scope of retaining. Generalized from the Phase-II of target separation in Figure 4,
t1 and t0 enable the Phase-I for target identification on target/data mismatch and the Phase-III for
retaining approximation. Note that as discussed, β is an automatic ranking threshold in realizing
the index τ . Thus, we only need to decide the proper value of k, t1 and t0, which is guided by
specific unlearning scenarios. Given that intuition, we have several tuning principles: 1) the initial
forgetting strength k can be tuned from a smaller value to avoid extra feature distortion; 2) t1 is
generally set to be Epoch 1 as dynamic information can be captured by ranking mechanism; 3)
t0 can be also tuned by extending the Phase-III to fix the potential feature distortion induced by
forgetting. Empirically, the above intuition and tuning principles benefit the computational stability of
our framework, as demonstrated in our ablations which consistently shows that TARF is stable across
a wide but reasonable range of choices. As shown in Figures 7 and 17, sweeping the values of initial
k, t1, and t0 leads to highly similar outcomes unless: 1) k is set to an unrealistically large value that
aggressively destroys the representation; 2) t1 is set to an extremely large value obscure large quota
of retaining; 3) t0 is set to near 0 without considering fixing representation destroy. This is governed
by the forgetting dynamics revealed in our theoretical analysis, where the early steps dominate the
separation of target representations, while the later can induce unrelated feature distortion.

Practical guideline for hyperparameters. Based on the aforementioned conceptual discussion, we
can synthesize the guideline as: 1) k should be initialized to a small value and increased cautiously;
a modest early ascent is sufficient to reveal representation gravity, while overly large values cause
unnecessary distortion; 2) t1 can generally be set very early (typically Epoch 1), since the gravity-
based ranking relies on the first few steps of forgetting. 3) t0 can be tuned by extending Phase III
when additional retaining approximation is needed, ensuring that any feature distortion is fixed.

F.2 DISCUSSION ON THE ALGORITHM COMPUTATION COST

We would acknowledge that TARF may require more time in unlearning compared with some methods
like GA, which only uses the forgetting data (which sometimes can be extremely limited than other
retaining data) for unlearning, while those methods may suffer from excessive forgetting and results
in inaccurate unlearning across different scenarios. Regarding the metric “TIME”, it originally means
to avoid some methods that consume too much time compared with that of Retrained (Ref.). From
this perspective, these current methods and TARF actually fall in the acceptable time range, and the
efficiency gap between existing explorations in that range is indeed not a bottleneck based on Table 1.

From the methodology perspective, the three separately presented phases are integrated in a unified
framework, instead of adding extra phases before and after Phase II. Compared to other approximate
unlearning methods, the unique operation is target identification by comparing the output information
of the unlearned model with the original model for weight assignment, which has similar or less
computation than other advanced designs that consider sparse regularization [38] or compute the
gradient mask for the original model [16]. Empirically, we check the computation overhead of
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Algorithm 1 TARF
Input: Training dataset D = {(xi, yi, si)}ni=1, where si = 1 indicates the identified forgetting dat,
otherwise the data is recognized to be unlabeled for unlearning, learning rate η, number of epochs T ,
batch size m, number of batches M , data x ∈ X , label y ∈ Y , original trained model θ, loss function
ℓ, initialized indicator value τ with the threshold β, time indicator t0 and t1 related to Eq. 5.
Output: model θT ;

1: for mini-batch = 1, . . . , M do
2: Sample a mini-batch {(xi, yi)}mi=1 from D
3: {ℓ(xi, yi)}mi=1 ← θ.forward(fθ, {(xi, yi)}mi=1),
4: Collect the initial training accuracy in each class based on {ℓ(xi, yi)}mi=1,
5: τ ← 0
6: end for
7: for epoch = 0, . . . , T do
8: Update k(t) according to Eq. 5,
9: if epoch = t1 then

10: compute β in Eq. 5 according to the rank of class accuracy difference, and update τ .
11: end if
12: for mini-batch = 1, . . . , M do
13: Sample a mini-batch {(xi, yi, si)}mi=1 from D
14: Assign different weights for identified target samples and the rest retaining data,

15: LTARF = k(t) ·
(
− 1

|Df|
∑

(x,y)∼Df
ℓ(f(x), y)

)
+ 1

|Dun|
∑

(x,y)∼Dun
ℓ(f(x), y) · τ(x, y, t),

16: θ ← θ − η∇θLTARF(D,Df, f, τ)
17: end for
18: end for

identification in Table 18. Specifically, we report the computation time (min) of identification (TIME-
In) including the forwarding pass and ranking operation, compared with that (TIME-Un) of the whole
unlearning process. The resulting overhead is relatively limited compared with the unlearning cost
across the datasets. While extremely large-scale settings could benefit from optional structural priors
or sampling-based accelerations, our current implementation already shows favorable scalability.

Table 18: Computational overhead of target identi-
fication compared with unlearning procedure.

Method TIME-I TIME UA RA TA MIA Gap
CIFAR-10 0.18 4.23 0.06 97.57 90.81 100.00 1.23
CIFAR-100 0.18 4.85 0.31 97.35 73.68 100.00 0.21
Tiny-ImageNet 0.95 32.81 1.08 94.78 69.91 100.00 1.37
ImageNet 11.52 628.87 0.00 69.93 71.79 100.00 3.97

Practical optimization strategies. Considering
the future application scenario like foundation-
model-scale target identification, the single for-
ward pass could also be costive for the entire
remaining dataset for monitoring the dynamic
information change. Here we further discuss po-
tential optimization strategies. First, sampling-
based approaches like uniform or stratified sampling are a viable strategy in large-scale applications,
especially when the dataset contains structural information such as category tags or class labels.
TARF depends only on relative changes in the gravity shift, rather than exact global estimates, so
monitoring the shift using a small, class-balanced validation subset (e.g., a few thousand examples)
is feasible. The primary trade-off is representational fidelity: if the sampled subset fails to capture
the intra-class structural variation, the estimated gravity shift may introduce mild variance. Second,
a lightweight surrogate model may be used to approximate gravity monitoring. Since TARF relies
on representation gravity for target identification, we may also compute the gravity shift using a
compressed encoder if available (e.g., a distilled representation model or low-rank projection of the
backbone). This reduces monitoring costs by optimizing the forwarding pass, with the trade-off that
the surrogate model may introduce slight bias in the absolute magnitude of the gravity shift. We
may also need consider the time cost of constructing such a surrogate model based on the existing
literature. It could also be a promising future direction for efficient target identification.
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Algorithm 2 TARF-I: generalized version on instance-wise identification
Input: Training dataset D = {(xi, yi, si)}ni=1, where si = 1 indicates the identified forgetting dat,
otherwise the data is recognized to be unlabeled for unlearning, learning rate η, number of epochs T ,
batch size m, number of batches M , data x ∈ X , label y ∈ Y , original trained model θ, loss function
ℓ, initialized indicator value τ with the threshold β, time indicator t0 and t1 related to Eq. 5.
Output: model θT ;

