
Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

Da Long 1 Zhitong Xu 1 Guang Yang 2 Akil Narayan 2 3 Shandian Zhe 1

Abstract

Modern physics simulation often involves multi-
ple functions of interests, and traditional numer-
ical approaches are known to be complex and
computationally costly. While machine learning-
based surrogate models can offer significant cost
reductions, most focus on a single task, such
as forward prediction, and typically lack uncer-
tainty quantification — an essential component
in many applications. To overcome these limita-
tions, we propose Arbitrarily-Conditioned Multi-
Functional Diffusion (ACM-FD), a versatile prob-
abilistic surrogate model for multi-physics emu-
lation. ACM-FD can perform a wide range of
tasks within a single framework, including for-
ward prediction, various inverse problems, and
simulating data for entire systems or subsets of
quantities conditioned on others. Specifically, we
extend the standard Denoising Diffusion Proba-
bilistic Model (DDPM) for multi-functional gen-
eration by modeling noise as Gaussian processes
(GP). We propose a random-mask based, zero-
regularized denoising loss to achieve flexible and
robust conditional generation. We induce a Kro-
necker product structure in the GP covariance ma-
trix, substantially reducing the computational cost
and enabling efficient training and sampling. We
demonstrate the effectiveness of ACM-FD across
several fundamental multi-physics systems. The
code is released at https://github.com/
BayesianAIGroup/ACM-FD.

1 Introduction

Physical simulation plays a crucial role in numerous scien-
tific and engineering applications. Traditional numerical

1Kahlert School of Computing, University of Utah 2Department
of Mathematics, University of Utah 3Scientific Computing and
Imaging Institute, University of Utah. Correspondence to: Shan-
dian Zhe <zhe@cs.utah.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

approaches (Zienkiewicz et al., 1977; Mitchell & Griffiths,
1980), while offering strong theoretical guarantees, are often
complex to implement and computationally expensive to
run. In contrast, machine learning-based surrogate models
— also known as emulators — are trained on simulation or
measurement data and can significantly reduce computa-
tional costs, making them a promising alternative (Kennedy
& O’Hagan, 2000; Razavi et al., 2012).

However, modern physical simulations often involve multi-
ple functions of interest, such as initial and boundary con-
ditions, solution or state functions, parameter functions,
source functions, and more. Current machine learning-based
surrogate models, such as neural operators (Li et al., 2020a;
Lu et al., 2021; Kovachki et al., 2023), primarily focus on
a single prediction task, for instance, forward prediction
of the solution function. To perform other tasks, one typ-
ically needs to retrain a surrogate model from scratch. In
addition, most existing methods do not support uncertainty
quantification, which is important in practice. For example,
confidence intervals are important to assess the reliability of
emulation results, and in inverse problems, a posterior dis-
tribution is required since such problems are often ill-posed.

To address these limitations, we propose Arbitrarily-
Conditioned Multi-Functional Diffusion (ACM-FD), a ver-
satile probabilistic surrogate model for multi-physics emu-
lation. Within a single framework, ACM-FD can handle a
wide range of tasks, including forward prediction with dif-
ferent input functions, various inverse problems conditioned
on different levels of information, simulating data for entire
systems, and generating a subset of quantities of interest
conditioned on others. As a generative model, ACM-FD
produces predictive samples, naturally supporting uncer-
tainty quantification across all contexts. The contributions
of our work are summarized as follows.

• Multi-Functional Diffusion Framework: We pro-
pose a multi-functional diffusion framework based
on the Denoising Diffusion Probabilistic Model
(DDPM) (Ho et al., 2020). By modeling the noise
as multiple Gaussian processes (GPs), we perform dif-
fusion and denoising in functional spaces, enabling
the generation of multiple functions required in multi-
physics systems.

• Innovative Denoising Loss: We introduce a denois-

1

https://github.com/BayesianAIGroup/ACM-FD
https://github.com/BayesianAIGroup/ACM-FD

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

ing loss that encapsulates all possible conditional parts
within the system. During training, we repeatedly sam-
ple conditional components using random masks, train-
ing the denoising network not only to restore noise
for the parts to be generated, but also to predict zero
values for the conditioned components. This regular-
ization stabilizes the network and prevents excessive
perturbations in the conditioned components during
generation. This way, ACM-FD can flexibly generate
function values conditioned on any given set of func-
tions or quantities, allowing it to tackle a wide range of
tasks, including forward prediction, inverse inference,
completion, and system simulation.

• Efficient Training and Sampling: To enable efficient
training and sampling, we use a multiplicative kernel
to induce a Kronecker product structure within the GP
covariance matrix. By leveraging the properties of
the Kronecker product and tensor algebra, we bypass
the need to compute the full covariance matrix and its
Cholesky decomposition, substantially reducing the
training and sampling costs.

• Experiments: We evaluated ACM-FD on four fun-
damental multi-physics systems, with the number of
involved functions ranging from three to seven. In
twenty-four prediction tasks across these systems,
ACM-FD consistently achieved top-tier performance
compared to state-of-the-art neural operators specifi-
cally trained for each task. Furthermore, we evaluated
ACM-FD in emulating all functions jointly and func-
tion completion. The data generated by ACM-FD not
only closely adheres to the governing equations but
also exhibits strong diversity. Its quality is comparable
to that of a diffusion model trained exclusively for un-
conditional generation. In parallel, ACM-FD achieves
substantially higher completion accuracy than popular
inpainting and interpolation methods. ACM-FD also
provides superior uncertainty calibration compared to
alternative approaches. Finally, a series of ablation
studies confirmed the effectiveness of the individual
components of our method.

2 Preliminaries

The denoising diffusion probabilistic model (DDPM) (Ho
et al., 2020) is one of the most successful generative models.
Given a collection of data instances, such as images, DDPM
aims to capture the complex underlying distribution of these
instances and generate new samples from the same distribu-
tion. To achieve this, DDPM specifies a forward diffusion
process that gradually transforms each data instance x0 into
Gaussian white noise. The forward process is modeled as a
Gauss-Markov chain,

q(x0, . . . ,xT) = q(x0)
∏T

t=1
q(xt|xt−1), (1)

where q(x0) represents the original data distribution, and
each transition q(xt|xt−1) = N (xt|

√
1− βtxt−1, βtI),

with βt > 0 as the noise level at step t. From this, it is
straightforward to derive the relationship between the noisy
instance xt and the original instance x0,

xt =
√
α̂tx0 +

√
1− α̂tξt, ξt ∼ N (·|0, I), (2)

where α̂t =
∏t

j=1 αj and αt = 1 − βt. As t increases,
α̂t approaches zero, and 1 − α̂t approaches 1, indicating
that xt is gradually converging to a standard Gaussian ran-
dom variable. When t becomes sufficiently large, we can
approximately view xt as Gaussian white noise.

DDPM then learns to reverse this diffusion process to re-
construct the original instance x0 from the Gaussian white
noise. Data generation, or sampling, is achieved by running
this reversed process, which is often referred to as the de-
noising process. The reversed process is modeled as another
Gauss-Markov chain, expressed as

pΘ(xT , . . . ,x0) = p(xT)
∏T

t=1
pΘ(xt−1|xt), (3)

where p(xT) = N (xT |0, I), and Θ denotes the model
parameters. DDPM uses the variational learning frame-
work (Wainwright et al., 2008), which leads to matching
each transition pΘ(xt−1|xt) to the reversed conditional dis-
tribution from the forward diffusion process,

q(xt−1|xt,x0)

= N
(
xt−1|

1√
1− βt

(
xt −

βt√
1− α̂t

ξt

)
, β̂tI

)
, (4)

where β̂t = 1−α̂t−1

1−α̂t
βt. Accordingly, DDPM employs a

neural network Φ to approximate the noises ξt; see (2).
The training objective is to minimize the denoising loss,
Et∥ΦΘ(xt, t)− ξt∥2.

3 Method

We consider a multi-physics system involving a collection
of M functions. These functions may represent initial and
boundary conditions, source terms, parameter functions,
system states and others. Our goal is to capture the under-
lying complex relationships between these functions and
perform a wide range of prediction and simulation tasks,
such as forward prediction of the system state given the
initial condition, inverse inference about the systems pa-
rameters given observed states, joint simulation of all the
functions, or conditional simulation of one set of functions
based on another.

Many of these tasks involve mapping between functions,
making neural operators (Li et al., 2020a; Lu et al., 2021;
Kovachki et al., 2023) — a recently developed class of sur-
rogate models — an appealing approach. However, most

2

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

neural operators are trained for a single prediction task. To
perform a different task, one would need to train another
neural operator from scratch. These models generally lack
uncertainty quantification, which is important for many ap-
plications. Furthermore, these models are unable to carry
out data generation.

To address these issues, we propose ACM-FD, a new gen-
erative model that can serve as a powerful and versatile
probabilistic emulator for multi-physics systems.

