
Low-Shot Graph Learning
with Topological and Spectral Embeddings

Sai Karthik Navuluru∗

University of Texas at Dallas
SaiKarthik.Navuluru@utdallas.edu

Surbhi Kumar∗
University of Texas at Dallas

Surbhi.Kumar@utdallas.edu

Baris Coskunuzer
University of Texas at Dallas
coskunuz@utdallas.edu

Abstract
Deep graph learning has achieved remarkable success, but its reliance on abun-
dant labeled data limits use in many scientific domains, where each label may
require costly experiments or simulations. We revisit graph classification in
the low-shot regime and ask whether explicit, theory-grounded descriptors can
provide a reliable foundation and how they can be combined with modern archi-
tectures. We study two families of label-free embeddings: topological vectors
from persistent homology that capture multiscale connectivity, and spectral vec-
tors from the Laplacian density of states that summarize diffusion geometry. To
harness their complementary strengths, we also introduce prototype embeddings,
which project graphs onto class-level prototypes in the joint topological–spectral
space, and STAMP, a lightweight controller that conditions GNN and GT back-
bones on these descriptors through layer-wise modulation.
Across ten TU benchmarks and label budgets K ∈ {1, 5, 10, 25, 50}, prototype
embeddings with simple classifiers consistently outperform strong baselines in
the extreme low-label setting, while STAMP achieves the best overall performance
once K ≥ 10. Our results demonstrate that explicit structural priors offer a
powerful and complementary route to label-efficient graph learning, closing
much of the gap to larger deep models without pretraining.

1 Introduction
Graph classification is a fundamental machine learning task with broad applications in drug discovery,
materials science, and bioinformatics. In these domains, each labeled graph, for example, a molecule
validated in a wet lab, carries a significant cost, so labeled data are scarce. This scarcity creates a
bottleneck: state-of-the-art Graph Neural Networks (GNNs) and Graph Transformers (GTs) benefit
from large datasets, yet many classical benchmarks have only hundreds of graphs in total [1]. Even
as larger collections appear through OGB [2], rare classes and limited label budgets remain common
in practice. Designing graph models that perform reliably with only a few dozen labeled examples is
therefore both scientifically challenging and practically important.

The difficulty in low-shot graph learning comes not only from limited supervision but also from
architectural vulnerabilities in deep models. With few labels, gradients update parameters sparsely,
which leads to overfitting on narrow regions of the feature space. Over-smoothing and misaligned
readouts further degrade quality, causing node embeddings to collapse and graph-level signals to
weaken. As a result, sophisticated GNNs and GTs can underperform well-engineered classical
approaches. Prior work shows that aggregations of many interpretable graph features, subtree-kernel
methods, and spectral diffusion signatures achieve strong accuracy on small benchmarks such as
MUTAG and ENZYMES when coupled with robust shallow classifiers [3–5]. These observations

Equal contribution.

Navuluru et al., Low-Shot Graph Learning with Topological and Spectral Embeddings. Proceedings of the
Fourth Learning on Graphs Conference (LoG 2025), PMLR 269, Hybrid Event, December 10–12, 2025.

Low-Shot Graph Learning

suggest a broader lesson: in data-scarce regimes, stable structural descriptors grounded in theory can
rival or surpass modern deep architectures.

Motivated by this, we ask: Can direct, theory-grounded graph embeddings provide a reliable
foundation for low-shot classification, and how can they be combined with modern architectures? We
study two complementary families of label-free descriptors: topological embeddings from persistent
homology, which capture multiscale connectivity in stable, permutation-invariant vectors [6–8],
and spectral embeddings based on Laplacian density of states, which summarize diffusion and
volume growth through efficiently approximated eigenvalue distributions [5, 9, 10]. Both are efficient,
interpretable, and stable under perturbations, making them well-suited for low-data settings. In
addition, we introduce prototype embeddings that combine these descriptors by projecting each graph
onto class-level prototypes in the joint topological–spectral space, yielding a compact similarity
representation that excels in extreme low-label regimes.

Building on these descriptors, we introduce a compact hybrid model that augments GNNs and GTs
with topological and spectral priors. The design integrates nonparametric embeddings by simple
concatenation and conditioning, improves label efficiency, and does not rely on pretraining.

Our Contributions.

• We provide a systematic evaluation of topological and spectral embeddings for low-shot graph
classification, demonstrating strong performance without learned parameters.

• We introduce prototype embeddings that fuse topological and spectral descriptors via class-level
prototypes, delivering the strongest performance at very small label budgets.

• We propose STAMP, a hybrid model that integrates spectral–topological descriptors into GNNs
and GTs, which reduces overfitting and improves sample efficiency.

• We analyze when and why these embeddings help, showing consistent improvements across
diverse datasets and label budgets with K ∈ {1, 5, 10, 25, 50}.

2 Background
2.1 Related Work

Few-Shot Learning for Graph Classification. Meta-learning and metric-based pipelines dominate
few-shot graph classification, typically combining episodic training with task-specific graph encoders.
Representative approaches enrich message passing with structural priors or hierarchical task relations,
for example, structure-enhanced meta-learning [11], FAITH with hierarchical task graphs [12], and
prototype-based methods that learn distance metrics over graph representations [13]. These strategies
can transfer across tasks when many related episodes are available, yet their effectiveness hinges on
learned encoders and careful episodic design.

A complementary literature explores stronger encoders, including Graph Transformers that benefit
from scale or pretraining [14–16]. However, under scarce supervision, these models often overfit or
require large unlabeled corpora, and empirical audits on small benchmarks show that sophisticated
GNNs may fail to consistently outperform well-tuned classical baselines [17]. We take a different
route. We start from label-free, theory-grounded graph embeddings and either use them directly or
inject them as compact tokens into a lightweight Transformer. This yields strong inductive biases
without reliance on heavy pretraining while remaining compatible with standard few-shot protocols.

