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ABSTRACT

Understanding and complying with traffic regulations is a safety-critical require-
ment for autonomous driving, yet remains challenging due to the diversity and
context dependence of traffic signage. Importantly, regulation understanding is
not a simple recognition task, but a reasoning problem: whether a rule applies
depends on interpreting the sign in relation to the spatial layout of lanes and scene
context. To support such reasoning, MapDR provide fine-grained annotations that
link each traffic sign’s regulatory rules to the specific lanes they govern. Existing
methods, however, largely treat this as direct sequence prediction, ignoring the un-
derlying reasoning that connects sign semantics and map structure. To address this
limitation, we explicitly incorporate reasoning into this task and propose a frame-
work that equips vision-language models (VLMs) with chain-of-thought (CoT)
capabilities. We first design a scalable CoT curation pipeline that bootstraps ratio-
nales from a strong LLM through a two-round strategy and employs a VLM-based
verifier to filter out incorrect cases, yielding a high-quality set of (CoT, answer)
pairs. Building on this foundation, we adopt a two-stage training scheme: su-
pervised fine-tuning (SFT) to teach rationale-to-answer generation, followed by
GRPO reinforcement learning with answer-grounded, fine-grained rewards to fur-
ther improve final answer accuracy. Extensive experiments on MapDR show that
our approach significantly improves both interpretability and accuracy, establish-
ing the first reasoning-based framework for regulation-aware autonomous driving.

1 INTRODUCTION

Autonomous agents, particularly autonomous driving systems, must comply with traffic regulations
while driving. Violations of traffic rules can lead to severe safety risks; thus, accurately understand-
ing traffic regulations and assessing their applicability to the ego vehicle is crucial. In practice,
mapping traffic rules to specific lanes requires not only semantic comprehension of signs but also
complex contextual reasoning, making the task highly challenging.

Recent datasets have started to couple perception with the prediction of relationships between lanes
and traffic elements such as traffic lights and signs. OpenLane-V2 Wang et al. (2023a) as shown
in Figure 1(a) augments classic HD map benchmarks such as nuScenes Caesar et al. (2020) and Ar-
goverse Wilson et al. (2023) with Lane-to-Lane and Lane-to-Traffic-element associations, where the
latter links traffic elements (e.g., signs, signals) to specific lanes. However, OpenLane-V2 mainly
focuses on directional signs and provides only category-level annotations, which limits its appli-
cability in real-world scenarios where traffic signs are diverse and context-dependent, and lacks
the fine-grained rule descriptions required for safe decision making. MapDR Chang et al. (2025)
advances this line of work by providing detailed annotations of traffic sign attributes and their con-
nections to lane-level applicability, thereby enabling the study of regulation-aware driving on top of
online HD maps, as illustrated in Figure 1(b).

However, developing effective algorithms on the MapDR dataset remains largely underexplored and
challenging. A key difficulty lies in emulating human-like reasoning to enable agents to understand
traffic regulations. Real-world traffic signage is highly diverse and compositional, and its applicabil-
ity to a given lane depends on contextual factors such as spatial topology and surrounding context.
Prior work Chang et al. (2025) addresses this by formulating the task as direct sequence generation,
predicting the final answer token by token from observations (front-view image, cropped traffic sign,
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(b) RuleVLM(a) OpenLane V2 (c) VLM + CoT = Ours

Traffic Rule DescriptionLimited classes
only directional signs
traffic lights

Uninterpretable

Lane Rule Association

Uninterpretable Interpretable

Traffic Rule Description

Lane Rule AssociationLane Rule Association

Figure 1: Comparative illustration of three paradigms in traffic rule understanding and lane-rule as-
sociation. (a) The OpenLane V2 style vision-driven paradigm handles limited sign classes (e.g.
directional signs, traffic lights) and lacks reasoning process, thus being largely uninterpretable.
(b) RuleVLM performs end-to-end traffic rule description and attempts to map rules to lanes, but
remains a black-box (“uninterpretable”) model without revealing its reasoning process. (c) Our
VLM+CoT approach integrates Chain-of-Thought reasoning: it can generate traffic rule descrip-
tions, map them to specific lanes, and expose its intermediate reasoning, making the model more
interpretable and its decisions more explainable.

and lane information). However, this formulation bypasses the reasoning process underlying rule
interpretation and under-utilizes the latent reasoning capacity of VLMs.

To further improve performance, we argue that explicit reasoning is necessary to emulate the human
inference process. Rather than directly predicting the final answer, we train a VLM to perform
reasoning and base its decision on thinking process. Concretely, the model (i) generates a chain-of-
thought (CoT) Wei et al. (2022) that explains how a traffic rule applies (or does not apply) to the
target lane, and (ii) derives the final decision from this rationale.