3.1 Multi-Functional Diffusion

We first extend DDPM to enable functional data generation.
To this end, we generalize the diffusion process in (2) to
the functional space. Given a function instance f0(·), we
gradually transform it into a noise function via

ft(·) =
√
α̂tf0(·) +

√
1− α̂tξt(·), (5)

where ft(·) is the noisy version of f0 at step t, and ξt(·) is
the noise function used to corrupt f0. To model the noise
function, one can employ an expressive stochastic process.
We choose to sample each noise function from a zero-mean
Gaussian process (GP) (Rasmussen & Williams, 2006),

ξt ∼ GP(·|0, κ(z, z′)), (6)

where κ(·, ·) is the covariance (kernel) function and z and z′

denote the input locations of the function. When t becomes
sufficiently large (i.e., α̂t ≈ 0), we can approximately view
ft ∼ GP(0, κ(z, z′)), meaning it effectively turns into a
noise function.

The actual data is the function instance sampled at a finite
set of locations, f0 = f0(Z) = (f0(z1), . . . , f0(zN))

⊤

where Z = {zj |1 ≤ j ≤ N} are the sampling locations.
Therefore, we only need to apply the diffusion process (5)
to Z (with the function values at all the other locations
marginalized out), which yields:

ft =
√
α̂tf0 +

√
1− α̂tξt, ξt ∼ N (·|0,K), (7)

where ft = ft(Z), ξt = ξt(Z), and K = κ(Z,Z) is the
covariance matrix at Z .

Based on (7), we can derive the reversed conditional distri-
bution,

q(ft−1|ft, f0) (8)

= N
(
ft−1|

1√
1− βt

(
ft −

βt√
1− α̂t

ξt

)
, β̂tK

)
.

Comparing to (4), the only difference is that the identity ma-
trix is replaced by the covariance matrix K at the sampling
locations Z . We then use a similar strategy as in DDPM.
We train a neural network ΦΘ such that ΦΘ(ft, t,Z) ≈ ξt,

and substitute the neural network’s prediction for ξt in (8)
to obtain pΘ(ft−1|ft) for denoising and generation.

Next, we generalize to the multi-functional case. Given M
functions of interest, F = {f1

0 (·), . . . , fM
0 (·)}, we employ

the same diffusion process as specified in (5) and (7) to
transform each function into a noise function. Next, we
use a single denoising neural network to jointly recover or
sample all the functions, thereby capturing the complex and
strong relationships among them. Specifically, we construct
a network ΦΘ that takes the step t, all the noisy function
values sampled at t, and the sampling locations as the input,
to predict the corresponding noises,

ϕΘ(f
1
t , . . . , f

M
t , t,Z) ≈ (ξ1t , . . . , ξ

M
t), (9)

where each fkt = fk
t (Zk), ξkt = ξkt (Zk), fk

t (·) is the noisy
version of fk

0 (·) at step t, ξkt (·) is the corresponding noise
function that corrupts fk

0 to yield fk
t , Zk are the sampling

locations of fk
0 , and Z = {Zk}Mk=1.

3.2 Arbitrarily-Conditioned Denoising Loss

The design of our multi-functional denoising model (9) en-
ables us to perform a wide range of conditional sampling
and prediction tasks, beyond just functional data generation.

Specifically, let us denote an arbitrary set of conditioned
function values as Fc = {fk

0 (Zc
k)|k ∈ C}, and the target

function values to be generated as Fs = {fk
0 (Zs

k)|k ∈ S}.
Here C and S denote the indices of the functions to be
conditioned on and those to be generated, respectively. Note
that C and S may overlap, provided that for any k ∈ C ∩ S,
the sampling locations do not, i.e.,Zc

k∩Zs
k = ∅. To generate

Fs conditioned on Fc, we fix Fc in the input to the network
ΦΘ as a constant, and vary only the noisy state associated
with Fs, denoted as Fs

t (at step t). The input to Φ consists of
Fc∪Fs

t ∪{t,Z}. We use the predicted noise corresponding
to Fs

t to sample Fs
t−1, following the denoising process. This

procedure is repeated until t = 0, resulting in a sample for
Fs. The sampling process is summarized in Algorithm 2.

By varying the choices of Fc and Fs, our model can perform
a wide variety of data generation and prediction tasks. When
Fc = ∅, the model jointly samples the M target functions
at the specified input locations. When Fc ̸= ∅ and C ∩ S =
∅, the model generates one set of functions conditioned
on the other, supporting various forward prediction and
inverse inference tasks. For instance, by setting C to include
initial conditions or current and/or past system states and
source functions, and S to the future system states, the
model performs forward prediction. Alternatively, if the
observed system states are included in C and S corresponds
to initial/boundary conditions, system parameters, or past
states, the model carries out inverse inference. Even for
the same type of tasks, the functions and the number of
functions in C, as well as the number of sampling locations

3

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

Denoising
Network

{fk
0 }

Corrupted by {ξk
t }

{ξk
t } ∼ GP(0,κ(·, ·))

1 − {hk}

{fk
t }

+

{f̂k
t }

Generation Part

Conditioned Part

Timestep t

×

{hk}

×

Random Mask

Figure 1. The illustration of ACM-FD. The grey shaded area represents zero values introduced by the random mask. The denoising
network is trained to predict zeros for the conditioned part while recovering noises for the part to be generated (i.e., unshaded noises).

in Zc
k, can be adjusted to accommodate different levels of

available information for prediction. When C ∩ S ≠ ∅,
the model performs not only conditional sampling of other
functions but also completion of the observed functions at
new locations. All tasks can be executed using a single
model, ΦΘ, during inference, following the same sampling
process. One can generate as many predictive samples as
needed, naturally supporting uncertainty quantification in
arbitrary context. Thereby, our method offers a versatile
probabilistic surrogate for multi-physics emulation.

However, to build a well-performing model, training Φ to
predict all the noises as specified in (9) is far from sufficient,
because it only handles unconditioned sampling. To train
our model to handle all kinds of tasks, we introduce a ran-
dom mask variable, H = {h1, . . . ,hM}. Each element in
H is binary, indicating whether the corresponding function
value is conditioned or to be sampled. If a function value
is conditioned, then it should remain fixed as a constant
input to Φ, and correspondingly, the predicted noise for that
value should be zero, since it is never corrupted by any noise.
Accordingly, we introduce a new denoising loss,

L(Θ) (10)

= EtEp(H)

∥∥∥ΦΘ(f̂
1
t , . . . , f̂

M
t , t,Z)− (ξ̂1t , . . . , ξ̂

M
t)

∥∥∥2 ,
where for each 1 ≤ k ≤M ,

f̂kt = fk0 ◦ hk + fkt ◦ (1− hk),

ξ̂kt = 0 ◦ hk + ξkt ◦ (1− hk). (11)

Here fk0 is the original function instance sampled at the spec-
ified locations Zk, fkt =

√
α̂tf

k
0 +
√
1− α̂tξ

k
t is the noisy

version of fk0 at step t, and ◦ denotes the element-wise prod-
uct. From (11), we can see ξ̂kt is mixed with zeros for the
conditioned part and the noises for the part to generate. The
zeros in ξ̂kt regularizes the network ΦΘ, preventing it from

producing excessively large perturbations in the conditioned
part. This encourages the model to better adhere to the
system’s underlying mechanism (e.g., governing equations)
during generation. See Fig. 1 for an illustration.

The choice of p(H) is flexible. We may randomly mask
individual observed values within each function and/or
randomly mask entire functions. In the absence of prior
knowledge or specific preferences, a natural choice is
to set the masking probability to 0.5, as it yields the
maximum masking variance (i.e., diversity). Our de-
noising loss (10) accommodates all possible conditional
components for conditioned sampling as well as uncondi-
tioned sampling (i.e., H consists of all zeros), allowing
our model to be trained for all kinds of tasks. We use
stochastic training, which involves randomly sampling the
mask H, applying it to the function and noise instances
as specified in (11), and computing the stochastic gra-

dient ∇Θ

∥∥∥ΦΘ(f̂
1
t , . . . , f̂

M
t , t,Z)− (ξ̂1t , . . . , ξ̂

M
t)

∥∥∥2 to up-
date the model parameters Θ.

3.3 Efficient Training and Sampling

The training and generation with our model requires repeat-
edly sampling noise functions from GPs, as specified in (7).
The sampling necessitates the Cholesky decomposition of
the covariance matrix K at the input locations, which has
a time complexity of O(N3), where N is the number of
input locations. When N is large, the computation becomes
prohibitively expensive or even infeasible. However, large
values of N is not uncommon in realistic systems. For in-
stance, generating a 2D function sample on a 128 × 128
mesh results in N = 128× 128 = 16, 384.