TDA in Graph Learning. Topological Data Analysis provides stable, permutation-invariant sum-
maries of multiscale connectivity, commonly via persistent homology (PH) diagrams and their
vectorizations. On graphs, PH has been exploited through learnable filtrations and differentiable
readouts for graph classification [18, 19], neural layers operating directly on persistence diagrams
with graph-specific signatures such as HKS [8], WL-style augmentations that inject cycle information
for improved expressivity [20], and architectures that reweight message passing with PH-derived
signals [21]. Recent work also injects global topological invariants into pooling layers [22], uses
multiparameter persistence in the drug discovery problem [23], learns fast surrogates for extended
PH on graphs [24], and captures localized structure with persistent local homology [25]. While these
studies establish the utility of TDA for graph learning, most do not target the low-shot fixed split
setting or hybridize PH descriptors with compact Transformers. We close this gap by evaluating PH
vectors explicitly under few-label budgets and by integrating them as inductive-bias tokens within a
lightweight Transformer.

2

Low-Shot Graph Learning

Spectral Methods in Graph Learning. Spectral descriptors summarize global structure through
functionals of the graph Laplacian [26, 27]. NETLSD constructs permutation and size invariant
signatures from heat and wave kernel traces [5]. Density-of-states (DoS) methods approximate the
full eigenvalue distribution efficiently via polynomial approximation and stochastic trace estimation,
yielding compact graph fingerprints that scale to large graphs [9, 10, 28]. Beyond scalar spectra,
spectral graph wavelets and their scattering extensions provide multiscale, stable features that align
with convolutional architectures and have proven effective for graph analysis [29–32]. Despite this
evidence, spectral summaries are rarely positioned as backbones for low-shot, fixed-split classifi-
cation. We treat DoS vectors as direct graph embeddings that are competitive on their own and
complementary to persistent-homology summaries, and we show that combining both as tokens for a
small Transformer yields data-efficient hybrids.

2.2 Persistent Homology

Persistent Homology (PH) is a fundamental tool in TDA that captures multiscale structural features
such as connected components, cycles, and higher-order cavities that persist across resolutions [33].
Initially developed for point clouds, PH has since been extended to graphs, images, and other
modalities [34]. Within graph learning, PH provides latent descriptors that complement message-
passing networks by exposing higher-order connectivity patterns beyond local neighborhoods.

Figure 1: Graph Filtration. For G = G3 in both examples,
the top figure illustrates a superlevel filtration using the node
degree function with thresholds 3 > 2 > 1, where nodes of
degree 3 are activated first, followed by those of lower degrees.
Similarly, the bottom figure illustrates a sublevel filtration
based on edge weights with thresholds 1.5 < 1.8 < 2.1.

A PH pipeline has three steps: filtration,
diagram construction, and vectorization.
Filtration builds a nested sequence of sub-
graphs or simplicial complexes according to
a chosen function f : V → R (e.g., degree,
centrality, domain-specific node attributes).
For weighted graphs, edge weights natu-
rally define the order (Figure 1). Each
filtration yields a sequence Ĝ1 ⊆ Ĝ2 ⊆
· · · ⊆ ĜN , where topological features ap-
pear (birth) and disappear (death). These
events are summarized as points (bσ, dσ) in
persistence diagrams PDk(G) indexed by
homology dimension k. Since diagrams are
multisets in R2, they must be vectorized
for compatibility with learning pipelines.
Common choices include persistence im-
ages, landscapes, silhouettes, and Betti curves [35].

PH is appealing in low-data regimes: its descriptors are permutation-invariant, computationally
efficient, and come with stability guarantees [6]. Moreover, unlike deep GNNs that require task-
specific training, PH embeddings provide robust, theory-grounded priors that can be directly fed into
classifiers or combined with neural architectures. In this work we leverage PH vectors as a strong
baseline and as a complementary signal for hybrid models.

2.3 Density of States for Graphs

The density of states (DoS) is a classical spectral descriptor that summarizes the eigenvalue distribution
of a graph Laplacian [27]. Given a normalized Laplacian L of graph G = (V, E) with eigenvalues

{λi}|V|
i=1, the DoS is defined as DoS(λ) =

1

|V|
∑|V|

i=1 δ(λ − λi), where δ(·) is the Dirac delta.

Intuitively, DoS encodes how eigenvalues concentrate across [0, 2], reflecting global connectivity,
diffusion, and bottleneck structures. In practice, computing all eigenvalues is infeasible for large
graphs. Instead, polynomial approximation techniques [10] and stochastic trace estimation yield
efficient histograms over fixed bins in [0, 2] [9]. The resulting vector is compact, permutation-invariant,
and stable to small perturbations, while encoding graph-theoretic properties such as connectivity,
expansion, and clustering tendencies [5, 36].

As with PH, DoS embeddings are label-free, fast to compute, and effective in low-shot settings
where deep models overfit. They provide a complementary view: while PH emphasizes topological
persistence of features, DoS captures spectral smoothness and diffusion behavior. We exploit both as
standalone descriptors and as auxiliary tokens in our hybrid Graph Transformer.

3

Low-Shot Graph Learning

2.4 Problem setting: low-shot fixed split

To clarify our evaluation protocol, we distinguish our low-shot fixed-split setting from the more
common episodic few-shot learning (FSL) framework. Episodic FSL trains and evaluates over many
support–query episodes sampled from a distribution of tasks, with the goal of rapid adaptation to new
classes. In contrast, our focus is on a single fixed label space, where the challenge lies in training
with only K labeled graphs per class and evaluating on a held-out test set. This distinction reflects
realistic deployment scenarios in graph learning, where classes remain fixed but labeled data is scarce.
Table 1 summarizes the key differences between these two paradigms.

