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ABSTRACT

Numerous applications of large language models (LLMs) rely on their ability to
perform step-by-step reasoning. However, the reasoning behavior of LLMs remains
poorly understood, posing challenges to research, development, and safety. To
address this gap, we introduce landscape of thoughts (LoT), the first landscape
visualization tool to inspect the reasoning trajectories with certain reasoning meth-
ods on any multi-choice dataset. We represent the textual states in a trajectory as
numerical features that quantify the states’ distances to the answer choices. These
features are then visualized in two-dimensional plots using t-SNE. Qualitative
and quantitative analysis with the landscape of thoughts effectively distinguishes
between strong and weak models, correct and incorrect answers, as well as differ-
ent reasoning tasks. It also uncovers undesirable reasoning patterns, such as low
consistency and high uncertainty. Additionally, users can adapt LoT to a model that
predicts the property they observe. We showcase this advantage by adapting LoT
to a lightweight verifier that evaluates the correctness of trajectories. Empirically,
this verifier boosts the reasoning accuracy and the test-time scaling effect.

1 INTRODUCTION

Large language models (LLMs) have revolutionized the paradigm of solving problems. Many
practical applications, e.g., LLM as agent (Schick et al., 2023; Lewis et al., 2020; Yao et al., 2023b),
critically depend on step-by-step reasoning (Wei et al., 2022; Kojima et al., 2022). Despite progress
in advanced models like OpenAl ol (Jaech et al., 2024) and decoding methods such as test-time
scaling (Snell et al., 2024), the underlying reasoning behavior of LLMs remains poorly understood,
hindering the development of these models and posing deployment risks (Anwar et al., 2024).

A few pioneer attempts (Wang et al., 2023a; Saparov & He, 2023; Saparov et al., 2023; Dziri et al.,
2024) probe LLM reasoning, but their insights often hinge on specific decoders and tasks. In practice,
practitioners typically debug by manually reading the reasoning trajectories generated by LLMs,
which has two drawbacks: (i) scalability—human inspection does not scale (e.g., at 30s per trajectory,
100 trajectories require S0min); and (ii) aggregation—deriving reliable, dataset-level conclusions
(e.g., from 10,000 trajectories) is difficult, yielding subjective and even biased summaries. These costs
compound during iterative development, where fast, interpretable feedback is essential. Consequently,
there is a clear need for general, reusable tools to analyze LLM reasoning in users’ own settings.
This tool can potentially benefit engineers by speeding iteration, reasoning researchers by informing
decoder improvements, and safety researchers by monitoring and improving model behavior.

To this end, we introduce the landscape of thoughts (LoT), a visualization of LLM reasoning trajecto-
ries that delivers automatic, objective analysis from single examples to full datasets. Analogous to
the t-SNE (van der Maaten & Hinton, 2008), LoT highlights structure in high-dimensional reasoning
space. By pairing qualitative landscapes with quantitative metrics (consistency, uncertainty, and
perplexity), LoT enables comparison and reveal insights beyond manual inspection or metric analysis.

Specifically, given any multi-choice reasoning dataset, LoT visualizes the distribution of intermediate
states in any reasoning trajectories of interest w.r.t. the answer choices, which enables users to uncover
reasoning patterns in both success and failure trajectories (Fig. 1). The core idea is to characterize the
states of textual thoughts in a trajectory as numerical features that quantify the states’ distances to
the answer choices. These distances are estimated by the perplexity metric, with the same LLM to
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Figure 1: Landscape of thoughts for visualizing the reasoning steps of LLMs. Note that the red
landscape represents wrong reasoning cases, while the blue indicates the correct ones. The darker
regions in landscapes indicate more thoughts, with % indicating incorrect answers and * marking
correct answers. Specifically, given a question with multiple choices, we sample a few thoughts from
an LLM and divide them into two categories based on correctness. We visualize the landscape of
each category by projecting the thoughts into a two-dimensional feature space, where each density
map reflects the distribution of states at a reasoning step. With these landscapes, users can easily
discover the reasoning patterns of an LLM or a decoding method. In addition, a predictive model is
applied to predict the correctness of landscapes and can help improve the accuracy of reasoning.

generate thoughts and explain to itself. Then, these state features (i) produce three metric plots and
(ii) are projected into a two-dimensional space with t-SNE to generate the landscape plots.

We examine LoT with different dimensions of model sizes, decoding methods, and reasoning datasets.
LoT reveals several insightful observations regarding the reasoning behaviors of LLMs. Some notable
observations include: 1) The convergence speed of trajectories towards correct answers reflects the
accuracy, no matter what base model, decoding method, or dataset is used; 2) The convergence speed
of trajectories in success and failure cases is distinct, indicating that we may use the convergence
speed of a reasoning trajectory to predict its accuracy; 3) Low consistency and high uncertainty are
generally observed in the intermediate thoughts, presenting the unstable properties of the reasoning
process. LoT reveals them by bridging localized text understanding with global reasoning dynamics.
To our knowledge, these patterns have not been reported by prior analyses of reasoning, which
primarily rely on manual text inspection or aggregate performance metrics.

Since our tool is built on top of state features, it can be adapted to a machine-learning model
to quantitatively predict certain properties, such as the findings mentioned above. We showcase
this advantage by training a lightweight model to predict the success and failure cases, which is
equivalent to verifiers commonly used in LLM reasoning (Cobbe et al., 2021). Even though this
verifier is lightweight compared to most LLM-based verifiers, it consistently improves the reasoning
performance on most combinations of models, decoding methods, and datasets in our experiments.
Hence, users can further leverage this advantage to predict the properties in their scenarios.

In summary, our main contributions are three-fold:

* We introduce the first tool for automatic and scalable visualization of the LLM reasoning procedure,
applicable to any open-source models and decoding methods on multi-choice datasets (Sec. 2).

* Our tool reveals several observations regarding the reasoning behaviors of different language
models, decoding methods, and reasoning datasets, offering several new insights (Sec. 3).

* Our tool can also be adapted to a model to predict certain properties and guide the reasoning
process, improving LLM reasoning without modifying the model parameters (Sec. 4).
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2 LANDSCAPE OF THOUGHTS
2.1 PROBLEM FORMULATION

Our goal is to visualize the reasoning trajectories of LLMs across a variety of task domains. Specif-
ically, we target datasets consisting of multiple-choice questions, where each datapoint (z,y,C)
comprises a question x, a correct answer y, and a finite set of candidate choices C = {cj }2?:1, all
represented in texts. | The visualization tool applies to the following models and methods.

Language models. To explore the landscape of thoughts generated by an LLM prm(+), the model
should produce diverse reasoning trajectories for solving a problem. In each trajectory, the reasoning
thoughts are decoded autoregressively as #; ~ prim(ti|z,C, %1, ...,%;_1): each thought £; is condi-
tioned on the question x, the candidate set C, and the sequence of preceding thoughts #1,...,%;_1. To
characterize intermediate states within these trajectories, the LLM must also function as a likelihood
estimator, enabling the computation of the probability p i m(7|z,C, 1, . . ., t;) of any answer 7. These
two requirements are generally satisfied by open-source LLMs, such as Llama (Dubey et al., 2024)
and DeepSeek (Liu et al., 2024). However, closed-source LLMs like GPT-4 (Achiam et al., 2023)
and Gemini (Team et al., 2023) are excluded, as their likelihood estimation is not publicly supported.

Reasoning methods. While there are many approaches to solving reasoning problems with
LLMs (Creswell et al., 2022; Kazemi et al., 2023), this work focuses on chain-of-thought (CoT) (Wei
et al., 2022) and its derivatives (Zhou et al., 2023; Yao et al., 2023a), owing to their widespread use
and development. These decoding methods generally guide the model in generating a structured
trajectory of intermediate reasoning thoughts before arriving at the final answer. Note that to visualize
a large number of reasoning thoughts effectively, these thoughts should be automatically parsed into
distinct units (e.g., via sentence tokenization). This requirement can be satisfied by most LLMs. >

2.2  QUALITATIVE VISUALIZATION WITH LANDSCAPES

Given a collection of reasoning trajectories generated by an LLM, our tool seeks to visualize how
different trajectories lead to either correct or incorrect answers within a two-dimensional (2D) space,
as illustrated in Fig. 1. A key challenge lies in the absence of a direct mapping from the textual space
of thoughts to numerical 2D coordinates. To address this gap, we utilize the same LLM to represent
intermediate states as numerical features. These state features are then projected into a 2D space for
visualization. For simplicity, we denote a thought as ¢; instead of ¢;, which is clear in the following.

Characterizing the states. Here, the intermediate thoughts {t;}_, in a reasoning trajectory naturally
define a sequence of states {s;}I"_, where so = [z] and s; = [z, t1,ta, ..., t;]. Here, we propose to
characterize the states as features using the likelihood function of the LLM. Specifically, the k-dim
feature f; for state s; indicates the relative distances from the state s; to all possible choices {cj };?:1:

fi & d(si,e1),d(si ¢2), .y d(si )] (1)
where d(s;, ¢;) measures the distance between state s; and choice ¢;. To reduce the effect of length
on choices, we calculate d(s;, ¢;) through the perplexity metric (Shannon, 1948; Manning, 1999):

sl

ZIngLLM(Cj [Hlsi sl 1) | = puom(eslsi) =11, (2)
t=1

d(si, ¢;) £ exp —m
3

where |c;| is the number of tokens in ¢;, and prim(c;ls;) is the accumulated probability in an autore-
gressive manner. Assume |c;| = T', we have prim(c;|s:) = prom(c;[1]]s:) - pum(e;[2]]si, ¢;[1]) -
pum(c;[3]lsis ¢j[1],¢;[2]) - - . pim(c; [T]si, ¢j[1], ¢j[2] . . . ¢;[T'— 1]). The token-level probabilities
are normalized over the entire vocabulary; ¢;[1] is the first token of ¢;, and ¢;[T] is the last token.

