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ABSTRACT

Safe deployment of trained ML models requires determining when they are un-
certain of their predictions and refraining from using them for decision-making.
Existing approaches inspect test samples in isolation to estimate their correspond-
ing predictive uncertainty. However, in the real-world, deployed models typically
see test inputs consecutively and predict labels continuously over time during infer-
ence. We propose TIME-LAPSE, an uncertainty scoring framework that examines
a sequence of latent-space embeddings over time prior to the current sample to
determine its predictive uncertainty. Specifically, (a) our spatial uncertainty score
estimates uncertainty using distance metrics (Mahalanobis distance) and similarity
metrics (cosine similarity) in the latent-space and (b) our temporal uncertainty
score determines deviations in correlations over time using representations of past
inputs in a non-parametric, sliding-window based algorithm. We evaluate TIME-
LAPSE through the lens of out-of-distribution (OOD) detection and dataset shift
detection on tasks over diverse domains: audio and vision using public datasets and
further benchmark our approach on a challenging, real-world, electroencephalo-
grams (EEG) dataset for seizure detection. We achieve state-of-the-art results for
OOD detection in the audio and EEG domain and observe considerable gains in
semantically corrected vision benchmarks. We show that TIME-LAPSE is more
driven by semantic content compared to other methods, i.e., it is more robust to
dataset statistics. We also show that TIME-LAPSE outperforms spatial methods
significantly through our sequential evaluation framework that emulates real-life
drift settings through extensive experiments and ablations.

1 INTRODUCTION

Modern machine learning (ML) has seen tremendous success in various tasks across multiple domains
(Bojarski et al., 2016; Hinton, 2018; Kreinovich & Kosheleva, 2020; van den Oord et al., 2016),
surpassing human performance in many benchmarks (Esteva et al., 2017; Yala et al., 2019; Krizhevsky
et al., 2012). However, deep learning models have been known to fail silently and catastrophically
with highly confident predictions (Nguyen et al., 2015; Goodfellow et al., 2015; Guo et al., 2017).
Such models assume a closed world scenario, i.e., they assume that variability encountered when
deployed in the real-world would be similar to the variability present in their training data. In
practice, they encounter an open world where incoming samples can come from shifted distributions
or completely new distributions (Liu et al., 2020). This behaviour can have severe consequences
in mission-critical domains such as healthcare and autonomous driving, where errors can be costly,
resulting in injury or even death (Amodei et al., 2016). Most widely cited models do not come with
an uncertainty scoring mechanism to say “I don’t know” or to abstain from prediction (Kompa et al.,
2021). As deployed ML models are used to inform real-world decisions, it is important that they have
the ability to understand when they ought to be “unsure”. A good uncertainty scoring framework
must assign higher uncertainty estimates when the network is faced with distributional shifts or
new semantic content, i.e., out-of-distribution (OOD) data but must be certain (low uncertainty) and
generalize well on learnt distributions yet unseen data (in-distribution or InD data).

The task of identifying when incoming inputs are drawn far from the training distribution is called
out-of-distribution (OOD) detection. At its core, it is a binary classification problem, evaluated using
measures such as area under the receiver operating curve (AUROC), area under the precision recall
curve (AUPR) and false positive rate at 80% true positive rate (FPR80). Current OOD evaluation
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Figure 1: TIME-LAPSE for uncertainty scoring. High-dimensional inputs (images, audio, speech, EEG
signals, etc) are passed in sequentially during inference. Dark green indicates samples from the training set.
Light green and light orange represent potential InD and OOD inputs respectively. Each input is projected on to
a lower-dimensional latent space using a well-trained encoder and its spatial uncertainty score ssp is extracted
by the spatial scorer. The temporal scorer utilizes the sequence of spatial scores to give the final temporal
uncertainty scores st.

schemes hold different datasets to be OOD sources, without considering if the distinctions are
semantic in nature (Ahmed & Courville, 2020) leading to methods that are insensitive to semantic
overlap and biased to dataset statistics. Closely related is the task of dataset shift detection (Moreno-
Torres et al., 2012), crucial for deployed systems. Dataset shift can occur due to sample selection
bias, non-stationary environments, missing values, new concepts evolving over time, etc. Most ML
systems do not evaluate their ability to detect such shifts, presenting a huge gap between models
performing well on test sets and models capable of being deployed in the wild.

In this paper, we propose TIME-LAPSE, a predictive uncertainty quantification framework using
latent space embeddings over time, evaluated through downstream tasks of OOD detection and
dataset shift detection. A key insight in our approach is that most real-world scenarios (such as
electroencephalogram (EEG) seizure analysis, healthcare decision making, autonomous driving, etc.)
involve consecutive inputs to the model that are likely to be correlated over time. For example,
an obstacle detector deployed in a self-driving car will see images correlated over time. A seizure
detector installed in a neurology clinic will process hours of time-correlated EEG signals. Even
low-risk image classification models deployed in search engines over the cloud will see correlated
inputs over time when grouped by user ID or location. Thus, sequentially occurring samples share
meaningful semantic correlations.

In TIME-LAPSE (Fig. 1), we compute spatial uncertainty scores based on the following hypotheses:
an encoder with enough inductive bias likely (a) maps OOD inputs “far" from other InD samples in the
latent space under the Mahalanobis distance metric (Lee et al., 2018) and (b) produces dissimilarities
between their representations under the cosine similarity metric (Jones & Furnas, 1987). We compute
temporal uncertainty scores by exploiting correlations between lower dimensional representations of
consecutive samples over time when examined as a sequence. A sequence of InD inputs will show
more correlation than a sequence with both InD and OOD inputs or a sequence with just OOD inputs.

Recent works limit themselves to OOD detection tasks with evaluations purely on highly curated
image benchmarks, but do not extend their tests to more diverse and realistic scenarios required for
practical applications (Ren et al., 2019; Ahmed & Courville, 2020). Such OOD image benchmarks
consider different datasets to be OOD sources, neglecting any semantic overlap between their OOD
test sets and InD train sets, leading to narrow model capabilities (Yang et al., 2021). We show that
TIME-LAPSE is more driven by semantic content compared to other techniques, i.e. it is more
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robust to dataset statistics. Moreover, current evaluation schemes do not consider different dataset
drift settings that could occur in the real-world. We put forth an additional sequential evaluation
framework to evaluate methods under realistic conditions of data drifts and show that TIME-LAPSE
outperforms other methods significantly. We demonstrate the efficacy of our proposed method by
comparing against multiple baselines over different domains (vision, audio and clinical EEGs). We
achieve state-of-the-art (SOTA) on both audio and EEG datasets while improving performance on
semantically corrected image benchmarks. To the best of our knowledge, we are the first to use
temporal sequences of latent space embeddings for uncertainty quantification. We are also the first to
use deep-learning based uncertainty scoring techniques for EEG analyses.

To summarize, our key contributions are:

• We propose TIME-LAPSE, an uncertainty scoring framework that uses samples’ similarity in the
latent space and their temporal similarity amongst sequential inputs to determine their predictive
uncertainty.

• We show that scores from TIME-LAPSE are driven by semantic content and are more robust
to dataset statistics whereas popular baselines, benchmarked on standard image datasets, are
susceptible to dataset statistics and overlook semantic overlap for OOD detection.

• We benchmark TIME-LAPSE on diverse domains: audio speech classification, seizure detection
using clinical EEGs and image classification. TIME-LAPSE achieves state-of-the-art (SOTA) in
audio tasks, the EEG domain and semantically corrected image benchmarks.