Table 1: Comparison of episodic few-shot learning (FSL) and our low-shot fixed-split setting.

Episodic FSL (meta-learning) Low-shot fixed split (ours)
Goal Learn to adapt quickly to new

tasks/classes.
Achieve high accuracy with few la-
bels for a fixed task (same classes).

Unit of training Thousands of episodes, each a small clas-
sification problem (support+query).

One fixed training set with K la-
beled graphs per class.

Support set Used to adapt within each episode. Equivalent to the K training exam-
ples per class.

Query set Required: evaluates adaptation in each
episode.

Not used: evaluation is on a fixed
held-out test set.

Dataset requirement Many classes (to sample diverse tasks). Works with small-class datasets
common in graph benchmarks.

Evaluation Average accuracy across many test
episodes with unseen classes.

Accuracy on a fixed test set; report
results for K ∈ {1, 5, 10, 25, 50}.

3 Methodology
Our objective is to assess the effectiveness of direct graph-level embeddings that are computed
without learned weights as building blocks for graph classification in low-label settings. We focus on
three complementary families: (i) topological embeddings derived from persistent homology, which
capture multiscale connectivity; (ii) spectral embeddings based on density-of-states vectors, which
summarize global diffusion geometry; and (iii) prototype-based embeddings induced from (i) and
(ii). We benchmark these approaches against strong parametric baselines, including Graph Neural
Networks (GNNs) and Graph Transformers (GTs), and further introduce a compact hybrid model
that integrates non-parametric descriptors with GNNs and GTs. This design aims to combine the
inductive biases and robustness of explicit embeddings with the adaptability of deep architectures,
yielding a data-efficient and competitive solution for low-shot graph classification.

3.1 Direct Embeddings

Direct embeddings provide a way to map entire graphs into fixed-length vectors without relying
on iterative message passing or deep architectures. Instead, they directly summarize global graph
information through structural invariants, spectral distributions, or distances to learned prototypes.
In this work, we consider three complementary strategies: topological embeddings, which capture
connectivity patterns through Betti-based descriptors; spectral embeddings, which summarize Lapla-
cian eigenvalue distributions via Density of States histograms and kernel density estimates; and
prototype-based representations, which measure similarity to class-level prototypes in feature space.
Each of these embeddings encodes distinct aspects of graph structure, and together they provide a
versatile feature space for downstream classification tasks.

Topological Embeddings. Topological embeddings are obtained using Betti vectorizations derived
from both degree sublevel and diffusion-based (HKS) filtrations, yielding fixed-length, graph-level
representations by tracking the evolution of connected components β0 and cycles β1 across thresholds.
In the degree-based approach, thresholds are sampled between the minimum and maximum node
degree, and Betti numbers are computed on the induced subgraphs, producing a 2T-dimensional
descriptor with stability ensured for empty or constant-degree graphs. In the HKS-based approach,
nodewise heat kernel signatures are computed from Laplacian eigenpairs at multiple diffusion times,
and thresholding these values yields Betti vectors that capture multiscale structural patterns. Together,
the two filtrations provide complementary information, with degree-based vectors emphasizing coarse
connectivity and HKS-based vectors capturing diffusion-aware structure.

4

Low-Shot Graph Learning

Figure 2: STAMP flowchart. Left: dataset-level descriptors are precomputed and standardized to (zx, zy)
using train-only statistics. Middle: a global controller g is produced. Right: g modulates every GNN layer via
bias, gating, and affine normalization (γ, β); the pooled graph embedding is concatenated with (zx, zy) and fed
to an MLP to predict ŷ. Dashed arrows denote conditioning paths; colors indicate modules.

Spectral Embeddings. Spectral embeddings are derived from the eigenvalue distribution of the
normalized Laplacian, which encodes fundamental properties of graph connectivity. The distribution
is summarized through the Density of States (DOS), providing a global spectral fingerprint of the
graph. Two variants are considered: (i) histogram-based DOS, where eigenvalues are binned into
fixed intervals over [0, 2] to produce a normalized frequency vector, and (ii) KDE-based DOS,
where eigenvalues are smoothed using kernel density estimation with boundary reflection, yielding
a continuous approximation of the spectral density. Both representations are normalized to form
probability vectors, ensuring comparability across graphs of different sizes. Histogram embeddings
emphasize coarse spectral structure, while KDE embeddings capture smoother and more fine-grained
variations in the spectrum, making them robust descriptors for graph-level classification.

Prototype-based Embeddings. Prototype-based representations encode graphs through their simi-
larity to class-level prototypes in a chosen feature space. To fully leverage direct embeddings above,
we aggregate them via prototype construction in both topological and spectral domains: Betti vectors
from degree and HKS filtrations, and DOS descriptors from histogram and KDE estimates. For each
class, a prototype is obtained by averaging the embeddings of its training graphs. A graph is then
re-embedded by measuring its distance to all prototypes, using either Euclidean or cosine similarity.
This yields a compact, discriminative coordinate system where positions reflect similarity to class
prototypes rather than raw descriptors. In doing so, prototype-based embeddings unify the stability
of handcrafted topological and spectral features with the discriminative power of metric learning.

3.2 STAMP — Spectral-Topological Augmented Message Passing*

We propose STAMP (Figure 2), a plug-and-play global-feature controller for graph neural networks
(GNNs), supporting two interchangeable backbones: (i) STAMPGPS, which leverages GPSConv layers
combining local message passing with global attention, and (ii) STAMPGCN, a lightweight variant
based on standard GCN layers.