We further normalize the vector f; to have a unit ¢; normalization. Additionally, to represent the
choices as landmarks in the visualization, it is necessary to encode the choices as feature vectors.
Notably, the perplexity decreases as the model’s prediction confidence increases. To align with this
observation, we define the feature vector f]? for a choice c; as:

Fr2 G £ 16 £ b )

"LoT is positioned for multi-choice questions. Appendix E.7 discusses its extension to open-ended tasks.
*We empirically verify the robustness of LoT if this requirement does not hold (please see Appendix H.9).
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For r trajectories, each with n states, we compute the feature vectors for all r - nn states. The indicator
function 1(j # 1) will output 1 if j is not 1, and output 0 if and only if j is 1. Here, the element O
in ¢; indicates this choice has 0 distance to the first anchor, which is ¢; itself. Besides, elements 1
indicate that the distances among anchors are assumed to be the same. * Together with the feature
vectors of k choices, we obtain a feature matrix F' € RF*(mn+k) 4.

Fé [f1(1)7'"afr(L1)7"'af1(T)a'"a ér)affvaflf] (4)

Note that a sufficiently large number of trajectories is necessary to generate a comprehensive vi-
sualization of the reasoning landscape. For computational efficiency, we sample d trajectories per
question across all questions, yielding » = d|questions| total trajectories. We then normalize feature
vectors by reordering choices so the correct answer appears in the first dimension across all questions.
In this way, we can visualize the landscape of multiple questions by putting their trajectories together,
which is more efficient than visualizing by generating enough trajectories for one question.

Visualization. After constructing the feature matrix F', we project the states and choices into
a 2D space for visualization. This step can be accomplished using various existing methods of
dimensionality reduction (Pearson, 1901; van der Maaten & Hinton, 2008; Mclnnes et al., 2018a).
We employ t-SNE (van der Maaten & Hinton, 2008) due to its ability to preserve the underlying
manifolds of the original high-dimensional space and its robustness to a wide range of transformations.
4 By applying t-SNE to the k-dim F, we obtain the 2-dim coordinates F' € R?*(""*) The two
dimensions are reduced from the original space, which represents all possible answers, and each
state’s coordinates show its distance from different answers. Finally, the coordinates of the states
define a discrete density function in the 2D space, presented by the color depth in landscapes.

2.3 QUANTITATIVE VISUALIZATION WITH METRICS

Besides the qualitative visualization, we introduce three quantitative metrics to help understand the
LLMs’ behavior. These metrics are defined based on the intermediate states in Sec. 2.2.

Consistency. To understand whether the LLM knows the answer before generating all thoughts, we
compute the consistency of state s; by checking whether f; and f,, agree

Consistency(s;) = 1(arg min f; = argmin f,,). 5)

Uncertainty. To know how confident the LLM is about its predictions at intermediate steps, we
compute the uncertainty of state s; as the entropy of f; (note ) _ ;. £ d=1)

Uncertainty(s;) = Z d-logd. 6)
defi

Perplexity. We are also interested in how confident the LLM is about its thoughts. We use the
perplexity of thought ¢;, since it is comparable across thoughts of different length

Perplexity(ti) = pLLM(ti|SZ'_1)71/Iti‘. (7)

Remark 2.1. Note that in previous works, these metrics are mainly used to evaluate the performance
of language modeling on each token. We repurpose them to analyze intermediate thoughts in the
trajectories, which is a new lesson for the community. Appendix F introduces related works in
detail. The following section demonstrates that the LoT, containing the qualitative landscape and the
quantitative metrics, is effective for automatic and scalable visualization of reasoning trajectories.

3 RESULTS AND OBSERVATIONS

In this section, we utilize the landscape of thoughts to analyze the reasoning behavior of LLMs
by comparing the visualizations across three dimensions: (1) diverse scales and types of language
models in Sec. 3.1, (2) different reasoning tasks in Sec. 3.2, and (3) various reasoning methods in
Sec. 3.3. Unless stated otherwise, we employ Llama-3.1-70B with CoT as the default configuration
in evaluations. All the visualizations are built upon the model’s estimation of their own thoughts. >

3LoT can be applied to trajectories with different numbers of states. We assume n, states for demonstrations.
4 Appendix H.8 shows that LoT is compatible and robust with different methods of dimensionality reduction.
> Appendix H.1 validates each qualitative observation from LoT. Full visualizations are in Appendix L.
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Figure 2: Comparing the LoT of different language models (with CoT on the AQuA dataset). Darker
regions represent higher state density, with ¥ indicating incorrect answers and * marking the correct
ones. Through the reasoning trajectories, spanning from early (0-20% states) to the later stages
(80-100% states), the visualization shows correct cases (bottom rows in blue) with incorrect cases
(top rows in red). Metrics are calculated w.r.z. each bin, e.g., 20% - 40% of states. The reasoning
accuracy of the four subfigures is: (a) 15.8%, (b) 42.0%, (c) 53.2%, and (d) 84.4%.
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Figure 3: The LoT of the reasoning model QwQ-32B (using CoT prompting on the AQuA dataset).

3.1 COMPARISON ACROSS LANGUAGE MODELS

We study several LLMs’ behavior across parameter scales (from 1B, 3B to 70B). We run each model
with CoT prompting on 50 randomly selected problems from the mathematical reasoning dataset
AQuA. Their landscapes are shown in Fig. 2, from which we have the following observations.

Observation 3.1 (The landscape converges faster as the model size increase). As model parameters
scale from 1B to 70B, the corresponding landscape demonstrates faster convergence to the correct
answers with higher density in the last 20% states, aligning with the increasing accuracy. With more
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Figure 4: Comparing the LoT of different datasets (using Llama-3.1-70B with CoT). The accuracy of
reasoning for the four subfigures is: (a) 84.4%, (b) 80.2%, (c) 75.8%, and (d) 64.8%.

parameters, larger models can store broader knowledge (Allen-Zhu & Li, 2024). This leads to more
confident solutions, demonstrated by more focused answer patterns and lower uncertainty.

Observation 3.2 (Larger models have higher consistency, lower uncertainty, and lower perplexity).
As the model size increases, the consistency increases; at the same time, the uncertainty and perplexity
decrease significantly. This also aligns with the higher accuracy for the large models. °

In addition, we apply LoT to up-to-date reasoning models QwQ 32B (Team, 2025) and observe:

Observation 3.3 (Reasoning models present more-complex reasoning behaviors in landscapes.). As
shown in Fig. 3, the landscapes can capture complex reasoning patterns such as self-evaluation and
self-correction. Specifically, correct trajectories tend to include more instances of self-evaluation
and self-correction compared to incorrect ones. These behaviors often occur early in the reasoning
process, especially when the model is far from the correct one. Compared to non-reasoning models,
correct trajectories here show greater diversity, with green and yellow points more widely scattered.

3.2 COMPARISON ACROSS REASONING TASKS

Besides AQuA dataset, we include MMLU, CommonsenseQA, and StrategyQA datasets. We run the
default model with CoT on 50 problems per dataset. These observations are derived from Fig. 4:

Observation 3.4 (Similar reasoning tasks exhibit similar landscapes). The landscapes of AQuA,
MMLU, and StrategyQA in Fig. 4 exhibit organized search behavior with higher state diversity,
while CommonSenseQA presents concentrated search regions, reflecting direct retrieval of common-
sense knowledge rather than step-by-step reasoning processes. These distinct landscape patterns
demonstrate the potential to reveal underlying domain relationships across different reasoning tasks.

Observation 3.5 (Different reasoning tasks present significantly different patterns in consistency,
uncertainty, and perplexity). The histograms in Fig. 4 show that the perplexity consistently increases

SAppendix H.3 presents additional analyses of the consistency metric: the consistency does not relate to the
length of the trajectory. In addition, Appendix H.5 supports the validity of comparing perplexity across models.
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Figure 5: Comparing the LoT of four reasoning methods (using Llama-3.1-70B on the AQuA dataset).
The reasoning accuracy is: (a) 84.4%, (b) 82.2%, (c) 75.8%, and (d) 81.6%, respectively.

Step 3: The total cost can

be expressed as the sum of Conclusion: The original
costs of brown and white  Next, we divide the total Step 8: Solve for x price of the item was
Let's think step by step ~ sharpeners: b X + (18 - b)  profit by the profit per using the equation approximately $63.32. The
to solve this problem. (X +1)=100. bag: $3,000 / $25 = 120. identified in step 7. answer is A
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the following 3 hours. * total monthly sale. Original) 100).

Figure 6: Case Study of LoT, with Llama-3.1-8B using CoT on AQuA.

as reasoning progresses across all datasets. Specifically, different datasets, e.g., AQuA and MMLU,
show distinctly higher levels of uncertainty. As for StrategyQA, correct trajectories show increasing
consistency that surpasses incorrect trajectories at around 60% states, while incorrect trajectories
show decreasing consistency. However, when the trajectory is longer than the ground truth trajectory,
the later stages (60-100% of states) exhibit both increasing perplexity and decreasing uncertainty. ’

3.3 COMPARISON ACROSS REASONING METHODS

Setup. We evaluate the default model with four reasoning methods: chain-of-thought (CoT) (Wei
et al., 2022), least-to-most (LtM) (Zhou et al., 2023), MCTS (Zhang et al., 2024), and tree-of-thought
(ToT) (Yao et al., 2023a). We run these methods on 50 problems from AQuA and observe that:

"We show detailed analysis for trajectories in StrategyQA in Appendix H.4.
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Observation 3.6 (Cross-method comparison: Among correct reasoning trajectories, methods with
faster convergence to correct answers achieve higher accuracy.). From Fig. 5, we observe that the
states scatter dispersedly at early stages and gradually converge to correct (or incorrect) answers
in later stages. Here, converge means the trend of a reasoning trajectory approaching one answer.
Generally, methods with more scattered landscapes (that converge more slowly) present lower
accuracy than those that converge faster. For example, the blue landscape in Fig. 5(a) converges faster
than the blue landscapes in Fig. 5(c), and the former is with a higher accuracy than the latter.

Observation 3.7 (Within-method comparison: For any single method, incorrect trajectories converge
faster to wrong answers than correct trajectories converge to right answers.). As can be seen from
Fig. 4, failure trajectories usually converge to the wrong answers at earlier states of reasoning, e.g.,
20-40% states in Fig. 4(c). By contrast, the states in the success trajectories converge to the correct
answers at later 80-100% states. This implies that early states of the reasoning process can lead to any
potential answers (from a model perspective), while the correct answers are usually determined at the
end of reasoning trajectories. In addition, Fig. 6 showcases the corresponding text of thoughts.

