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Abstract
Limited data in medical imaging exacerbate
class imbalance and fairness gaps, undermining
deep-learning across diverse patient subgroups.
GAN- and diffusion-based augmenters can ex-
pand datasets but often lack precise control over
multiple clinical attributes and fail to cover the
full range of real-world variability. We introduce
a four-step augmentation pipeline. First, an auto-
mated scoring function identifies which classes
or regions most urgently need synthetic exam-
ples. Second, we construct sketch–image–text
triplets from real scans, embedding age, sex, and
disease labels. Third, we fine-tune a sketch-
conditioned diffusion network for reliable sketch-
to-image synthesis and boost variability by gener-
ating multiple, similarity-penalized sketches per
case. Fourth, we propose a novel diversity metric
that simultaneously measures semantic feature-
space coverage and pixel-level dispersion—unlike
FID or IS, it captures intra-class spread and bound-
ary sharpness without human annotations. Exper-
iments on chest X-rays show our pipeline delivers
high-fidelity, diverse images aligned with user-
specified conditions, substantially improving fair-
ness and generalizability.

1. Introduction
Deep-learning techniques have revolutionized medical imag-
ing analysis, achieving expert-level accuracy in tasks such
as disease classification, lesion detection, and segmenta-
tion. However, these models typically require large, well-
balanced datasets to generalize effectively across diverse
patient populations. In practice, clinical data collection is
constrained by privacy regulations, annotation costs, and un-
equal disease prevalence, resulting in small sample sizes and
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pronounced class imbalance (3; 19; 20). As a consequence,
models often underperform on minority subgroups—such
as rare diseases or demographic categories—posing risks to
diagnostic equity and patient safety.

Traditional countermeasures to imbalance include under-
sampling majority classes, oversampling minority classes,
and loss re-weighting. While these methods can alleviate
skewed label distributions, they either discard potentially
informative examples or amplify noise in scarce classes,
leading to unstable training and overfitting (18; 21). Data
augmentation via generative models offers a promising al-
ternative by synthesizing realistic samples to bolster under-
represented categories without discarding real data.

Generative Adversarial Networks (GANs) have been the de
facto choice for synthetic data generation, demonstrating
success in various medical imaging modalities (4; 5). Yet
GAN-based augmenters often suffer from mode collapse
and struggle to capture fine-grained anatomical details, limit-
ing diversity and clinical plausibility (24; 25). To overcome
these issues, diffusion models (7) have recently emerged,
producing higher-fidelity images with more stable training
dynamics (23; 26). Despite these advances, most diffusion-
based approaches rely on coarse, text-only prompts and fail
to guarantee structural control or demographic consistency.

Recent breakthroughs in controllable diffu-
sion—exemplified by Stable Diffusion (6) and ControlNet
(2)—enable conditioning on both textual descriptions and
structural sketches. Sketch-guided generators such as
DiffSketcher (1) can extract detailed anatomical outlines
from real scans, offering a scaffold for precise image
synthesis. However, naı̈vely applying these modules does
not ensure sufficient coverage of underrepresented classes,
nor does it provide a mechanism to quantify and maximize
intra-class variability. Moreover, standard evaluation
metrics like Fréchet Inception Distance (FID) (11) and
Inception Score (IS) (12) measure global distribution
alignment but overlook the pixel-level dispersion and
boundary sharpness that are critical for clinical realism.

In this work, we introduce a structured, four-stage augmen-
tation workflow specifically tailored for medical imaging
under data-scarce, fairness-critical conditions. First, an au-
tomated scoring function identifies classes or anatomical
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regions that most urgently require synthetic augmentation.
Second, we construct sketch–image–text triplets from au-
thentic scans, embedding multiple demographic and disease
attributes in a unified representation. Third, we fine-tune a
sketch-conditioned diffusion network and enhance diversity
by generating multiple sketches per case with a similarity-
penalized loss that enforces both high-level semantic varia-
tion and low-level textural differences. Fourth, we propose
a novel diversity metric that concurrently quantifies feature-
space coverage and pixel-level dispersion, distinguishing
itself from FID and IS by explicitly measuring intra-class
spread and boundary sharpness without human annotations.