Each graph G is first augmented with global structural descriptors: the Betti vector xG ∈ R2Nth , and

the Laplacian DOS vector yG ∈ RM . These are standardized as zx =
xG − µx

σx
, zy =

yG − µy

σy
.

A shared controller encodes these standardized features into a global context vector:
g = ReLU

(
LayerNorm

(
Wg[zx ∥ zy]

))
.

At each layer ℓ, this context modulates the message-passing outputs through learned scaling and
bias terms: h(ℓ) = u(ℓ) + (γℓ[b]− 1)⊙ û(ℓ) + βℓ[b], where u(ℓ) is the backbone output and
(γℓ, βℓ) are layer-specific modulation parameters derived from g.

After L layers, node embeddings are pooled: z = Pool
(
h(L), b

)
, and combined with the

standardized global features for classification: o = MLP
(
[z ∥ zx ∥ zy]

)
.

5

Low-Shot Graph Learning

Detailed descriptions of the training and forward-pass algorithms, with pseudocode, are provided
in Appendix C.

3.3 Stability of Topological and Spectral Embeddings.

In graph learning, robustness to small perturbations in the graph structure is critical, particularly
in real-world settings where data may be noisy, or incomplete. We utilize topological and spectral
descriptors that are inherently stable: small changes to the graph, such as edge insertions or deletions
induce only bounded changes in the extracted features. This stability ensures that the learned
representations are resilient to noise, which is essential for reliable graph classification. We formalize
these stability properties below. First, we state the stability of our topological descriptors.

Theorem 3.1 (Stability of Topological Descriptors). Let G = (V, E) be a graph and let f, g : V → R
be two node filtration functions on G. Then, for k ≥ 0, we have ∥β⃗k(G, f)−β⃗k(G, g)∥1 ≤ Ck·∥f−g∥1
where β⃗k(G, f) represents the Betti vector corresponding to sublevel filtration with respect to f .

Next theorem is on the stability of our spectral descriptors.

Theorem 3.2 (Stability of Spectral Descriptors). Let G and G′ be two graphs differing by at most
k edge modifications (insertions or deletions). Then, the Wasserstein distance between the spectral
descriptors ψ and ψ′ is bounded by Ck/n, where n = |V| and the constant C depends on the
eigenvalue distribution.

The proofs of the theorems are given in Appendix A.

4 Experiments
Datasets. To assess the effectiveness of our models across diverse settings, we utilize ten graph
classification benchmark datasets from the TU Collection [1]: (i) molecular and biological graphs
from BZR, COX2, MUTAG, ENZYMES, and PROTEINS [37], and (ii) social graphs, including
IMDB-Binary, IMDB-Multi, COLLAB, REDDIT-Binary, and REDDIT-Multi-5K [38].

Table 2: Characteristics of the benchmark
graph classification datasets.

Datasets #Graphs |V| |E| Classes
BZR 405 35.75 38.36 2
COX2 467 41.22 43.45 2
MUTAG 188 17.93 19.79 2
PROTEINS 1113 39.06 72.82 2
ENZYMES 600 32.63 62.14 6
IMDB-B 1000 19.77 96.53 2
IMDB-M 1500 13.00 65.94 3
REDDIT-B 2000 429.63 497.75 2
REDDIT-5K 5000 508.52 594.87 5
COLLAB 5000 74.49 2457.78 3

Low-shot evaluation protocol. The data were split
into three disjoint partitions: a training pool, a fixed
validation set with 10 samples per class, and a fixed
test set comprising approximately 20% of the dataset.
These splits were generated using a global random
seed and remained fixed across all runs to ensure
reproducibility. For each K ∈ {1, 5, 10, 25, 50}, we
sampled K labeled support examples per class from
the training pool using stratified random sampling.
Each experiment was repeated across 20 random
seeds, and for each model, we reported the mean
test accuracy and the standard deviation across these
seeds. Results, along with per-seed accuracies, were
logged in JSON format for reproducibility and post-hoc statistical analysis.

Hyperparameters for Direct Embeddings. For topological embeddings, the number of thresholds
for Betti vectorization was fixed to T = 10, while diffusion-based features were computed using
Heat Kernel Signatures (HKS) at three diffusion times {0.1, 0.5, 1.0}. Spectral embeddings were
parameterized by 128 bins for DOS histograms and by m = 128 grid points with a Gaussian kernel
of bandwidth 0.01 for DOS-KDE. Prototype-based representations were constructed using both Eu-
clidean (l2) and cosine distances. The downstream classifier was a multilayer perceptron trained with
a maximum of 5000 iterations, with hyperparameters selected from a fixed grid comprising hidden
layer sizes (32), (64), (64, 32), (128), (128, 64), L2 regularization penalties α ∈ {10−4, 10−3}, and
learning rates η ∈ {10−3, 10−2}.

Hyperparameters for STAMP. For each dataset, we performed standardized preprocessing to
ensure consistent inputs across models. When node-level attributes were absent or empty, we applied
one-hot degree encodings capped at 100 to create structural node features. Labels were converted to
zero-indexed format for datasets where class labels were originally one-indexed.

6

Low-Shot Graph Learning

Table 3: Low-shot results. Accuracy for K = 1, 5, 10, 25, 50 across topological (Topo), spectral (DOS),
prototype-based, DL, and hybrid models. Column-wise best performance is given in blue, the second in purple,
and the third in green. The final columns report the average rank and average gap from the best performance.