Observation 3.8 (Compared to failure trajectories, the intermediate states in correct trajectories
have higher consistency w.r.t. the final state). By comparing the consistency plots in Fig. 5, we
found that the model generally has low consistency between the intermediate states and the final state.
Notably, the consistency of wrong trajectories is significantly lower than that of correct trajectories.
This implies that the reasoning process can be quite unstable. Even though decoding methods like
CoT and LtM are designed to solve a problem directly (without exploration), the generated thoughts
by these methods do not consistently guide the reasoning trajectory to the answer.

4 ADAPTING VISUALIZATION TO PREDICTIVE MODELS

One advantage of our method is that it can be adapted to a model to predict any property users
observe. Here, we show how to convert our method to a lightweight verifier for voting trajectories,
following the observations in Sec. 3. Note that this methodology is not limited to verifiers. Users can
use this technique to adapt the visualization tool to monitor the properties in their scenarios.

4.1 A LIGHTWEIGHT VERIFIER

Observation 3.7 and 3.8 show that the convergence speed and consistency of intermediate states
can distinguish correct and wrong trajectories. Inspired by these observations, we build a model
g : REFDXn 5 10 1} to predict the correctness of a trajectory based on the state features { f; }7_,
and consistency metric {Consistency(f;)}?_,. The insight is that the state features, used to compute
the 2-D visualization, encode rich location information of the states and can be used to estimate
the convergence speed. Due to the small dimensionality of these features, we parameterize f with
a random forest (Breiman, 2001) to avoid overfitting. We use this model as a verifier to enhance
LLM reasoning (Cobbe et al., 2021). Unlike popular verifiers (Lightman et al., 2023) that involve a
moderately sized language model on textual thoughts, our verifier operates on state features and is
quite lightweight. We train a verifier on thoughts sampled on the training split of each dataset and
apply it to vote trajectories at test time. Given q trajectories sampled by a decoding method, the final
prediction is produced by a weighted majority voting:

q
g=argmax Y 1(§" = c)- g({fi}i—1, {Consistency(s;) }-,). ®)

ceC i—1

4.2 EXPERIMENTAL RESULTS

We evaluate our numerical verifier against an unweighted voting baseline (Wang et al., 2023b) with
various models, decoding methods, and reasoning datasets. We report the accuracy here instead of
commonly seen pass@k, which will be easily hacked by a simple random guess or a traverse of
all candidates to obtain a high score. Detailed settings of experiments are in Appendix G. We also
provide ablation studies on training the verifier and discuss and compare the variance of the verifier
in Appendix H.6, and experiment on the scaling effect with different features in Appendix H.7.

Effectiveness of the verifier. We first compare our verifier against the unweighted voting baseline,
each applied to 10 trajectories. As shown in Fig. 7, our verifier consistently enhances the reasoning

8In Appendix H.2, only a few incorrect trajectories (1.8%) are close to the correct answer in middle thoughts.
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Figure 7: The accuracy of reasoning under different decoding methods and model scales (averaging
across all four datasets). Results for each dataset are in Appendix .

Strategy Common 1B 3B 8B 708
3B (with verifier) 3B TesT\Q‘" AQUA  MMLU QA SenseQA Togran A Acc.
8B (with verifier) 8B ASACC' 1B 05
75% AQUA 07 00 00 17 l 4
~.60% MMLU 00 00 00 00 4 ® o0 m
(5}
& 45% Strategy “ “ w2 8 oo 00 00 00 2
3 30% Commn :
3 ommon ' : : 0
< 15% SenseQA 10 0.0 00 10 0 708 10 05 05
o
15 10 15 20 25 30 35 40 45 50 (a) Transfer across datasets (b) Transfer across models

Number of Reasoning Paths

Figure 8: Demonstration of the Figure 9: Absolute accuracy changes (A Acc) with the verifier,
inference-time scaling effect of the compared to performance in Fig. 7 (without the verifier). The
verifier. We show the voting accu- verifier is trained on each column (dataset or model) and eval-
racy (%) on StrategyQA scales with uated on all rows (other datasets or models). Positive values
the number of trajectories. indicate improvement in accuracy with the verifier.

performance of all models and decoding methods, even though our verifier does not use any pre-
trained language model. Notably, smaller language models (1B and 3B) show significant performance
gains with the verifier’s assistance, achieving substantial improvements over their original capabilities
of reasoning. We also compare the verifiers between reward-guided methods.

Test-time scaling. While the improvement of the verifier seems marginal with 10 trajectories, our
verifier can provide a substantial performance gain with more trajectories. We adjust the number of
trajectories from 1 to 50, and plot the results of the verifier and the unweighted voting baseline in
Fig. 8. Models with our verifier exhibit significantly stronger scaling behaviors, achieving over 65%
accuracy. In contrast, the performance of the baseline saturated around 30% accuracy. These results
suggest that our state features, which are used in both the visualization tool and the verifier, capture
important information about the reasoning behavior of LLMs. Thus, the verifier can boost test-time
scaling, especially in solving complex problems.

Cross-dataset and cross-model transferability. One interesting property of the state features and
metrics is that their shape and range are agnostic to the model and dataset, suggesting that we may
deploy the verifier trained on one dataset or model in another setting. As illustrated in Fig. 9, we
evaluate how the verifier transfers across reasoning datasets (e.g., train on AQuA and test on MMLU)
and model scales (e.g., train on 1B model and test on 70B model). We observe some positive transfers
across datasets and models. For example, a verifier trained on AQuA can improve the performance
of StrategyQA by 4.5%. A verifier trained on the 70B model also improves the performance of the
3B model by 5.5%. However, some cases do not benefit from the transferring verifiers. We leave
improving the transferability of the state features and metrics as future work.

5 CONCLUSION

This paper introduces the landscape of thoughts, a visualization tool for analyzing the reasoning
trajectories produced by large language models with chain-of-thought. Built on top of feature vectors
of intermediate states in trajectories, our tool reveals several insights into LLM reasoning, such as the
relationship between convergence and accuracy, and issues of low consistency and high uncertainty.
Our tool can also be adapted to predict the answer of reasoning trajectories based on the observed
property, which is demonstrated by a lightweight verifier developed based on the feature vectors and
our observations for distinguishing the correctness of trajectories. We foresee that this tool will create
several opportunities to develop, understand, and monitor the LLM reasoning.
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A ETHIC STATEMENT

The study does not involve human subjects, data set releases, potentially harmful insights, applications,
conflicts of interest, sponsorship, discrimination, bias, fairness concerns, privacy or security issues,
legal compliance issues, or research integrity issues.

B IMPACT STATEMENT

This work aims to advance the field of trustworthy machine learning and large language models,
especially the interpretability of machine reasoning. Our work presents a tool for visualizing and
understanding reasoning steps in LLMs. We foresee that our work will introduce more interpretabil-
ity and transparency into the development and deployment of LLMs, advancing us toward more
trustworthy machine learning. We do not find any negative societal consequences of our work.

C REPRODUCTION STATEMENT

The experimental setups for training and evaluation are described in detail in Appendix G.1, and the
experiments are all conducted using public datasets. We provide the link to our source codes to ensure
the reproducibility of our experimental results: https://anonymous.4open.science/r/
landscape-of-thoughts—-submission-code-3803/.

D LLM USAGE DISCLOSURE

This submission was prepared with the assistance of LLMs, which were utilized for polishing content
and checking grammar. The authors assume full responsibility for the entire content of the manuscript.
It is confirmed that no LLM is listed as an author.

E FURTHER DISCUSSIONS

E.1 CHALLENGES IN ANALYZING LLM’S REASONING AUTOMATICALLY

Currently, the fundamental mechanisms behind both successful and unsuccessful reasoning attempts
in LLMs remain inadequately understood. Traditional performance metrics, such as accuracy, provide
insufficient insights into model behavior. While human evaluation has been employed to assess
the quality of sequential thoughts (e.g., logical correctness and coherence), such approaches are
resource-intensive and difficult to scale. We identify three challenges in developing automated
analysis systems for LLMs’ reasoning:

Challenge 1: Bridging the token-thought gap. Current explanatory tools, including attention
maps (Clark et al., 2019; Kobayashi et al., 2020), probing (Alain & Bengio, 2016; Tenney et al.,
2019; Hewitt & Liang, 2019), and circuits (Elhage et al., 2021; Yao et al., 2024), primarily operate
at the token-level explanation. While these approaches offer valuable insights into model inference,
they struggle to capture the emergence of higher-level reasoning patterns from lower-level token
interactions. Additionally, the discrete nature of natural language thoughts poses challenges for
traditional statistical analysis tools designed for continuous spaces. Understanding how thought-level
patterns contribute to complex reasoning capabilities requires new analytical frameworks that can
bridge this conceptual gap.

Challenge 2: Analyzing without training data access. Existing investigations into LM reasoning
have predominantly focused on correlating test questions with training data (Ippolito et al., 2022;
Wang et al., 2024a). This approach becomes particularly infeasible given the reality of modern LLMs:
many models are closed-source, while some offer only model weights. Therefore, a desired analysis
framework should operate across varying levels of model accessibility.

Challenge 3: Measuring reasoning quality. Beyond simple performance metrics, we need new ways
to evaluate the quality and reliability of model reasoning. This includes developing techniques to
understand reasoning paths, creating intermediate representations that capture both token-level and
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thought-level patterns, and designing metrics that can assess the logical coherence and validity of
reasoning steps.

Consequently, we propose that a viable analysis of reasoning behavior should satisfy multiple criteria:
it should operate in a post-hoc manner with varying levels of model access, bridge the gap between
token-level and thought-level analysis, and provide meaningful metrics for evaluating reasoning
quality. Given the absence of tools meeting these requirements, we identify the need for a new
analytical framework that can address these challenges while providing useful insights for improving
model reasoning capabilities.