Extensive experiments on chest X-ray datasets demonstrate
that our pipeline generates high-fidelity images aligned with
user-specified conditions while substantially improving fair-
ness and downstream task performance on minority cohorts.
We summarize our key contributions as follows:

• A novel scoring mechanism to pinpoint underrepre-
sented classes and guide targeted synthetic augmenta-
tion.

• An integrated sketch–image–text triplet construction
process that encodes multimodal clinical attributes for
controlled diffusion synthesis.

• A similarity-penalized sketch generator and a new di-
versity metric that together maximize intra-class vari-
ability and evaluate distributional coverage beyond
standard metrics.

2. Related Work
Medical Image Generation. Various generative mod-
els have been developed for text-to-image synthesis
(35; 36; 37; 38). (34) describes an approach where a diffu-
sion model is fine-tuned on medical images, subsequently
enhancing cancer classification models. Nonetheless, this
model exhibits limitations in generating images under
complex text conditions that include variables such as sex
and age. (33) presents a framework for text-conditional
magnetic resonance (MR) imaging generation using
canny edge maps of brain, capable of producing realistic
MR images that correspond with medical text prompts.
However, in the medical field, the diversity and alignment
with text semantics of image generation under complex
conditions are not fully exploited simultaneously. To solve
this problem, we propose a framework leveraging various
large-scale pre-trained models.

Quality Diversity. Quality Diversity (QD) is a promising
concept which optimizes generative model to produce
high-quality diverse outputs (9). Quality Diversity through
human feedback (QDHF) (9) employs cosine similarity

to compare two feature maps derived from the latents
generated from identical input texts. However, this
method fails to account for complex prompts that involve
attribute binding, spatial reasoning, numeracy, and inherent
background details. When processing repeated samples of
such intricate prompts, QDHF tends to produce a collection
of images that are nearly indistinguishable from one
another. Moreover, the introduction of conditional images
(8) can significantly reduce the diversity of the generated
images. To overcome this problem, we introduce similarity
loss function combining high-level and low-level sim-
ilarity metrics for the high-quality diverse sketch generation.

Similarity Metric. There are wide range of metrics
(13; 10; 14; 15) which can be emploied to measure sim-
ilarities of two images. Among them, LPIPS (10) and
DreamSim (14) are the most closely related to our work.
LPIPS implemented two-alternative forced choice (2AFC)
and just noticeable difference (JND) experiments, includ-
ing a human survey, to incorporate the human perspective
on diversity among images. However, despite human in-
volvement, LPIPS struggles to accurately measure semantic
similarity between images neglecting high-level features.
To address this issue, Dreamsim employed an ensemble
model combining Dinov2 (15) and CLIP to better align with
human preferences. However, DreamSim cannot fully cover
low-level features and has not been trained with medical
images as well as LPIPS. To overcome these limitations, we
jointly leveraged both LPIPS and DreamSim to compliment
each other.

3. Method
We aim to develop a comprehensive medical image aug-
mentation framework designed to ensure high and uni-
form model performance across a wide spectrum of patient
groups. To begin, we systematically select specific patient
subpopulations for augmentation by computing a majority
score that quantifies each group’s representation within the
original dataset. In addition, our framework leverages two
complementary generative models. First, DiffSketcher pro-
duces preliminary sketch representations, having been opti-
mized with a tailored similarity loss that explicitly enhances
the diversity of generated sketch variants. Second, we in-
tegrate ControlNet to synthesize realistic medical images
under explicitly controlled clinical conditions, including
age categories, sex, and disease-specific attributes. These
control parameters are intentionally chosen to reflect the
unique characteristics of minor or underrepresented patient
groups, thereby promoting fairness in data augmentation.
To quantitatively assess the variety of outputs, we propose
a novel diversity metric based on convolutional neural net-
work saliency maps, which evaluates differences in salient
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Figure 1. The procedure of inference step in the EDM. We freeze
ControlNet and SD while keeping DiffSketcher trainable. We
generate multiple sketches from minor patient groups and input
them as conditions to the ControlNet.

anatomical regions across generated samples. Overall, our
method enables the production of diverse, high-quality, and
condition-specific synthetic medical images that effectively
address the needs of underrepresented patient cohorts and
improve equity and robustness in downstream medical im-
age analysis.