To address this challenge, we use a multiplicative kernel to
model the noise function. Given the input dimension D, we

4

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

construct the kernel with the following form,

κ(z, z′) =
∏D

d=1
κ(zj , z

′
j). (12)

Notably, the widely used Square Exponential (SE) kernel
already exhibits this structure: κSE(z, z

′) = exp(−∥z −
z′∥2/l2). We position the sampling locations for each tar-
get function fk

0 (·) on an m1 × . . .×mD mesh, denoted as
Zk = γ1×. . .×γD, where× denotes the Cartesian product,
and each γd (1 ≤ d ≤ D) comprises the md input locations
within dimension d. From the multiplicative kernel (12),

Algorithm 1 Training(Z1, . . . ,ZM , p(H))
1: repeat
2: Sample instances of the M functions of interest over

meshes {Zk}Mk=1, denoted by {f10 , . . . , fM0 }.
3: t ∼ Uniform(1, . . . , T)
4: Sample M noise functions from GPs over {Zk}Mk=1,

denoted by {ξ1t , . . . , ξMt }, where each ξkt corre-
sponds to fkt , using (12) and (13)

5: Sample the maskH = {h1, . . . ,hM} ∼ p(H)
6: Take gradient descent step on

∇Θ

∥∥∥ΦΘ(f̂
1
t , . . . , f̂

M
t , t,Z)− (ξ̂1t , . . . , ξ̂

M
t)

∥∥∥2 ,
where Z ∆

= {Zk}Mk=1, each f̂kt and ξ̂kt (1 ≤ k ≤M)
are masked instances as defined in (11).

7: until Converged

Algorithm 2 Generation (conditioned: Fc, target: Fs, target
locations: Zs

, all locations: Z = {Zk})
1: Sample noise functions from GPs over Z using (12)

and (13), denoted as ξ
2: Fs

T ← Subset of ξ at Zs

3: for t = T, . . . , 1 do
4: ϵ← 0
5: if t > 1 then
6: Re-sample ξ following STEP 1
7: ϵ← Subset of ξ at Zs

8: end if
9: ξt ← ΦΘ(F

c ∪ Fs
t , t,Z)

10: ξ
s

t ← Subset of ξt at Zs

11: Generate sample

Fs
t−1 =

1√
1− βt

(
Fs

t −
βt√
1− α̂t

ξ
s

t

)
+

√
β̂tϵ

12: end for
13: return Fs

0

we can induce a Kronecker product in the covariance matrix,

namely K
∆
= κ(Zk,Zk) = K1 ⊗ . . . ⊗ KD where each

Kd = κ(γd,γd). We then perform the Cholesky decompo-
sition on each local kernel matrix, yielding Kd = LdL

⊤
d .

Utilizing the properties of Kronecker products, we can de-
rive that K−1 = (L−1

1)⊤L−1
1 ⊗ . . .⊗(L−1

D)⊤L−1
D = A⊤A

where A = L−1
1 ⊗ . . . ⊗ L−1

D . Consequently, to generate
a sample of ξt on the mesh, we can first sample a standard
Gaussian variable η ∼ N (0, I), and then obtain the sample
as vec(ξt) = A⊤η where vec(·) denotes the vectorization.
Note that ξt is a m1 × . . .×mD tensor. However, directly
computing the Kronecker product in A and then evaluat-
ing A⊤η can be computationally expensive, with a time
complexity of O(m2), where m =

∏
d md represents the

total number of the mesh points. To reduce the cost, we use
tensor algebra (Kolda, 2006) to compute the Tucker prod-
uct instead, which gives the same result without explicitly
computing the Kronecker product,

ξkt = Π×1 L
−1
1 ×2 . . .×D L−1

D , (13)

where we reshape η into an m1 × . . . × mD tensor Π,
and ×k is the tensor-matrix product along mode k. The
time complexity of this operation becomes O(m(

∑
d md)).

Overall, this approach avoids computing the full covariance
matrix K for all the mesh points along with its Cholesky de-
composition, which would require O(m3) time and O(m2)
space complexity. Instead we only compute the local ker-
nel matrix for each input dimension. For example, when
using a 128× 128 mesh, the full covariance matrix would
be 1282 × 1282, which is highly expensive to compute. In
contrast, our approach requires the computation of only two
local kernel matrices, each of size 128× 128. Our approach
further uses the Tucker product to compute the noise func-
tion sample (see (13)), avoiding explicitly computing the ex-
pensive Kronecker product. As a result, the overall time and
space complexity is reduced to O(∑d m

3
d + m(

∑
d md))

and O(∑d m
2
d + m), respectively. This enables efficient

training and generation of our model. Finally, we summarize
our method in Algorithm 1 and 2.

4 Related Work

Generative modeling is a fundamental topic in machine
learning. The DDPM (Ho et al., 2020) is recent a break-
through, and numerous subsequent works have expanded
upon this direction, further advancing the field, such as
score-based diffusion via SDEs (Song et al., 2021b), denois-
ing diffusion implicit models (DDIM) (Song et al., 2021a),
and flow-matching (Lipman et al., 2022; Klein et al., 2023).
Recent works have explored diffusion models for inverse
problems, such as (Chung et al., 2023; Wang et al., 2023a;
Song et al., 2023). However, these approaches mainly train
an unconditional diffusion model, and then perform condi-
tional sampling at the inference stage.

A few recent works have explored diffusion models for

5

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

function generation, such as (Kerrigan et al., 2023) based
on DDPM, (Lim et al., 2023; Franzese et al., 2024) lever-
aging score- or SDE-based diffusion, (Zhang & Wonka,
2024) using DDIM, and (Kerrigan et al., 2024) with flow
matching. Our approach, which incorporates a GP noise
function into the DDPM framework, is conceptually sim-
ilar to (Kerrigan et al., 2023), where a GP is treated as a
special case of a Gaussian random element in their formu-
lation. However, the key distinction lies in the scope of
our work. Unlike prior methods focused on single-function
generation, our approach is designed for multi-functional
scenarios, simultaneously addressing diverse single- and
multi-functional generation tasks conditioned on varying
quantities and/or functions during inference. To achieve this,
we propose an arbitrarily conditioned multi-functional diffu-
sion framework that integrates a random masking strategy, a
zero-regularized denoising loss, and an efficient training and
sampling method. Our work is related to (Gloeckler et al.,
2024), which leverages score-based diffusion for simulation
and also uses a random masking strategy to fulfill flexible
conditional sampling. But (Gloeckler et al., 2024) does not
enforce zero regularization on the score model’s predictions
for the conditioned part. In contrast, our method incorpo-
rates zero regularization in the loss function to prevent the
denoising network from producing excessive artificial noise
to the conditioned part, thereby enhancing stability. A de-
tailed comparison is provided in Section 5. Another related
work is (Wang et al., 2023b), which introduces a score-based
diffusion model for multi-fidelity simulation. However, the
approach is not formulated as function generation and is
limited to a single prediction task.

Neural operator (NOs) aim to learn function-to-function
mappings from data, primarily for estimating PDE operators
from simulation data and performing forward predictions
of PDE solutions given new inputs (e.g., parameters, initial
and/or boundary conditions, source terms). Important works
include Fourier Neural Operators (FNO) (Li et al., 2022) and
Deep Operator Net (DONet) (Lu et al., 2021), which have
demonstrated promising prediction accuracy across various
benchmark PDEs (Lu et al., 2022). Many NO models have
been developed based on FNO and DONet, such as (Gupta
et al., 2021; Wen et al., 2022; Lu et al., 2022; Tran et al.,
2023). Li et al. (2024) developed an active learning method
to query multi-resolution data for enhancing FNO training
while reducing the data cost. Recent advances in kernel
operator learning have been made by Long et al. (2022),
Batlle et al. (2023), and Lowery et al. (2024).

5 Experiments

For evaluation, we considered four fundamental multi-
physics systems:

• Darcy Flow (D-F): a single-phase 2D Darcy flow sys-

tem that involves three functions: the permeability field
a, the flow pressure u, and the source term f .

• Convection Diffusion (C-D): a 1D convection-
diffusion system that involves three spatial-temporal
functions: the scalar field of the quantity of interest u,
the velocity field v, and the source function s.

• Diffusion Reaction (D-R): a 2D diffusion-reaction
system, for which we are interested in four spatial
functions: f1 and f2, which represent the activator and
inhibitor functions at time t = 2.5, and u1 and u2,
denoting the activator and inhibitor at t = 5.0.

• Torus Fluid (T-F): a viscous, incompressible fluid in
the unit torus, for which we are interested in seven
functions, including the source function f , the initial
vorticity field w0, and the vortocity fields w1, . . . , w5

at five different time steps t = 2, 4, 6, 8, 10.

The details about these systems, along with the preparation
of training and test data, are provided in Appendix Section A.

5.1 Predictive Performance Across Various Tasks

We first examined performance of ACM-FD across a vari-
ety of prediction tasks, each predicting one function using
another set of functions. These tasks address a wide range
of forward prediction and inverse inference problems. For
example, in the case of Darcy flow, predicting the pressure
field u given the permeability field a and the forcing term
f is a forward prediction task, while predicting a from u
and f , or predicting f from u and a, typically represents in-
verse problems. Due to the versatility of ACM-FD, a single
trained model can be used to perform all these tasks.