Concretely, we first design a CoT curation pipeline that bootstraps rationales from a strong LLM
and validates them against ground-truth labels. In the first stage, the model is prompted to generate
both rationales and answers; we then compare its predictions with the annotations and request the
model to revise its rationale based on correctness. In the second stage, a VLM-based verifier uses the
generated CoT to infer the final answer and checks its consistency with ground truth, thereby filtering
out incorrect or ungrounded rationales. This process yields a high-precision set of CoT-annotated
samples, which are subsequently used to train models with both strong reasoning capability and
reliable decision accuracy. During training, to equip the model with CoT reasoning ability, we adopt
a two-stage strategy. We first perform supervised fine-tuning (SFT) to teach the VLM to generate
(rationale → answer) sequences. While SFT allows the model to follow the protocol and learn basic
reasoning traces, it often yields suboptimal final answers. To overcome this limitation, we further
apply GRPO Shao et al. (2024) with an answer-grounded, fine-grained reward, where the model
samples multiple reasoning paths and is reinforced towards those that produce correct outputs.

We summarize our contributions as follows:

• To the best of our knowledge, we are the first to introduce CoT reasoning into traffic regula-
tion understanding, moving beyond direct sequence prediction, which is critical for safety-
sensitive autonomy.

• We propose a scalable CoT data curation pipeline that combines a two-round generation
strategy with self-checking and VLM-based verification, enabling the reliable construction
of large-scale (CoT, answer) pairs.

• We adopt a two-stage training schedule (SFT → GRPO) with answer-grounded, fine-
grained rewards to enhance reasoning quality and decision accuracy.

• We conduct extensive experiments and ablation studies, demonstrating the effectiveness of
our approach.
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2 RELATED WORKS

2.1 LANE–RULE ASSOCIATION

3D Lane and road-topology recognition is critical for safe autonomous driving Chen et al. (2022);
Luo et al. (2023; 2024b); Wang et al. (2023b); Huang et al. (2024); Ma et al. (2024). Building on
this, OpenLane-V2 Wang et al. (2023a) establishes a large-scale topology reasoning benchmark that
links lanes and traffic elements, spurring follow-up methods on lane–lane and lane–traffic reason-
ing Wu et al. (2023a); Fu et al. (2024); Li et al. (2023). However, OpenLane-V2 constrained by
single-label classification for traffic sign rather than structured descriptions for fine-grained driving
rules. This makes it insufficient for signs with multiple rules, which are complex but common in
real scenarios. MapDR addresses this gap by focusing on driving-rule extraction from traffic signs
and lane-level association Chang et al. (2025). However, OpenLane-V2 remains limited to single-
label categorization of traffic elements and their lane links, rather than structured, fine-grained rule
descriptions. MapDR addresses this gap by introducing a benchmark for driving-rule extraction
from traffic signs and lane-level association. While RuleVLM Chang et al. (2025) treats the task
as direct sequence prediction of the final answer, it overlooks the task’s inherent need for explicit,
compositional reasoning.

2.2 CHAIN-OF-THOUGHT

LLMs have demonstrated remarkable emergent capabilities in complex reasoning tasks Talmor et al.
(2018); Roy & Roth (2016). Among these, chain-of-thought (CoT) prompting significantly improves
reasoning performance, whether via manually crafted exemplars Wei et al. (2022) or via zero-shot
self-rationalization prompts like ”Let’s think step by step“ Kojima et al. (2022). To scale CoT, Auto-
CoT Zhang et al. (2022) automatically samples diverse questions and generates reasoning chains to
build large demonstration sets without human effort. Beyond prompting methods, recent work inves-
tigates how to distill CoT reasoning from large teacher models into smaller student models (SLMs)1.
Chen et al. (2025b) conduct empirical study and uncover three key insights in CoT distillation: 1)
simpler CoTs can outperform finer ones for SLMs; 2) CoT format exerts minimal effect on SLMs;
3) diversity and complexity in the rationale set often matter more. Meanwhile, Liu et al. (2023) ar-
gue that self-instruction tuning methods often underperform on complex reasoning tasks,introduce
LOGICOT, a chain-of-thought instruction-tuning dataset to improves performance. In evaluation,
the paradigm of LLM-as-a-judge has become a practical approach for judging faithfulness, coher-
ence, and step validity. Recent surveys examine the reliability challenges and design strategies for
LLM judges Li et al. (2025a), while other works use attribute-wise assessments or prompt judges to
produce rich quality judgments Zhang et al. (2024); Guo et al. (2024). In particular, for mathemat-
ical reasoning, some frameworks go beyond final accuracy and evaluate individual reasoning steps
for validity, coherence, or redundancy via dedicated judge LLMs Xia et al. (2025).