3.1. Selecting patient groups for the data augmentation

First of all, we introduce majority score that assists in se-
lecting patient groups for data augmentation based on their
low data diversity and scarcity. We can select patient groups
with lower majority scores for the data augmentation. In
Figure 1, the X-ray image inputted into DiffSketcher repre-
sents data from these minor patient groups which have low
majority scores.
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Regarding the parameters of majority score, MK is the
majority score and K is the index of patient groups. |D|
is the total number of data and |DK | is the number of data
from Kth patient group. v is the label vector and c is the
class index. g indicates the age of the patient and m is
the index of the maximum age. s represents the sex of the
patient.

3.2. Preparing data augmentation

The second step is preparing the procedure for the data
augmentation. In this step, we obtain image-sketch-text
triplets leveraging the real patients’ dataset. For this, we
employ DiffSketcher. DiffSketcher is a kind of learnable
vector graphics which draws sketches using mathematical
formulas. This process is executed one-by-one which is
different from Figure 2 which generates multiple sketches
at the same time. Then we train ControlNet with the triplets
from the second step. It takes a text prompt and an image as
inputs and then generates a synthetic image as an output.

3.3. Constructing synthetic dataset

Third step is regarded as the inference step to construct syn-
thetic datasets. We obtain multiple sketches for each real
patient’s image respectively from the minor patient groups.
We enable this by introducing similarity loss to the DiffS-
ketcher. For each sketch, we calculate the similarity with
the rest of the sketches and train DiffSketcher to decrease
this similarity. The similarity loss for DiffSketcher is as
below.

Lsim =α ∗
∑

1≤j≤n,j ̸=i(1− s(xi, xj))

n− 1
+

(1− α) ∗
∑

1≤j≤n,j ̸=i(1− l(xi, xj))

n− 1

(6)

α regulates the contribution of low-level and high-level
distance. x is the input image. s represents the loss function
to calculate high-level similarity of input images. We used
DreamSim to calculate this. l is the function to calculate
low-level similarity of input images. We leveraged MSE,
PSNR, SSIM, LPIPS and compared the results through the
experiments. n is the number of sketches we generate at the
same time.

Using the obtained various sketch data, we generate syn-
thetic medical images using fine-tuned ControlNet from step
two.
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Figure 2. Training schematic of diversity-enhanced DiffSketcher.
We improve the diversity of DiffSketcher by training multiple
DiffSketchers at the same time with the similarity loss.

Figure 3. Results while training the ControlNet. We can see that
ControlNet learns how to generate synthetic X-ray images from
the sketches. A sketch and a prompt are inputted to the ControlNet.

4. Experiments
4.1. Training ControlNet using image-sketch-text

triplets

To begin with, we fine-tuned ControlNet using the sketch-
image-text triplets obtained from the CheXpert. The number
of image-sketch-text triplets used in our experiments was ten.
Regarding the hyperparameters, the number of epochs was
255, learning rate was 1e-5, batch size was 1, optimizer was
AdamW and we did not use scheduler. We freezed stable
diffusion (SD) and only trained ControlNet. Fig 3 shows
the fine-tuned ControlNet successfully generated modest
synthetic X-ray images with only a few triplets. The result
is illustrated in Figure 3.

4.2. Diversity enhanced sketch generation

In our experimental setup, we aim to evaluate the impact
of implementing similarity loss in the DiffSketcher by ob-
serving the diversity of generated sketches. To conduct
this analysis, we employ a stable diffusion model trained
specifically on medical image data, ensuring relevance to
medical imaging contexts. This choice was made to enhance
the model’s ability to accurately capture and replicate the
distinctive features of medical images.

Input text prompt is ”A chest X-ray with pneumonia”,
”A chest X-ray with effusion”, ”A chest X-ray with car-
diomegaly”, with the process running for 500 iterations and
utilizing 1000 paths. The comparative results clearly show
that the sketches from the DiffSketcher with similarity loss
exhibited significantly better diversity compared to those
without the similarity loss. This outcome highlights the
effectiveness of similarity loss in enhancing the diversity of
generated medical sketches.