We compared with the following popular and state-of-the-
art operator learning methods: (1) Fourier Neural Operator
(FNO) (Li et al., 2020b), which performs channel lifting,
followed by a series of Fourier layers that execute linear
functional transformations using the fast Fourier transform
and then apply nonlinear transformations, ultimately culmi-
nating in a projection layer that produces the prediction. (2)
Deep Operator Net (DON) (Lu et al., 2021), which employs
a branch-net and a trunk-net to extract representations of
the input functions and querying locations, producing the
prediction by the dot product between the two representa-
tions. (3) PODDON (Lu et al., 2022), a variant of DON
where the trunk-net is replaced by the POD (PCA) bases ex-
tracted from the training data. (4) GNOT (Hao et al., 2023),
a transformer-based neural operator that uses cross-attention
layers to aggregate multiple input functions’ information for
prediction. We utilized the original implementation of each
competing method. In addition, we compared with (5) Sim-
former (Gloeckler et al., 2024), an attention based emulator
which also uses a random masking strategy to fulfill flexible
conditional generation. However, Simformer does not fit

6

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

Table 1. Relative L2 error for various prediction tasks. The results were averaged over five runs.

Dataset Task(s) ACM-FD FNO GNOT DON Simformer

D-F

f, u to a 1.32e-02 (2.18e-04) 1.88e-02 (1.66e-04) 1.35e-01 (6.57e-05) 2.38e-02 (3.45e-04) 1.18e-01 (3.00e-03)
a, u to f 1.59e-02 (1.59e-04) 2.37e-02 (1.87e-04) 1.00e+00 (0.00e+00) 3.76e-02 (7.75e-04) 4.11e-02 (2.87e-03)
a, f to u 1.75e-02 (4.16e-04) 6.29e-02 (4.18e-04) 6.09e-01 (2.40e-01) 6.05e-02 (7.17e-04) 4.04e-02 (5.17e-03)
u to a 3.91e-02 (7.08e-04) 5.57e-02 (4.16e-04) 1.35e-01 (1.99e-04) 5.08e-02 (5.91e-04) 1.44e-01 (4.23e-03)
u to f 3.98e-02 (6.45e-04) 5.50e-02 (5.47e-04) 9.99e-01 (7.48e-04) 6.46e-02 (1.13e-04) 1.06e-01 (3.98e-03)

C-D

s, u to v 2.17e-02 (4.53e-04) 4.50e-02 (3.89e-04) 3.26e-02 (3.41e-03) 3.64e-02 (5.07e-04) 3.96e-01 (4.79e-02)
v, u to s 5.45e-02 (1.40e-03) 7.93e-02 (8.48e-04) 1.22e-01 (1.91e-03) 7.04e-02 (7.53e-04) 5.76e-02 (7.10e-02)
v, s to u 1.60e-02 (2.15e-04) 7.26e-02 (2.16e-04) 5.80e-03 (1.51e-04) 7.86e-02 (7.42e-04) 1.03e-01 (1.95e-02)
u to v 2.66e-02 (3.08e-04) 5.90e-02 (8.22e-04) 6.69e-02 (3.66e-03) 4.55e-02 (6.09e-04) 5.108-01 (7.56e-02)
u to s 6.06e-02 (2.54e-04) 1.16e-01 (5.63e-04) 1.85e-01 (2.84e-03) 9.65e-02 (5.52e-04) 9.21e-01 (1.00e-01)

D-R

f1, u1 to f2 1.44e-02 (8.96e-04) 1.07e-02 (1.92e-04) 4.53e-01 (4.34e-02) 2.93e-01 (1.29e-03) 3.39e-02 (2.97e-03)
f1, u1 to u2 1.59e-02 (3.68e-04) 2.02e-02 (2.42e-04) 3.91e-01 (1.86e-02) 2.03e-01 (2.22e-03) 3.67e-02 (2.36e-03)
f2, u2 to f1 4.10e-02 (8.93e-04) 5.52e-02 (3.01e-03) 6.53e-01 (2.04e-02) 4.24e-01 (9.26e-04) 1.21e-01 (3.11e-03)
f2, u2 to u1 5.86e-02 (3.43e-04) 7.82e-02 (1.29e-04) 4.88e-01 (2.92e-02) 2.98e-01 (2.61e-03) 1.01e-01 (2.70e-03)

T-F

w0, w5 to w1 2.73e-02 (4.78e-03) 1.28e-02 (2.38e-04) 2.40e-02 (8.74e-04) 6.32e-02 (2.72e-04) 6.14e-02 (2.44e-03)
w0, w5 to w2 2.43e-02 (1.60e-03) 2.08e-02 (9.80e-05) 4.00e-02 (5.92e-04) 7.69e-02 (4.41e-04) 6.99e-02 (2.18e-03)
w0, w5 to w3 2.43e-02 (3.17e-03) 2.33e-02 (1.83e-04) 4.74e-02 (1.23e-03) 7.34e-02 (2.88e-04) 8.34e-02 (2.60e-03)
w0, w5 to w4 1.68e-02 (1.81e-03) 1.41e-02 (1.17e-04) 3.95e-02 (6.73e-04) 5.57e-02 (1.73e-04) 9.75e-02 (3.93e-03)
w0, w5 to f 1.63e-02 (1.49e-03) 1.79e-02 (3.04e-04) 5.91e-02 (4.01e-03) 4.77e-02 (5.56e-04) 1.14e-01 (4.00e-03)
w0, f to w1 3.10e-02 (4.08e-03) 9.68e-03 (3.22e-04) 2.09e-02 (3.62e-04) 6.08e-02 (3.14e-04) 6.06e-02 (2.03e-03)
w0, f to w2 3.28e-02 (4.79e-03) 1.70e-02 (3.51e-04) 4.15e-02 (8.21e-04) 7.73e-02 (6.18e-04) 6.18e-02 (1.02e-03)
w0, f to w3 3.49e-02 (2.38e-03) 2.38e-02 (8.37e-05) 5.61e-02 (8.23e-04) 8.82e-02 (4.45e-04) 5.67e-02 (1.83e-03)
w0, f to w4 3.34e-02 (3.87e-03) 3.10e-02 (1.26e-04) 6.97e-02 (1.62e-03) 1.02e-01 (7.28e-04) 4.10e-02 (1.98e-03)
w0, f to w5 3.26e-02 (2.13e-03) 3.81e-02 (2.01e-04) 8.35e-02 (7.33e-04) 1.21e-01 (8.20e-04) 1.18e-01 (4.15e-03)

zero values for the conditioned part as in our model; see
Equations (10) and (11). The original Simfomer was devel-
oped with score-based diffusion (Song et al., 2021b). For a
fair comparison, we adapted Simformer to the DDPM frame-
work, and reimplemented it using PyTorch. Our method,
ACM-FD, was implemented with PyTorch as well. For GP
noise function sampling, we used the Square-Exponential
(SE) kernel. In all the experiments, we used FNO to con-
struct our denoising network ΦΘ. Thereby, our comparison
with FNO can exclude the factors from the architecture de-
sign. We combined two types of random masking: one that
masks individual observed values within each function, and
the other that masks entire functions, both with a masking
probability of 0.5. The corresponding denoising losses for
these two masking strategies (see (10)) are summed to form
the final loss used for training the model.

We utilized 1,000 instances for training, 100 instances for
validation, and 200 instances for testing. Hyperparameter
tuning was performed using the validation set. The details
are provided in Appendix Section B. Following the evalu-
ation procedure in (Lu et al., 2022), for each method, we
selected the optimal hyperparameters, and then conducted
stochastic training for five times, reporting the average rel-
ative L2 test error along with the standard deviation. The
results are presented in Table 1. Due to the space limit,
the comparison results with PODDON are provided in Ap-
pendix Table 5.

As we can see, ACM-FD consistently achieves top-tier pre-

dictive performance across all the tasks. In Darcy Flow
(D-F), Convection Diffusion (C-D) and Diffusion Reaction
(D-R), ACM-FD outperforms FNO in all tasks except for
the f1, u1 to f2 mapping. In the Torus Fluid (T-F) system,
while ACM-FD ranks second, its performance remains close
to that of FNO. Furthermore, the performance of ACM-FD
is consistently better than Simformer and other neural oper-
ators, including GNOT, DON and PODDON (see Table 5
in the Appendix). Despite being specifically optimized for
each task, those neural operators are constantly worse than
our method, underscoring the advantage of training a single,
versatile model. The observed improvement of Simformer
over GNOT in many cases (both are based on transformer
architectures) also implied the effectiveness of this strategy.

5.2 Generation Performance

We then evaluated the generation performance of ACM-FD
by using it to generate instances of all relevant functions
for the Darcy Flow, Convection Diffusion and Torus Fluid
systems. We compared ACM-FD with two methods. The
first one is multi-function diffusion (MFD) solely for gen-
erating all the functions. We used the same architecture as
ACM-FD but trained the model unconditionally, in accor-
dance with the standard DDPM framework (see (9)). The
second method is β-VAE (Higgins et al., 2022), a widely
used Variational Auto-Encoder (VAE), where β controls the
regularization strength from the prior. The encoder network
was built using a series of convolutional layers, while the

7

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

decoder network was constructed as the transpose of these
layers. For training and hyperparameter tuning of β-VAE,
we used the same training and validation sets as those used
by ACM-FD in Section 5.1. The details are provided in
Appendix Section B.