E.2 A COMPARISON BETWEEN LANDSCAPE VISUALIZATION AND TEXTUAL ANALYSIS

Notably, for the language model, one could manually examine the responses to individual questions,
as their responses are interpretable by humans. However, this approach has two major limitations:

Limitation 1: Lack of Scalability. Analyzing the individual question is time-consuming and labor-
intensive. In general, text-based analysis requires human evaluators to carefully read long reasoning
chains word by word. For example, if it takes 30 seconds to understand a single problem, review-
ing 100 problems would require around 50 minutes of focused human effort. This burden grows
quickly, especially as researchers often repeat this process many times while developing models and
methods. In practice, researchers need quick, easily interpretable feedback, such as accuracy, when
experimenting with changes to models and methods.

Limitation 2: Lack of Aggregation. 1t is difficult to aggregate insights across multiple problems
to understand model behavior at the dataset level. Summarizing model behavior across multiple
problems presents another challenge. Suppose one researcher has 100 reasoning chains; it is hard
for him/her to reliably synthesize the model’s overall behavior. Different researchers may arrive at
different, subjective summaries, which hinders consistency and interpretability.

By contrast, our visualization method provides a more objective and automatic way to analyze a
model, making it much easier for researchers to analyze the model’s reasoning behavior. Similar to
the t-SNE (van der Maaten & Hinton, 2008), the visualization enables a more comprehensive analysis
of multiple reasoning problems instead of only one problem. The visualization uniquely combines
human-readable paths with quantitative, scalable metrics for reasoning process analysis, enabling
both model comparisons and mechanistic insights beyond manual text inspection.

Notably, the landscape provides unique insights into LLM reasoning that text analysis alone cannot
capture. This power source bridges the gap between localized text understanding and global reasoning
behavior. Our analysis in Sec. 3 reveals insights that are not revealed by previous text-based analysis.
These insights include structural patterns across many reasoning paths, a strong correlation between
early consistency and accuracy, and model-level differences where larger models explore more
broadly than smaller ones.

E.3 THE INTRINSIC RELATIONSHIP BETWEEN VISUALIZATION AND METRICS

In the modeling of this work, we project each thought (state in a trajectory) from text space to
numerical space, with the thought’s feature vector that each dimension indicates the distance to a
particular answer (see Eqn. 1). We compute the feature vectors of all the thoughts from multiple
trajectories and then obtain the feature matrix F'. Then, based on this feature matrix, we compute
(1) the landscape visualization through dimension reduction and (2) the metrics of consistency and
uncertainty. From this view, the metrics’ information can actually be seen from the landscape. In this
work, we mainly focus on the landscapes and also use the metrics plots to help analyze.

In addition, landscape visualizations preserve the information of metrics, including the consistency,
uncertainty, convergence, and many other metrics that are not covered in this work. The landscape
provides a “global” view of the overall reasoning trajectories, while each metric provides a “local”
view of a particular aspect. Note that humans naturally prefer visual matters like figures and videos,
e.g., researchers prefer to use t-SNE in understanding the classification models. We recommend using
landscape as a visualization tool to help understand the LLM reasoning, while the metric plots can
further help inspect some particular aspects.
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E.4 DISCUSSION ON RESULTS AND OBSERVATIONS

In the landscape visualizations, red regions map out the reasoning trajectories that end in incorrect
answers, while blue regions map out those that end correctly. The contour lines and the depth of color
together convey the density of reasoning states at each step: darker shades mean more trajectories
passing through that region. As you observe a landscape evolve from its initial scatter of states toward
later clustering, you're seeing whether and how quickly the model’s reasoning paths lock onto an
answer.

Observation 3.6 arises when we compare only the blue (correct) landscapes of different methods
in Fig. 5. Early in the process, all methods scatter widely, exploring many possibilities; over time,
though, some methods’ contours tighten more rapidly than others. Here, the landscape in Fig. 5(a)
converges to its correct region much sooner—and with a denser cluster—than the landscapes in
Fig. 5(b) to 5(c), and this faster, tighter convergence corresponds to its higher accuracy. Namely,
methods with more scattered landscapes (converge more slowly) present lower accuracy than those
that converge faster.

A related pattern appears when we compare models of different sizes in Fig. 2 (Observation 3.1). As
we scale from the 1B model to the 70B model, the last 20% of the reasoning steps show increasingly
dense blue clusters. Larger models, with greater capacity to store and retrieve information, steer their
reasoning more directly and confidently toward the right answer, mirroring their higher accuracy.
This further supports the positive correlation between convergence speed (of correct landscapes) and
reasoning accuracy, which is revealed in Observation 3.6.

Observation 3.7 emerges from contrasting the red and blue landscapes of the same algorithm in Fig. 5.
Here, failure trajectories (red) often settle into a wrong answer by roughly 20-40% of the reasoning
process, while success trajectories (blue) only coalesce around the correct answer toward the very
end—around 80-100% of the states. This indicates that early reasoning states are exploratory and can
drift toward incorrect conclusions, whereas correct solutions only converge late in the trajectories.
This convergence-speed disparity between red and blue landscapes also holds across multiple datasets
in Fig. 4.

Finally, Fig. 4 shows that each reasoning task leaves a distinct landscape “fingerprint,” supporting
Observation 3.4. In AQuA, MMLU, and StrategyQA, the landscapes trace wide, structured sweeps of
reasoning states—clear evidence of step-by-step deduction and exploration of intermediate hypotheses.
By contrast, CommonSenseQA produces a tightly clustered trajectory from the outset, indicating
direct retrieval of knowledge rather than an iterative trajectory. This divergence mirrors the tasks
themselves: AQuA, MMLU, and StrategyQA require exploratory traversal through multiple reasoning
steps, resulting in diverse yet organized state distributions, whereas CommonSenseQA depends on
straightforward recall. These task-specific structures demonstrate how our landscape visualizations
can uncover both shared patterns and fundamental differences across reasoning challenges.

In addition, each of these qualitative observations is further supported by statistical analyses in
Appendix H.1, and we provide full visualizations, including annotated state trajectories (Figs. 24 to
27) and additional model comparisons (Figs. 28 to 29).

E.5 POTENTIAL EXTENSION TO PRUNING UNPROMISING TRAJECTORIES

We showcase that our tool can be utilized to identify potentially incorrect reasoning trajectories at
test time. In Section 3.3, we build up a lightweight verifier, which is based on the thoughts’ feature
vectors and the consistency metric from the landscape of thoughts. This verifier indeed aims to
predict the correctness of a reasoning trajectory, in order to boost the reasoning accuracy at test time.
It is proven to be beneficial to the voting of multiple reasoning trajectories, as shown in Sec. 4.2.

Further, this verifier (together with the visualization tool) can be adopted to prune unpromising
reasoning trajectories in tree-based searching. For instance, in methods like tree-of-thoughts and
MCTS, a model explores multiple reasoning trajectories and usually uses the same model to identify
the promising paths to search for the ultimate solution. Here, by leveraging features from the landscape
of thoughts and the consistency metric, our verifier can identify flawed trajectories early during
reasoning, acting as an efficient pruning mechanism to boost the search efficiency and reasoning
performance.
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Therefore, our tool can be integrated into the reasoning methods to monitor particular reasoning
patterns (e.g., the correctness) and help understand as well as boost reasoning. There are multiple
directions that deserve future exploration, including the one to identify and prune the potentially
incorrect reasoning trajectories.

E.6 POTENTIAL EXTENSION TO IDENTIFY POST-HOC TRAJECTORIES

In the following, we discuss the feasibility of detecting post-hoc trajectory using our framework,
particularly in defining the post-hoc trajectory. A post-hoc trajectory refers to the trajectory that the
model exhibits high confidence in a single answer in the early states and maintains high consistency
across states in the trajectory. Specifically,

* the “early state” correspond to the “very early tokens of the response”;
* the “high confidence in a single answer” corresponds to the “model has chosen its answer;

* the “high consistency across states in the trajectory” corresponds to the “trajectory is produced as a
consequence of that decision”.

Namely, the post-hoc trajectory can be potentially identified by inspecting the confidence and
consistency of particular positions of states in our framework. Then, we elaborate on the more
detailed definitions for the three components above.

* For defining the “early states”, it should have an absolute threshold of states index, e.g., early 10
states, or a relative threshold, e.g., early 10% of states. This threshold should be chosen deliberately,
and the states with an index smaller than this threshold are categorized as “early states”.

 Similarly, a clear threshold is necessary for defining the “high confidence” or “high consistency”,
e.g., over 80% confidence and 60% consistency. With the metrics defined in Section 2.3, here, we
should examine (1) the confidence of the early states in the trajectory and (2) the consistency across
all states of the trajectory. Here, only the trajectory that exceeds the confidence threshold as well as
the consistency threshold can be classified as a post-hoc trajectory.

In conclusion, our framework shows promise for identifying post-hoc trajectories. Meanwhile, we
should note that it still needs (1) to choose particular thresholds for the precise definition of post-hoc
trajectory and (2) to collect a set of reliable data to verify the effectiveness in identifying post-hoc
trajectory. These are quite challenging to conduct. Although it goes beyond the scope of work, we
believe investigating post-hoc trajectory in reasoning is valuable and merits exploration in future
work.

E.7 LIMITATIONS AND FUTURE DIRECTIONS

Scope. While the Landscape of Thoughts offers a practical lens on model reasoning, its current in-
stantiation is limited to multiple-choice settings. Extending LoT to open-ended reasoning—including
mathematical problem solving, code generation, and planning—requires handling less structured
and more entangled reasoning paths. Two complementary threads of future work are: (i) improving
accessibility by producing intuitive visual and textual explanations that help non-experts inspect
and trust model behavior, and (ii) developing automated, scalable detectors of reasoning failures to
improve reliability across applications.

Key challenge: synthesizing options. The central obstacle is the quality of the synthesized answer
options. Human-authored distractors are carefully calibrated to be plausible, exposing distinctions
between (1) correct reasoning and (2) reasonable-but-wrong reasoning (e.g., overlooking information
or making arithmetic slips). In contrast, LLM-generated distractors can be implausible and thus triv-
ially eliminated when juxtaposed with the correct option, yielding visualizations that over-emphasize
the correct trace and limit diagnostic value. Moreover, LLMs may reuse similar reasoning patterns,
producing near-duplicate error modes across incorrect options and reducing the comprehensiveness
of the analysis.