1-shot Results
Model BZR COX2 MUTAG PROTEINS ENZYMES IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB Av.Rank Av.Gap

Topo-degree 53.33±16.71 48.49±15.14 62.11±14.08 59.17±10.86 17.50±3.60 52.90±6.45 36.00±3.32 62.62±8.27 28.92±5.52 42.49±10.53 6.5 4.0
Topo-HKS 54.14±13.55 51.83±18.10 66.32±15.69 56.41±9.40 17.04±3.20 48.07±5.35 34.28±3.08 60.26±10.50 30.04±5.43 44.41±9.54 7.9 4.1
DOS-hist 59.75±18.33 46.08±26.60 60.26±12.78 52.83±8.95 17.54±3.74 50.20±5.09 35.10±3.66 52.69±5.67 27.05±4.69 45.75±12.32 9.9 5.7
DOS-KDE 57.22±16.48 52.04±16.77 53.29±17.07 53.68±10.38 19.42±3.69 50.52±4.97 35.40±3.19 52.75±5.75 27.29±5.47 43.81±8.29 8.8 5.9

Proto-Euc. 56.05±22.58 60.65±25.00 50.79±17.87 52.71±9.84 17.17±3.14 50.82±3.17 34.92±2.74 52.50±6.44 30.84±4.03 38.97±11.79 9.9 5.9
Proto-cosine 55.00±15.21 48.17±16.61 68.42±11.13 58.59±10.75 19.13±3.58 52.83±6.86 35.98±3.70 64.75±6.56 32.52±6.30 48.26±6.14 4.4 2.0
GCN 59.63±14.42 51.56±17.79 56.45±10.28 58.25±6.19 19.58±4.58 51.35±5.17 36.10±3.65 51.38±4.36 29.85±3.68 36.83±9.68 7.6 5.3
GAT 53.77±23.14 52.58±19.48 58.82±11.54 58.18±5.76 19.29±3.67 51.80±5.55 34.35±4.34 54.29±10.67 26.50±5.63 38.54±12.58 8.6 5.6
GSAGE 56.23±17.35 52.63±15.43 56.71±9.72 58.05±6.73 21.00±3.29 51.57±5.32 33.87±5.04 53.01±8.05 25.26±5.06 37.81±12.26 8.9 5.8
GIN 58.46±14.56 49.57±13.46 66.05±13.54 54.57±6.69 19.54±3.89 51.08±5.39 35.63±3.32 53.68±10.47 27.33±5.61 35.73±12.77 8.4 5.2
GPS 53.58±22.76 49.89±21.54 65.26±14.50 56.95±7.74 20.46±3.93 53.05±5.95 35.00±3.97 53.20±7.69 27.68±7.53 38.14±13.58 7.5 5.1
GCL 51.85±18.15 51.24±14.74 59.74±13.45 54.84±6.80 18.79±4.15 51.73±4.99 35.17±3.78 51.41±8.93 24.44±5.36 38.49±7.69 11.2 6.6
SGFormer 49.01±24.29 43.71±28.13 60.00±17.15 56.35±7.20 18.92±3.59 51.87±5.51 35.55±4.36 51.34±4.63 25.14±6.46 38.42±11.83 11.3 7.4
Polynormer 46.17±25.81 52.74±17.65 64.21±10.86 56.12±7.03 20.42±4.71 52.20±5.14 35.25±3.71 51.48±4.86 26.05±5.69 41.12±13.96 8.1 5.8

STAMP-GCN 53.27±18.67 49.41±20.39 52.24±16.19 53.72±10.94 19.83±4.12 53.15±6.72 34.53±4.17 54.02±9.49 29.37±6.31 38.70±9.98 9.2 6.6
STAMP-GPS 54.01±17.87 50.59±18.83 49.61±16.08 55.87±8.98 21.17±4.86 52.40±6.71 34.63±4.47 54.40±10.96 29.52±6.52 39.35±9.86 7.8 6.2

5-shot Results
Model BZR COX2 MUTAG PROTEINS ENZYMES IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB Av.Rank Av.Gap

Topo-degree 62.16±7.20 52.63±12.37 77.37±8.04 58.21±5.74 20.92±3.98 57.35±7.11 34.72±3.05 70.14±8.44 37.86±3.65 49.05±6.55 6.5 3.2
Topo-HKS 57.65±7.24 51.88±9.28 78.55±9.39 61.10±6.70 19.13±2.90 52.80±6.33 34.20±3.27 67.16±6.09 37.62±2.95 48.35±4.79 9.3 4.4
DOS-hist 58.40±10.97 52.20±10.50 66.97±8.55 55.43±6.74 18.75±3.01 57.78±5.64 37.12±4.32 60.49±6.14 33.48±2.26 52.24±6.50 8.7 5.9
DOS-KDE 55.68±14.01 51.88±8.59 66.97±10.34 57.15±6.11 20.38±4.44 55.38±6.06 36.60±4.47 63.64±4.48 34.71±2.56 53.94±3.45 8.6 5.6