1: for mini-batch = 1, . . . , M do
2: Sample a mini-batch {(xi, yi)}mi=1 from D
3: {ℓ(xi, yi)}mi=1 ← θ.forward(fθ, {(xi, yi)}mi=1),
4: Collect the initial loss values in each training samples based on {ℓ(xi, yi)}mi=1, τ ← 0
5: end for
6: for epoch = 0, . . . , T do
7: Update k(t) according to Eq. 5,
8: if epoch = t1 then
9: compute β in Eq. 5 according to the rank of difference in instance loss values, and update τ .

10: end if
11: for mini-batch = 1, . . . , M do
12: Sample a mini-batch {(xi, yi, si)}mi=1 from D
13: Assign different weights for identified target samples and the rest retaining data,

14: LTARF = k(t) ·
(
− 1

|Df|
∑

(x,y)∼Df
ℓ(f(x), y)

)
+ 1

|Dun|
∑

(x,y)∼Dun
ℓ(f(x), y) · τ(x, y, t),

15: θ ← θ − η∇θLTARF(D,Df, f, τ)
16: end for
17: end for

F.3 CASE STUDY FOR UNLEARNING GENERATION CONCEPT

To demonstrate the compatibility, we also extend the idea of this work and investigate the performance
of TARF on the specific text-to-image generation task with stable diffusion [19, 16], and presented
the generated images by the original model and unlearned model in Tables 19 and 20.

In detail, we aim to unlearn the image generation of a concept with its specific prompt like “a photo of
a tench”. To simulate the practical unlearning request (e.g., the user raises the request of unlearning
a specific concept with some identified generation examples, and the developer needs to adjust the
model to forget the concept), we construct the given dataset consisting of limited forgetting data and
the unidentified remaining data for unlearning, which corresponds to the data mismatch forgetting
task. Then we compare the image generation on the original stable diffusion, the unlearned model
with certain label (CL) mismatching [16], and that with our TARF. Note that here we recognize
ESD [19] as a performance upper bound and do not compare it, since it is the same for all matched
settings with fully identified forgetting data (as it directly encourages the model to unlearn the concept
from text semantics). For this exploration of TARF, we adopt the instance-wise identification during
the forgetting process as described in Algorithm 2, to unlearn the target concept with the given limited
forgetting data and pursue retaining the selected remaining data with lower loss values.

The results in Tables 19 and 20 demonstrate that our TARF can achieve better forgetting results given
the limited identified forgetting data, with proper target identification in the remaining set, while CL
using only identified forgetting data can not unlearn the concept well as the generated examples still
maintain some semantic features belongs to the target concept (like "tench" or "English springer").

F.4 DISCUSSION ON TARF WITH LIMITED CLASS INFORMATION

The phase 1 of TARF is for target identification in the target mismatch forgetting where the target
concept is wider than the given forgetting data (e.g., forgetting "people" given "boy" and "girl"). The
class information may affect the accurate identification of the target concept but not the rationality of
our framework. In our experimental setup, the class information is available in TARF as the class
labels are used in pre-training, while the information of the target concept is given by the number of
extra classes instead of the superclass label. Regarding the unavailable or implicit class information,
first, if the class (i.e., the subclasses w.r.t. target concept) is not available, TARF may also utilize the

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

model prediction to obtain the pseudo labels to conduct the task; Second, if the extra forgetting target
beyond the identified data is not restricted as classes, it may require that given forgetting data can
well represent the target concept (e.g., the false retaining data should be easier affected than the other
retaining data). We acknowledge that both scenarios would lead to a larger performance gap with
Retrained reference, as it is a generally more challenging scenario affecting the task achievability to
all of the approximate unlearning methods. We believe it worth future effort to explore.

F.5 DISCUSSION ON THE ASSUMPTION OF SUPER-/SUB-CLASS INFORMATION

Though we provide the full hierarchical label structure in benchmarks like CIFAR-10/CIFAR-100
to enable controllable experiments for research purposes. It does assume some available structure
or proxy signal to distinguish between the forgetting target and the retained knowledge. In practice,
this can be: 1) class labels from user requests (e.g., “please unlearn boy/girl but not man/woman”);
2) semantic similarity (e.g., via pretrained embeddings or clustering in representation space); 3)
model behaviors (e.g., gradients or output confidence shifts, used in our target-aware selection
mechanism). Thus, our method is compatible with approximate or user-defined taxonomies as long
as the information can reflect the representation similarity, and does not strictly require canonical
super/sub-class structural information.
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Table 19: Image generation results of unlearned Stable Diffusion in the Data mismatch forgetting,
compared with the original stable diffusion, certain label (CL) unlearning [16], and our TARF. The
specific prompt used in the image generation is "a photo of tench".

Original
Stable Diffusion

Unlearned
by CL [16]

Unlearned
by TARF
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Table 20: Image generation results of unlearned Stable Diffusion in the Data mismatch forgetting,
compared with the original stable diffusion, certain label (CL) unlearning [16], and our TARF. The
specific prompt used in the image generation is "a photo of English springer".

Original
Stable Diffusion

Unlearned
by CL [16]

Unlearned
by TARF
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G ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results of our work.

- In Appendix G.1, we summarize the additional experimental setups.

- In Appendix G.2, we discuss the crucial target identification in unlearning.

- In Appendix G.3, we discuss and compare TARF with the advanced method in all matched scenario.

- In Appendix G.4, we discuss potential ways to extend unlearning to the scenario without class labels.

- In Appendix G.5, we verify unlearning on large-scale datasets trained with large models.

- In Appendix G.6, we present unlearning with different model structures.

- In Appendix G.7, we present the full results under multiple runs with the four forgetting tasks.

- In Appendix G.8, we present the real-world unlearning application with LLM.

- In Appendix G.9, we discuss forgetting multiple class using TARF.