• We propose a sequential evaluation framework for dataset shift detection to evaluate methods under
realistic conditions of data drifts and show that TIME-LAPSE outperforms other methods. We
hope this evaluation scheme will be adopted for routinely characterizing ML system performance
in the wild.

2 RELATED WORK

Uncertainty estimation is a rich field with a long history. Classical techniques include density
estimation (Breunig et al., 2000), one-class SVMs (Schölkopf et al., 1999), tree-isolation forests (Liu
et al., 2008), etc for one-dimensional data such as time-series However, such techniques scale badly
with input dimensionality (Rabanser et al., 2019). Calibration is a frequentist notion of uncertainty,
measured by proper scoring rules like log-loss or Brier scoring (Guo et al., 2017; DeGroot & Fienberg,
1983; Dawid, 1982). Uncertainty estimation for deep neural networks (NNs) (Lakshminarayanan
et al., 2017) typically use a Bayesian formalism to learn distributions over model weights (Blundell
et al., 2015; Malinin & Gales, 2018; Chen et al., 2019; Graves, 2011; Neal, 1996; Welling & Teh,
2011). However, most Bayesian methods are difficult to train and computationally expensive. Gal &
Ghahramani (2016) use Monte-Carlo dropout at test-time with an approximate Bayesian interpretation
to derive uncertainty estimates.It is also computationally expensive, requiring k forward passes for
each instance during inference. Quality of uncertainty estimates are commonly evaluated using
OOD detection. Moreno-Torres et al. (2012) give a complete overview of closely related topics
of distributional shift detection including covariate shift, label shift and concept drift (Gama et al.,
2014). Several works consider semi-supervised techniques for OOD such as outlier exposure methods
(Hendrycks et al., 2019a; Ruff et al., 2020), while many assume the supervised setting where the
target OOD distribution is known and propose alternative training strategies and auxillary OOD tasks
(DeVries & Taylor, 2018; Hendrycks et al., 2019b; Mohseni et al., 2020; Shalev et al., 2018) in a
multi-task setting. In this paper, we consider the more general setting of unsupervised OOD detection
where no OOD examples are labelled as such and the encoder has access to only InD training labels.
Other methods use representations from NNs to infer OOD inputs. Hendrycks & Gimpel (2017)
use maximum softmax probabilites (MSP) to detect OOD data. Liang et al. (2018) improve this by
introducing a temperature parameter to the softmax equation. Lee et al. (2018) fit class-conditional
Gaussians to intermediate activations and use the Mahalanobis distance to identify OOD samples.
Recently, some works use self-supervision to get better representations to improve OOD detection
(Tack et al., 2020; Winkens et al., 2020; Sehwag et al., 2021). Several methods directly use input
likelihoods as the OOD detection score. However, studies have shown that generative techniques may
be overconfident on complex inputs (Nalisnick et al., 2019). Modified likelihood scores have been
proposed since then (Serrà et al., 2020; Xiao et al., 2020; Choi et al., 2019) including energy-based
models (Liu et al., 2020; Du & Mordatch, 2019; Grathwohl et al., 2020) and likelihood ratios (Ren
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et al., 2019). Reconstruction-based OOD methods use reconstruction loss as the uncertainty score
and primarily use auto-encoders (Zong et al., 2018; Pidhorskyi et al., 2018) or GANs (Schlegl et al.,
2017; Deecke et al., 2019; Perera et al., 2019). Our temporal uncertainty scores builds upon and
shares similarity to change point detection methods in time-series data (Aminikhanghahi & Cook,
2017; Kifer et al., 2004) along with signal processing techniques such as Particle and Kalman filtering
(van der Merwe et al., 2001; Kalman, 1960).

3 TIME-LAPSE: OUR UNCERTAINTY SCORING FRAMEWORK

We propose TIME-LAPSE, an uncertainty scoring framework using latent-space embeddings over
time. We consider a multi-class classification setting here, though our framework can be extended to
other scenarios such as regression, segmentation, etc.

3.1 PROBLEM SETUP

Let X represent our high-dimensional input space, X ⊆ Rn. Let Y = {0, 1, 2, ..., C − 1} denote
the label space where C is the number of classes. In standard multi-class classification, we learn a
classifier f : X 7→ Y using a dataset Dtrain (assumed to be sampled from an underlying distribution
p∗) such that f(x) = p(Y = yi|x), where x ∈ X and yi ∈ Y ∀ i. The final prediction for an unseen
input x is given by ŷ = arg maxyi

p(yi|x). Given a sequence of unseen inputs, xt (where t denotes
time) to a classifier during inference, our goal is to output a score s(xt) and a selective function g(xt)
with threshold th ∀ xt such that

(g, s)(xt) :=

{
ŷ = arg maxyi

p(yi|xt), if s(xt) ≤ th
ABSTAIN or FLAG AS OOD, else

We call the score s(xt) the associated uncertainty score of input sample xt

3.2 TIME-LAPSE FRAMEWORK

We use the learnt classifier f to derive an encoder h : X 7→ U that maps high-dimensional inputs
x ∈ X ⊆ Rn onto a latent space U ⊆ Rd through its intermediate representations. Note that h is
inherently learnt when f is trained using the InD training dataset Dtrain. TIME-LAPSE is agnostic
to the training method, which can be supervised, self-supervised or unsupervised depending on how
the label information in Dtrain is utilized.

3.2.1 LEARNING SPATIAL UNCERTAINTY SCORES

To extract the spatial uncertainty score of an input test sample’s prediction, we apply two fundamental
hypotheses: (a) a well-trained encoder maps InD samples onto a dense region in the latent space but
maps OOD inputs outside this region under a distance metric d with high likelihood, and (b) the OOD
inputs that get mapped to the latent space do not share similarity with InD inputs under a similarity
metric, sim.

To identify spatially distinguishable OOD inputs, we first model the extent of InD region D within
the fixed-dimensional latent space, using the InD samples. We extract a coreset by sampling from our
InD training data, Dtrain.

coreset = {h(xi) | xi ∼ Dtrain}; |Dtrain| ≥ |coreset|

We compute the distance score sdist and the similarity score ssim of the unseen test sample x by
comparing its latent representation to that of samples in the coreset using a distance metric d and a
similarity metric sim such that:

sdist(x) = min
h(xi) ∈ coreset

d(h(xi), h(x)) ; ssim(x) = max
h(xi) ∈ coreset

sim(h(xi), h(x))

Finally, the combined spatial uncertainty score is given by

sspatial(x) = sdist(x) . ssim(x)
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We choose the distance metric d to be the Mahalanobis distance obtained using class-conditional
Gaussians (Lee et al., 2018) without label smoothing (Winkens et al., 2020) where class-wise means
µc and covariance matries Σc are estimated from the coreset.

d(h(x)) = min
c

(h(x)− µc)
T Σ−1c (h(x)− µc)

As similarity metric sim, we adopt the cosine similarity between the test input’s representation and
the coreset.

sim(h(x), h(xi)) =
h(x) . h(xi)

||h(x)|| ||h(xi)||
; h(xi) ∈ coreset

We note that TIME-LAPSE will accept any d and sim that is most suited for the target domain.