Proto-Euc. 54.07±13.02 52.96±12.97 71.84±11.35 54.51±8.90 20.83±2.58 56.23±5.90 34.87±2.48 55.83±10.14 38.76±3.83 52.73±5.22 9.5 5.9
Proto-cosine 55.06±8.26 51.02±8.90 80.26±7.74 61.19±7.19 21.21±3.60 57.03±5.20 36.22±4.35 64.98±7.85 40.42±3.55 54.84±5.11 5.7 3.0
GCN 60.37±12.83 51.67±11.16 67.37±7.18 56.66±6.55 19.63±4.31 58.42±4.85 36.42±4.11 53.71±4.93 37.51±2.34 54.76±4.94 7.7 5.5
GAT 52.90±20.03 47.96±21.26 61.32±10.23 53.79±9.28 18.83±4.33 57.20±5.84 36.62±4.42 56.76±6.89 33.71±3.91 54.05±5.10 11.5 7.9
GSAGE 57.35±11.16 51.94±12.96 65.00±5.65 55.61±6.31 20.21±4.31 57.75±5.41 37.12±4.64 56.06±5.41 34.60±3.06 53.82±5.62 8.3 6.2
GIN 60.25±11.57 53.12±8.16 76.58±4.99 55.09±6.48 22.04±2.38 57.82±4.63 35.48±3.84 61.01±6.36 34.08±2.97 52.09±7.48 7.4 4.4
GPS 53.21±21.28 47.58±17.43 83.68±7.61 57.00±7.52 24.00±3.54 56.12±6.45 36.75±3.67 52.19±6.33 30.41±9.17 53.12±6.10 9.4 5.8
GCL 60.62±11.85 55.43±11.41 76.97±7.30 54.06±5.92 21.04±3.58 56.80±5.08 35.70±4.06 53.67±7.05 32.22±4.03 46.14±5.69 9.4 5.9
SGFormer 51.36±24.64 53.87±23.57 65.00±11.62 54.04±9.43 20.17±3.30 58.83±4.96 36.90±4.73 51.99±5.13 28.21±5.73 54.10±6.16 9.8 7.7
Polynormer 52.22±22.62 48.39±18.36 68.68±1.42 54.48±9.03 20.29±3.43 57.38±5.88 35.52±4.79 52.40±3.61 31.57±7.27 49.05±9.94 12.3 8.2

STAMP-GCN 61.48±9.76 48.39±11.03 76.05±10.69 63.70±6.86 22.25±3.58 57.98±4.62 36.18±4.08 68.99±9.60 38.87±4.10 51.61±6.35 5.4 2.6
STAMP-GPS 60.68±16.80 50.54±15.36 76.05±9.95 63.32±4.77 25.63±4.58 57.48±5.70 35.62±3.73 64.95±9.87 38.85±4.22 50.42±7.41 6.3 2.8

10-shot Results
Model BZR COX2 MUTAG PROTEINS ENZYMES IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB Av.Rank Av.Gap

Topo-degree 67.22±6.12 55.38±9.67 82.24±6.33 61.12±4.52 22.92±4.48 58.83±6.54 36.00±3.32 76.51±6.96 40.87±2.75 51.64±4.19 6.7 3.0
Topo-HKS 58.46±7.05 54.46±5.64 81.71±6.03 61.77±5.86 21.12±2.53 55.83±4.14 34.58±3.03 68.86±5.64 39.45±3.00 48.56±3.83 10.0 5.8
DOS-hist 59.38±7.87 53.71±8.97 69.08±7.25 60.72±5.13 20.04±3.15 59.55±5.66 37.75±5.09 62.31±5.03 34.54±1.72 54.35±4.51 10.4 7.2
DOS-KDE 58.09±9.82 53.23±7.99 71.97±11.36 58.54±5.21 22.42±3.70 59.45±4.58 38.13±3.12 66.83±4.26 36.29±2.41 56.64±4.40 9.1 6.2

Proto-Euc. 57.28±7.05 49.84±8.58 76.71±8.78 53.81±8.52 22.46±3.09 58.07±4.07 36.07±3.59 67.79±9.63 39.57±2.86 53.36±4.04 11.3 6.8
Proto-cosine 58.89±8.46 51.67±9.01 82.89±4.52 62.35±4.83 22.21±4.03 60.30±5.20 38.10±3.51 65.59±6.88 40.92±2.76 56.87±4.35 6.2 4.3

GCN 61.17±12.77 52.85±11.98 67.76±5.76 56.59±6.29 21.08±2.85 60.20±5.42 39.33±4.21 57.01±4.05 38.49±1.71 59.35±4.67 8.3 6.9
GAT 58.46±16.86 51.24±19.61 62.37±7.94 54.08±7.10 19.38±3.00 59.58±3.90 39.18±4.19 59.16±4.44 34.63±4.94 58.23±5.11 10.6 8.7
GSAGE 60.12±11.32 55.27±9.54 66.45±6.16 57.09±4.66 21.50±3.03 58.93±4.78 38.93±4.66 59.15±3.87 38.22±2.30 57.75±4.80 9.0 7.0
GIN 62.53±11.11 60.91±6.85 77.76±5.09 56.93±4.13 25.63±2.79 58.53±5.55 37.73±3.66 63.45±3.27 35.67±2.57 58.42±4.20 7.9 4.6
GPS 52.10±24.11 54.78±18.24 83.42±12.40 60.49±6.07 28.58±4.09 59.18±4.75 37.82±3.65 56.61±7.84 39.82±2.51 56.79±6.03 7.7 5.4
GCL 64.63±7.32 60.97±11.64 78.42±3.96 56.30±4.61 23.79±4.34 58.88±5.66 36.72±3.77 60.50±4.46 36.57±2.93 50.03±4.74 9.1 5.6
SGFormer 43.09±23.11 56.24±25.17 67.76±8.48 52.09±7.49 22.25±2.50 60.20±4.67 38.78±3.33 53.90±5.38 38.02±3.36 57.50±5.51 9.9 9.3
Polynormer 47.72±22.96 47.63±18.07 68.82±1.51 57.15±5.70 22.71±3.57 59.40±4.37 39.00±4.36 55.93±5.51 37.40±2.89 55.20±5.04 10.6 9.2