2.3 LLM/VLM FOR AUTONOMOUS DRIVING

Recent work leverages LLMs/VLMs for autonomous driving; a particularly important direction is
end-to-end driving and planning Hwang et al. (2024); Xu et al. (2024b); Wang et al. (2025); Sima
et al. (2024); Chen et al. (2024); Cao et al. (2024); Li et al. (2025b); Xu et al. (2024a). Within
end-to-end driving, incorporating chain-of-thought (CoT) reasoning has emerged as an important
research direction. DriveCoT Wang et al. (2024) incorporates CoT reasoning into end-to-end driv-
ing, offering a CARLA-based dataset with rationale annotations and a baseline agent that predicts
both rationales and control decisions. PKRD-CoT Luo et al. (2024a) proposes a zero-shot CoT
prompting framework that structures autonomous-driving reasoning into four stages: Perception,
Knowledge, Reasoning, and Decision. DriveVLM Sima et al. (2024) organizes end-to-end driving
as a three-stage CoT: scene description, scene analysis, and hierarchical planning, targeting long-tail
scenarios. EMMA Hwang et al. (2024) builds an end-to-end, language-centric driving model that
maps multi-camera images to planner trajectories, 3D objects, and road-graph elements. RoboTron-
Drive Huang et al. (2025) augments and standardizes multiple autonomous driving datasets to fine-
tune a unified large multimodal model, resulting in an all-in-one LMM that supports perception,
prediction, and planning. Sce2DriveX Zhao et al. (2025) leverages joint learning from local scene

1https://huggingface.co/blog/jjokah/small-language-model
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videos and global BEV maps to capture long-range spatiotemporal relations and road topology.
CoT-Drive Liao et al. (2025) distills LLM reasoning into lightweight edge models and leverages
CoT prompting to enable efficient, accurate, real-time motion forecasting. AlphaDrive Jiang et al.
(2025) integrates GRPO-based reinforcement learning with planning-specific rewards and explicit
reasoning training into VLM-based end-to-end driving. AgentThink Qian et al. (2025) introduces a
structured data generation pipeline and a two-stage training strategy that integrates chain-of-thought
reasoning with dynamic, agent-style tool invocation for autonomous driving tasks.

3 METHOD

In this section, we present our method in detail. The overall framework is illustrated in Figure 2,
and can be divided into four components: CoT Data Generation, CoT Data Filter, Supervised Fine-
Tuning, and Reinforcement Fine-Tuning. The first two components are responsible for generating
and filtering high-quality CoT datasets, while the latter two progressively train the VLM with rea-
soning ability.

We first elaborate our proposed CoT data curation pipeline in Section 3.1, explaining how we adopt a
two-round strategy to prompt a VLM to generate (CoT, answer) pairs and how we employ a second
VLM to filter out incorrect rationales. Then, in Section 3.2, we describe our two-stage training
pipeline: 1) a supervised fine-tuning (SFT) stage trained on mixed CoT and non-CoT (answer-
only) data, and 2) a reinforcement fine-tuning (RFT) stage using GRPO with a fine-grained, answer-
grounded reward to refine the model’s reasoning and rule–lane alignment.

·

CoT Data Generation
Determine the governed lanes 
and give reasons

Your previous answer is 
correct/wrong, analysis why

CoT Data Filter

VS

Supervised 
Fine-Tuning

Language Model
w/ Lora✅ ❌

Lane 1, because …

      Lane 1 is wrong because …, 
Lane 3 is correct because…

Use the       to infer
final answer

Based on      , the final
answer is …

Parse Prediction

Keep Abandon

Ground-
Truth

🔥

Mix CoT 
and answer-
only data

❄Vision Encoder

Supervise
Fine-grained reward

Reinforcement
Fine-Tuning

GRPO 
Loss

Re
wa

rd

Reason and answer
sampling

Figure 2: Overview of our framework. The workflow consists of four stages: (i) generating can-
didate CoT examples with an LLM API; (ii) filtering them to retain only valid (CoT, answer) pairs;
(iii) supervised fine-tuning the VLM on the filtered dataset; and (iv) reinforcement fine-tuning with
a fine-grained reward that accounts for both rule understanding and rule-lane association.

3.1 COT DATA CURATION PIPELINE

Although prior work (e.g. Kojima et al. (2022); Wei et al. (2022)) has demonstrated that CoT prompt-
ing can significantly boost LLM performance on complex reasoning tasks, we find that applying CoT
naively to VLMs for traffic rule understanding is substantially more difficult. When prompted to in-
dependently infer rule–lane relations, the model frequently generates faulty or incoherent reasoning
that lead to incorrect predictions. Even when provided with ground-truth information about the rel-
evant traffic sign and regulated lanes, the model does not reliably produce correct or self-consistent
explanations. As shown in Figure 3, the model may generate incorrect or contradict rationale. These
failure modes motivate our carefully designed CoT data curation pipeline.