3.2.2 LEARNING TEMPORAL UNCERTAINTY SCORES

Our hypothesis in extracting our temporal uncertainty scores is that there is value in evaluating
samples in the context of other samples instead of viewing them independently. In our framework,
we consider high-dimensional inputs to the model as a sequence (Fig. 1). We use the representational
capabilities of modern encoders and examine them over time instead of directly modeling the
incoming high-dimensional, multivariate data stream or treating each sample independently, i.e.,
we detect when input samples go out-of-distribution by comparing their reduced-dimension scores
(sspatial) with those of other inputs over time. We note that when these scores are scalar (as in our
case), the problem reduces to change-point detection for a one-dimensional sequence.

We put forth an unsupervised, non-parametric, sliding-window based algorithm that builds on the
work done by Kifer et al. (2004) to generate our temporal uncertainty scores stemporal. We consider
a sequence of r samples in the input data stream denoted by {x1, x2, ..., xt, ..., xr}. We obtain the
scalar spatial scores for the r samples, {sspatial(x1), sspatial(x2), ..., sspatial(xt), ..., sspatial(xr)} from
their representations {h(x1), h(x2), ..., h(xt), ..., h(xr)} as explained in Section 3.2.1.

Given two window sizes wA and wB (wA, wB < r), we define a reference window RW and a sliding
window (SW )t to be

RW = [sspatial(x1), ..., sspatial(xwA
)]

(SW )t = [sspatial(x(wA + t)), ..., sspatial(x(wA + t+wB))]

where t ∈ {1, ..., (r − wA − wB)} as visualized in Fig. 1. On choosing an appropriate statistic or
distance measure F (e.g. probability odds ratio, Kolmogorov-Smirnov, Kullback-Leibler, Wilcoxon,
Mann-Whitney, etc.), we compute the temporal uncertainty score between reference window RW

and the tth sliding window (SW )t for the tth sample

stemporal(xt) = F(RW , (SW )t)

The null hypothesisH0 for our setting here is that the two windows (reference and sliding) are similar
and come from the same distribution. We hope to rejectH0 in favour of the alternate hypothesisH1

at a significance level of 0.05 whenever the inputs go out-of-distribution. This approach (as in (Kifer
et al., 2004)) assumes the data points are generated sequentially by some underlying probability
distribution, but otherwise makes no assumptions on the nature of the generating distribution nor
does it assume the samples are identically distributed.

4 EXPERIMENTAL SETUP

We perform experiments across multiple domains (vision, audio and clinical EEG signals) to evaluate
our approach. We choose the task of image classification for the visual domain, spoken word
classification from audio clips for the audio domain and the challenging, real-world clinical task of
seizure detection from EEG signals framed as an EEG clip binary classification task for the healthcare
domain. Our code will be made publicly available after publication.

We use a variety of datasets and models in our experiments. For the audio domain, we use the
Free Spoken Digits Dataset (FSDD) (Jackson et al., 2017) and Google Speech Commands (GSC)
dataset (Warden, 2018). We train an M5 encoder (Dai et al., 2016) with raw audio InD data from
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spoken digits 0-9 from GSC and evaluate it on unseen InD samples from GSC 0-9 and FSDD 0-9
along with OOD samples from the non-digit spoken words from GSC. For our seizure tasks, we use
EEG data from Stanford Health Care (SHC) (InD: patient population 20-60 years), Lucile Packard
Children’s Hospital (LPCH) (OOD: patient population <20 years) and the public Temple University
Hospital seizure corpus (TUH) (Shah et al., 2018; Obeid & Picone, 2016) (OOD: different patient
demographics) along with a Dense-Inception encoder as described by Saab et al. (2020). For our
vision tasks, we use MNIST as InD and MNIST-like data as OOD and CIFAR10 as InD, SVHN
as OOD and CIFAR100 as a semantic OOD evaluation set up. Details on the data, model training,
embedding extraction and temporal framework settings in Appendix B.1 and B.3.

We compare against six baselines: Maximum Softmax Probability (MSP) (Hendrycks & Gimpel,
2017), Predictive Entropy (Ren et al., 2019), KL Divergence with Uniform Distribution (Hendrycks
et al., 2019a), ODIN (Liang et al., 2018), Vanilla Mahalanobis distance (Lee et al., 2018) and
Test-time Dropout (Gal & Ghahramani, 2016). We provide baseline details in Appendix B.2

4.1 EVALUATION

For all experiments, we evaluate our approach only using samples unseen during training. Our test
sets include unseen samples drawn from the same distribution as the training data along with samples
from unseen classes and significantly different datasets. We also follow the setting recommended
by Ahmed & Courville (2020) to avoid dataset bias by holding out few classes from a dataset
during training and using the held-out classes as new semantic content for evaluation. We evaluate
OOD detection performance using standard metrics: area under the receiver operating characteristic
(AUROC↑) , area under the precision-recall curve (AUPR↑) and the false positive rate at 80% true
positive rate (FPR80↓) as commonly prescribed (Ren et al., 2019).

It is important to note that what constitutes InD or OOD is driven by context, i.e., it depends on
the target task, the encoder capacity, what models need to be robust to and what they should detect
as outliers. Standard OOD benchmarks treat different datasets to be OOD resulting in models
with narrow capabilities susceptible to dataset bias (Ahmed & Courville, 2020; Yang et al., 2021).
Moreover, they fail to capture any semantic overlap between different datasets, e.g., if a model is
trained to classify cats from dogs and is shown a breed of dog (high semantic overlap) from a different
dataset during inference, it should be considered InD whereas a muffin would be OOD since it has no
semantic overlap with the train set. We evaluate OOD detection performance with & without semantic
overlap and show that TIME-LAPSE is driven more by semantic content than other baselines.

We further propose a sequential evaluation framework to evaluate uncertainty estimation under
realistic conditions of data drifts. We evaluate performance metrics such as % error across trials and
detection accuracy overN = 1000 trials. For each trial, we generate a stream of test data from our test
sets of length 10,000 samples with change points inserted every k samples in each trial. Distribution
changes are simulated by first randomly choosing InD or OOD (Bernoulli random variable with
probability p ∈ {0.2, 0.5, 0.7}) and then randomly drawing k ∈ {50, 100, 200, 500, 1000, 5000}
samples from the chosen distribution. We emulate various drift conditions including rapidly changing
streams and slowly shifting streams.

5 RESULTS

5.1 OOD DETECTION PERFORMANCE ON AUDIO, CLINICAL EEG AND IMAGE DATASETS

We achieve the state-of-the-art (SOTA) with TIME-LAPSE scores on OOD detection in our audio
and EEG-based tasks of spoken digits classification and seizure detection compared to our baselines
(Table 1) across all metrics: AUROC, AUPR and FPR80. The AUROC values for TIME-LAPSE
scores are 73.9% and 77.1%, 9 points and 12 points higher than the strongest baseline, Test-time
Dropout, for both tasks respectively. In our MNIST experiments, we see TIME-LAPSE performs
comparably with Test-Time Dropout. It has the best AUPR and comparable AUROC and FPR80
values. Over CIFAR10 experiments with the SVHN dataset (no semantic overlap with CIFAR10) as
OOD, TIME-LAPSE outperforms other baselines significantly. When CIFAR100 classes are added
(considered OOD as in standard benchmarks) to the evaluation, TIME-LAPSE shows the best AUPR
score and the second best AUROC and FPR80. We examine the effect of semantic overlap present in
CIFAR100 classes with the InD classes as well as those of other domains in Section 5.2.
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Table 1: OOD performance. Mean scores AUROC ↑ / AUPR ↑ / FPR80 ↓ over 5 random runs are reported.
Standard Deviations are reported in Appendix (Tables 5, 6, 7). Best scores in bold.