G.1 EXTRA EXPERIMENTAL SETUPS

We introduce additional experimental details in the specific unlearning tasks. In our TARF, In general,
we set t1 = 1 for all the target identification parts, and we adopt k = 0.04, t0 = 2 in model mismatch
forgetting, and k = 0.02, t0 = 2 for all matched, target mismatch and data mismatch forgetting in
the unlearning request on CIFAR-10 classification task; for the CIFAR-100 classification task, we
adopt k = 0.5, t0 = 2 in model mismatch forgetting, and k = 0.05, t0 = 2 for all matched, target
mismatch and data mismatch forgetting. For the other hyperparameters, we follow the previous
works [38, 45, 16] to set the specific values. All the forgetting trails use 10 epochs for the total
unlearning process except for GA (use 5 epochs) and IU (use the specific fixed step for optimization).
The specific parameters and the pre-trained models (unlearn base) are provided in our source codes.

G.2 DISCUSSION ABOUT TARGET IDENTIFICATION IN UNLEARNING

In this part, we further discuss the important factors for the achievability of the unlearning tasks. To
be more specific, for the target or data mismatch forgetting, the scenario assumes that the identified
forgetting data is part of the whole samples belonging to the target concept, which means there are
other forgetting data included in the remaining set that need to be found. Thus, target identification
is important for effective unlearning. As demonstrated in Section 3.2, the representation gravity
can be a useful clue in forgetting dynamics to identify the other false retaining data. An implicit
assumption is that those false retaining data have similar semantic features to the initially provided
forgetting data, which has smaller representation distance than the retaining part of data as illustrated
in Figure 14. Empirically, the model can have similar prediction changes on those false retaining
data with the initial forgetting data. However, not all of the superclasses officially defined for the
CIFAR-100 dataset are suitable for constructing the unlearning request, as some superclasses are not
semantically separable like "aquatic mammals" and "fish". It can be found in Figure 16, where we
check the Top-10 classes with the most accuracy changes after gradient ascent for each superclass
in the CIFAR-100 dataset, some false retaining data (class-level indicated by blue arrows) are not
easily identified given the two initially provided forgetting data classes (indicated by red arrows).
One interesting future problem can be how to handle the spurious correlation given the insufficient
representative samples.

G.3 DISCUSSION ABOUT TARF ON ALL MATCHED SCENARIO

Regarding the all matched scenario, there is no need for the target identification part to identify extra
forgetting data in the all-matched scenario as the target concept matches the forgetting data, then
TARF degenerates into a general framework using the given forgetting data to forget, and the rest
to retain. The performance of TARF is comparable to the existing best counterpart like SCRUB
regarding the “Gap↓” in Table 3. It can be found that the overall performance of the unlearned models
has already closely approximated the Retrained reference. Furthermore, since TARF is a general
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(a) Inter-classes distance in the model trained by classes
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(b) Inter-superclass distance in the model trained by superclass

The distance is calculated at the feature representation extracted from the penultimate layer of the model for each
class, which measures the averaged Euclidean distance to the cluster center (averaged by the forgetting data).

Figure 14: Inter-class distance and Inter-superclass distance for the unlearning assumption.

We present the tSNE visualization [51] of the learned features, using two representative unlearning methods, i.e.,
finetune (FT) [68] and gradient ascent (GA) [64] with the pre-trained and retrained ones.

Figure 15: The entangled/under-entangled feature representations visualized by tSNE.

framework, we can also adopt the KL divergence loss with the original model as designed in SCRUB
to further improve the performance, for which we present the comparison in Table 21.

G.4 DISCUSSION ABOUT TARF ON WEAKLY-SUPERVISED SCENARIO

Our current work mainly focus on expanding the scope of conventional class-wise unlearning.
Regarding the existing approximate unlearning studies [60, 45, 8, 38], considering the all matched
forgetting scenario with full supervision, we push it towards more practical settings via decoupling
the class labels and the target concept. For machine unlearning under weak supervision, there are
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Target identification results with different unlearning requests and the minimum identified forgetting data on the
CIFAR-100 dataset. Note that some target concepts are not successfully identified by the identified data.

Figure 16: Task Identification using the CIFAR-100 dataset for target mismatch forgetting.

limited studies [60] to our best knowledge, and we believe it is worth an in-depth exploration in
future work.

Given that if a model is trained with semi-supervised or other weak supervision, we can obtain the
pseudo labels by the model prediction for its unlearning phase. Instead of using the predicted label,
we can also utilize the distillation objective to encourage the unlearned model’s output to be far
away from (or close to) the original ones. With the guide of model prediction, the data belonging
to the same superclass with the forgetting data can be figured out to constrain the unlearning target.
In Table 22, we present the results of our methods when only the given forgetting data are labeled,
demonstrating our framework can be extended to achieve satisfactory performance.
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Table 21: Performance comparison in the all matched scenario when TARF with CE loss/KL
divergence (refer to Eq. (14) with the original model for the retaining part.

Type / D Dataset CIFAR-10 CIFAR-100
Method / Metrics UA RA TA MIA Gap↓ TIME↓ UA RA TA MIA Gap↓ TIME↓

Semi-supervised
Scenarios

Retrained (Ref.) 0.00 99.51 94.69 100.00 - 43.3 0.00 97.85 76.03 100.00 - 43.2
FT [68] 1.07 98.62 92.36 100.00 1.07 4.43 0.67 96.32 72.34 100.00 1.47 5.02
SCRUB [45] 0.00 99.94 91.00 100.00 1.03 2.88 0.00 99.98 76.75 100.00 0.71 3.23

TARF (with CE) 0.00 98.23 91.95 100.00 1.01 4.21 0.00 96.90 72.53 100.00 1.11 4.68
TARF (with KL) 0.00 98.81 93.33 100.00 0.52 4.32 0.00 96.95 74.98 100.00 0.49 4.89

Table 22: A case study (%) on the unlearning on CIFAR-100 under the weakly-supervised scenario
(e.g., using the pseudo-label generated by model prediction to handle unlabeled retaining data).