STAMP-GCN 64.88±8.26 57.90±9.71 79.87±10.70 62.17±7.63 25.04±3.38 59.88±3.80 37.97±4.34 76.46±6.84 42.67±2.52 56.44±4.89 4.5 2.0
STAMP-GPS 65.56±7.81 59.41±14.50 81.84±8.02 64.39±7.00 29.00±3.32 58.68±4.64 38.22±3.73 70.35±8.57 42.11±2.83 54.55±6.46 4.6 1.9

25-shot Results
Model BZR COX2 MUTAG PROTEINS ENZYMES IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB Av.Rank Av.Gap

Topo-degree 71.54±5.04 55.38±7.73 84.87±3.62 64.22±3.38 23.58±3.14 61.73±4.31 40.25±2.50 81.24±2.98 44.74±1.42 55.73±2.99 7.7 4.7
Topo-HKS 64.38±5.98 54.89±6.99 81.58±5.77 63.77±3.00 22.92±3.46 57.30±4.36 36.93±3.27 73.98±3.19 42.98±1.78 52.17±2.02 10.0 7.9
DOS-hist 64.20±7.48 60.86±8.06 70.79±6.55 61.86±3.23 22.75±3.43 62.85±4.58 40.83±3.34 67.60±3.01 37.32±1.14 58.69±2.16 9.7 8.2
DOS-KDE 61.36±5.83 56.99±6.52 74.08±6.57 59.53±4.40 24.83±3.15 62.80±4.64 40.77±3.06 72.41±3.03 38.09±1.61 60.97±2.23 9.9 7.8

Proto-Euc. 60.31±5.41 56.40±7.79 79.61±7.10 60.99±4.44 23.92±3.86 62.50±4.87 39.43±2.98 74.64±4.42 42.63±3.02 58.06±2.82 10.0 7.1
Proto-cosine 62.04±5.49 58.23±8.47 81.84±4.47 59.89±3.75 25.00±3.25 63.90±4.65 39.92±3.25 70.40±6.07 41.05±2.39 59.10±2.12 8.9 6.8

GCN 68.77±6.28 53.01±10.30 65.53±5.12 59.84±2.67 23.54±2.81 67.10±4.16 41.53±3.99 60.39±4.37 41.12±2.13 63.86±3.24 8.0 8.5
GAT 53.89±13.32 47.31±17.13 60.92±7.22 57.38±5.84 22.08±2.08 64.93±4.02 41.28±3.94 58.48±3.02 36.65±3.99 61.36±3.69 12.2 12.6
GSAGE 69.38±5.85 59.09±11.80 64.87±5.72 59.04±3.95 23.62±2.18 64.43±3.75 41.15±4.19 60.34±3.15 40.84±1.63 61.95±3.32 8.6 8.5
GIN 73.64±5.92 63.66±6.11 79.47±4.21 60.74±4.13 28.33±3.43 63.13±3.82 40.60±3.80 66.11±3.66 37.51±1.80 62.35±3.36 7.1 5.4
GPS 66.17±7.91 58.98±10.87 85.53±4.60 63.52±5.13 34.40±3.91 63.68±4.65 40.97±4.29 71.12±3.21 42.91±3.06 60.82±3.15 5.5 4.2
GCL 71.11±7.73 66.24±8.99 80.79±4.41 60.31±3.68 28.46±4.02 62.60±4.97 38.82±3.88 66.31±2.77 38.98±2.05 59.63±3.60 8.6 5.7
SGFormer 58.15±15.69 51.99±14.48 65.39±10.92 59.82±6.99 22.54±2.98 66.48±3.63 40.67±3.50 59.29±3.72 40.31±2.96 62.49±3.29 10.8 10.3
Polynormer 62.16±10.79 50.59±13.29 68.29±1.95 60.52±4.34 25.08±3.32 64.55±3.55 40.82±3.91 64.65±4.25 38.20±1.99 60.89±3.96 9.6 9.4

STAMP-GCN 72.78±3.95 58.87±7.94 80.79±6.45 66.46±5.93 29.92±2.61 63.25±3.61 40.17±4.16 83.56±2.63 45.71±1.94 61.06±3.55 5.0 2.7
STAMP-GPS 72.96±5.57 61.29±8.25 83.42±5.46 67.83±5.98 29.50±3.58 62.70±3.47 40.00±4.36 84.01±2.86 45.67±1.71 61.30±4.46 4.5 2.1

50-shot Results
Model BZR COX2 MUTAG PROTEINS ENZYMES IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB Av.Rank Av.Gap

Topo-degree 74.20±3.12 55.81±5.67 87.89±1.29 65.90±2.48 25.50±3.75 62.88±3.04 41.48±2.73 84.41±1.73 48.34±2.05 59.52±2.16 7.9 6.2
Topo-HKS 68.52±5.36 60.97±4.22 82.76±3.17 63.34±3.00 25.33±3.40 57.83±2.77 36.32±2.75 78.21±2.83 45.78±1.79 53.50±1.87 10.4 9.5
DOS-hist 68.02±5.39 68.44±4.69 73.68±2.88 62.06±1.70 24.04±3.68 64.65±3.53 41.83±2.46 69.84±2.30 38.86±1.90 61.75±1.74 10.6 9.5
DOS-KDE 63.83±5.48 62.74±6.53 78.16±4.09 61.12±2.93 27.58±3.33 65.18±2.87 40.77±3.06 72.85±2.35 39.96±1.50 62.79±2.53 10.3 9.3

Proto-Euc. 67.53±3.69 63.06±6.59 84.61±3.03 64.04±3.74 26.67±2.42 65.45±3.98 40.68±3.57 76.89±3.25 46.65±2.01 60.55±2.04 8.0 7.2
Proto-cosine 67.72±5.63 62.31±5.87 84.34±3.17 60.78±4.02 25.88±2.88 66.73±4.24 41.72±2.54 74.00±3.96 42.71±1.74 60.92±3.00 9.4 8.1