We used two metrics to evaluate the quality of the generated
data. The first is the equation error, which measures how
well the generated data adheres to the governing equations
of the system. To calculate this error, for each group of
sampled source function, parameter function, and/or initial
conditions, we ran the numerical solver — the same one
used to generate the training data — to solve the govern-
ing equation(s), and then computed the relative L2 error
between the generated solution and the numerical solution.
The second metric is the Mean-Relative-Pairwise-Distance
(MRPD), which measures the diversity of the generated
data (Yuan & Kitani, 2020; Barquero et al., 2023; Tian et al.,
2024). It is worth noting that since there is no large pre-
trained inception network tailored to encompass all types
of functions across numerous multi-physics systems, the
popular FID score (Heusel et al., 2017) is not applicable to
our evaluation.

For each system, we generated 1,000 sets of the relevant
functions. The average equation error and MRPD are pre-
sented in Table 2. As shown, the functions generated by
ACM-FD and MFD consistently exhibit relatively small
equation errors, indicating strong alignment with the phys-
ical laws governing each system. In contrast, the equa-
tion errors for functions generated by β-VAE are signifi-
cantly larger, often by an order of magnitude. Furthermore,
the data generated by ACM-FD and MFD demonstrates a
higher MRPD compared to β-VAE, indicating better diver-
sity among the generated function instances. For the func-
tions generated by ACM-FD and MFD, both the equation
error and MRPD are comparable. Specifically, in Darcy
Flow (D-F) and Convection Diffusion (C-D), ACM-FD
achieves smaller equation errors and higher MRPD, while
in Torus Fluid (T-F), the metrics for ACM-FD are slightly
worse. These results suggest that ACM-FD, despite being
trained for a variety of prediction and conditional generation
tasks, still achieves comparable unconditional generation
performance to the diffusion model trained purely for un-
conditional generation. Overall, these findings indicate that
ACM-FD is capable of producing multi-physics data that is
not only reliable but also diverse. In Appendix Section C,
we provide examples of the functions generated by each
method, along with detailed discussion and analysis.

5.3 Completion Performance

Third, we evaluated ACM-FD on the task of completing
functions in unobserved domains. Specifically, we tested
ACM-FD on Darcy Flow (D-F) and Convection Diffusion

Table 2. Equation relative L2 error and diversity of generated data
for the whole system. MRPD is short for Mean Relative Pairwise
Distance.

System Task(s) ACM-FD MFD β-VAE

D-F Equation Error 0.0576 0.0584 0.265
MRPD 1.15 0.980 0.932

C-D Equation Error 0.114 0.127 0.282
MRPD 1.00 0.971 0.879

T-F Equation Error 0.0273 0.0234 0.737
MRPD 0.8042 0.9537 0.524

Table 3. Relative L2 error for function completion. Each function
is sampled in one half of the domain, while the other half is com-
pleted using different methods.

Dataset Task(s) ACM-FD MFD-Inpaint Interp

D-F
a 1.21e-02 7.94e-02 1.04e-01
f 1.23e-02 6.41e-02 6.98e-01
u 1.09e-02 2.71e-02 8.07e-01

C-D
v 1.87e-02 4.71e-01 8.30e-01
s 3.39e-02 3.22e-01 6.49e-01
u 1.45e-02 3.47e-02 8.97e-01

(C-D) systems. For each function, we provided samples
from half of the domain and used ACM-FD to predict the
function values in the other half. To benchmark perfor-
mance, we adapted our multi-functional diffusion (MFD)
framework to the DDPM inpainting approach proposed
in (Lugmayr et al., 2022), which we refer to as MFD-Inpaint.
This method trains MFD unconditionally as in Section 5.2.
During the completion process, the observed function values
are perturbed using the forward process, and these perturbed
values, along with noise for the unobserved function values,
are passed into the denoising network. Additionally, we
compared ACM-FD with the interpolation strategy, which is
commonly used in scientific and engineering domains. We
employed scipy.interpolate.griddata for inter-
polation. We denote this method as Interp. The relative L2

error for each method is presented in Table 3. As shown,
ACM-FD consistently achieves much lower errors compared
to both MFD-Inpaint and Interp. The superior performance
of ACM-FD over MFD-Inpaint might be attributed to its
explicitly conditional training strategy, which allows ACM-
FD to leverage conditioned information more effectively
during completion. It is also noteworthy that both ACM-FD
and MFD-Inpaint substantially outperform classical inter-
polation, demonstrating that diffusion-based modeling is
far more effective for inferring unknown function values.
Completion examples for each method are visualized in
Appendix Fig. 6.

8

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

Table 4. Empirical Coverage Probability (ECP) under confidence
levels α ∈ {0.9, 0.95, 0.99}. Best results per task are in boldface.

Dataset Task Method 0.9 0.95 0.99

C-D

s, u to v
ACM-FD 0.833 0.880 0.921
Simformer 0.736 0.814 0.871

v, u to s
ACM-FD 0.766 0.842 0.913
Simformer 0.683 0.767 0.879

v, s to u
ACM-FD 0.939 0.968 0.990
Simformer 0.695 0.771 0.858

u to v
ACM-FD 0.821 0.870 0.922
Simformer 0.775 0.850 0.912

u to s
ACM-FD 0.920 0.949 0.972
Simformer 0.716 0.773 0.823

D-F

a, u to f
ACM-FD 0.947 0.974 0.991
Simformer 0.829 0.895 0.950

a, f to u
ACM-FD 0.985 0.994 0.998
Simformer 0.922 0.955 0.998

u to f
ACM-FD 0.867 0.909 0.952
Simformer 0.918 0.953 0.980

5.4 Uncertainty Quantification

Fourth, we assessed the quality of uncertainty calibra-
tion provided by ACM-FD. To this end, we examined the
empirical coverage probability (Dodge, 2003): ECP =
1
N

∑N
i=1 I(yi ∈ Cα), where yi is the ground-truth func-

tion value, and Cα is the α confidence interval derived from
100 predictive samples generated by our method. We var-
ied α from {90%, 95%, 99%}, and examined our method
in eight prediction tasks across the Convection-Diffusion
(C-D) and Darcy Flow (D-F) systems. We compared against
Simformer. Note that all the other competing methods are
deterministic and therefore unable to perform uncertainty
quantification. As shown in Table 4, in most cases our
method achieves coverage much closer to α, showing supe-
rior quality in the estimated confidence intervals.

Additionally, we visualized prediction examples along with
their uncertainties, measured by predictive standard devia-
tion (std). As shown in Figure 2, more accurate predictions
tend to have lower std, i.e., low uncertainty, while regions
with larger prediction errors correspond to higher std —
providing further qualitative evidence that our uncertainty
estimates are well-aligned with prediction quality.

5.5 Ablation Studies

Finally, we conducted ablation studies to assess the contribu-
tion of the key components in ACM-FD, including random
masking strategy, masking probability p, and Kronecker
product-based computation. The results and analysis, as
presented in Appendix Section D, confirm the effectiveness
of each component.

Ground Truth Mean Prediction Absolute Error Standard Deviation

0.048

0.036

0.024

0.012

0.000

0.012

0.024

0.036

0.048

0.048

0.036

0.024

0.012

0.000

0.012

0.024

0.036

0.048

0.00000

0.00024

0.00048

0.00072

0.00096

0.00120

0.00144

0.00168

0.00192

0.00010

0.00025

0.00040

0.00055

0.00070

0.00085

0.00100

0.00115

0.00130

0.00145

(a) D-F: u to f .

0.016

0.012

0.008

0.004

0.000

0.004

0.008

0.012

0.016

0.012

0.008

0.004

0.000

0.004

0.008

0.012

0.000000

0.000075

0.000150

0.000225

0.000300

0.000375

0.000450

0.000525

0.000600

0.000675

0.00010

0.00014

0.00018

0.00022

0.00026

0.00030

0.00034

0.00038

0.00042

(b) D-F: a, u to f .

0.00048

0.00024

0.00000

0.00024

0.00048

0.00072

0.00096

0.00048

0.00024

0.00000

0.00024

0.00048

0.00072

0.00096

0.0

0.9

1.8

2.7

3.6

4.5

5.4

6.3

7.2

8.1

1e 6

2.25

2.70

3.15

3.60

4.05

4.50

4.95

5.40

5.85

6.30
1e 6

(c) D-F: a, f to u.

0.30

0.15

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

0.30

0.15

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

0.000

0.006

0.012

0.018

0.024

0.030

0.036

0.042

0.048

0.054

0.0040

0.0064

0.0088

0.0112

0.0136

0.0160

0.0184

0.0208

0.0232

0.0256

(d) C-D: s, u to v.

0.5

2.5

4.5

6.5

8.5

10.5

12.5

14.5

0.6

2.4

4.2

6.0

7.8

9.6

11.4

13.2

15.0

16.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

(e) C-D: v, u to s.