CoT data generation with a two-round strategy. Based on previous observations, we propose a
two-round prompting strategy to elicit reliable CoT outputs. In the first round, the model is asked to
make an independent prediction without seeing the ground-truth. In the second round, we reveal the
correct answer and instruct the model to reflect on its initial prediction, examining its rationale and
providing a revised explanation. As illustrated in Figure 4, we use the QWen-VL-Max API to obtain
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The traffic sign labelled with red box and cropped out in Image 2 governs lane 8.
Provide detailed reasoning: Describe your reasoning step by step, explain how the rule matches (or 
doesn’t match) the traffic sign.
Your reasoning must be logically sound and internally consistent, leading naturally to the final lane 
prediction. Do not mention, use or compare against the groundtruth or any previous prediction.

In Image 3 (Bird’s-Eye View), the red star marking the “Target Traffic Sign” is positioned directly above 
the purple-colored lane centerline labeled “8”. This spatial alignment indicates that the sign governs the 
lane immediately beneath it — lane 8.
In Image 1 (Front View), the sign is mounted on a pole to the right side of the road, but its placement and 
orientation suggest it applies to the leftmost lane from the driver’s perspective — which is lane 8 (purple). 
No other lanes (e.g., 5, 6, 7) are visually or geometrically aligned with the sign. The BEV confirms no 
shared jurisdiction or merging geometry extending the sign’s effect beyond lane 8.

Figure 3: Example of incorrect and self-contradictory CoT reasoning generated by a VLM. When
prompted with the rule description and governed lane indices, the model first asserts that the red-
boxed traffic sign is “directly above” lane 8, even though they are far apart and located on opposite
sides of the image. It then infers that “innermost” corresponds to the leftmost lane, which is correct
but contradicts the earlier adjacency-based rationale. Such inconsistencies illustrate that the model’s
explanations are not causally faithful to the visual evidence, even when the final lane prediction
happens to be correct.

(CoT, answer) pairs for traffic-rule understanding. For each scene, we provide three complementary
views as inputs: 1) a front-view image where the target sign and candidate lanes are highlighted;
2) a cropped sign image; and 3) a BEV rendering overlaying lane polylines and the sign location.
These images collectively supply sufficient 3D lane geometry, front-view semantics, and a clear sign
depiction. We also include annotated rule attributes (e.g., category, scope, effective time, applicable
lane types) as textual context.

We then employ a two-round prompting scheme. In Round 1, the model is asked to identify the
governed lanes and provide a step-by-step rationale. In Round 2, the ground-truth governed lanes
are revealed, and the model is instructed to compare them with its initial prediction, analyze the
causes of agreement or discrepancy, and revise its explanation. Finally, the model produces an
independent, self-consistent chain of thought that justifies why the rule applies (or not) to each
candidate lane, and reissues the final decision based on this rationale. As shown in Figure 4, the
model often makes incorrect predictions when reasoning directly. Once the correct governed lanes
are revealed in Round 2, however, it can analyze the cause of its earlier error, reconstruct a reasoning
process that leads to the correct outcome, and avoid the internal contradictions illustrated in Figure 3.
This demonstrates the effectiveness of the two-round scheme in eliciting causally faithful rationales.

VLM-based Filtering Even with the two-round strategy, not all generated (CoT, answer) pairs
are reliable or consistent. To further filter out low-quality cases, we adopt a VLM-based validation
step. Specifically, we feed the generated CoT into a separate VLM as a “judge” model, prompting it
to re-derive the final answer from the given CoT. If the judge’s answer matches the original ground
truth, we keep the sample; otherwise, we discard it, as shown in the second part of Figure 2. This
validation ensures that only CoT examples whose reasoning logically leads to the correct answer are
retained, thereby reducing noise and promoting higher-quality CoT supervision for training.

3.2 TWO-STAGE TRAINING

After constructing the CoT-enhanced dataset, we adopt a two-stage training pipeline to progressively
improve the model’s reasoning and rule–lane association abilities Qian et al. (2025); Yoshihara et al.
(2025); Chen et al. (2025a); Zhang et al. (2025). In Section 3.2.1, we merge the original dataset
with generated CoT examples for supervised fine-tuning, initializing the VLM with instruction-
guided reasoning ability. In Section 3.2.2, we introduce an answer-grounded reward over multiple
reasoning samples for each query together with a GRPO Shao et al. (2024) loss to further refine
decision accuracy.
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Determine the Governed Lanes and Provide Detailed Reasoning

The BEV image shows the spatial relationship between the traffic sign and the lanes. The sign is positioned 
such that it affects the innermost lane (lane 4), which is closest to the right side of the road in the direction 
of travel.