Audio EEG Data Vision

Task Speech Classification Seizure Detection Image Classification / Digit Classification

OOD Sets Other spoken words Other institutions SVHN CIFAR100 x-MNIST

MSP 0.626 / 0.527 / 0.515 0.358 / 0.421 / 0.754 0.760 / 0.770 / 0.358 0.852 / 0.986 / 0.231 0.899 / 0.979 / 0.148
Predictive Entropy 0.615 / 0.515 / 0.515 0.393 / 0.495 / 0.742 0.761 / 0.752 / 0.357 0.854 / 0.986 / 0.230 0.902 / 0.981 / 0.147
KL_U 0.553 / 0.475 / 0.579 0.390 / 0.472 / 0.719 0.775 / 0.786 / 0.347 0.860 / 0.987 / 0.223 0.899 / 0.980 / 0.164
ODIN 0.466 / 0.448 / 0.712 0.325 / 0.388 / 0.790 0.748 / 0.776 / 0.402 0.845 / 0.986 / 0.251 0.898 / 0.979 / 0.148
Vanilla Mahalanobis 0.680 / 0.636 / 0.520 0.633 / 0.651 / 0.525 0.738 / 0.782 / 0.477 0.679 / 0.967 / 0.558 0.918 / 0.984 / 0.118
Test-Time Dropout 0.649 / 0.619 / 0.523 0.647 / 0.619 / 0.583 0.716 / 0.725 / 0.494 0.925 / 0.986 / 0.049 0.976 / 0.986 / 0.016
TIME-LAPSE (ours) 0.739 / 0.704 / 0.439 0.771 / 0.701 / 0.335 0.814 / 0.827 / 0.311 0.866 / 0.988 / 0.239 0.972 / 0.995 / 0.037

Table 2: Effect of semantic content on OOD performance. In spoken digit classification, spoken digits from
different datasets (high semantic overlap) as InD should result in AUROC ↑. Naively considering them to be
OOD (dataset driven) should result in AUROC ↓ Mean and standard deviation over 5 random runs. Best in bold.

MSP Predictive
Entropy KL_U ODIN Vanilla

Mahalanobis
Test-Time
Dropout

TIME-LAPSE
(ours)

Semantic OOD 0.621± 0.006 0.611± 0.006 0.550± 0.006 0.466± 0.007 0.676± 0.016 0.644± 0.005 0.739± 0.006
Dataset Driven 0.818± 0.005 0.821± 0.005 0.806± 0.006 0.675± 0.006 0.495± 0.008 0.821± 0.002 0.506± 0.007

5.2 AFFINITY FOR SEMANTIC CONTENT AND ROBUSTNESS TO DATASET STATISTICS

We study the effect of semantic overlap in OOD classes and characterize how TIME-LAPSE compares
against other methods in its robustness to dataset statistics over multiple domains.

Audio In our audio experiments, we train our encoder only on spoken digits 0-9 (forming the InD
classes) from the Google Speech Commands (GSC) dataset. The other 25 classes (Yes, No, Right,
Left, Bird, etc) in GSC have never been encountered by the model and have drastic semantic shifts in
their content when compared to the InD classes 0-9 and are considered OOD. During evaluation, we
show the model unseen samples from each of the classes in GSC along with samples from the Free
Spoken Digits Dataset (FSDD) which contains classes 0-9 (same semantic content as InD data but
different dataset) and measure OOD detection performance (Table 2). As an ablation, we examine the
performance when we flip the FSDD classes to be OOD data in our evaluation. We see that AUROC,
AUPR and FPR80 values for most baselines (notably Test-time Dropout and Predictive Entropy)
increase significantly, whereas they drop for TIME-LAPSE and vanilla Mahalanobis (Table 2). This
shows that our strongest baseline methods have narrow capabilities that assume only data belonging
to InD classes and having the same dataset statistics as the training data will be considered as InD. All
other data will be rejected as OOD, leading to very high FPRs in practice. In contrast, TIME-LAPSE
is able to identify true InD samples despite differing dataset statistics, i.e. TIME-LAPSE detects
OOD samples based on semantic content than dataset statistics when compared to the other methods.

Vision (CIFAR10) For our CIFAR10 experiments, we train our encoder only on 7 classes of CIFAR10,
leaving out classes Airplane, Bird and Dog. SVHN data consists of images of numbers and has no
semantic overlap with any of the 7 InD classes (Automobile, Cat, Deer, Frog, Horse, Ship, Truck).
To study the effect of semantic overlap, we consider the 100 classes from CIFAR100 along with the
3 left out classes from CIFAR10. We compare the performance metrics when naively considering
all of the above as OOD ignoring any semantic overlap. We see that baselines perform better while
TIME-LAPSE drops (Table 1). We analyse class-wise performance and we see that TIME-LAPSE’s
performance strongly correlates to semantic content compared to other methods. For example,
consider Class Pickup-Truck and Streetcar from CIFAR100. While they are disjoint from the InD
classes Automobile and Truck in CIFAR10, they shares a high degree of semantic content and should
be considered InD. When models encounter samples from classes that have high semantic overlap
with InD, they need to consider them InD and not OOD. Instead, if such samples are considered
OOD, only methods that have narrow model capacities will show high detection performance (Table
3) indicating their dependence on data statistics instead of semantic content.

Vision (MNIST) We train two different encoders, one trained on all digits 0-9 while the other was
trained on {0, 1, 4, 6, 7, 8, 9} leaving digits 2, 3 and 5. Amongst our evaluations, only certain classes
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from the e-MNIST data shared semantic overlap – letters ‘o’,‘l’,‘i’,‘z’,‘y’,‘s’ and ‘q’ share structural
similarity with classes 0, 1, 2, 4, 5 and 9 respectively. We show results for both encoders with and
without the above classes in the OOD evaluations (Table 4).

Clinical EEGs While discussions on semantic issues on clinical EEGs may be out of scope for this
paper, we do observe interesting semantic effects in this case as well. For instance, seizure types
unseen by the network will generate higher uncertainty scores.

Table 3: Pickup Truck & Street Car share high semantic overlap with InD classes Truck & Automobile.
Evaluations when naively considering them to be OOD should result in AUROC ↓ / AUPR ↓. Airplane & Fish
do not show any semantic overlap with InD classes, should simultaneously result in AUROC ↑ / AUPR ↑

CIFAR MSP Predictive
Entropy KL_U ODIN Vanilla

Mahalanobis
Test-Time
Dropout

TIME-LAPSE
(ours)

Pickup Truck 0.794 / 0.292 0.791 / 0.276 0.698 / 0.181 0.815 / 0.182 0.691 / 0.207 0.942 / 0.506 0.688 / 0.183
Street Car 0.767 / 0.255 0.768 / 0.256 0.766 / 0.239 0.785 / 0.255 0.656 / 0.181 0.838 / 0.337 0.757 / 0.256

Airplane 0.891 / 0.488 0.894 / 0.519 0.913 / 0.571 0.893 / 0.549 0.658 / 0.192 0.955 / 0.547 0.902 / 0.575
Aquarium Fish 0.893 / 0.492 0.897 / 0.529 0.913 / 0.589 0.888 / 0.526 0.705 / 0.209 0.955 / 0.542 0.911 / 0.577