Figure 2. Visualizations of ACM-FD predictions.

6 Conclusion

We have presented ACM-FD, a novel probabilistic genera-
tive model designed for multi-physics emulation. ACM-FD
can perform arbitrarily-conditioned multi-function sampling
and has demonstrated potential in several classical systems.
In future work, we plan to extend our investigations into
more complex multi-physics systems and explore alternative
architecture designs to further extend its capabilities.

Acknowledgements

SZ, DL and ZX acknowledge the support of MURI
AFOSR grant FA9550-20-1-0358, NSF CAREER Award
IIS-2046295, NSF OAC-2311685, and Margolis Founda-
tion. AN acknowledges the support of the grant AFOSR
FA9550-23-1-0749. This work has also leveraged NCSA
Delta GPU cluster from NCF Access program under Project
CIS240255.

Impact Statement

This paper presents work whose goal is to advance machine
learning for multi-physics emulation. There are many po-

9

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

tential societal consequences of our work, none of which
we feel must be specifically highlighted here.

References

Barquero, G., Escalera, S., and Palmero, C. Belfusion:
Latent diffusion for behavior-driven human motion pre-
diction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2317–2327, 2023.

Batlle, P., Darcy, M., Hosseini, B., and Owhadi, H. Kernel
methods are competitive for operator learning. arXiv
preprint arXiv:2304.13202, 2023.

Chung, H., Kim, J., McCann, M. T., Klasky, M. L., and
Ye, J. C. Diffusion posterior sampling for general noisy
inverse problems. In 11th International Conference on
Learning Representations (ICLR), 2023.

Dodge, Y. The Oxford dictionary of statistical terms. Ox-
ford University Press, USA, 2003.

Franzese, G., Corallo, G., Rossi, S., Heinonen, M., Filip-
pone, M., and Michiardi, P. Continuous-time functional
diffusion processes. Advances in Neural Information
Processing Systems, 36, 2024.

Gloeckler, M., Deistler, M., Weilbach, C., Wood, F., and
Macke, J. H. All-in-one simulation-based inference.
arXiv preprint arXiv:2404.09636, 2024.

Gupta, G., Xiao, X., and Bogdan, P. Multiwavelet-based
operator learning for differential equations. Advances in
neural information processing systems, 34:24048–24062,
2021.

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu,
S., Cheng, Z., Song, J., and Zhu, J. Gnot: A gen-
eral neural operator transformer for operator learning.
In International Conference on Machine Learning, pp.
12556–12569. PMLR, 2023.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. GANs trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. beta-
VAE: Learning basic visual concepts with a constrained
variational framework. In International Conference on
Learning Representations, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion
probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020.

Kennedy, M. C. and O’Hagan, A. Predicting the output
from a complex computer code when fast approximations
are available. Biometrika, 87(1):1–13, 2000.

Kerrigan, G., Ley, J., and Smyth, P. Diffusion gener-
ative models in infinite dimensions. In International
Conference on Artificial Intelligence and Statistics, pp.
9538–9563. PMLR, 2023.

Kerrigan, G., Migliorini, G., and Smyth, P. Functional
flow matching. In International Conference on Artificial
Intelligence and Statistics, pp. 3934–3942. PMLR, 2024.

Klein, L., Krämer, A., and Noé, F. Equivariant flow
matching. Advances in Neural Information Processing
Systems, 36, 2023.

Kolda, T. G. Multilinear operators for higher-order
decompositions, volume 2. United States. Department of
Energy, 2006.

Kovachki, N. B., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A. M., and Anandkumar, A. Neural
operator: Learning maps between function spaces with
applications to pdes. J. Mach. Learn. Res., 24(89):1–97,
2023.

Li, S., Wang, Z., Kirby, R. M., and Zhe, S. Deep
multi-fidelity active learning of high-dimensional out-
puts. Proceedings of the Twenty-Fifth International
Conference on Artificial Intelligence and Statistics,
2022.

Li, S., Yu, X., Xing, W., Kirby, R., Narayan, A., and
Zhe, S. Multi-resolution active learning of Fourier neu-
ral operators. In International Conference on Artificial
Intelligence and Statistics, pp. 2440–2448. PMLR, 2024.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020a.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Bhattacharya,
K., Stuart, A., Anandkumar, A., et al. Fourier neural op-
erator for parametric partial differential equations. In
International Conference on Learning Representations,
2020b.

Lim, J. H., Kovachki, N. B., Baptista, R., Beckham, C.,
Azizzadenesheli, K., Kossaifi, J., Voleti, V., Song, J.,
Kreis, K., Kautz, J., et al. Score-based diffusion models in
function space. arXiv preprint arXiv:2302.07400, 2023.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. arXiv
preprint arXiv:2210.02747, 2022.

10

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

Long, D., Mrvaljevic, N., Zhe, S., and Hosseini, B. A kernel
approach for PDE discovery and operator learning. arXiv
preprint arXiv:2210.08140, 2022.

Lowery, M., Turnage, J., Morrow, Z., Jakeman, J. D.,
Narayan, A., Zhe, S., and Shankar, V. Kernel neu-
ral operators (KNOs) for scalable, memory-efficient,
geometrically-flexible operator learning. arXiv preprint
arXiv:2407.00809, 2024.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via deeponet based on the
universal approximation theorem of operators. Nature
machine intelligence, 3(3):218–229, 2021.

Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang,
Z., and Karniadakis, G. E. A comprehensive and fair
comparison of two neural operators (with practical exten-
sions) based on fair data. Computer Methods in Applied
Mechanics and Engineering, 393:114778, 2022.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte,
R., and Van Gool, L. Repaint: Inpainting using denoising
diffusion probabilistic models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 11461–11471, 2022.

Mitchell, A. R. and Griffiths, D. F. The finite difference
method in partial differential equations. Number BOOK.
John Wiley, 1980.

Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes
for Machine Learning. MIT Press, 2006.

Razavi, S., Tolson, B. A., and Burn, D. H. Review of
surrogate modeling in water resources. Water Resources
Research, 48(7), 2012.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In International Conference on Learning
Representations, 2021a.

Song, J., Vahdat, A., Mardani, M., and Kautz, J.
Pseudoinverse-guided diffusion models for inverse
problems. In International Conference on Learning
Representations, 2023.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A.,
Ermon, S., and Poole, B. Score-based generative
modeling through stochastic differential equations. In
International Conference on Learning Representations,
2021b. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D.,
Alesiani, F., Pflüger, D., and Niepert, M. PDEBench:
An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:
1596–1611, 2022.

Tian, S., Zheng, M., and Liang, X. Transfusion: A prac-
tical and effective transformer-based diffusion model
for 3D human motion prediction. IEEE Robotics and
Automation Letters, 2024.

Tran, A., Mathews, A., Xie, L., and Ong, C. S. Factorized
Fourier neural operators. In The Eleventh International
Conference on Learning Representations, 2023.

Wainwright, M. J., Jordan, M. I., et al. Graphical models, ex-
ponential families, and variational inference. Foundations
and Trends® in Machine Learning, 1(1–2):1–305, 2008.

Wang, Y., Yu, J., and Zhang, J. Zero-shot im-
age restoration using denoising diffusion null-space
model. In The Eleventh International Conference on
Learning Representations, 2023a. URL https://
openreview.net/forum?id=mRieQgMtNTQ.

Wang, Z., Li, S., Fang, S., and Zhe, S. Diffusion-generative
multi-fidelity learning for physical simulation. arXiv
preprint arXiv:2311.05606, 2023b.

Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A., and
Benson, S. M. U-FNO—an enhanced Fourier neural
operator-based deep-learning model for multiphase flow.
Advances in Water Resources, 163:104180, 2022.

Yuan, Y. and Kitani, K. Dlow: Diversifying latent flows
for diverse human motion prediction. In Computer
Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part
IX 16, pp. 346–364. Springer, 2020.

Zhang, B. and Wonka, P. Functional diffusion. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4723–4732, 2024.

Zienkiewicz, O. C., Taylor, R. L., Zienkiewicz, O. C., and
Taylor, R. L. The finite element method, volume 36.
McGraw-hill London, 1977.

11

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=mRieQgMtNTQ
https://openreview.net/forum?id=mRieQgMtNTQ

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

Appendix

A Mulit-Physics Systems Details

A.1 Darcy Flow

We considered a single-phase 2D Darcy flow system, which is governed by the following PDE,

−∇ · (a(x)∇u(x)) = f(x) x ∈ (0, 1)2

u(x) = 0, x ∈ ∂(0, 1)2, (14)

where a(x) is the permeability field, u(x) is the fluid pressure, and f(x) is the external source, representing sources
or sinks of the fluid. To obtain one instance of the triplet (a, f, u), we sampled f from a Gauss random field: f ∼
N (0, (−∆+25)−

15
2), and a from the exponential of a Gaussian random field: a = exp(g) where g ∼ N (0, (−∆+16)−2).

We then ran a second-order finite-difference solver to obtain u at a 256× 256 mesh. We extracted each function instance
from a 64× 64 sub-mesh.