The groundtruth is lane 8. Evaluate whether your previously predicted lane indices were correct. Produce a 
final, self-contained response that includes the correct set of governed lane indices and a clear, step-by-step 
reasoning process that lead to groundtruth regulated lane indices.

In the context of the provided images, “most inner lane” needs to be interpreted based on the lane 
numbering and spatial layout. The BEV image shows lane 8 as the far-left lane, which can be considered 
the “most inner lane” from the perspective of the ego-vehicle\‘s direction of travel. Lane 8 is the only lane 
that fits the description of being the “most inner lane” in this scenario. No other lane matches the 
description of being the "most inner lane" under the influence of this sign.

Determine the Governed Lanes and Provide Detailed Reasoning

The rule's speed limit (60-100 km/h) matches the traffic sign's indication. The sign is positioned above 
Lane 2 but, considering standard highway practices and the sign's Carriageway designation, it likely 
governs all adjacent lanes (Lane 1, Lane 2, and Lane 0). Therefore, the rule applies to Lanes 1, 2, and 0.

The groundtruth is lane 2. Evaluate whether your previously predicted lane indices were correct. Produce a 
final, self-contained response that includes the correct set of governed lane indices and a clear, step-by-step 
reasoning process that lead to groundtruth regulated lane indices.

The rule's speed limit (60-100 km/h) matches the sign's indication, confirming the rule's relevance.
• Lane 2: The sign is directly above Lane 2, making it the primary governed lane.\n’
• Lane 1 and Lane 0: While these lanes are part of the same carriageway, the "sign's specific placement 

above Lane 2 suggests it does not explicitly govern them.
• Thus, the rule most logically applies only to Lane 2.

Figure 4: Examples of the CoT generation pipeline. We illustrate two examples from our CoT
data generation process. In each case, the red arrows mark the lanes incorrectly inferred by the
LLM in the first prediction, while the green arrows indicate the corrected lanes after the second
round of reasoning. (Arrows are for illustration only and are not included in the images shown to the
VLM.) For the first example, the cropped sign image contains Chinese text meaning “WorkDays.
17:00-19:00. Main road. The innermost lane is designated as a bus-only lane.” For the second
example, the cropped sign image contains Chinese text meaning “Carriageway”.

3.2.1 SFT WARM-UP FOR REASONING

In the first stage, we perform Supervised Fine-Tuning (SFT) to enable the model to respond to
prompts, carry out reasoning, and produce final answers. We adopt a mixed prompt strategy, alter-
nating between:

• CoT-style prompts (e.g., “Think step-by-step: analyze the rule, then relate it to each lane,
and finally give the answer.”) when training on CoT-augmented data, and

• Direct prompts (i.e., request only the final answer without intermediate reasoning) when
training on answer-only data.

This hybrid supervision enables the model to learn from both answer-only examples and CoT-
augmented dataset (generated from our pipeline in Section 3.1). The CoT prompts guide the model
to internalize reasoning flows, while the direct prompts preserve its ability to deliver concise outputs
when needed. SFT serves as an effective warm start: it endows the model with foundational reason-
ing skills and aligns it with instruction-following. However, SFT often falls short of achieving high
accuracy on its own, hence the necessity of a subsequent reinforcement learning stage.

3.2.2 RFT ENHANCEMENT VIA GRPO

To further improve the model beyond imitation learning, we adopt Reinforcement Learning Fine-
Tuning (RFT) with Group Relative Policy Optimization (GRPO). GRPO Shao et al. (2024) is de-
signed to optimize rewards without relying on a separate critic model, which makes it both efficient
and robust for reasoning-oriented tasks.

Concretely, for each input x, the current policy πθ generates a group of n candidate responses
{yi}ni=1. Each candidate is assigned a scalar reward r(yi). Within the group, we compute the
empirical mean r̄ = 1

n

∑
i r(yi) and standard deviation σr. The GRPO objective encourages the

6
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model to favor responses that achieve above-average rewards relative to the group baseline:

LGRPO(θ) = −Eyi∼πθ(·|x)

[
log πθ(yi | x)

r(yi)− r̄

σr

]
. (1)

Intuitively, GRPO compares responses within a sampled group, up-weighting those that score above
the group reference and down-weighting those below; this group-relative weighting steers the policy
toward higher-reward outputs. For MapDR Chang et al. (2025), we adopt a fine-grained reward that
scores (i) semantic understanding of the rule and (ii) rule–lane association (Alg. 1) jointly. Compared
to binary correctness signals, our rewards provide denser credit under partial correctness and yield
more informative gradients This design is aligned with recent evidence that finer-resolution feedback
improves optimization and downstream quality in RLHF-style training Wu et al. (2023b); Lightman
et al. (2023). Within our GRPO-based RFT stage, such granularity further enables effective group-
relative preference updates that bias the policy toward higher-reward responses Shao et al. (2024).