Type / D Dataset Model mismatch Data mismatch
Method / Metrics UA RA TA MIA Gap↓ TIME↓ UA RA TA MIA Gap↓ TIME↓

Semi-supervised
Scenarios

Retrained 88.22 98.58 78.50 25.78 - 43.8 0.00 98.50 80.15 100.00 - 53.2
FT 92.67 95.02 79.34 16.33 4.58 4.86 82.62 95.66 79.77 37.24 37.15 4.93
RL 80.11 95.83 79.83 99.00 21.35 4.93 89.78 96.82 79.90 70.76 30.49 4.97
GA 6.78 94.83 76.96 97.78 39.68 0.06 6.00 97.65 79.23 98.04 2.43 0.05
BS 18.11 95.90 72.28 95.22 37.14 0.89 15.38 98.50 72.28 96.22 6.76 0.96
L1-sparse 82.11 85.17 75.22 20.00 7.15 5.00 84.53 85.13 75.22 17.02 46.45 5.03

TARF (full labels) 86.67 97.05 80.07 26.00 1.21 4.81 0.00 95.01 78.98 100.00 1.17 4.78
TARF (unlabeled retain) 90.22 96.58 80.01 22.54 2.17 4.84 1.33 95.30 78.12 99.34 1.45 4.85

Table 23: Results (%). Comparison with the baselines on TinyImageNet trained on ResNet101.
(More results on large-scale dataset like ImageNet can refer to Appendix G.5)

Type / D Dataset All matched Model mismatch

Method / Metrics UA RA TA MIA Gap↓ TIME↓ UA RA TA MIA Gap↓ TIME↓

Tiny
ImageNet

Retrained (Ref.) 0.00 74.32 63.13 100.00 - 217.0 34.80 71.26 64.29 66.90 - 256.14
FT [68] 3.80 77.66 62.98 97.30 2.50 30.41 59.30 77.26 62.92 38.00 15.19 37.44
RL [66] 73.20 69.87 60.49 18.40 40.47 225.13 84.10 68.53 60.63 8.00 28.64 226.79
GA [36] 5.70 63.26 57.09 87.50 8.83 0.34 6.30 63.17 58.04 90.70 16.66 0.34
BS [8] 0.30 43.96 40.23 97.70 13.97 1.2 0.10 33.94 31.82 99.10 34.17 0.62
L1-sparse [38] 3.70 76.63 62.55 97.50 2.28 40.79 59.40 76.30 62.80 38.80 14.81 37.05
SCRUB [45] 0.00 75.06 63.82 100.00 0.36 66.69 37.70 73.89 64.20 57.30 3.81 58.53

TARF (ours) 0.00 75.47 62.79 100.00 0.37 28.22 34.00 74.28 62.60 65.00 1.85 38.21

Dataset Target matched Data mismatch

Method / Metrics UA RA TA MIA Gap↓ TIME↓ UA RA TA MIA Gap↓ TIME↓
Retrained (Ref.) 0.00 72.83 65.12 100.00 - 213.05 0.00 71.37 65.76 100.00 - 252.62
FT [68] 29.67 75.94 62.97 69.30 16.41 30.41 64.33 75.45 62.96 30.60 35.15 37.44
RL [66] 68.93 69.97 60.55 22.00 38.59 225.13 84.27 68.64 60.59 7.86 46.08 226.79
GA [36] 11.33 63.63 57.26 81.00 11.85 0.34 7.33 63.44 58.24 89.80 8.25 0.34
BS [8] 1.00 44.00 40.42 96.70 14.46 1.2 0.00 34.10 31.98 99.30 17.94 0.62
L1-sparse [38] 28.93 75.18 62.55 69.60 16.06 40.79 63.90 74.80 62.80 31.30 34.75 37.05
SCRUB [45] 25.67 75.31 63.85 73.80 13.90 66.69 44.07 74.02 64.25 46.93 25.33 58.53

TARF (ours) 5.07 75.78 62.72 97.53 3.22 32.81 0.00 74.85 62.59 100.00 1.66 37.92

G.5 FORGETTING IN THE LARGE-SCALE DATASET

In this part, we present more experiments conducted on large-scale dataset like ImageNet-1k in
Table 24, and also unlearning multiple classes in the large-scale datasets in Table 25.

G.6 FORGETTING WITH DIFFERENT MODEL STRUCTURES

In this part, we further check the unlearning performance of our TARF on different pre-trained model
structures compared with several baselines. We choose CIFAR-100 as the pre-training classification
task and conduct all matched forgetting and model mismatch forgetting. The results are summarized
in Table 26. The results validate that our TARF can robustly achieve better unlearning performance
across different model structures.

G.7 FULL RESULTS WITH DIFFERENT FORGETTING TASKS

In this section, we provide the full results of Table 3, which is conducted by setting different random
seeds (for multiple runs) with the original trails and reported as the mean and std values for each
evaluation metric. Tables 27 to 30 presents the performance of unlearning on CIFAR-10, and Tables 31
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Table 24: Results (%). Comparison with the unlearning baselines on ImageNet-1k. All matched
forgetting: unlearn 1 class; Target mismatch forgetting: unlearn three classes belonging to "fish".

Type / D Dataset All matched Target mismatch
Method / Metrics UA RA TA MIA Gap↓ TIME↓ UA RA TA MIA Gap↓ TIME↓

ImageNet-1k

Retrained 0.00 79.77 77.64 100.00 - 7075.48 0.00 80.09 77.54 100.00 - 7777.54
FT [68] 0.00 70.18 71.98 100.00 3.82 608.11 0.79 70.26 72.07 100.00 4.02 608.62
RL [66] 81.38 70.22 71.79 19.46 44.29 969.44 79.69 69.98 71.77 23.03 43.14 972.02
GA [36] 0.00 66.25 67.36 100.00 5.95 8.76 0.00 31.21 37.74 0.00 47.17 17.38
BS [8] 0.00 31.15 36.33 100.00 22.48 9.03 0.00 21.57 27.56 99.97 27.13 23.75
L1-sparse [38] 0.00 67.98 70.70 100.00 4.68 603.21 0.00 67.24 70.28 100.00 5.03 601.27
SCRUB [45] 29.77 74.92 75.66 81.77 13.71 655.42 22.44 74.87 75.60 82.77 11.71 681.53

TARF (ours) 0.00 70.53 72.23 100.00 3.66 600.11 0.00 69.93 71.79 100.00 3.97 628.87

Dataset Model matched Data mismatch
Method / Metrics UA RA TA MIA Gap↓ TIME↓ UA RA TA MIA Gap↓ TIME↓
Retrained 79.15 80.00 70.29 25.69 - 6501.27 0.00 80.36 70.38 100.00 - 6493.16
FT [68] 83.31 70.38 64.05 19.00 6.68 695.42 0.00 69.99 63.76 100.00 4.24 693.18
RL [66] 87.62 69.43 63.26 15.23 9.13 959.84 88.21 70.33 63.81 12.21 48.15 956.13
GA [36] 0.00 66.62 58.91 100.00 44.56 17.44 0.00 15.35 14.34 0.00 55.26 17.58
BS [8] 0.00 45.81 40.84 100.00 54.28 19.69 0.00 13.00 12.10 100.00 31.41 23.70
L1-sparse [38] 82.00 67.94 62.58 19.15 7.29 1091.29 0.00 66.37 61.03 100.00 5.84 1071.41
SCRUB [45] 86.08 74.82 68.04 14.69 6.34 663.61 14.18 74.84 67.92 93.10 7.27 689.82

TARF (ours) 80.62 70.27 64.04 19.46 5.92 601.28 0.00 70.10 63.97 100.00 4.17 602.62

Table 25: Results (%). Comparison with the unlearning baselines on TinyImageNet-200 and
ImageNet-1k with more (10+) forgetting classes in all matched forgetting scenarios.