A.2 Convection Diffusion

We considered a 1D convection-diffusion system, governed by the following PDE,

∂u(x, t)

∂t
+∇ · (v(x, t)u(x, t)) = D∇2u(x, t) + s(x, t), (15)

where (x, t) ∈ [−1, 1] × [0, 1], u(x, 0) = 0, D is the diffusion coefficient and was set to 0.01, v(x, t) is the convection
velocity, describing how fast the substance is transported due to the flow, s(x, t) is the source term, representing the external
force, and u(x, t) is the quantity of interest, such as the temperature, concentration and density. We employed a parametric
form for v and a: v(x, t) =

∑3
n=1 anx

n + a4t, and s(x, t) = α exp(−β(x+ t)2) + γ cos(η · π(x− 0.1t)), where all an,
α, β, γ, η are sampled from Uniform(−1, 1). We used the MATLAB PDE solver pdepe1 to obtain the solution for u. The
spatial-temporal domain was discretized into a 512 × 256 mesh. We extracted the function instances of interest from a
64× 64 equally-spaced sub-mesh.

A.3 Diffusion Reaction

We used the 2D diffusion-reaction dataset provided from PDEBench (Takamoto et al., 2022). The dataset was simulated
from a 2D diffusion-reaction system, which involves an activator function v1(t, x, y) and an inhibitor function v2(t, x, y).
These two functions are non-linearly coupled. The governing equation is given as follows.

∂v1
∂t

= D1
∂2v1
∂x2

+D1
∂2v1
∂y2

+ v1 − v31 − k − v2,

∂v2
∂t

= D2
∂2v2
∂x2

+D2
∂2v2
∂y2

+ v1 − v2, (16)

where x, y ∈ (−1, 1), t ∈ (0, 5], k = 0.005, and the diffusion coefficients D1 = 0.001 and D2 = 0.005. The initial
condition is generated from the standard Gaussian distribution. The numerical simulation process is detailed in (Takamoto
et al., 2022). We are interested in four functions: f1 = v1(2.5, x, y), f2 = v2(2.5, x, y), u1 = v1(5.0, x, y) and u2 =
v2(5.0, x, y). We extracted each function instance from a 64× 64 sub-mesh from the numerical solutions.

A.4 Torus Fluid

We considered a vicous, incompressive fluid on the unit torus. The governing equation in vorticity form is given by

∂w(x, t)

∂t
+ u · ∇w(x, t) = ν∇2w(x, t) + f(x), (17)

w(x, 0) = w0(x), (18)

1https://www.mathworks.com/help/matlab/math/partial-differential-equations.html

12

https://www.mathworks.com/help/matlab/math/partial-differential-equations.html

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

where x ∈ [0, 1]2, t ∈ [0, 10], ν = 0.001, u is the velocity field that ∇ · u = 0, w(x, t) is the vorticity function, and
f(x) is the source function that represents the external forces. We are interested in seven spatial functions: the initial
condition w0, the source function f , and the vortocity fields at time steps t = 2, 4, 6, 8, 10, denoted as w1, w2, w3,
w4, and w5. We employed a parametric form for w0 and f : w0(x) = [sin(α1π(x1 + β1)), sin(α2π(x1 + β2))] · Λ ·
[cos(α1π(x2 + β1)), cos(α2π(x2 + β2))]

T , where α1, α2 ∼ Uniform(0.5, 1), β1, β2 ∼ Uniform(0, 1), and each [Λ]ij ∼
Uniform(−1, 1), and f(x1, x2) = 0.1 [a sin(2π(x1 + x2 + c)) + b cos(2π(x1 + x2 + d)] where a, b ∼ Uniform(0, 2) and
c, d ∼ Uniform(0, 0.5). We used the finite-difference solver as provided in (Li et al., 2020b) to obtain the solution of
{w1, w2, w3, w4, w5}. The spatial domain was discretized to a 128 × 128 mesh. Again, to prepare the training and test
datasets, we extracted the function instances from a 64× 64 sub-mesh.

B Hyperparameter Selection

In the experiment, we used the validation dataset to determine the optimal hyperparameters for each method. The set of the
hyperparameters and their respective ranges are listed as follows.

• FNO: the hyperparameters include the number of modes, which varies from {12, 16, 18, 20, 24}, the number of
channels for channel lifting, which varies from {64, 128, 256}, and the number of Fourier layers, which varies from {2,
3, 4, 5}. We used GELU activation, the default choice in the original FNO library2.

• DON: the hyperparameters include the number of convolution layers in the branch net, which varies from {3, 5, 7}, the
kernel size in the convolution layer, which varies from {3, 5, 7}, the number of MLP layers in the truck net, which
varies from {3, 4, 5}, the output dimension of the branch net and trunk net, which varies from {64, 128, 256}, and the
activation, which varies from {ReLU, Tanh}.

• PODDON: the hyperparameters include the number of bases, varying from {128, 256, 512}, the number of convolution
layers in the branch net, varying from {3, 5, 7}, the kernel size, varying from {3, 5, 7}, the output dimension of the
branch net and trunk net, varying from {64, 128, 256}, and the activation, varying from {ReLU, Tanh}.

• GNOT: the hyperparameters include the number of attention layers, varying from {3, 4, 5}, the dimensions of the
embeddings, varying from {64, 128, 256}, and the inclusion of mixture-of-expert-based gating, specified as either {yes,
no}. We used GeLU activation, the default choice of the original library3.

• Simformer (Gloeckler et al., 2024): the original Simformer was developed and tested on a small number of tokens. To
handle a large number of sampling locations, which in our experiments amounts to 64× 64 = 4, 096, we employed the
linear attention mechanism as used in GNOT. The number of attention layers was varied from {3,4, 5}. The dimensions
of the embeddings were selected from {128, 256, 512}. The activation was selected from {GELU, ReLU, Tanh}.

• ACM-FD: the hyperparameters include the number of modes, which varies from {12, 16, 18, 20, 24}, the number of
channels for channel lifting, which varies from {64, 128, 256}, the number of Fourier layers from, which varies from
{3, 4, 5}, the length-scale of the SE kernel, which varies from {1e-2, 5e-3, 1e-3, 5e-4, 1e-4}. We used GELU activation.

• β-VAE: the hyperparameters include β, varying from {1e1, 1e-1, 1e-3, 1e-4, 1e-5, 1e-6}, the rank, varying from {16,
32, 64, 128, 256}, and the number of convolution layers in the decoder and encoder networks, varying from from {1, 2,
3, 4}. We employed the GELU activation and fixed the kernel size to be 3.

For FNO, DON, PODDON and GNOT, each task underwent an independent hyperparameter tuning process to identify the
optimal hyperparameters specific to that task. In other words, each model was retrained from scratch for each individual
task. For example, solving ten tasks would result in ten distinct FNO models. In contrast, for Simformer and ACM-FD, the
model was trained only once, where the validation error is defined as the summation of the relative L2 error across all the
tasks. The same model is used for inference on every task. Note that, β-VAE is only trained for data generation (not for any
prediction ask). The tuning of β-VAE is guided by the reconstruction error on the validation dataset.

2https://github.com/neuraloperator/neuraloperator
3https://github.com/HaoZhongkai/GNOT

13

https://github.com/neuraloperator/neuraloperator
https://github.com/HaoZhongkai/GNOT

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

a g u u-sol

(a) Darcy Flow

v s u u-sol

v s u u-sol

(b) Convection Diffusion

w0 f w1 w1-sol w3 w3-sol w5 w5-sol

(c) Torus Fluid

Figure 3. Function instances generated by ACM-FD (top row), by MFD (middle row), and by β-VAE (third row). "-sol" means the
numerical solution provided by the numerical solvers given the other functions.

C Multi-physics System Generation

We investigated the functions generated by each method. Figure 3 illustrates a set of functions randomly generated by
ACM-FD, MFD, and β-VAE for Darcy Flow, Convection Diffusion and Torus Fluid systems. More examples are provided
in Figure 4 and 5. As we can see, the generated solutions from both ACM-FD and MFD are highly consistent with the
numerical solutions, accurately capturing both the global structures and finer details. In contrast, the solutions produced by
β-VAE often fail to capture local details (see Fig. 3a for u and Fig. 3c for w1) or significantly deviate from the numerical
solution in terms of overall shape (see Fig. 3b for u and Fig. 3c for w3). In addition, other functions generated by β-VAE,
such as (a, g) for Darcy Flow and (v, s) for Convection Diffusion, appear quite rough and do not align well with the
corresponding function families (see Section A). This might be due to that β-VAE is incapable of capturing the correlations
between function values across different input locations. In contrast, ACM-FD introduces GP noise functions and performs
diffusion and denoising within the functional space. As a result, ACM-FD is flexible enough to effectively capture the
diverse correlations between function values. Overall, these results confirm the advantages of our method in multi-physics

14

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

a g u u-sol

(a) Darcy Flow

v s u u-sol

(b) Convection Diffusion

w0 f w1 w1-sol w3 w3-sol w5 w5-sol

(c) Torus Fluid

Figure 4. More generated function instances by ACM-FD. "-sol" means the numerical solution provided by the numerical solvers given
the other functions.