Algorithm 1 MAPDR Reward
1: Parse & validate: read and parse rule and candidate lane set from prediction; if fail return 0.
2: Rule understanding: Sunderstand = Nmatch

Nattr
, where Nmatch is the number of matched rule attributes and Nattr

is the total attribute count.
3: Rule–lane association: Srelation = Ncorrect

Npred+Ngt−Ncorrect
, where Npred is the number of predicted associations,

Ngt the ground-truth associations, and Ncorrect the correctly matched ones (IoU over lane associations).
4: Final reward: R = 1

2

(
Sunderstand + Srelation

)
; return R.

4 EXPERIMENTAL RESULTS

4.1 DATASET AND METRICS

Dataset. We evaluate on MapDR Chang et al. (2025), the first public large scale benchmark col-
lected from real-world traffic scenes that couples traffic signs with locally perceived vectorized HD
maps. MapDR provides vectorized lane and rule attribute annotations (e.g., lane type, allowed
transport class, effective date/time, speed-limit zone), together with lane correspondences, enabling
rule–lane association. In total, MapDR contains 11060 training samples and 1076 validation sam-
ples.

Evaluation Metrics. Following MapDR Chang et al. (2025), we report Rule Extraction (R.E.)
metrics — precision PR.E. and recall RR.E. — to measure how well the model extracts the traffic rules
themselves. We also compute an end-to-end F1 score, which evaluates the consistency between the
predicted graph Ĝ = (R ∪ L, Ê) and the ground truth G = (R ∪ L,E). For full details and formal
definitions, refer to the original paper Chang et al. (2025).

PRE = |R̂∩R|
|R̂| , RRE = |R̂∩R|

|R| , PALL = |Ĝs∩Gs|
|Ĝs| , RALL = |Ĝs∩Gs|

|Gs| , F1 = 2PALL RALL
PALL+RALL

. (2)

4.2 IMPLEMENTATION DETAILS

4.2.1 TRAINING SETUP

CoT data generation and filtering. We first synthesize chain-of-thought (CoT) rationales via the
qwen-vl-max API, and then filter them using Qwen2-VL-72B-Instruct, discarding samples that
misinterpret sign content or mismatch lane attribution. From 11060 initial “answer-only” samples,
we retain 4517 valid (CoT, answer) pairs for training.

Backbone and LoRA. Following RuleVLM Chang et al. (2025), we adopt Qwen-VL-Chat
(9.6B) as the pretrained backbone and use the MEE module to encode lane vectors and fuse rule
embeddings with vector features for rule–lane reasoning, ensuring a controlled comparison in model
size and architecture. For parameter-efficient fine-tuning, we employ LoRA Hu et al. (2022) with
rank r = 64, scaling α = 16, and dropout 0.05. Adapters are attached to attn.c proj, w2, w1,
and c attn, following common Qwen-VL practice.2

2Official Qwen-VL finetuning script: https://github.com/QwenLM/Qwen-VL/blob/master/
finetune.py#L59.
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Supervised Fine-Tuning (SFT). We first warm up the model with supervised fine-tuning. Training
is conducted using AdamW Loshchilov & Hutter (2019) (weight decay 0.1) and a cosine learning-
rate schedule Loshchilov & Hutter (2017) peaking at 1 × 10−5, with gradient clipping at 0.1. We
set the batch size to 64 and train for 10 epochs in this stage. To accommodate memory demands and
scale efficiently, we employ DeepSpeed ZeRO-2 Rajbhandari et al. (2020).

Reinforcement Fine-Tuning (GRPO). After SFT, we further refine the model with GRPO Shao
et al. (2024). We train for one epoch with batch size 32, using weight decay 0.02, warmup ratio
0.01, and gradient clipping at 0.1. For each prompt, we sample 8 candidate generations per group.
The LoRA adapters and ZeRO-2 setup from SFT remain active during reinforcement training.

4.3 MAIN RESULTS

Table 1: Overall evaluation on MapDR. We follow RuleVLM’s protocol and metrics Chang
et al. (2025): Rule Extraction (R.E.) measures the precision/recall of recovered driving rules, and
Rule–Lane Correspondence Reasoning (C.R.) measures the precision/recall of rule–lane matches.
Under this setup, our method achieves higher overall score.