Mitigations. To address these issues, we can elicit higher-quality distractors with state-of-the-art
LLMs (e.g., OpenAl 03, Gemini 2.5 Pro) and tune sampling hyperparameters (temperature, top-p) to
promote diversity and explore alternative solution trajectories.
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Binary reformulation. A practical alternative is to recast multiple-choice prompts as binary (yes/no)
queries. For example, the question “What is the capital of France?” can be reformulated as “Is
Paris the capital of France?” with options Yes or No. Under this framing, both options remain prima
facie plausible: the incorrect choice admits coherent yet flawed rationales, and the variety of “No”
trajectories preserves diversity without resorting to obviously implausible distractors.

Beyond multiple choice. Although open-ended tasks are beyond the present scope, LoT is, in
principle, extendable. The key requirement is to construct a candidate set of answers by querying the
model (a non-trivial step that is given for free in multiple-choice tasks). Treat the ground-truth answer
as one option and generate additional plausible alternatives using LLMs; LoT can then analyze the
induced reasoning behaviors in these open-ended scenarios.

Case: code generation. Code generation introduces additional challenges: there is typically no
single ground-truth program, and evaluation proceeds via test suites. Candidate programs are diverse
and do not naturally discretize into options. We propose the following procedure: (i) sample multiple
candidate solutions from the model under evaluation; (ii) score each by the number of tests passed;
(iii) apply a threshold to separate more-correct from less-correct solutions; (iv) embed and cluster
solutions within each partition; and (v) use cluster centroids as anchors for “correct” and “incorrect”
choices. Cluster quality can be assessed with the Silhouette Score and the Davies-Bouldin Index.
These anchors enable a LoT-style visualization over the solution space and provide insight into
reasoning behaviors.

In summary, our visualization framework is adaptable beyond multiple-choice scenarios. To our
knowledge, LoT is the first landscape visualization tool aimed at analyzing LLM reasoning; it is
imperfect and remains open to improvement and extension. We believe it constitutes a small but
meaningful step toward understanding and improving the reasoning processes of LLMs.

E.8 A COMPARISON BETWEEN LIGHTWEIGHT VERIFIER AND REWARD-GUIDED
ALGORITHMS

It is worth noting that our goal is not to build a sophisticated verifier, but rather to demonstrate how
the feature vectors from the landscape visualization can be effectively used.

In general, reward-guided algorithms are more computationally efficient than the path landscape.
Specifically, for a reasoning path with n thoughts and ¢ answer choices, constructing the landscape
requires n X ¢ forward passes through the reasoning model. In contrast, a reward-guided approach
typically makes a single call to a reward model that evaluates the entire reasoning chain at once.

Meanwhile, it’s important to consider the overhead involved in training the reward models in reward-
guided algorithms. Notably, for Process-Reward Models (PRMs) (Luo et al., 2024; Xu et al., 2025),
collecting high-quality training data often requires detailed, fine-grained annotations of reasoning
steps, which can be costly and time-consuming. Moreover, training a reward model (often itself an
LLM) incurs significant computational expense. In contrast, our lightweight verifier is much more
efficient to train, as it requires no human annotations and uses easily obtainable data.

F RELATED WORK

Reasoning with large language models. Chain-of-Thought (CoT) prompting (Wei et al., 2022;
Kojima et al., 2022) has empowered LLMs to tackle multi-step reasoning problems by generating
intermediate steps before producing a final answer. Building upon CoT, numerous methods have
been proposed to address various challenges, including compositional generalization (Zhou et al.,
2023; Khot et al., 2023), planning (Yao et al., 2023a; Hao et al., 2023), and rule learning (Zhu
et al., 2023) within the CoT reasoning. Beyond solving reasoning tasks, CoT has also emerged as
a foundational framework for other techniques, such as fine-tuning LLMs (Zelikman et al., 2022),
enabling LLM-based agents (Yao et al., 2023b), and facilitating test-time scaling (Snell et al., 2024).
Nevertheless, most of these approaches are developed in a trial-and-error manner, largely due to the
absence of proper tools for analyzing the CoT.

Understanding chain-of-thought reasoning. There are a few studies that explore what makes
CoT prompting effective by perturbing its exemplars. To be specific, Madaan & Yazdanbakhsh
(2022) found that the text and patterns of exemplars help CoT generate sentences resembling correct
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answers. Besides, Wang et al. (2023a) highlighted the importance of maintaining the correct order
of reasoning steps, while Ye et al. (2022) demonstrated that using complementary exemplars can
enhance reasoning performance. Furthermore, CoT can benefit from longer reasoning chains, even
without new information to the prompt (Jin et al., 2024). Another line of research investigates CoT’s
general behavior (Tang et al., 2023; Saparov & He, 2023; Saparov et al., 2023; Shi et al., 2023). For
example, CoT heavily depends on the semantic structure of the problem to perform reasoning (Tang
et al., 2023), struggles with planning and unification in deductive reasoning (Saparov & He, 2023),
has difficulty generalizing to longer reasoning paths (Saparov et al., 2023), and can be easily misled
by irrelevant information in the context (Shi et al., 2023). However, these observations are derived
from specific reasoning tasks and prompt settings, limiting their applicability to other scenarios. In
contrast, we introduce a general-purpose tool that allows users to analyze reasoning in their contexts.

Tools for analyzing chain-of-thought. To the best of our knowledge, the only existing tool for
analyzing CoT is gradient-based feature attribution (Wu et al., 2023), which computes a saliency
score for each input token based on the model’s output. However, these token-level saliency scores do
not directly capture the thought-level, multi-step reasoning process of LLMs. Consequently, the main
finding in (Wu et al., 2023) is that CoT stabilizes saliency scores on semantically relevant tokens
compared to direct prompting. Metrics designed to quantify CoT performance (Chen et al., 2024;
Ton et al., 2024) can also be used to analyze the reasoning behaviors of LLMs. For instance, Ton
et al. (2024) employs information gain to identify failure modes in reasoning paths, aligning with
Observation 3.7 in this paper. However, our 2-D visualization offers significantly deeper insights
than a single information gain metric. Additionally, the verifier derived from our tool is conceptually
related to outcome-supervised reward models (Cobbe et al., 2021).

Measuring uncertainty and consistency in LLM reasoning. Several works in this research line
compute metrics (such as confidence and perplexity) by leveraging the features from LLMs to
measure and detect hallucination in reasoning (Li et al., 2023; Chuang et al., 2024; Yang et al., 2025).
Specifically, low confidence and high perplexity often indicate unreliable reasoning, enabling the
development of lightweight detectors to guide reasoning and mitigate hallucinations. However, these
metrics have limitations (Xiong et al., 2024; Zhang et al., 2023): they can exhibit over-confidence
or low perplexity in incorrect responses, their reliability relies heavily on the models’ capability,
and they cannot provide more comprehensive insights into the multiple reasoning trajectories. By
contrast, our landscape of thoughts offers a holistic approach, integrating several existing metrics.
This framework enables global qualitative analysis, including measures of perplexity, consistency,
and uncertainty. In addition, the landscape of thoughts enables the development of advanced tools to
enhance reasoning by using the features and metrics, as mentioned in Sec. 3.3.

G EXPERIMENT SETTINGS

G.1 SETUP

Visualizing the landscape of thoughts fundamentally relies on the decoding probability of
LLMs. To this end, we adopted four open-source models with varying parameter sizes, namely
Llama-3.2-1B, Llama-3.2-3B, Llama-3.1-8B, and Llama-3.1-70B. We repeatedly
sample 10 times from the target LLM using the same reasoning strategy as self-consistency (Wang
et al., 2023b).

For visualization purposes, we randomly sample 50 questions from the testing split of each dataset
and generate reasoning paths with the setup described above. For simplicity, we compute distances
only between each state and all candidate answers. To visualize multiple problems in a shared space,
we always place the distance to the correct answer as the first element of each feature vector. This
alignment allows joint analysis across problems, as introduced in the paragraph below Equation 4.
We then aggregate feature vectors from all problems into a feature matrix (Equation 2), which is
passed to t-SNE to compute the pairwise distance between any two states and then outputs the 2D
coordinate of each state.

For training the lightweight verifier, we randomly sample 20 questions from the training split of
each dataset to obtain the feature matrix S. We extract these features using three model scales:
Llama-3.2-3B,Llama-3.1-8B, and Llama-3.1-70B. Despite the relatively small training
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set, it proves sufficient for our lightweight verifier, which we subsequently evaluate on the data for
visualization in Sec. 3.

G.2 DATASETS

AQuA (Ling et al., 2017). This dataset develops to challenge language models’ quantitative reasoning
capabilities. The AQuA presents complex algebraic word problems in a multiple-choice format, where
only one is correct. Each problem requires numerical computation, deep linguistic understanding,
and logical inference. It provides a nuanced assessment of a model’s ability to translate textual
information into algebraic reasoning.

MMLU (Hendrycks et al., 2021). Spanning 57 distinct academic and professional domains, MMLU
provides a rigorous test of language models’ capabilities across humanities, social sciences, hard
sciences, and technical disciplines.

StrategyQA (Geva et al., 2021). This dataset is designed to evaluate implicit reasoning and multi-
hop question answering. The dataset is characterized by yes/no questions that demand implicit
reasoning strategies. Unlike straightforward factual queries, these questions require models to
construct elaborate reasoning paths, showing hidden logical connections.

CommonsenseQA (Talmor et al., 2019). This dataset assesses commonsense reasoning through
multi-choice questions derived from the ConceptNet knowledge graph (Speer et al., 2017). The
dataset aims to test a model’s understanding of commonsense concepts and ability to make logical
inferences. However, the questions often require the model to incorporate external knowledge to
select the correct answer from plausible distractors.

Note that AQuA, MMLU, and StrategyQA all demand exploratory traversal of intermediate reasoning
states, resulting in diverse but structured landscapes. CommonsenseQA, conversely, represents a
distinct domain where answers depend on static knowledge rather than emergent reasoning pathways.