Scenarios / D Unlearn request forget 10 classes in Tiny-ImageNet forget 30 classes in Tiny-ImageNet
Method / Metrics UA RA TA MIA Gap↓ TIME↓ UA RA TA MIA Gap↓ TIME↓

All matched
Forgetting

Retrained 0.00 71.00 60.29 100.00 - 251.43 0.00 65.26 57.60 100.00 - 181.13
FT 2.04 70.63 59.04 98.26 1.35 27.10 2.79 72.41 60.36 97.38 3.71 35.00
GA 17.76 61.74 56.12 76.90 13.57 1.37 28.95 59.72 57.54 57.06 19.37 3.49

TARF (ours) 0.00 69.63 59.69 100.00 0.49 28.5 0.00 70.24 60.16 100.00 1.89 39.6

Unlearn request forget 50 classes in Tiny-ImageNet forget 10 classes in ImageNet
Method / Metrics UA RA TA MIA Gap↓ TIME↓ UA RA TA MIA Gap↓ TIME↓
Retrained 0.00 66.26 57.88 100.00 - 161.37 0.00 51.94 56.74 100.00 - 917.66
FT 5.19 75.77 61.29 85.75 8.09 44.62 0.00 55.16 59.53 100.00 1.50 316.14
GA 22.92 44.12 48.03 62.26 23.16 7.70 5.73 47.35 52.42 87.21 6.85 2.18

TARF (ours) 0.00 71.68 60.89 100.00 2.11 46.97 0.00 50.69 55.83 100.00 0.54 353.69

to 34 presents the performance of unlearning on CIFAR-100. The performance comparison of our
TARF with other baseline across the four forgetting tasks (i.e., all matched, target mismatch, model
mismatch, and data mismatch) demonstrated the general effectiveness of our algorithm framework.

G.8 APPLICATION ON MISMATCHED FORGETTING WITH LLM

In Table 5, we adapt our introduced four mismatch setting under the context of Large Language
Models (LLMs), we conduct experiments on the TOFU [53] dataset for real-world application on
removing learned authors information which are private and IP-related. We modify the original TOFU
forget set to our scenarios similarly as previous construction on conventional benchmark: specifically,
the all matched setting we will have all the forgetting data while the data mismatch setting we use 80%
identified forgetting data. Since there is no explicit concept in the context of TOFU target, we just
assume the amount of forget data implicitly represent the representation mismatch with original LLM
(e.g., using forget01 to represent easy to cluster set and forget10 to represent hard to cluster set for
different unlearn difficulties). The model adopt is LLama-3.2 and the evaluation metrics used is QA
probability on forgetting and retaining set following [53]. Given the complex LLM representation,
previous representative methods like GA [53] and NPO [75] can easily make the model collapse to
achieve low Prob on both forget and retain set. While our TARF can perform robustly to achieve
forgetting with better retaining performance resistance, we also find there are some trade-off between
forget and retain part, which indicates complex entangled representation on it.

G.9 FORGETTING MULTIPLE CLASS BY TARF

Our proposed TARF framework is applicable to forgetting multiple concepts or superclasses simul-
taneously, as we didn’t restrict concept numbers in our algorithm design. Conceptually, the core
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Table 26: Results (%) of unlearning with different model structure. All methods are trained on the
same backbone, i.e., the basis of unlearning initialization is the same (except for retraining from
scratch). Values are percentages. Bold numbers are superior results. ↓ indicates smaller are better.

CIFAR-100 Task All matched Model mismatch

Metric UA RA TA MIA Gap↓ UA RA TA MIA Gap↓

VGG-19

Retrained 0.00 97.26 73.13 100.00 - 87.44 98.22 82.12 19.89 -
FT [68] 0.00 90.92 66.86 100.00 3.15 95.22 95.17 77.71 7.56 6.89
RL [66] 0.00 90.29 66.16 100.00 3.48 96.22 95.26 77.71 98.56 23.71
GA [36] 0.00 79.27 56.03 100.00 8.77 0.00 93.09 74.30 100.00 45.13

TARF (ours) 0.00 91.96 67.94 100.00 2.62 82.67 93.71 76.24 24.22 4.87

ResNet-18

Retrained 0.00 97.85 76.03 100.00 - 88.22 98.58 78.50 25.78 -
FT [68] 0.66 96.55 71.97 100.00 1.51 98.22 96.79 80.14 6.78 8.11
RL [66] 0.11 95.90 71.57 100.00 1.63 94.11 96.70 80.17 96.89 20.14
GA [36] 1.89 95.26 69.14 99.89 2.87 9.33 95.13 77.22 96.89 38.68

TARF (ours) 0.00 96.90 71.51 100.00 1.37 86.00 96.54 74.20 22.78 2.89

WideResNet

Retrained 0.00 97.71 76.95 100.00 - 88.11 98.37 83.61 23.56 -
FT [68] 0.67 96.61 71.29 100.00 1.86 97.44 95.70 78.70 7.33 8.29
RL [66] 0.00 95.86 71.36 100.00 1.86 85.77 94.69 78.26 96.00 20.95
GA [36] 0.44 91.49 66.29 100.00 2.26 4.33 91.76 75.18 99.11 43.71

TARF (ours) 0.00 96.51 71.77 100.00 1.60 88.00 95.50 79.06 22.67 2.11

Table 27: Main Results (%). Comparison with the unlearning baselines. All methods are trained on
the same backbone, i.e., the basis of unlearning initialization is the same (except for retraining from
scratch). Values are percentages. Bold numbers are superior results. ↓ indicates smaller are better.