Model Type R.E. C.R. Overall
PR.E.(%) RR.E.(%) PC.R.(%) RC.R.(%) Pall(%) Rall(%) F1 Score

Heuristic
Modular

18.01 11.51 33.05 17.99 5.01 2.73 0.035
ALBEF-BERT 75.78 57.56 4.14 17.25 0.24 0.78 0.003
VLE-MEE 76.67 74.54 78.05 82.16 63.35 67.37 0.653

Qwen-VL(TextPrompt)

End-to-End

42.21 41.09 − − 8.39 8.17 0.083
Qwen-VL(VisualPrompt) 89.29 89.50 − − 39.14 39.23 0.392
RuleVLM Chang et al. (2025) 89.28 89.44 − − 64.16 64.28 0.642
Ours 87.71 86.91 − − 72.00 72.56 0.723

As shown in Table 1, our method achieves the best overall F1 score (0.723), outperforming both
modular baselines and end-to-end models. Interestingly, we observe that the performance on rule
extraction (R.E.) is slightly lower than RuleVLM (87.71 vs. 89.28), while the overall score is higher
(0.723 vs. 0.642). This discrepancy can be explained by the evaluation protocol in RuleVLM Chang
et al. (2025), where the overall metric jointly considers both rule extraction (R.E.) and correspon-
dence reasoning (C.R.). A model that extracts rules with high precision but fails to align them
correctly with lanes may achieve strong R.E. scores yet struggle in the overall evaluation. Con-
versely, our method, despite minor losses in attribute-level extraction accuracy, achieves substan-
tially stronger correspondence reasoning, leading to higher consistency between extracted rules and
governed lanes. These results suggest that through the introduction of CoT, our method achieves
a notable improvement specifically in rule-lane relation reasoning; this underscores how enhancing
reasoning is crucial for accurate traffic rule understanding.

4.4 ABLATION STUDIES

Table 2: Ablation on data and training strategy. We vary the training data (answer only, CoT
only, mixed) and the training strategy (SFT vs. SFT + GRPO). Metrics follow the MapDR protocol
(Pall, Rall,F1) Chang et al. (2025). GRPO consistently boosts performance over SFT alone, and the
mixed answer + CoT setup attains the best overall F1.

Configuration SFT SFT + GRPO

Pall(%) Rall(%) F1 score Pall(%) Rall(%) F1 score

Answer only 64.16 64.28 0.642 67.36 66.75 0.671
CoT only 52.64 50.93 0.518 68.28 70.56 0.694
Mix 57.60 55.33 0.564 72.00 72.56 0.723

Table 2 varies the training data (answer only, CoT only, mixed) and the training strategy (SFT vs.
SFT + GRPO). (1) Answer only data, SFT refers the RuleVLM setting Chang et al. (2025) and
we simply use their results; (2) Answer only data, SFT+GRPO further fine-tunes the RuleVLM-
pretrained model with GRPO and yields clear gains in Pall, Rall, and F1, indicating that under our
fine-grained reward and group-relative comparison—GRPO improves the end objective beyond sim-
ple imitation. (3) CoT only data, SFT underperforms, indicating that CoT-only at the SFT stage
does not sufficiently cover the final-answer distribution Liu et al. (2023). However, CoT only data,
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Table 3: Comparison between coarse and fine grained reward.

Reward type Pall(%) Rall(%) F1

Coarse 70.84 71.44 0.711
Fine 72.00 72.56 0.723

SFT+GRPO recovers substantially, suggesting that a model endowed with CoT capability benefits
more from GRPO than a non-CoT counterpart; this underscores the task’s demand for stronger rea-
soning and validates our use of CoT. (4) Finally, Mix (answer+CoT) data, SFT+GRPO attains
the best overall F1, showing that combining direct-answer supervision with CoT rationales provides
complementary signals, and GRPO effectively leverages this mix to bias the policy toward higher-
reward responses.

Ablation on fine grained rewards. For comparison, we define a coarse reward: +0.5 if the rule
semantics are correct, +0.5 if the rule–lane relation is correct (thus 1.0 if both are correct), and 0
if the output is unparsable/invalid. Unlike our fine-grained scheme, this piecewise–binary signal
provides sparse credit and weaker gradients. As shown in Table 3, the fine-grained reward improves
precision, recall, and F1, confirming its effectiveness.