Table 4: MNIST models. 0to9 denotes encoder trained on 0-9 digits. M235 indicates encoder trained on digits
{0 to 9} - {2,3,5}, i.e., {0,1,4,6,7,8,9}. Semantic means that e-MNIST classes with ambiguous semantic overlap
on InD classes, i.e., {l,i,o,..} are removed from OOD evaluation

MNIST MSP Predictive
Entropy KL_U ODIN Vanilla

Mahalanobis
Test-Time
Dropout

TIME-LAPSE
(ours)

0to9 0.895 / 0.968 0.899 / 0.971 0.903 / 0.972 0.896 / 0.969 0.903 / 0.973 0.963 / 0.973 0.961 / 0.990
0to9 Semantic 0.921 / 0.970 0.926 / 0.973 0.928 / 0.975 0.922 / 0.971 0.937 / 0.976 0.976 / 0.970 0.986 / 0.995

M235 0.907 / 0.982 0.910 / 0.983 0.909 / 0.983 0.906 / 0.982 0.919 / 0.985 0.976 / 0.986 0.975 / 0.996
M235 Semantic 0.926 / 0.983 0.929 / 0.984 0.925 / 0.983 0.925 / 0.983 0.941 / 0.986 0.984 / 0.986 0.990 / 0.998

5.3 DRIFT DETECTION: SEQUENTIAL EVALUATION RESULTS

To evaluate the performance under our sequential framework, we define the detector to have erred if
it wrongly concludes an incoming test sample xt to be OOD when it is actually InD or vice-versa.
If the framework detects the change point within its fixed window size, we do not consider it as
an error. We generate data streams of length 10,000 samples changing the distribution every k
samples in each trial The distribution changes are simulated by first randomly choosing InD or OOD
(Bernoulli random variable with probability p ∈ {0.2, 0.5, 0.7}) and then randomly drawing the
k ∈ {50, 100, 200, 500, 1000, 5000} samples from the chosen distribution. We calculate the TIME-
LAPSE scores using the two-sided Mann-Whitney test (Mann & Whitney, 1947) at a significance
level of 0.05 for each sample in the stream and run it through our sequential detector with window
sizes wA = wB = 25 for vision experiments and wA = wB = 50 for audio and EEG experiments.
We show example plots of datastreams for each domain in the Appendix, Figs. 2, 3, 4, 5, 6, 7, 8,
9. We perform a 2-cluster KMeans on the generated Mann-Whitney scores to assign InD and OOD
predictions. We then calculate the cumulative error by adding the errors of all samples to calculate
detection error. We repeat this experiment N times (N = 1000 here) to estimate the detector’s error
distribution (EEG distribution given in the Fig. 2, Appendix). Over 73% of the cumulative errors
in our EEG task (over 85% for our audio task) lie within 10% and over 93% of the errors in our
EEG task (over 97% for our audio task) lie within 20% indicating our detector’s high performance in
comparison to other spatial detectors. For our vision tasks, the error distribution is much tighter and
we are able to get near 99% detection accuracy for over 95% of the time.

5.4 ABLATIONS: EFFECT OF ENCODER CAPACITY

We perform extensive ablations on TIME-LAPSE to study (i) the effect of individual scorers: distance,
similarity, spatial, temporal on performance (Appendix D), (ii) the effect of the coreset size on
performance (Appendix E), (iii) the effects of encoder capacity on performance (here, Section 5.4,
Appendix F), and (iv) qualitative analyses (Appendix G).
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To study the effects of encoder capacity on TIME-LAPSE, we consider our audio task. We compare
two encoders, trained on the same InD data and evaluated with the same OOD data. The lower
capacity encoder, Kymatio, is a two-layer network with a log-scattering layer that extracts scattering
coefficients from the inputs as latent space embeddings, followed by a log-softmax layer for clas-
sification with 0.75 classification accuracy for InD test samples. The higher capacity encoder is a
CNN-based M5 model with 0.85 classification accuracy for InD test samples. As shown in Fig. 10
(Appendix F), Kymatio is not able to separate out any of the classes based on TIME-LAPSE scores
whereas M5 is able to correctly separate out semantic InD samples from OOD samples well. Thus,
the success of TIME-LAPSE is highly dependent on the capacity of the model.

To further investigate the effects of the lower capacity model, we train Kymatio for the same task
(i.e., same InD semantic classes 0-9) but with the much smaller FSDD dataset. The model reaches
0.97 classification accuracy, showing that it is able to express high-dimensional audio signals well.
However, on comparing its TIME-LAPSE scores with those of Kymatio trained on GSC 0-9 (Fig
11, Appendix F), we see that the former separates out FSDD InD from GSC InD and GSC OOD,
indicating that it is overfitting to dataset statistics whereas the latter is not able to separate out any
of them. Thus, TIME-LAPSE scores can help in determining both OOD detection capability of an
encoder as well as generalization capability over OOD samples.

6 DISCUSSION

In this work, we develop a unique uncertainty scoring framework that can identify when incoming in-
puts fall out-of-distribution with respect to trained encoders and subsequently enable models to abstain
from prediction on such inputs. Our theoretical formulation encompasses all representation-based
OOD detection methods and provides an opportunity to leverage temporal signals in combination. We
show that longitudinal information across time can be leveraged for the challenging task of identifying
distributional shifts. Through our ablations (Appendix D), we verify that temporal uncertainty scores
and spatial uncertainty scores are complementary and combining them gives additional information
than when used separately. We use latent-space embeddings to determine spatial uncertainty and
proposed a simple sliding-window hypothesis-testing based approach to model temporal uncertainty
But TIME-LAPSE can accept any type of spatial scoring and temporal scoring. We believe that there
is scope for developing sophisticated methods that leverage the temporal aspect and leave it open for
future work.

Furthermore, alongside works by Ahmed & Courville (2020) and Yang et al. (2021), we motivate the
necessity of rethinking standard OOD image benchmarks that disregard semantic overlaps. We note
that the task of identifying OOD inputs is highly dependent on context. For a classifier trained to
identify cats and dogs, a tree is OOD whereas all of them would be InD for an object recognition
system in a self-driving car. We believe that showing generalizability of OOD detection methods
across domains is key to ensure robust performance in the wild. It is not sufficient to show better
performance over just image OOD benchmarks. We show that TIME-LAPSE generalizes across 3
diverse domains- vision, audio and healthcare EEG, through our extensive experiments and analyses.
We also propose a sequential evaluation framework to view OOD detection from the lens of dataset
drift detection. To enable safe deployment and periodic monitoring of trained models, we believe
that such a sequence-based evaluation scheme is essential. We hope this evaluation scheme will be
adopted for routinely characterizing uncertainty estimation and model performance in the wild.

For our experiments, we train encoders with labelled InD data in a supervised setting. But our
framework will support and benefit from more robust representations (Section 5.4, Appendix F)
learnt via self-supervision or semi-supervision. We also note that both the audio and seizure analyses
generate much higher-dimensional inputs compared to image classification. We hypothesize that
model performance is strongly dependent on semantic content for such high-dimensional inputs when
compared to dataset statistics and thus, gains from TIME-LAPSE are more obvious.