CIFAR-10 Metric UA RA TA MIA Gap↓
Method mean std mean std mean std mean std mean std

All matched

Retrained 0.00 - 99.51 - 94.69 - 100.00 - - -
FT [68] 4.66 3.59 98.58 0.04 92.42 0.06 100.00 0.00 1.96 0.89
RL [66] 2.23 1.90 98.30 0.65 91.97 0.74 100.00 0.00 1.54 0.82
GA [36] 0.34 0.16 95.48 0.24 88.52 0.35 99.88 0.10 2.67 0.21
IU [37] 0.11 0.05 72.50 15.65 68.28 14.10 99.98 0.02 13.39 7.41
BS [8] 24.72 0.32 88.91 0.97 81.84 0.94 89.23 0.56 14.74 0.70
L1-sparse [38] 0.00 0.00 94.18 0.03 90.01 0.24 100.00 0.00 2.50 0.05
SalUn [16] 0.48 0.46 88.66 2.67 84.48 2.40 100.00 0.00 5.39 1.38
SCRUB [45] 1.23 0.58 99.92 0.02 91.23 0.56 100.00 0.00 1.28 0.23

TARF (ours) 0.00 0.00 98.22 0.02 92.09 0.14 100.00 0.00 0.97 0.03

challenges of mismathced unlearning still lie on insufficient representaiton or decomposition lacking
as revealed in our Section 3.2. For the model mismatch setting, it doesn’t introduce extra algorithmic
di"culty with multiple target concepts, as our objective simultaneously considers gradient ascent and
descent to deconstruct the entangled representation. For the target/data mismatch setting, we can also
identify those multiple target concepts by respectively utilizing our Phase-I: Target Identification with
the base model, given the forgetting data as a representative support set for each concept. To present
the multiple-superclass forgetting, we also included new experiments in Table 37, where we conduct
unlearning in the target mismatch and model mismatch settings using the CIFAR-100 dataset for two
target concepts forgetting, e.g., "people" and "aquatic mammals". As a result, TARF demonstrates
consistent performance effectiveness across all scenarios without harming the retention on retaining
data, indicating its scalability to multi-concept forgetting.
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Table 28: Main Results (%). Comparison with the unlearning baselines. All methods are trained on
the same backbone, i.e., the basis of unlearning initialization is the same (except for retraining from
scratch). Values are percentages. Bold numbers are superior results. ↓ indicates smaller are better.

CIFAR-10 Metric UA RA TA MIA Gap↓
Method mean std mean std mean std mean std mean std

Model
mismatch

Retrained 87.76 - 99.58 - 95.91 - 20.57 - - -
FT [68] 94.78 0.11 98.65 0.12 93.77 0.21 10.42 0.86 5.06 0.27
RL [66] 48.25 5.43 98.01 0.12 93.03 0.21 98.10 0.64 30.37 1.53
GA [36] 6.49 0.73 86.91 0.08 82.03 0.18 94.39 0.59 45.41 0.27
IU [37] 15.84 7.86 85.89 1.45 81.08 1.49 93.58 3.71 43.36 3.62
BS [8] 14.05 3.76 53.28 2.51 51.25 1.86 94.90 1.06 59.75 2.29
L1-sparse [38] 92.25 0.87 95.01 0.25 91.67 0.04 17.40 2.86 4.14 1.00
SalUn [16] 16.31 7.40 92.91 1.05 86.50 2.12 99.24 0.09 41.55 2.14
SCRUB [45] 93.21 1.17 99.83 0.13 93.29 0.81 14.24 0.87 3.65 0.18

TARF (ours) 89.91 1.20 97.73 0.24 92.66 0.17 20.36 2.54 2.45 0.46

Table 29: Main Results (%). Comparison with the unlearning baselines. All methods are trained on
the same backbone, i.e., the basis of unlearning initialization is the same (except for retraining from
scratch). Values are percentages. Bold numbers are superior results. ↓ indicates smaller are better.

CIFAR-10 Metric UA RA TA MIA Gap↓
Method mean std mean std mean std mean std mean std

Target
mismatch

Retrained 0.00 - 99.38 - 93.85 - 100.00 - - -
FT [68] 52.23 1.80 98.43 0.05 91.74 0.09 50.59 0.15 26.18 0.40
RL [66] 50.63 0.62 98.21 0.65 91.51 0.61 53.88 2.36 25.06 0.12
GA [36] 41.64 0.82 97.05 0.04 89.68 0.17 63.23 1.10 21.23 0.43
IU [37] 45.32 0.81 70.25 17.82 65.67 2.76 55.98 2.76 36.66 9.37
BS [8] 53.78 0.16 89.67 1.02 79.34 3.95 66.31 10.02 25.36 3.28
L1-sparse [38] 49.55 0.08 93.57 0.05 89.06 0.23 51.33 0.09 27.21 0.05
SalUn [16] 47.85 1.22 87.84 3.25 83.38 2.94 58.10 2.85 27.40 1.10
SCRUB [45] 48.53 1.02 99.43 0.21 91.66 0.28 51.27 0.73 24.92 0.51

TARF (ours) 0.05 0.02 97.65 0.08 91.28 0.47 100.00 0.00 1.09 0.14

Table 30: Main Results (%). Comparison with the unlearning baselines. All methods are trained on
the same backbone, i.e., the basis of unlearning initialization is the same (except for retraining from
scratch). Values are percentages. Bold numbers are superior results. ↓ indicates smaller are better.

CIFAR-10 Metric UA RA TA MIA Gap↓
Method mean std mean std mean std mean std mean std

Data
mismatch

Retrained 0.00 - 99.53 - 95.56 - 100.00 - - -
FT [68] 96.85 0.06 98.62 0.13 93.47 0.21 6.93 0.45 48.23 0.18
RL [66] 73.62 2.86 97.90 0.22 92.59 0.66 52.04 2.23 31.55 1.49
GA [36] 9.82 1.13 96.14 0.28 90.46 0.33 90.46 0.95 6.56 0.67
IU [37] 15.19 7.66 94.80 0.70 89.08 0.46 92.83 4.26 8.39 2.69
BS [8] 16.72 0.02 61.01 0.21 53.81 4.05 93.47 1.24 25.88 1.27
L1-sparse [38] 95.42 0.35 94.57 0.26 91.07 0.01 10.82 1.30 48.51 0.47
SalUn [16] 55.52 3.76 92.68 1.19 89.25 1.22 60.23 3.30 27.12 2.37
SCRUB [45] 97.06 0.52 99.16 0.23 94.72 0.56 9.98 0.43 46.98 0.21

TARF (ours) 0.00 0.00 98.35 0.18 93.42 0.34 100.00 0.00 0.83 0.13
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Table 31: Main Results (%). Comparison with the unlearning baselines. All methods are trained on
the same backbone, i.e., the basis of unlearning initialization is the same (except for retraining from
scratch). Values are percentages. Bold numbers are superior results. ↓ indicates smaller are better.