4.5 QUALITATIVE COMPARISON

We present four qualitative comparisons with RuleVLM in Figure 5. While RuleVLM directly pre-
dicts lane indices, our model first reasons (interpreting the sign, then aligning with spatial geometry),
and only then outputs the final lanes. In all four cases, our method successfully parses sign contents
in the cropped view and fuses those with BEV/FV spatial cues to correctly associate the sign with
the appropriate lane IDs, whereas RuleVLM fails. These results underscore the value of explicit
reasoning and our method delivers both stronger interpretability and robustness.

The answer is [0, 2]

1. The traffic sign in Image 2 clearly indicates "应急车道" (Emergency 
Lane), which is a standard designation for a lane reserved for 
emergencies.
2. Spatial Position of the Traffic Sign: In Image 1 (Front-View), the 
traffic sign is positioned above the rightmost lane (lane 2). In Image 
3 (Bird's-Eye-View), the red star marking the traffic sign is aligned 
directly above lane 2, reinforcing that this lane is the emergency 
lane.
3. Lane Characteristics: Lane 2 is the rightmost lane and is separated 
from the other lanes by a solid white line, which is a common 
indication of an emergency lane. No other lanes have such a distinct 
marking or separation, indicating they are not emergency lanes.
4. Conclusion: Based on the visual evidence from all three images, lane 
2 is the only lane designated as an emergency lane. Therefore, the 
rule governing the emergency lane applies specifically to lane 2.

❌

✅

The answer is [0]

1. Interpreting the Traffic Sign: The sign reads "可变车道提示 禁止行车
行车请按指示行驶" (Translation: "Variable Lane Reminder, No Driving, 
Please Follow the Indication").   This indicates that the lane(s) governed 
by this sign are restricted for driving and require adherence to the 
indicated directions. 
2. Sign Placement: The sign is physically attached above the governed 
road section.
3. Sign Context: The sign is positioned above lane 1 in the front-view 
image.
4. Conclusion: Based on the clear text indicating "Variable Lane Type" and 
the governed lane specific context, the governed lane for this rule is [1].

❌

✅

The answer is [3]

The traffic sign in Image 2 shows a bus symbol with an arrow pointing 
downward, indicating a dedicated bus lane. This sign is specifically for 
buses and is placed above the lanes, suggesting it applies to the lanes 
directly beneath it. In Image 1 (Front-View), the traffic sign is 
positioned above the lanes, with a clear visual relationship to the lanes 
below it. Image 3 (Bird's-Eye-View), the red star marking the traffic 
sign is aligned with lane 2, indicating that this lane is governed by the 
bus lane rule. Lane 2 is the rightmost lane and is directly under the 
traffic sign, making it the most logical choice for the bus lane. Lanes 0, 
1, and 3 do not have any visual indicators suggesting they are bus lanes, 
and their positions relative to the sign suggest they are not governed by 
this specific rule. Based on the visual evidence from all three images, 
lane 2 is the only lane that fits the criteria of being a bus lane as 
indicated by the traffic sign. 
Therefore, the correct set of governed lane indices is [2].

❌

✅

The answer is [4]

1. Interpreting the Traffic Sign: The traffic sign shows a bicycle 
symbol, which typically indicates a lane designated for non-motorized 
vehicles (bicycles).
2. Determining Governed Lanes: In the BEV image, the traffic sign is 
positioned closest to lane 5, suggesting that this lane is likely governed 
by the bicycle sign. Lane 5 is spatially aligned with the traffic sign, 
indicating it is intended for non-motorized vehicles.
3. Analyzing Lane Characteristics: Lane 5 appears to be wider and 
separated from the other lanes, which is typical for bike lanes to 
facilitate smooth movement and reduce conflicts with motor vehicles.
4. Conclusion: Based on the sign's placement and the lane's 
characteristics, lane 5 is the most logical choice for the non-motorized 
vehicle restriction.

Therefore, the governed lane index is [5].

❌

✅

Figure 5: Qualitative comparison with RuleVLM. Outputs from RuleVLM are annotated with
, while ours are marked with . A ❌ denotes a wrong prediction and ✅ a correct one. In these

cases, our method follows a reasoning process—interpreting the sign, aligning spatial cues, and
then selecting the lane—resulting in correct predictions, whereas RuleVLM fails, highlighting both
higher accuracy and stronger interpretability through reasoning.

5 CONCLUSION

We tackle traffic rule understanding on MapDR by introducing chain-of-thought (CoT). Concretely,
we build a CoT data curation pipeline, then adopt a two-stage training scheme: an SFT warm-up
on mixed (answer+CoT) data, followed by GRPO-based RFT driven by our fine-grained reward
that jointly scores rule semantics and rule–lane association. This combination yields consistent
improvements over RuleVLM, highlighting the effectiveness of reasoning in this task.
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A APPENDIX

A.1 LLM USAGE

We use the LLM only for polishing text and generating the small illustrative icons used in figures.
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