G.3 DECODING ALGORITHMS

Chain of Thought (CoT) (Wei et al., 2022). CoT elicits the LLM’s reasoning capabilities by
incorporating few-shot examples that demonstrate explicit reasoning steps. It provides the model
with exemplar reasoning traces to guide its problem-solving process.

Zero-shot CoT (Kojima et al., 2022). The core idea of this prompt strategy lies in adding simple
instructions, e.g., "Let’s think step by step.” to the prompt, enabling models to generate reasoning
traces without assigned task-specific examples.

Least-to-Most (LtM) (Zhou et al., 2023). LtM is an innovative reasoning approach that systematically
breaks down complex problems into progressively simpler subproblems. This approach mirrors
human cognitive problem-solving strategies, where individuals naturally break down complex tasks
into smaller, more comprehensible parts.

Tree-of-Thought (ToT) (Yao et al., 2023a). ToT expanded this concept by creating a more so-
phisticated, multi-branching reasoning framework. While CoT follows a linear path of reasoning,
ToT introduces a more dynamic exploration, allowing models to generate multiple reasoning paths
simultaneously, evaluate them, and strategically prune less promising trajectories.

Monte Carlo tree search (MCTS) (Zhang et al., 2024). MCTS is a powerful computational
algorithm originally developed for game-playing strategies, particularly in complex decision-making
environments like chess and Go. The method uses probabilistic sampling and tree exploration
to systematically navigate potential solution spaces, balancing exploring new possibilities with
exploiting promising paths. We adopt the task-agnostic node expansion and evaluation prompt from
ReST-MCTS (Zhang et al., 2024) to conduct our experiment across different tasks.

Reproduction. The source code is provided in the anonymous repository: https://anonymous.
4open.science/r/landscape-of-thoughts-submission-code-3803/.
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Table 1: Statistical verification of the observations in Sec. 3.

(a) Verifying Observa- (b) Verifying Observation 3.7

tion 3.6 and 3.1 (c) Verifying Observation 3.4

Common
Correct Incorrect Speed Accuracy AQUA MMLU StrategyQA gepsep

AQuA 1.0 0914 0.895 0.859

CoT 1.026 0.975 CoT 0.322 84.4% MI\gIlIl‘U 0914 1.0 0870 0843

L2M  1.026  0.989 L2M  0.224 82.2% StrategyQA 0.895 0.870 1.0 0.889

ToT 1.004 0.987 ToT 0205 81.6% ggﬂg’x 0.859 0.843  0.889 1.0

MCTS 1.002 0.985 MCTS 0.198 75.8% i

H SUPPLEMENTARY RESULTS AND ANALYSIS

H.1 STATISTICAL VERIFICATION OF THE OBSERVATIONS

In this part, we conduct extra experiments and statistically verify Observations 3.1, 3.4, 3.6, and 3.7,
while the other Observations 3.2, 3.5, and 3.8 have been quantitatively verified by the metrics in
Sec. 2.3.

To verify Observations 3.6, we calculate the convergence coefficient (¢?) by fitting a log-linear
regression model to the sequence of distances d; between each state and the final answer as log(d;) ~
« + (i, where « is the intercept term; [ is the slope coefficient that quantifies convergence behavior;
i represents the position index in the reasoning chain. Lower values of e” indicate faster convergence.
For Observations 3.1 and 3.7, we measure the speed of a reasoning path moving from start to end as

speed = % € [0,1], where §; represents the 2D coordinate of the state ;. Whereas

Observation 3.4, we compute pairwise histogram intersection scores of the density distributions.
Lower scores indicate greater dissimilarity between landscapes.

Notably, for Tab. 1(a), we found that correct paths consistently show slight divergence, while
incorrect paths show more convergence (p-value = 0.008), thus verifying Obs. 3.6. As shown in
Tab. 1(b), speed and accuracy correlate strongly (p-value = 9.421e-11), thus verifying Observation 3.7.
This is also applicable for verifying Observation 3.1. Tab. 1(c) shows that lower scores indicate
greater dissimilarity between landscapes, which verifies Observation 3.4, i.e., AQuA, MMLU, and
StrategyQA are more similar, while CommonSenseQA exhibits distinct patterns.

H.2 ANALYSIS OF REASONING TRAJECTORY CONVERGENCE

We aim to investigate Observation 3.7 quantitatively to show its consistency with the statistical result.
Specifically, we analyzed all questions from the AQuA dataset using the Llama-3.1-8B-Instruct
model with the CoT method. Among the 500 reasoning trajectories (50 questions, with 10 trajectories
per problem), we observed that cases where a reasoning chain initially approached the correct
answer’s path but later diverged to an incorrect conclusion were quite rare: only 4 questions (8% of
all questions) exhibited this phenomenon, accounting for just 9 reasoning trajectories (1.8% of all
trajectories). This indicates that such failure cases are infrequent within the overall set of generated
reasoning trajectories.

Thoughts that diverge from the correct answer exhibit remarkable proximity at certain states. We
quantify the proximity by measuring the distance between states: a smaller distance indicates that the
state is closer to the correct answer. Notably, in the following example, the chain’s reasoning reached
a minimum distance of just 0.077 from the correct path before drifting to a final distance of 0.182.
This reveals that even incorrect answers may closely track the correct reasoning at key moments.

We provide a concrete example of such a failure in the following reasoning chain for a question below,
where the correct answer is B) 28%.
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> Q: The original retail price of an appliance was 60 percent more than its wholesale cost. If
the appliance was actually sold for 20 percent less than the original retail price, then it was
sold for what percent more than its wholesale cost?

> Options: A) 20% B) 28% C) 36% D) 40% E) 42%

The model’s output is:

> 1. "To find the percent more than the wholesale cost for which the appliance was sold, we
need to break down the calculations step by step."

> ..

> 11. "So, (0.28x / x) * 100 = 28%." — The state that is closest to the correct answer, with a
distance of 0.077.

> 12. "Therefore, the appliance was sold for 28% more than its wholesale cost."

> 13. "The answer is C." — Eventually, this state reaches the incorrect answer, with distance
as 0.182

H.3 FURTHER INVESTIGATION ON THE CONSISTENCY METRIC
In the Tab. 2, we analyze the model responses for drawing Fig. 5 and report (1) the average number of

thoughts, (2) the average number of tokens in a thought, and (3) the average consistency of different
thoughts.

Table 2: The relation of consistency with the number of thoughts and tokens

Model | Avg. Thoughts Avg. Tokens Avg. Consistency
Llama-3.2-1B 8.07 346.81 0.51
Llama-3.2-3B 11.73 439.37 0.40
Llama-3.1-8B 21.38 715.56 0.48
Llama-3.1-70B 13.55 442.72 0.51

As can be seen, the 8B/70B models produce more thoughts than the 1B/3B models; meanwhile,
their intermediate states of correct chains in blue are more consistent than those of the 1B/3B model.
The Pearson correlation coefficient between CoT length ( thoughts) and consistency is only -0.0185,
indicating a very weak negative correlation that is not approaching either +1 or -1. Hence, higher
consistency doesn’t correlate with shorter chains. Fewer CoT steps do not necessarily indicate
higher consistency.

As we introduced in Sec. 2.3, the consistency metric is used to understand whether the LLM knows the
answer before generating all thoughts. Here, the observation “larger models have higher consistency”
actually indicates that a larger model has a higher probability of knowing its final answer in its middle
steps of reasoning. We believe that this observation is new and insightful to the community.

In addition, we investigate whether the consistency is meaningful for the reasoning outcome or if it
consistently decreases as the thoughts increases. We ask the Llama 3.1 8B Instruct model to generate
some random thoughts, using a temperature of 0.7 to encourage more varied responses. For each
of the 10 questions we select from AQuA, we then randomly combine different numbers of these
thoughts to create 50 chains for each question, with the number of thoughts ranging from 2, 4, 8, 16,
or 32. After generating these chains, we calculate the distance matrix and report the consistency, as
shown in Tab. 3. Notably, as the length of the chain of random thoughts increases, the consistency
consistently decreases, regardless of the correctness, which justifies that consistency will not
increase as n increases.

Besides, we conduct extra experiments on a harder task across model scales and show that larger
models achieve higher consistency than smaller models on both easy and hard tasks. Specifically,
we apply the MMLU-Pro (Wang et al., 2024b) as a harder benchmark. MMLU-Pro is a more
challenging version of MMLU (adopted in this work), extending the MMLU dataset by integrating
more reasoning-focused questions. We sample problems from the MMLU-Pro Math subset and
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Table 3: Consistency Metrics Across Random Thoughts

The number of random thoughts
2 4 8 16 32

0.77 0.80 0.80 0.75 0.66
090 092 092 079 0.79

Consistency ‘

Correct Paths
Incorrect Paths

Table 4: Accuracy and consistency on MMLU and MMLU-Pro across different models.

MMLU MMLU MMLU-Pro MMLU-Pro

Model ‘ Accuracy Consistency  Accuracy  Consistency
Llama-3.2-1B Instruct 0.20 0.40 0.05 0.17
Llama-3.2-3B Instruct 0.46 0.41 0.30 0.26
Llama-3.1-8B Instruct 0.66 0.41 0.30 0.20
Llama-3.1-70B Instruct 0.86 0.55 0.40 0.52

evaluate models of different scales, following the consistency calculation described in equation 5.
The experiment results are shown as follows:

The above results show that larger models have substantially higher consistency on both the
easy task (MMLU) and the hard task (MMLU-Pro) than smaller models. Here are some detailed
observations: (1) Notably, on the hard task, the 70B model still has a higher consistency than the
1B/3B/8B model on either the hard task or the easy task. (2) Besides, the 70B model achieves a
similar consistency on easy and hard tasks (0.55 and 0.52, respectively). (3) However, the 8B model
drops significantly from easy to hard tasks (from 0.41 to 0.20).

H.4 FURTHER DISCUSSION ON THE STRATEGYQA

The abnormal reasoning behavior, where states cluster on anchors that differ from their final answer
in Fig. 4(c), is not due to our visualization method but to the unstable reasoning process in the Llama-
3.1-70B using CoT on StrategyQA. This model struggles to reliably represent its self-generated
intermediate thoughts, presenting consistency between intermediate thoughts and final predictions,
thus leading to the abnormal patterns observed.