CIFAR-100 Metric UA RA TA MIA Gap↓
Method mean std mean std mean std mean std mean std

All matched

Retrained 0.00 - 97.85 - 76.03 - 100.00 - - -
FT [68] 0.67 0.01 96.44 0.12 72.16 0.19 100.00 0.00 1.49 0.02
RL [66] 0.56 0.45 96.00 0.10 71.79 0.22 100.00 0.00 1.66 0.03
GA [36] 1.61 0.28 95.00 0.26 68.85 0.29 99.89 0.00 2.93 0.07
IU [37] 0.00 0.00 39.80 2.19 31.09 1.51 100.00 0.00 25.75 0.93
BS [8] 4.83 0.05 90.17 0.06 64.30 0.64 99.45 0.12 6.20 0.22
L1-sparse [38] 0.00 0.00 94.25 0.57 71.35 1.27 100.00 0.00 1.92 0.46
SalUn [16] 0.00 0.00 77.00 1.66 63.06 0.92 100.00 0.00 8.46 0.64
SCRUB [45] 0.00 0.00 99.72 0.26 76.69 0.06 100.00 0.00 0.64 0.08

TARF (ours) 0.00 0.00 96.67 0.24 72.40 0.14 100.00 0.00 1.21 0.09

Table 32: Main Results (%). Comparison with the unlearning baselines. All methods are trained on
the same backbone, i.e., the basis of unlearning initialization is the same (except for retraining from
scratch). Values are percentages. Bold numbers are superior results. ↓ indicates smaller are better.

CIFAR-100 Metric UA RA TA MIA Gap↓
Method mean std mean std mean std mean std mean std

Model
mismatch

Retrained 88.22 - 98.58 - 78.50 - 25.78 - - -
FT [68] 95.45 2.78 95.91 0.89 79.74 0.40 11.56 4.78 6.34 1.77
RL [66] 87.11 7.00 96.27 0.44 80.00 0.17 97.95 1.06 20.75 0.61
GA [36] 8.06 1.28 94.98 0.15 77.09 0.13 97.34 0.45 39.18 0.50
IU [37] 39.95 5.28 97.22 0.39 79.71 0.63 83.28 3.17 27.08 2.05
BS [8] 18.56 0.56 95.87 0.03 74.96 2.68 94.95 0.28 36.27 0.87
L1-sparse [38] 91.11 5.00 94.28 0.18 77.61 0.39 15.56 4.45 5.84 1.69
SalUn [16] 74.78 8.45 79.98 1.14 71.55 0.77 65.61 11.39 19.71 5.44
SCRUB [45] 92.45 2.80 99.44 0.78 78.75 1.75 20.13 4.56 4.14 1.15

TARF (ours) 84.78 1.90 97.19 0.14 80.02 0.15 28.89 2.89 2.37 1.15

Table 33: Main Results (%). Comparison with the unlearning baselines. All methods are trained on
the same backbone, i.e., the basis of unlearning initialization is the same (except for retraining from
scratch). Values are percentages. Bold numbers are superior results. ↓ indicates smaller are better.

CIFAR-100 Metric UA RA TA MIA Gap↓
Method mean std mean std mean std mean std mean std

Target
mismatch

Retrained 0.00 - 97.85 - 73.72 - 100.00 - - -
FT [68] 58.58 0.40 96.42 0.10 72.31 0.22 45.94 0.83 28.87 0.34
RL [66] 57.76 1.14 96.00 0.10 72.04 0.16 50.67 3.69 27.66 1.15
GA [36] 22.07 0.69 96.87 0.24 70.52 0.30 90.45 0.23 8.95 0.10
IU [37] 30.80 0.18 39.44 2.25 31.00 1.42 63.83 0.14 42.03 0.91
BS [8] 40.91 0.47 98.36 0.04 70.04 1.38 85.00 0.16 15.03 0.18
L1-sparse [38] 55.31 2.90 94.23 0.44 72.15 1.27 48.47 3.54 30.26 1.18
SalUn [16] 43.29 1.60 77.15 1.63 63.30 0.93 64.63 1.34 27.45 0.10
SCRUB [45] 59.56 0.09 99.74 0.26 76.14 0.82 45.45 0.56 29.60 0.02

TARF (ours) 0.29 0.03 97.06 0.29 73.27 0.41 100.00 0.00 0.38 0.17
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Table 34: Main Results (%). Comparison with the unlearning baselines. All methods are trained on
the same backbone, i.e., the basis of unlearning initialization is the same (except for retraining from
scratch). Values are percentages. Bold numbers are superior results. ↓ indicates smaller are better.

CIFAR-100 Metric UA RA TA MIA Gap↓
Method mean std mean std mean std mean std mean std

Data
mismatch

Retrained 0.00 - 98.50 - 80.15 - 100.00 - - -
FT [68] 90.79 5.18 96.19 0.52 79.80 0.03 20.46 16.78 43.25 5.10
RL [66] 93.60 3.82 96.32 0.39 79.92 0.02 65.20 5.56 32.73 2.24
GA [36] 6.98 0.98 97.78 0.14 79.34 0.11 97.53 0.51 2.75 0.31
IU [37] 37.22 5.71 99.17 0.21 80.01 1.81 85.41 2.41 13.54 2.08
BS [8] 15.71 0.33 98.47 0.04 76.02 3.74 96.05 0.18 5.86 0.18
L1-sparse [38] 89.02 4.67 94.18 0.05 78.89 0.20 18.67 4.36 41.64 2.20
SalUn [16] 79.00 6.07 79.92 1.05 71.55 0.51 44.18 9.96 39.42 3.62
SCRUB [45] 93.28 2.10 99.25 0.98 79.18 0.48 18.45 3.55 46.13 2.37

TARF (ours) 0.00 0.00 95.80 0.79 79.55 0.57 100.00 0.00 1.61 0.05
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Figure 17: Ablation studies of k,t1,t0 on four settings (left to right: all matched, target mismatch,
model mismatch, and data mismatch) using CIFAR-100 dataset: top-line: performance using different
initialized k for controlling the forgetting strength, in which k ≥ 0.5 may induce decreased retaining
accuracy; middle-line: effect of t1 controlling the length of Phase-I for target identification, generally
t = 1 is sufficient for differentiate target data like Figure 3 while larger value reduce the retaining
epochs; bottom-line: effect of t0 controlling the length of Phase-III prevents the excessive forgetting
and generally t0 = 1 works well. The above flexibly control the forgetting and retaining part.
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Table 35: The adopted β value in different experiments for target/data mismatch unlearning. Note
that as forgetting data in all-matched/model mismatch setting are all provided so there is no need for
target identification and β are set to be “INF”.