In conclusion, we provide a framework that utilizes both latent-space and time to determine predictive
uncertainty for deep learning models. Our method is end-to-end trainable and network agnostic: it
(a) does not require exposure to outliers (though can easily be extended to accommodate them if
present), (b) does not require modifications to existing network architectures, and (c) does not require
computationally heavy dropout techniques or ensemble passes. It can thus can be easily adopted to
high-risk settings such as clinical workflows and autonomous driving.
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ETHICS STATEMENT

We strongly believe that uncertainty quantification and its associated tasks of out-of-distribution
detection and dataset need to be benchmarked and evaluated on diverse datasets and domains aside
from standard, well-curated, image datasets to reduce the effect of bias, variability, “easyness” of the
task or domain. To that effect, we have chosen three disparate domains (audio, vision and clinical
EEGs) and associated tasks (spoken word classification, image classification, seizure detection posed
as binary classification). While this is an important and necessary step, we believe our work and
the community at large will only benefit from evaluating on more domains, datasets and tasks to
ascertain a method’s success and failure modes to ensure model deployment. We also hope to work
with domain experts to validate TIME-LAPSE’s strengths and error modes for more real-world use
cases. All the data used in our work are either publicly available or are used with full IRB approval.

REPRODUCIBILITY STATEMENT

Our source code for TIME-LAPSE as well as our baseline implementations will be released to the
public via Github upon publication. The datasets used for our audio and vision tasks are publicly
available: FSDD (Jackson et al., 2017), GSC (Warden, 2018), x-MNIST (Lecun et al., 1998; Cohen
et al., 2017; Tarin et al., 2018; Xiao et al., 2017), CIFAR10 & CIFAR100 (Krizhevsky & Hinton, 2009).
The Temple University Hospital EEG Seizure Corputs (TUH) used in our clinical EEG experiments
is publicly available (Shah et al., 2018; Obeid & Picone, 2016). EEG data from Stanford Healthcare
(SHC) and Lucile Packard Children’s Hospital (LPCH) contain patient sensitive information and
cannot be shared publicly. Details on the data preprocessing steps and experimental settings are
provided in Appendix B.
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APPENDIX

A SUPPLEMENTARY TABLES

Table 5: OOD performance: speech classification task (audio domain) and seizure detection (clinical EEGs)
task. Mean and standard deviations over five random runs. Best scores indicated in bold.

Audio Clinical EEGs

AUROC ↑ AUPR ↑ FPR80 ↓ AUROC ↑ AUPR ↑ FPR80 ↓

MSP 0.626± 0.006 0.527± 0.005 0.515± 0.006 0.358± 0.008 0.421± 0.002 0.754± 0.022
Predictive Entropy 0.615± 0.006 0.515± 0.005 0.515± 0.009 0.393± 0.006 0.495± 0.012 0.742± 0.018
KL_U 0.553± 0.005 0.475± 0.002 0.579± 0.007 0.390± 0.003 0.472± 0.005 0.719± 0.010
ODIN 0.466± 0.006 0.448± 0.011 0.712± 0.092 0.325± 0.015 0.388± 0.022 0.790± 0.035
Vanilla Mahalanobis 0.680± 0.014 0.636± 0.009 0.520± 0.017 0.633± 0.028 0.651± 0.011 0.525± 0.025
Test-Time Dropout 0.649± 0.003 0.619± 0.007 0.523± 0.003 0.647± 0.004 0.619± 0.002 0.583± 0.012
TIME-LAPSE (ours) 0.739± 0.006 0.704± 0.008 0.439± 0.005 0.771± 0.009 0.701± 0.004 0.335± 0.039

Table 6: OOD performance: CIFAR10 image classification on SVHN (no semantic overlap) vs CIFAR100.
Mean and standard deviations over five random runs. Best scores indicated in bold.

SVHN CIFAR100

AUROC ↑ AUPR ↑ FPR80 ↓ AUROC ↑ AUPR ↑ FPR80 ↓

MSP 0.760± 0.047 0.770± 0.021 0.358± 0.045 0.852± 0.014 0.986± 0.001 0.231± 0.018
Predictive Entropy 0.761± 0.047 0.752± 0.063 0.357± 0.045 0.854± 0.014 0.986± 0.001 0.230± 0.017
KL_U 0.775± 0.052 0.786± 0.029 0.347± 0.060 0.860± 0.015 0.987± 0.001 0.223± 0.023
ODIN 0.748± 0.068 0.776± 0.031 0.402± 0.095 0.845± 0.018 0.986± 0.001 0.251± 0.031
Vanilla Mahalanobis 0.738± 0.039 0.782± 0.029 0.477± 0.075 0.679± 0.012 0.967± 0.001 0.558± 0.025
Test-Time Dropout 0.716± 0.057 0.725± 0.042 0.494± 0.069 0.925± 0.004 0.986± 0.000 0.049± 0.003
TIME-LAPSE (ours) 0.814± 0.019 0.827± 0.024 0.311± 0.034 0.866± 0.008 0.988± 0.001 0.239± 0.028

Table 7: OOD performance: Image classification on x-MNIST. Mean and standard deviations over five random
runs. Best scores indicated in bold.

x-MNIST

AUROC ↑ AUPR ↑ FPR80 ↓

MSP 0.899± 0.006 0.979± 0.002 0.148± 0.012
Predictive Entropy 0.902± 0.006 0.981± 0.002 0.147± 0.011
KL_U 0.899± 0.007 0.980± 0.002 0.164± 0.012
ODIN 0.898± 0.006 0.979± 0.002 0.148± 0.015
Vanilla Mahalanobis 0.918± 0.006 0.984± 0.001 0.118± 0.015
Test-Time Dropout 0.976± 0.002 0.986± 0.001 0.016± 0.001
TIME-LAPSE (ours) 0.972± 0.002 0.995± 0.000 0.037± 0.038

B DETAILED EXPERIMENTAL SETUP

B.1 DATASETS

Audio For the task of spoken word classification of audio recordings, we use the Free Spoken Digits
Dataset (FSDD) (Jackson et al., 2017), consisting of .wav recordings of English digits 0-9, and the
Google Speech Commands (GSC) dataset (Warden, 2018) that contain .wav recordings of 35 English
keywords including the digits 0-9 and non-digits such as “Yes", “No", “Stop", etc. The two datasets
provide a unique setup where digits 0-9 occur in different datasets but belong to the same semantic
classes.

EEG Signals For our seizure analyses tasks, we use high-dimensional EEG data from different
institutions and age groups: (a) Stanford Healthcare (SHC) with patients in the age group ∼20-60
years, (b) Lucile Packard Children’s Hospital (LPCH) with patients under 18 years and (c) publicly
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available Temple University Hospital seizure corpus (TUH) (Shah et al., 2018; Obeid & Picone,
2016). 12 second or 60 second EEG clips with 19 channels, each sampled at 200Hz, are used for
seizure detection.

Vision We use CIFAR-10 (InD), CIFAR-100 (Krizhevsky & Hinton, 2009) and SVHN (Netzer et al.,
2011) datasets along with MNIST (Lecun et al., 1998) (InD), FashionMNIST (Xiao et al., 2017),
eMNIST (Cohen et al., 2017) and kMNIST (Tarin et al., 2018) (collectively referred to as x-MNIST)
datasets for image classification as is typically reported in literature (Hendrycks & Gimpel, 2017;
Lee et al., 2018; Ren et al., 2019).

B.2 BASELINES

We use the following baselines to compare against our framework. We don’t compare with methods
that require exposure to outliers to match our framework settings.

MSP: Hendrycks & Gimpel (2017) use the maximum softmax probability (MSP) p(ŷ|x) =
maxk p(y = k|x) as the uncertainty score. OOD inputs tend to have lower MSP than InD data.