15

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

a g u u-sol

(a) Darcy Flow

v s u u-sol

(b) Convection Diffusion

w0 f w1 w1-sol w3 w3-sol w5 w5-sol

(c) Torus Fluid

Figure 5. More generated function instances by MFD. "-sol" means the numerical solution provided by the numerical solvers given the
other generated functions.

16

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

data generation.

Table 5. Relative L2 error of ACM-FD vs. PODDON for various prediction tasks. The results were averaged over five runs. D-F, C-D and
T-F are short for Darcy Flow, Convection Diffusion, and Torus Fluid Systems.

Dataset Task(s) ACM-FD PODDON

D-F

f, u to a 1.32e-02 (2.18e-04) 1.56e-02 (1.44e-04)
a, u to f 1.59e-02 (1.59e-04) 4.63e-02 (1.21e-03)
a, f to u 1.75e-02 (4.16e-04) 6.80e-02 (2.16e-04)
u to a 3.91e-02 (7.08e-04) 4.09e-02 (4.18e-04)
u to f 3.98e-02 (6.45e-04) 6.37e-02 (1.03e-03)

C-D

s, u to v 2.17e-02 (4.53e-04) 4.62e-02 (2.00e-04)
v, u to s 5.45e-02 (1.40e-03) 7.57e-02 (4.09e-04)
v, s to u 1.60e-02 (2.15e-04) 1.72e-01 (1.17e-03)
u to v 2.66e-02 (3.08e-04) 5.38e-02 (5.29e-04)
u to s 6.06e-02 (2.54e-04) 1.03e-01 (1.29e-03)

D-R

f1, u1 to f2 1.44e-02 (8.96e-04) 3.85e-01 (2.00e-04)
f1, u1 to u2 1.59e-02 (3.68e-04) 2.67e-01 (4.09e-04)
f2, u2 to f1 4.10e-02 (8.93e-04) 5.09e-01 (1.17e-03)
f2, u2 to u1 5.86e-02 (3.43e-04) 3.70e-01 (5.29e-04)

T-F

w0, w5 to w1 2.73e-02 (4.78e-03) 6.06e-02 (2.91e-04)
w0, w5 to w2 2.43e-02 (1.60e-03) 7.71e-02 (1.63e-04)
w0, w5 to w3 2.43e-02 (3.17e-03) 7.38e-02 (2.92e-04)
w0, w5 to w4 1.68e-02 (1.81e-03) 5.38e-02 (2.18e-04)
w0, w5 to f 1.63e-02 (1.49e-03) 4.94e-02 (9.02e-04)
w0, f to w1 3.10e-02 (4.08e-03) 5.54e-02 (6.45e-04)
w0, f to w2 3.28e-02 (4.79e-03) 7.40e-02 (2.01e-04)
w0, f to w3 3.49e-02 (2.38e-03) 8.60e-02 (5.16e-04)
w0, f to w4 3.34e-02 (3.87e-03) 9.74e-02 (4.21e-04)
w0, f to w5 3.26e-02 (2.13e-03) 1.16e-01 (8.07e-04)

D Ablation Studies

In this section, we conducted ablations studies to assess the effect of critical components of our method.

• Random Masking. First, we evaluated the importance of our random masking strategy in model training. To this end,
we compared ACM-FD with MFD — the variant that was trained without random masks. That is, the training is fully
unconditional. Table 6 shows the relative L2 error in D-F and C-D systems. As we can see, across various prediction
tasks, our model trained with random masks consistently outperforms the variant without them, achieving substantial
error reductions ranging from 40.9% to 96.2%.

• Choice of Masking Probability. Next, we investigated the impact of the masking probability p. In the main paper, all
results were obtained using a neutral setting of p = 0.5, which yields the highest masking variance. Here, we varied p
across {0.2, 0.4, 0.6, 0.8} to evaluate the prediction accuracy of our method on the D-F and C-D systems. As shown
in Table 7, the performance at p = 0.4 and p = 0.6 remains comparable to that at p = 0.5, indicating a degree of
robustness to the choice of p. However, more extreme values, such as p = 0.2 or p = 0.8, lead to a noticeable drop in
performance.

• Kronecker Product based Computation. Third, we evaluated the impact of incorporating the Kronecker product
in our method and compared both training and inference time with other approaches. All runtime experiments were
conducted on a Linux cluster node equipped with an NVIDIA A100 GPU (40GB memory).

To ensure a fair and comprehensive comparison, we first measured the per-epoch training time. For neural operator
baselines, we recorded the total per-epoch time across all the tasks. The results, as summarized in Table 8, show that
leveraging Kronecker product properties greatly improves the training efficiency of our method. Our per-epoch training
time is substantially lower than that of all competing methods except DON.

However, diffusion-based models typically require far more training epochs than deterministic neural operators. For
example, FNO and GNOT converge within 1K epochs in all the settings, while our method generally requires around

17

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

Ground-Truth ACM-FD MFD-Inpaint Interp
(a) Darcy Flow: examples of completing functions a (the first row), f (the second row) and u (the third row).

Ground-Truth ACM-FD MFD-Inpaint Interp
(b) Convection Diffusion: examples of completing functions v (the first row), s (the second row), and u (the third row).

Figure 6. Examples of function completion. The functions are sampled from the left half of the domain, and the right half are completed
by each method.

18

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

20K epochs. As a result, despite the per-epoch efficiency, the total training time for our method — as well as for
Simfomer, another diffusion-based model — remains higher overall.

Lastly, by using Kronecker product, our method achieves substantial acceleration in generation and/or prediction,
with a 7.4x speed-up on C-D and a 6.9x speed-up on D-F. During inference, the computational cost is dominated
by sampling noise functions, whereas during training, a substantial portion of cost arises from gradient computation.
Consequently, the runtime advantage of using the Kronecker product is even more pronounced during inference.

Table 6. Comparison of MFD and ACM-FD in relative L2 errors.

Dataset Task MFD ACM-FD

D-F

f, u to a 1.70e-1 (3.45e-3) 1.32e-2 (2.18e-4)
a, u to f 6.98e-2 (3.09e-3) 1.59e-2 (1.59e-4)
a, f to u 2.96e-2 (1.16e-3) 1.75e-2 (4.16e-4)
u to a 1.70e-1 (3.56e-3) 3.91e-2 (7.08e-4)
u to f 1.05e-1 (4.30e-3) 3.98e-2 (6.45e-4)

C-D

s, u to v 5.47e-1 (3.56e-2) 2.17e-2 (4.53e-4)
v, u to s 3.95e-1 (4.01e-2) 5.45e-2 (1.40e-3)
v, s to u 3.68e-2 (1.65e-3) 1.60e-2 (2.15e-4)
u to v 6.94e-1 (3.64e-2) 2.66e-2 (3.08e-4)
u to s 9.23e-1 (3.64e-2) 6.06e-2 (2.54e-4)

Table 7. Relative L2 error across different masking probabilities p.

Dataset Task p=0.2 0.4 0.5 0.6 0.8

D-F

f, u to a 2.16e-2 1.60e-2 1.32e-2 1.34e-2 1.26e-2
a, u to f 1.85e-2 1.61e-2 1.59e-2 1.67e-2 1.70e-2
a, f to u 2.50e-2 1.95e-2 1.75e-2 2.05e-2 2.00e-2
u to a 4.48e-2 4.14e-2 3.91e-2 3.93e-2 4.96e-2
u to f 4.26e-2 4.07e-2 3.98e-2 4.32e-2 5.02e-2

C-D

s, u to v 3.24e-2 2.72e-2 2.17e-2 2.33e-2 2.91e-2
v, u to s 7.11e-2 6.85e-2 5.45e-2 5.86e-2 8.35e-2
v, s to u 1.81e-2 1.76e-2 1.60e-2 1.77e-2 3.56e-2
u to v 2.91e-2 2.41e-2 2.66e-2 2.65e-2 5.15e-2
u to s 7.69e-2 5.62e-2 6.06e-2 6.91e-2 9.15e-2

19

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

Table 8. Comparison of training and inference time on C-D and D-F systems. ACM-FD (w/o K) means running our method without using
Kronecker product properties for computation.

(a) Training time per epoch (in seconds)

Dataset ACM-FD ACM-FD (w/o K) Reduction Simformer FNO GNOT DON

C-D 3.09 5.5 43.8% 23.6 16.45 144 1.53
D-F 3.27 5.55 41.4% 23.5 15.6 148 1.48

(b) Total training time (in hours)

Dataset ACM-FD ACM-FD (w/o K) Simformer FNO GNOT DON

C-D 17.2 >48 45.9 4.57 40 4.25
D-F 18.2 >48 45.7 4.33 41.1 4.11

(c) Inference time per sample (in seconds)

Dataset ACM-FD ACM-FD (w/o K) Reduction Simformer

C-D 0.899 6.66 86.5% 7.39
D-F 0.975 6.7 85.4% 7.34

20