Dataset All matched Target mismatch Model mismatch Data mismatch

CIFAR-10 INF 0.24 INF 0.63
CIFAR-100 INF 0.11 INF 0.38

TinyImageNet INF 0.08 INF 0.22
ImageNet-1k INF 0.09 INF 0.26

Table 36: Results (%). Comparison with the unlearning baselines on varied difficulties on target
identification: to explore the effects of differentiating false retaining data with affected actual
retaining data. Specifically, we change the given forgetting data classes to unlearn the target (the
superclass "aquatic mammals" including "otter,seal,whale,beaver,dolphin"), it is intuitive that less
and biased given forgetting data ("beaver,dolphin") increase the difficulty of representing the whole
target concept ("aquatic mammals"), and "lobster" can be mis-identified as potential forgetting data
in TARF. With well-represented given forgetting data (left), TARF can perform better; otherwise
(right) the benefits upon best baseline decreased.

Type / D
(Left) well-represented for the concept

(Right) biased and mis-identify "lobster"
(Left) Given "otter,seal,whale"

forget "aquatic mammals"
(Right) Given "beaver,dolphin"

forget "aquatic mammals"
CIFAR-100 Method / Metrics UA RA TA MIA Gap↓ UA RA TA MIA Gap↓

Target
mismatch
(varied)

Retrained (Ref.) 0.00 98.03 73.42 100.00 - 0.00 98.03 73.42 100.00 -
FT [68] 32.98 92.98 69.78 70.98 17.67 53.42 96.58 72.26 56.58 24.86
RL [66] 38.93 96.19 72.08 64.93 19.30 57.47 95.52 71.44 47.64 28.58
GA [36] 12.76 88.59 65.27 91.91 9.61 35.07 91.81 66.39 75.91 18.10
L1-sparse [38] 28.71 80.72 65.80 72.58 20.27 39.06 83.22 67.81 66.93 23.13
SCRUB [45] 39.46 99.22 75.81 63.24 19.95 59.11 99.46 77.14 46.09 29.54

TARF (ours) 0.00 97.05 69.68 100.00 1.18 23.37 85.53 70.68 77.82 15.20

Table 37: Forgetting Multiple Superclass by TARF using CIFAR-100.

Method UA RA TA MIA Gap
Retrained (Ref.) 0.00 97.23 71.85 100.00 -
FT 45.68 94.65 71.16 58.87 22.52
RL 49.91 96.12 72.14 55.96 23.84
GA 18.07 92.62 67.75 91.29 8.88
L1-sparse 43.40 87.68 68.90 60.31 23.90
SCRUB 50.55 99.61 78.91 29.12 24.77
TARF 1.08 94.78 69.91 100.00 1.37
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H BROADER IMPACT AND LIMITATIONS

In this work, we explore the label domain mismatch in class-wise unlearning, which aims to enhance
the flexibility of data regulation with the increasing concern about the trustworthiness of machine
learning. Pushing forward the practical usage of machine unlearning, our research provides a broader
consideration of real-world unlearning scenarios and offers significant positive social impacts. It can
enhance data privacy protection by allowing individuals to effectively remove their data, ensuring
some sensitive data is not used for analysis. In addition, unlearning can remove bias or discrimination
by correcting flawed datasets, promoting the development of fairness or other ethical considerations.
This feature also enables enterprises to adhere to data protection standards such as GDPR [58] and
CCPA [57], therefore promoting confidence among users. Our newly introduced unlearning setting,
which decouples the class label and the target concept, is more general and discusses the achievability
of various unlearning requests, which may often be different from the taxonomy of pre-training tasks.

Although we take a step forward in more practical class-wise unlearning by considering the label
domain mismatch scenarios, it is not the end of this direction and there are still many problems
to be addressed. Following the previous works [68, 22, 38, 8], our work mainly focuses on the
class-wise unlearning with the classification model for the exploration, future efforts can also be paid
in the unlearning problem of the emerging and powerful generative models. On the technical level,
although those compared unlearning methods and our framework can achieve the forgetting target, it
all requires extra computational cost, and how to make it more efficient can be further studied.

50


	Introduction
	Preliminaries
	TARF: TARget-aware Forgetting
	Exploring mismatched taxonomy in unlearning
	Systematic Exploration on Forgetting Dynamics
	Algorithm Framework of TARF

	Experiments
	Experimental Setup
	Performance Evaluation
	Ablations and Further Exploration

	Conclusion
	Reproducibility Statement
	Discussion about Related Work
	Machine Unlearning
	Positive-unlabeled Learning

	Details about Considered Baselines and Metrics
	Unlearning Methods
	Evaluation Metrics Regarding Different Scenarios
	Full Results of Figure 2 and Figure 3

	Proof of Theorem 3.2
	Full Discussion about Label Domain Mismatch
	A two-layer Label Structure of Mismatch
	A three-layer Label Structure of Mismatch
	Further Exploration on the Other 6 Different Scenarios
	Specific Information of the Instantiated Tasks
	Discussion on the Practicality of Label Domain Mismatch
	Discussion on the Scenario Commonalities and Framework Principles

	Algorithm Implementation and Explanation
	Discussion on the functionality of hyperparameters and tuning principle
	Discussion on the Algorithm Computation Cost
	Case study for Unlearning Generation Concept
	Discussion on TARF with Limited Class Information
	Discussion on the assumption of super-/sub-class information

	Additional Experimental Results
	Extra Experimental Setups
	Discussion about Target Identification in unlearning
	Discussion about TARF on All Matched scenario
	Discussion about TARF on Weakly-supervised Scenario
	Forgetting in the Large-scale Dataset
	Forgetting with Different Model Structures
	Full Results with Different Forgetting Tasks
	Application on Mismatched Forgetting with LLM
	Forgetting Multiple Class by TARF

	Broader Impact and Limitations