Predictive Entropy: Ren et al. (2019) show that using high entropy of the predicted class distribution
−
∑

k p(y = k|x) log p(y = k|x) as an indicator for OOD inputs is a strong baseline.

KL-divergence with Uniform distribution: Hendrycks et al. (2019a) use the KL divergence of the
softmax predictions to the uniform distribution U , KL(U ||p(y|x)) to identify OOD inputs.

ODIN: Liang et al. (2018) use temperature-scaling and input perturbations to increase the gap
between OOD and InD data using MSP. We fix T = 1000, ε = 1.4e−3, following their most common
setting instead of tuning the parameters with outlier exposure.

Vanilla Mahalanobis: Lee et al. (2018) use the Mahalanobis distance from the nearest class-
conditional Gaussian with shared covariance as the uncertainty score. This approach directly fits in
with our spatial scoring method (Section 3.2.1) though we use class-wise covariance matrices.

Test-time Dropout: Gal & Ghahramani (2016) show that Monte Carlo (test-time) dropout to estimate
the prediction distribution give good uncertainty estimates. Note that it is computationally intensive
requiring k forward passes of the classifier, with k-fold increase in runtime. We use k = 10.

B.3 MODEL TRAINING & HYPERPARAMETERS

Image Encoders & Pre-processing We carry out our vision experiments using CNN-based classi-
fiers, i.e. the LeNet architecture (Lecun et al., 1998) when working with x-MNIST data and the
ResNet18 architecture (He et al., 2016) when working with CIFAR10/100/SVHN data. With the
x-MNIST data, we normalize the inputs using the mean and standard deviation calculated from the
training set for both training and inference, as is standard. With the CIFAR10/100/SVHN data, we
apply the normalization transform along with augmentation strategies (random crop and horizontal
flips) during training and only normalization during inference.

Audio Encoders & Pre-processing For our audio experiments, we use the M5 classifier (Dai et al.,
2016) as our encoder. We also train a simple two-layer network – a static, normalized, log-scattering
layer that extracts scattering coefficients from audio signals (Andreux et al., 2018) followed by a
log-softmax layer that generates output probabilities to compare encoder capabilities (Section 5.4).
Both models are trained only on classes 0-9 from the GSC dataset with the rest of the classes as OOD
inputs. In all cases, we learn embeddings directly from raw, one second audio clips (resampled to
8kHz) without making use of any spectrogram features like MFCC (Xu et al., 2005).

EEG Encoders & Pre-processing For our seizure detection task, we use the Dense-Inception based
models (Saab et al., 2020) as encoders. We use the same data pre-processing strategy as given by
Saab et al. (2020). The models are trained on 19 channel, 12 second or 60 second raw EEG clips
from InD datasets, resampled to 200Hz.

Additional Details We train all encoders on InD training data using standard weight initializations,
SGD/Adam optimizer and ReLU non-linearities. We train and tune hyperparameters for our encoders
using only InD data samples. We don’t expose any outlier data to our encoders. We extract activations
from a fully connected (FC) hidden layer before the logits layer to form latent space representations.
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We normalize our distance scores and similarity scores before forming the spatial scores in cases
where one of them is tightly bound while the other is not. For our temporal uncertainty scoring, we
set window sizes wA, wB = 25 for vision tasks and wA, wB = 50 for audio and EEG tasks based
on hyper-parameter tuning. We choose the reference window by sampling randomly from the training
set (or coreset) and using its spatial scores in any order. We randomly shuffle the evaluation set and
send in data points sequentially. We first obtain the spatial uncertainty scores for the evaluation set
forming a 1D evaluation sequence, on which we form the sliding window sequentially. We choose
the non-parametric, two-sided Mann-Whitney test (Mann & Whitney, 1947) at a significance level
of 0.05 as our measure F . We perform two-centered kMeans clustering (MacQueen, 1967) on the
temporal score sequence to identify uncertain model predictions and reject corresponding test samples
as OOD.

C SEQUENTIAL EVALUATION: VISUALIZATIONS

Some examples of data streams generated from sampling EEG, audio and vision datasets are shown
below (Figs. 2, 3, 4, 5, 6, 7, 8 and 9). The The X axis indicates the time sequence. The Y axis gives
the uncertainty scores (Mann Whitney Scores are the same as TIME-LAPSE temporal scores). Using
a two cluster KMeans algorithm, change points are detected and individual samples are accepted or
rejected as InD.

Figure 2: (left) Snapshot of the TIME-LAPSE temporal scores. Within a window of 15 samples, it is able to
detect the change point for the seizure detection task. (right) % Error distribution over 1000 trials.

D ABLATIONS: IMPORTANCE OF INDIVIDUAL SCORES IN TIME-LAPSE

We study the effect of individual scores (distance spatial score vs similarity spatial score, spatial scores
vs temporal scores, just using temporal scores) in this section. We also compare the effect of having
shared covariance assumption in the Mahalanobis distance score (baseline Vanilla Mahalanobis) as
opposed to using the separate covariance assumption that we use in our Mahalanobis distance score.
From Table 8, we see that:

• Shared vs Separate covariances: We see that using the shared covariance assumption is more
restrictive and does not fit various types of data. From Table 8, we see that it performs worse across
all tasks and domains in comparison to the more relaxed separate covariance assumption we make
for our Mahanalobis distance formulation (Section 3.2.1).

• Only distance scores: It is easy to see how the distance only scores perform in comparison to
TIME-LAPSE. They follow the same trend as TIME-LAPSE regarding semantic overlap, i.e., they
are more sensitive to semantic overlap than dataset statistics. But their performance is not high
enough to be competitive.

• Only similarity scores: We see that similarity scores are more tuned to direct similarity, whether
they are dataset-based or semantic-based. TIME-LAPSE allows us to get the benefits of both our
distance scores and similarity scores with a competitive boost in performance across all semantic
tasks.
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• Spatial vs Spatio-temporal: We provide a qualitative ablation of using just spatial scores versus
using the added advantage provided by temporal scoring through Figs. 3, 4, 5. We see from
the plots that the margin between uncertainty scores of InD and OOD data is low for any of the
baselines and the purely spatial TIME-LAPSE scores. Addition of the temporal scores greatly
increases the separability between them leading to an increase in performance not only as measured
by net AUROC but also increased interpretability.

• Only temporal (directly on embeddings): Conceptually, it is possible to use our temporal scoring
approach directly on the (non-scalar) latent-space embeddings, skipping the spatial scoring step
entirely. However, we have evidence from literature (Ramdas et al., 2015) to show that that
hypothesis based tests such as our temporal approach do not scale well to the multivariate case.
Hence, we do not consider it a viable option.

Table 8: Ablations showing the importance of individual scores on TIME-LAPSE. Semantic, Dataset, All
refer to modes of evaluation. Semantic (audio) involves considering spoken digits from different datasets to be
InD. Dataset (audio) involves considering spoken digitis from different datasets to be OOD. Semantic (MNIST)
involves removal of e-MNIST classes that share ambiguous semantic overlap {o,l,i,z,y,s,q} with digits 0-9. All
(MNIST) involves considering them as OOD along with other classes.