Specifically, the consistency of incorrect paths declines steadily. This highlights the model’s unstable
reasoning, as it fails to maintain coherent reasoning even when approaching the final answer. In
addition, the landscape exhibits the highest perplexity compared to other models, indicating low
confidence in its generated thoughts, which undermines the reliability of the estimated feature matrix
used in our visualization.

Further, we provide landscape visualizations for the same dataset using other models and methods in
Fig. 10 to Fig. 13. These landscapes do not exhibit the same abnormal density patterns, reinforcing that
the issue is specific to Llama-3.1-70B’s reasoning instability rather than a flaw in our visualization.

H.5 COMPARING THE PERPLEXITY AMONG DIFFERENT MODELS

We conduct experiments to calculate the average perplexity of models in our visualization. Consistent
with the prior works, we find that different models present similar perplexity when decoding the
same set of CoTs. Here, we first generate a set of CoTs from the AQuA dataset using Llama-3.1-70B
Instruct. Then, we use models from the same family (i.e., Llama-3.2-1B Instruct, Llama-3.2-3B
Instruct, Llama-3.1-8B Instruct, and Llama-3.1-70B Instruct) to compute the average perplexity on
decoding the same set of CoTs. This control experiment isolates the effect of a model’s inherent
perplexity calculation from the variation of its generated thoughts.

As shown in Tab. 5, while there is a slight variation in perplexity, the values all fall within a comparably
narrow range (from 1.4 to 2.0). This demonstrates that for decoding the same CoTs, different models
in the Llama-3 family produce similar and comparable perplexity scores.
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1333

1334 Figure 10: The landscapes of the model across scales (using CoT on the StrategyQA dataset).
1335

1336

1337 Table 5: Comparison of the perplexity of CoTs of correct and incorrect reasoning.

1338
1339 Model | Avg. Perplexity (Correct CoTs) Avg. Perplexity (Wrong CoTs)

1340 Llama-3.2-1B Instruct 1.68 1.96

134 Llama-3.2-3B Instruct 1.72 1.69

1342 Llama-3.1-8B Instruct 1.61 1.49

1343 Llama-3.1-70B Instruct 1.56 1.42

1344

1345

1346

1347 Inaddition, in Fig. 2, we measure the perplexity of decoding CoTs generated by the models themselves.
1243 In this context, perplexity reflects both a model’s reasoning capabilities and the comprehension of
1249  its generated content. To some extent, the above findings support the validity of the comparison of

perplexity across models in our study.
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Figure 11: The landscapes of the model across scales (using L2M on the StrategyQA dataset).

Table 6: Absolute accuracy with the verifier, compared to performance in Fig. 7 (without the verifier).

(a) Across datasets

(b) Across models

1B

3B

8B

70B

AQuA MMLU  StrategyQA g;’:s‘;‘g’[‘;

AQuUA 63.0(+07) 623 (+0.0) 623 (+0.0)  64.0(+1.7)

MMLU 53.0(+00)  53.0(+0.0)  53.0(+0.0)  53.0(+0.0)

StrategyQA 415 (+4.5) 405 (+3.5)  43.0(+6.0)  37.0(+0.0)
C

S:;‘S‘;‘(‘Q"X 540 (+1.0)  53.0(+0.0)  53.0(+0.0)  54.0(+1.0)

1B

3B

8B
70B

26.0 (+0.5)
455 (+0.0)
60.0 (+0.0)
74.0 (+2.0)

27.5 (+2.0)
48.0 (+2.5)
60.0 (+0.0)
73.0 (+1.0)

275 (+2.0)
51.0 (+5.5)
60.0 (+0.0)
725 (+0.5)

27.5 (+2.0)
51.0 (+5.5)
60.0 (+0.0)
725 (+0.5)

H.6 ADDITIONAL EXPERIMENTS ON THE VERIFIER

Absolute Performance of the Verifier.

In this part, we provide the absolute performance of

the experiment conducted in Fig. 9. Shown as Tab. 6, the results demonstrate that our approach
consistently provides improvements across different domains and models.
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(a) Llama-3.2-1B with MCTS on StrategyQA

0-20% states 20-40% states 40-60% states 60-80% states 80-100% states
(b) Llama-3.2-3B with MCTS on StrategyQA
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(c) Llama-3.1-8B with MCTS on StrategyQA

0-20% states 20-40% states 40-60% states 60-80% states 80-100% states
(d) Llama-3.1-70B with MCTS on StrategyQA

Figure 12: The landscapes of the model across scales (using MCTS on the StrategyQA dataset).

Variants of Verifier. In this part, we extend it into a process verifier and validate its effective-
ness through additional experiments. Our lightweight verifier functions as an outcome reward
model (ORM), assessing the correctness of an entire reasoning path. Specifically, the process ver-
ifier predicts the accuracy of each reasoning state using features from the current and all previous
thoughts. State accuracy reflects whether the current state is closer to the correct answer (measured
by perplexity) than other answers. We then aggregate these predictions across the chain to estimate
overall accuracy.

Empirically, we collect the state-wise data by comparing the state features and the correct answers,
and train the process verifier. Note, we do not need to manually annotate the step-wise rewards
to train conventional PRMs. Results in Tab. 7 show that this process verifier is comparable to the
outcome verifier.

Comparing the lightweight verifier with existing verifiers. In the following, we compare our
lightweight verifier with the other two types of existing verifiers: the LM-based verifier and the
model-self verifier.
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0-20% states 20-40% states 40-60% states 60-80% states 80-100% states
(c) Llama-3.1-8B with ToT on StrategyQA

0-20% states 20-40% states 40-60% states 60-80% states 80-100% states
(d) Llama-3.1-70B with ToT on StrategyQA

Figure 13: The landscapes of the model across scales (using ToT on the StrategyQA dataset).

The LM-based verifier leverages another powerful LLM (not the model to do reasoning) to seman-
tically analyze reasoning trajectories, mimicking human expert evaluation to detect errors in the
trajectories. These verifiers rely on extensive, specially curated datasets (e.g., PRM800k (Lightman
et al., 2023)) to train a language model for process verification. Here, collecting high-quality training
data often requires detailed, fine-grained annotations of reasoning steps, which can be costly and
time-consuming. Moreover, training this verifier (often itself a large language model) incurs much
additional computational expense. In contrast, our lightweight verifier is much more efficient to train,
as it requires no human annotations and only uses easily obtainable data that is collected from the
model to do reasoning.

As for the model-self verifier (Li et al., 2023; Xiong et al., 2024), it utilizes features derived from the
model itself, such as uncertainty, perplexity, or entropy, eliminating the need for an external model
and enhancing efficiency in search-based methods. While these model-self verifiers are training-free
and efficient, they lack the learnability to be trained and optimized, as the model is not trained on
the downstream task, and thus it can be suboptimal. In contrast, our verifier is specifically trained
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Table 7: Performance comparison of reasoning methods across model scales on the AQuA dataset,
with and without verifiers.

Model Method  Without Verifier =~ With Outcome Verifier ~ With Process Verifier
CoT 0.26 0.28 0.26
L2M 022 0.24 0.29
Llama-32-1B 7 035 0.38 0.35
MCTS 0.29 0.32 031
CoT 0.46 051 0.46
L2M 0.29 031 031
Llama-32-3B o7 033 035 0.33
MCTS 035 0.36 035
CoT 0.60 0.63 0.60
L2M 0.58 0.62 0.58
Llama-3.1-8B .. 0.50 0.53 0.50
MCTS 0.50 051 0.50
CoT 0.72 0.73 0.73
L2M 072 0.72 0.73
Llama-3.1-70B .. 0.74 0.74 0.74
MCTS 072 0.73 0.72

Table 8: Ablation study on data employed for training the verifier.

IB 3B 8B 70B
Consistency only 0.21 0.31 0.59 0.71
2D information only 0.20 0.31 0.61 0.71
Consistency + 2D information 0.24 031 0.62 0.72

with the downstream task’s data collected from the model, ensuring greater reliability compared to
model-self verifiers.

Therefore, our landscape-based lightweight verifier offers distinct advantages in terms of efficiency
and reliability over the other two types of verifiers.

Ablation study on verifier. We conduct an extra ablation study on training the verifier with either
consistency or 2D information. We report the accuracy of reasoning under Least-to-Most with
different model scales, averaged across different datasets.

As shown in the Tab. 8, the combination of the consistency score and 2D information delivers the
best overall accuracy. This shows that our verifier could utilize the complementary aspects of both
kinds of features to access the reasoning chains and thus boost reasoning accuracy.

H.7 FURTHER EXPERIMENTS ON THE SCALING EFFECT

We present experiments and demonstrate that combining both information sources is the best choice,
with significant gains from more sampled trajectories (i.e., test-time scaling) compared to the verifier
trained with either feature, as can be seen in Tab. 9. Here, we report the accuracy using the Llama-3.2-
3B Instruct model on the StrategyQA dataset as follows. As can be seen, the advantages of using both
information sources increase with more sampled trajectories, especially for more than 20 sampled
trajectories. In contrast, verifiers trained only on consistency or 2D information peak earlier, showing
no notable performance gains beyond 10 sampled trajectories.

H.8 LANDSCAPES WITH DIFFERENT METHODS OF DIMENSIONALITY REDUCTION
t-SNE is widely adopted in non-linear projection for visualisations, which makes the plots more

interpretable. Beyond t-SNE (Cai & Ma, 2022), several advanced dimensionality reduction techniques
have been developed to improve visualization quality and efficiency. UMAP (Mclnnes et al., 2018b)
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Table 9: Performance of the verifier given different numbers of sampled paths.