To optimize the results of our experiments, we conducted
various tests with different hyperparameters, particularly the
number of paths and timing of applying similarity loss and
type of low-level metric. We compared various numbers
of paths and found that 1000 paths resulted in the best
output images. Too many paths made the sketch too dark,
distorting patient’s anatomy. Recognizing the importance
of preserving anatomical integrity in medical images, we
explored the consequences of introducing similarity loss
at different stages of the training process. We found that
introducing the similarity loss at epoch 100 delivered the
highest visual fidelity; applying it significantly earlier or
later resulted in reduced diversity and noticeable anatomical
distortions. Our qualitative comparisons under different
scheduling regimes confirm that this mid-training insertion
yields the most accurate and realistic outputs.

In addition, we compared various forms of similarity loss
function. We employed MSE, LPIPS, PSNR, SSIM to mea-
sure the low-level similarity of given input images. We also
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Figure 4. First column is the input sketch, second is result of Con-
trolNet, third is result of ControlNet++. Second and Third show
the result without any fine-tuning

conducted experiments using each metric alone for the sim-
ilarity loss. Through these experiments, we observed that
MSE resulted in the best performance for pneumonia and
effusion cases, while mixing LPIPS and DreamSim resulted
in the best results for cardiomegaly detection.

4.3. Comparision Study

We tried to compare the results of our Fine-Tuned
ControlNet(8) to those of Fine-Tuend ControlNet ++. How-
ever, as we could not find the official Train code of Control-
Net ++, we could not fine tune. However, we could see the
possibility that if we succeed to scratch the train code, Con-
trolNet ++ may show better performance than our Baseline.
Because as you can see in Figure 4, although ControlNet
++ was not trained on the data related to Chest X-Ray, it
shows great performance, considering the zero-shot infer-
ence situation. As you can see the second column in Figure
4, without any training, ControlNet hardly generates the
image related to the sketch.

4.4. Ablation Study

We carried out an ablation study to test whether our sketch-
conditioned, ControlNet-generated chest-X-ray images im-
prove disease classification across diverse architectures
and an extended label set. Three backbones—ResNet-50,
EfficientNet-B0 and ViT-Base—were trained on the MIMIC-
CXR corpus containing fourteen findings, from common
pathologies such as Pneumonia and Atelectasis to rarer la-
bels like Pleural Other. All models first learned from twenty-
thousand real scans and were evaluated on an unchanged
validation pool of two-thousand real images, providing a
no-augmentation baseline.

Adding synthetic data consistently boosted accuracy. Inject-

ing two-hundred generated images per class (total train size
= 22 800) raised EfficientNet-B0 from 46.9 percent to 48.1
percent, ResNet-50 from 45.1 percent to 46.6 percent, and
ViT-Base from 42.4 percent to 44.1 percent. Increasing to
three-hundred synthetic images per class (train size = 24
200) delivered further but tapering gains: 48.7 percent, 47.3
percent and 44.9 percent for EfficientNet-B0, ResNet-50
and ViT-Base respectively.

Rare categories profited most. Labels with limited real ex-
amples—Pleural Other, Lung Lesion—saw accuracy jumps
of up to four percentage points, showing that sketch-guided
augmentation mitigates class imbalance. However, returns
diminished beyond two-hundred synthetic images per class,
indicating an optimal synthesis budget between two-hundred
and three-hundred. Overall, our approach improves gener-
alization across architectures and disease spectrum without
altering the evaluation protocol.

5. Conclusion
In conclusion, our research presents a framework for enhanc-
ing the diversity of medical image generation by employing
ControlNet and DiffSketcher optimized with similarity loss.
This methodology improves condition-specific medical im-
age generation and introduces a new diversity assessment
metric incorporating both high-level and low-level image
features. Our experimental results demonstrate that simi-
larity loss significantly boosts sketch diversity and quality,
while fine-tuned ControlNet with image-sketch triplets gen-
erates modest quality X-ray data. This work underscores
the potential of advanced generative models to revolutionize
medical imaging by providing diverse datasets for improved
diagnostic accuracy. Future work may explore additional
augmentations and collaboration with physicians to align
biological science with model performance.
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