Audio CIFAR MNIST
Semantic Dataset SVHN CIFAR100 Semantic All

Only distance (shared covariance) 0.658 0.480 0.962 0.694 0.951 0.919
Only distance (ours) (separate covariance) 0.728 0.502 0.980 0.832 0.962 0.948
Only similarity (ours) 0.658 0.817 0.984 0.880 0.989 0.970
TIME-LAPSE (ours) 0.739 0.506 0.989 0.875 0.990 0.974

E ABLATIONS: CORESET SIZE

TIME-LAPSE’s spatial score uses the cosine similarity metric to compare the similarity of a test
sample’s latent-space embeddings to those of the training data pairwise. Potentially, this could be
a computationally intensive process, especially for large dataset sizes. We reduce the computation
costs, memory overhead and latency by using a subset of training data (coreset) instead of the full
training set. The coreset is extracted by randomly sampling a fraction from every class in the training
data. We show that in case of a large dataset, a small coreset will be sufficient to achieve a similar
performance for downstream tasks. We can see from Table 9 that just 2% to 10% of the training
dataset is sufficient to achieve a similar performance as using the full training dataset. In fact, for our
clinical EEG dataset, we use just 2% of the training samples for all spatial score calculations and
reach the state-of-the-art. This encouraging result also paves the way for choosing different sampling
strategies that can ensure more "representational" samples (based on domain knowledge) from the
training set are included in the coreset as part of future work. We note that similar trends with coresets
are observed by Tack et al. (2020) though they use a different strategy to select their coreset.

Table 9: Coreset Ablations. AUROC for OOD detection for various coreset sizes (% of training samples). Even
2% and 10% of training data give good results.

Coreset (%) Audio CIFAR MNIST EEG
1% 0.7360 0.8543 0.9690 -
2% 0.7385 0.8581 0.9702 0.771

10% 0.7390 0.8620 0.9710 -
100% 0.7399 0.8663 0.9721 -

F ABLATIONS: EFFECT OF ENCODER CAPACITY (SUPPLEMENTARY FIGURES)

We visualize the distributions of TIME-LAPSE spatial scores generated by two encoder architectures
(Kymatio and M5) with varying modelling capacity. We see from Fig. 10 that more modelling
capacity an encoder has, the better it is able to separate InD and OOD samples in its latent space.
Note that in Fig. 10, the left plot shows the distribution of scores for InD samples from different
datasets in blue and orange and that of all the OOD samples together in green. In the right plot,
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however, blue indicate the merged InD samples from both datasets while orange represents class-wise
distributions across OOD samples.

In Fig. 11, we keep the architecture of the encoder fixed, i.e., Kymatio, and vary how well it is trained.
We use two encoders of the same architecture, train one on GSC 0-9 classes and another on FSDD
0-9 classes. Both the encoders are thus trained on the same InD classes but different datasets. The
model trained on FSDD is able to reach high accuracy on the FSDD test sets whereas the one trained
on GSC cannot. From the plots, we see that the model trained on FSDD actually overfits to the data
since it is able to distinguish between InD classes from different datasets (Fig. 11, right).

G QUALITATIVE ANALYSES

We plot the UMAP (McInnes et al., 2018) embeddings of our raw InD data and their extracted latent
space representations from the trained encoders along with those of OOD data. Fig. 12 shows the
plots for our audio GSC dataset. We see that the raw data are too high-dimensional to be captured
according to their class labels by UMAP. On the other hand, the extracted representations arrange
themselves in well-separable clusters showing the representational capacity of the trained encoder.
Most distance-based OOD detectors assume OOD representations will get mapped far away from
the InD representations in the latent-space. This is a good assumption and holds in many cases.
Indeed, the spatial scorer in TIME-LAPSE uses this hypothesis (along with others) to derive its
predictive uncertainty score. However, OOD inputs can get mapped very close to InD inputs in the
representational space under most distance metrics. Fig. 12 (right) shows the overlay of OOD inputs
in the latent-space. Although it is just a 2D projection and the extracted representations have higher
dimensions, this figure still shows that OOD inputs can get mapped near to InD inputs. In that case,
purely distance-based spatial scores lose their power. TIME-LAPSE looks at multiple hypotheses
to determine if samples are OOD. We find that the combination of our similarity score and distance
score outperform each score individually. Moreover, since TIME-LAPSE has a temporal component
to it, the temporal scorer acts as an additional constraint to ensure OOD inputs are separable. Thus,
within a few samples, TIME-LAPSE can indicate when samples are going out-of-distribution with
much better accuracy.
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Figure 3: Uncertainty scores (audio). TIME-LAPSE (temporal) shows the most separability between InD
(blue low segment) and OOD (blue high segment)
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Figure 4: Uncertainty scores (CIFAR10). TIME-LAPSE (temporal) shows the most separability between InD
(blue low segment) and OOD (blue high segment)
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Figure 5: Uncertainty scores (MNIST). TIME-LAPSE (temporal) shows the most separability between InD
(blue low segment) and OOD (blue high segment)
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Figure 6: Sequential Evaluation: Data stream with distribution shifts occurring every 500 steps. The orange
lines indicate true change points. Blue plot represents the Mann-Whitney scores generated from the spatial
scores of audio clips.

Figure 7: Sequential Evaluation: Data stream with distribution shifts occurring every 100 steps. The orange
lines indicate true change points. Blue plot represents the Mann-Whitney scores generated from the spatial
scores of audio clips.

Figure 8: Sequential Evaluation: Data stream with distribution shifts occurring every 500 steps. The orange
lines indicate true change points. Blue plot represents the Mann-Whitney scores generated from the spatial
scores of CIFAR + OOD images.
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Figure 9: Sequential Evaluation: Data stream with distribution shifts occurring every 500 steps. The orange
lines indicate true change points. Blue plot represents the Mann-Whitney scores generated from the spatial
scores of MNIST + OOD images.

Figure 10: Distribution of TIME-LAPSE scores across semantic InD (GSC 0-9, FSDD 0-9) and OOD classes
with (left) Kymatio encoder, (right) M5 encoder, class-wise OOD scores are shown. GSC 0-9 and FSDD 0-9 are
merged here and only part of the full list of OOD classes shown. All GSC OOD classes are merged together as
green in the left figure.

Figure 11: Distribution of TIME-LAPSE scores with trained Kymatio encoder. (left) Kymatio encoder trained
with GSC 0-9 data, achieving 0.75 classification accuracy. The InD scores from the two datasets (blue and
orange) are indistinguishable (right) Kymatio encoder trained with FSDD 0-9 data, achieving 0.97 classification
accuracy. The InD scores between the two datasets are separable, showing that it has overfit to the dataset
statistics.
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Figure 12: UMAP embeddings of GSC data (left) raw InD data (middle) representations from the trained
encoder, i.e. a 2D projection of the latent space (c) OOD samples added to the mix (only few classes are shown
for visualization purposes).

Figure 13: UMAP embeddings of CIFAR data (left) raw InD data (middle) representations from the trained
encoder, i.e. a 2D projection of the latent space (c) OOD samples added to the mix (only few classes are shown
for visualization purposes).

Figure 14: UMAP embeddings of MNIST data (left) raw InD data (middle) representations from the trained
encoder, i.e. a 2D projection of the latent space (c) OOD samples added to the mix (only few classes are shown
for visualization purposes).

25



Under review as a conference paper at ICLR 2022

Figure 15: UMAP embeddings of EEG data (left) raw InD data (middle) representations from the trained
encoder, i.e. a 2D projection of the latent space (c) OOD samples added to the mix (only few classes are shown
for visualization purposes).

Figure 16: TIME-LAPSE score distribution on EEG data
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Figure 17: TIME-LAPSE score distribution on GSC

Figure 18: Test-time Dropout score distribution on GSC
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