Sampled Paths | Consistency 2D Information ~Consistency + 2D Information

1 0.32 0.32 0.32
10 0.32 0.32 0.34
20 0.32 0.30 0.46
30 0.32 0.36 0.56
40 0.32 0.34 0.68
50 0.32 0.30 0.66
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Figure 14: The landscapes of thought visualization with different dimensionality reduction methods
(Llama-3.1-70B with CoT on AQuA).

outperforms t-SNE by better balancing local and global structure preservation while offering greater
speed and scalability for large datasets. TriMAP (Amid & Warmuth, 2019) prioritizes both local and
global preservation but tends to emphasize global structure in practice, potentially at the expense
of local details. PACMAP (Wang et al., 2021) achieves a robust balance between local and global
structure preservation by incorporating neighbors, mid-near points, and further points, resulting in
high-quality visualizations across diverse scenarios.

In addition, our goal is to develop a visualization tool to help users analyze the reasoning behaviors of
LLMs. If necessary, we can change the adopted t-SNE to more advanced methods of dimensionality
reduction. Our tool is designed to be compatible with these methods.

Next, we experiment with different dimensionality reduction methods, including t-SNE, UMAP, and
PacMAP, to visualize the landscape. Across all three visualization techniques, we consistently
observe the same overarching dynamics in the reasoning process. In the early stages (0-40% of
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Figure 15: Demonstration of sentence tokenization methods for thoughts splitting.

states), the thought states are widely dispersed. As reasoning progresses, states gradually converge
toward the final answer choices. Importantly, a clear distinction emerges between correct and incorrect
reasoning paths, regardless of the selection of different dimensionality reduction methods. Incorrect
paths tend to converge rapidly toward wrong answers early in the process, while correct paths exhibit
a more gradual and deliberate progression, only clustering tightly around the correct answer in the
final stages (80—100% of states).

We provide landscape visualizations in Fig. 14 with different dimensionality reduction methods.
While the specific geometry and density of clusters may vary between t-SNE, UMAP, and PacMAP,
the fundamental narrative is unchanged: the landscape of thoughts consistently reveals that incorrect
reasoning solidifies quickly, whereas correct reasoning is characterized by a slower, more refined
convergence. This consistency across different dimensionality reduction algorithms demonstrates that
our observations are not artifacts of a particular visualization technique, but rather reflect intrinsic
properties of the model’s reasoning process.

H.9 ROBUSTNESS OF SENTENCE TOKENIZATION

To evaluate the robustness of the landscape to the split thoughts’ information volume, i.e., the
granularity of the sentence tokenization, we conduct a controlled experiment by considering two
imperfect cases in thought split, namely over-split thoughts and under-split thoughts.

Specifically, shown as Fig. 15 (a), compared to the original thoughts split that transform sentences to
thoughts based on the period, over-split thoughts jointly consider the comma, resulting in additional
splits. For the under-split, two adjacent thoughts are merged into one thought. We then visualize the
imperfect thought splits using CoT on AQuA following the setting in Fig. 5(a) and Fig. 2(c),

Shown in Fig. 15 (b) and (c), the landscapes are robust to the split thoughts’ information volume,
which are stable and consistent with our observations. Notably, for over-split thoughts, the states
are more visually diverse but eventually converge to the answers. Whereas under-split thoughts, the
states show a more compact pattern and exhibit a clear convergence trend toward the answer.

I VISULIZATIONS

In this part, we provide the full visualization of the verifier performance and landscapes.

In Fig. 16 to Fig. 19, we visualize the average voting accuracy (%) of different LLMs reasoning
with and without verification on various datasets and methods. In Fig. 20 to Fig. 23, we display the
landscape of different models on various datasets using four methods. We also provide case studies
by visualizing the landscape with corresponding states in Fig 24 to Fig. 27.

In addition, we provide the landscape of thoughts on the latest reasoning model. Specifically, we
conduct experiments on the DeepSeek-R1-Distill models (Guo et al., 2025) (Llama-70 B and Qwen-
1.5 B). As shown in Fig. 28 and Fig. 29, the landscape of the reasoning model also aligns with the
observation drawn from the general-purpose model, but exhibits more complex reasoning patterns,
such as self-evaluation and back-tracking.
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Figure 20: The landscapes of various reasoning methods (using Llama-3.2-1B on the AQuA dataset).
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Figure 21: The landscapes of various reasoning methods (using Llama-3.2-3B on the AQuA dataset).
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Figure 22: The landscapes of various reasoning methods (using Llama-3.1-8B on the AQuA dataset).
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Figure 23: The landscapes of various reasoning methods (using Llama-3.1-70B on the AQuA dataset).
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To solve the problem, let's 2. The perimeter of the Step 4: Substitute the Conclusion: The original
break it down into a series  other part is 66 cm Hose A fills the pool in 8  calculated value for 4/5 price of the item was

of calculations according  (perimeter of 16x and  hours, so its rate is 1/8 of  of 25 into the expression  approximately $63.32.
to the given property. 14y). the pool per hour. for the difference. The answer is A.

20-40%6 states

0-20%)states

Step 1: Start by adding 3. The minimum total Step 4: Calculate the 5. Now, divide both Based on our calculation,

the positive numbers: commission needed to population 2 years after sides by 1.2, in order the grocer likely sold

adding 45 to -30 results reach a salary of at least the initial population. to solve for C. approximately 24.4 bags

in 15 since 15 >-15 $1000 is 1000. Therefore, C =360 / of flour. The answer is C.
1.2 =300.

Figure 24: Case Study: Landscape of thoughts of Llama-3.2-1B on AQuA using CoT.

4. Since the profit is However, the number  Step 8: Since Hose B can
Let's break down the steps  25% of the selling 6. Since we found that A= of toys cannot be a fill 1/8 of the pool per
to calculate the average price, we can calculate  1/8, we can solve for B by fraction, so we need to  hour, it can fill the entire
speed of the plane around  the total selling price substituting A into the round to the nearest pool in 8 hours. Therefore,
the square field. for all the bags sold. equation: 1/8 + B =3/4. whole number. the answer is D.

To solve this problem, Step 2: To find the Step 4: Web those 7. Converting 30/70 to a The answer is C.
let's break down the time it takes for them formula values into percentage, we get
solution process into to produce 10 yo-yos, the conditional (30/70) * 100% =
clear, independent steps.  we need to consider probability formula. 42.86%.
the least common P(A/B) =P(A)/ P(B)
multiple (LCM) 9 of =0.2/0.8.

6 and 9 minutes.

Figure 25: Case Study: Landscape of thoughts of Llama-3.2-3B on AQuA using CoT.
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Step 3: The total cost can
be expressed as the sum of
costs of brown and white
sharpeners: b X + (18 - b)
(X +1)=100.

Let's think step by step
to solve this problem.

0-20%/states

3. This leaves 1-1/4 = 3/4 of
the pool to be filled by both
hoses working together in
the following 3 hours.

Let‘s think step by step to
solve the problem.

Next, we divide the total
profit by the profit per
bag: $3,000 / $25 = 120.

We can represent the
commission of 15% on
the monthly sale as: 0.15
* total monthly sale.

Conclusion: The original
price of the item was
approximately $63.32. The
answer is A

Step 8: Solve for x
using the equation
identified in step 7.

The answer is B.

To find the percentage
increase, we'll use the
formula: ((Increase /
Original) 100).

Figure 26: Case Study: Landscape of thoughts of Llama-3.1-8B on AQuA using CoT.

Now, rewrite the two equations
in terms of 1, as follows: First
equation is | = 66 - 2w and
second is | = 48 - 2w.

Let's break down the
problem into steps to
find the solution.

0-20% ktates

The distance traveled on
the third side is 's'
kilometers at a speed of
600 km/hr.

Step 1: Start by adding the
positive numbers: adding
45 to -30 results in 15
since 15 > -15

The total cost is 50 +
32 = 82 rupees which
is less than 100.

40-600 states

Therefore, to find the
total sales, we need to
divide the additional
amount by 5% (which
is 0.05).

Therefore, the Conclusion: The original
resultant solution is price of the item was
37.25% tea and approximately $63.32.
62.75% milk. The answer is A

80-100%6 states

Therefore, the
answer is D)40

Now, we multiply the
common prime factors
and the uncommon
prime factors together
to find the LCM.

Figure 27: Case Study: Landscape of thoughts of Llama-3.1-70B on AQuA using CoT.
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Walt, bt that can' b right because the seling
Wal, that seems high. Let me check 5 z §

e P PR T R e price has to cover the costs. Wait, let me check Watt, let me check because | think | might have. Butjust y wait,
somewhere.

my calculations again because | think | might de a mis ion. Le ay ption, say option A is $61. suffcient.
ere.

But this seems a
bit confusing.

Butlet me make sure |
didn't
Yes, hat seems correct.

Wait, let me check: 1.2 times what gives 360.

Let me check the options. | don't think | made any
mistakes here because the steps align with the.
definition of independent events in probabilty.

Maybe | can do this step by step. 1.2 is th Hmm, s0 the is5(V3+1)

Wait but ot me chock again because sometines
2385 20 g by 121 ha e 53 muk g minutes. Let me check the options given. cause ssues, Lot me recalculate
by 5i6.

rounding car
7100 dvidod by 0.28 more accurately.

But wait, et me check if 234 2857 would satisfy.
the condition. Lets plug it back in.

Figure 28: Landscape of DeepSeek-R1-Distill-Llama-70B using CoT on AQuA.

Let me check the setup. After the second pull,

) the bag has N + 40 marbies, with 20 back the options. s e )
A 0 e e 226 and 230. Did | make a mistake in calculation? optons, but | must have miscalculated. Let me B
ittty Let me check. check the math once more. heck again.
Perhaps | made. But perhaps |
a mistake in ‘made a mistake

setting up the in my reasoning.
‘equation. Let's

So, unless | made a

‘mistake in setting up the
equation, which doesn't

seem so, the answer
should be 4,000, which is
option A

But wall the problem just asks to find the mutiple .
of X, not provided specifically, that is divisible by But walt, the letters in PROBLEC’ each have But none ofthe answer cholces are given I ths S PACHIGF i7ED I (EDETITE Wait, unless the 2% is on the defective Staplers?
both 9 and 12. Hmm, that seems a bit generic. different frequencies. Let me check that. = - ” e Let me check the problem again

I misread. Let me check again. 2 :

Figure 29: Landscape of DeepSeek-R1-Distill-Qwen-1.5B using CoT on AQuA.
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