GCN 72.41±6.50 58.12±8.48 71.97±4.35 60.87±3.50 24.29±2.03 68.60±3.31 43.82±3.08 63.70±2.70 41.60±1.86 65.05±2.59 8.3 9.8
GAT 53.70±12.89 51.51±21.46 66.84±4.43 58.25±3.46 23.58±2.30 67.12±4.01 43.20±2.95 60.55±3.06 36.03±4.28 61.52±2.87 13.0 14.6
GSAGE 72.72±2.87 61.13±9.71 70.00±2.68 62.67±3.70 25.33±2.33 66.85±2.57 43.05±3.53 62.58±1.54 41.06±1.86 62.94±2.52 8.9 10.0
GIN 78.89±4.09 65.70±5.60 82.11±2.83 63.54±3.39 33.25±3.07 66.65±3.37 43.82±3.96 68.64±1.95 39.46±1.23 64.52±2.00 6.2 6.1
GPS 71.05±4.95 65.75±7.49 88.03±3.86 67.42±3.55 44.50±3.94 65.45±5.26 42.35±3.12 74.42±2.97 42.99±1.82 63.93±3.07 5.2 4.2
GCL 73.77±11.59 73.87±6.65 84.47±5.06 60.49±5.36 36.29±4.62 65.07±3.50 40.18±3.45 69.41±2.16 38.86±2.48 62.53±3.03 9.1 6.3
SGFormer 55.68±17.52 50.05±9.17 68.16±9.77 61.95±8.83 24.21±2.84 70.00±2.69 43.63±3.85 60.98±5.00 41.06±2.79 65.22±2.21 10.0 12.7
Polynormer 71.30±8.13 56.08±7.58 69.74±2.56 63.00±3.98 27.63±3.05 66.85±4.52 43.03±3.47 69.75±4.27 38.24±2.66 64.33±2.70 8.9 9.8

STAMP-GCN 75.25±3.59 61.40±4.76 86.05±2.89 67.35±3.86 34.79±3.29 65.23±3.51 42.67±3.48 84.05±2.20 46.05±1.86 63.62±2.53 5.3 4.1
STAMP-GPS 75.62±2.50 66.56±6.65 84.47±2.99 70.09±3.28 31.54±3.30 65.50±3.83 41.93±3.68 85.19±1.98 46.40±1.25 64.99±2.71 4.0 3.6

7

Low-Shot Graph Learning

Table 4: Overall performances. The left block (Avg. Rank) reports the average rank of each model across all
datasets. The right block (Avg. Gap) reports the average accuracy gap from the best result across all datasets. In
each column, the best performance is given in blue, the second best in purple, and the third best in green.

Average Rank Average Gap
Model K=1 K=5 K=10 K=25 K=50 K=1 K=5 K=10 K=25 K=50
Topo-degree 6.5 6.5 6.7 7.7 7.9 4.0 3.2 3.0 4.7 6.2
Topo-HKS 7.9 9.3 10.0 10.0 10.4 4.1 4.4 5.8 7.9 9.5
DOS-hist 9.9 8.7 10.4 9.7 10.6 5.7 5.9 7.2 8.2 9.5
DOS-KDE 8.8 8.6 9.1 9.9 10.3 5.9 5.6 6.2 7.8 9.3

Proto-Euc. 9.9 9.5 11.3 10.0 8.0 5.9 5.9 6.8 7.1 7.2
Proto-cosine 4.4 5.7 6.2 8.9 9.4 2.0 3.0 4.3 6.8 8.1

GCN 7.6 7.7 8.3 8.0 8.4 5.3 5.5 6.9 8.5 9.8
GAT 8.6 11.5 10.6 12.2 13.0 5.6 7.9 8.7 12.6 14.6
GSAGE 8.9 8.3 9.0 8.6 9.0 5.8 6.2 7.0 8.5 10.0
GIN 8.4 7.4 7.9 7.1 6.2 5.2 4.4 4.6 5.4 6.1
GPS 7.5 9.4 7.7 5.5 5.2 5.1 5.8 5.4 4.2 4.2
GCL 11.2 9.4 9.1 8.6 9.2 6.6 5.9 5.6 5.7 6.3
SGFormer 11.3 9.8 9.9 10.8 10.0 7.4 7.7 9.3 10.3 12.7
Polynormer 8.1 12.3 10.6 9.6 8.9 5.8 8.2 9.2 9.4 9.8

STAMP-GCN 9.2 5.4 4.5 5.0 5.3 6.6 2.6 2.0 2.7 4.1
STAMP-GPS 7.8 6.4 4.6 4.5 4.0 6.2 2.8 1.9 2.1 3.6

To ensure a fair and consistent evaluation, we fixed the number of training epochs to 200 across all
backbones, including GCN, GAT, GIN, GPS, and the proposed STAMP variants. All models were
trained with a hidden dimension of 64, a dropout rate of 0.2, a learning rate of 2 × 10−3, weight
decay of 1× 10−4, and a batch size of 32. Optimization was performed using the Adam optimizer,
with early stopping patience set to 50 epochs, though the final evaluations consistently used the full
200-epoch schedule to eliminate training-length variability.

The STAMP architecture augments message passing with spectral, topological, and structural embed-
dings. Topological features were derived from Betti vectorizations with a fixed number of thresholds
T = 10, while structural embeddings captured node degree distributions. Spectral embeddings
were parameterized using 128 bins for DOS histograms and m = 128 grid points for DOS-KDE,
with a Gaussian kernel bandwidth of 0.01. All spectral, topological, and structural descriptors were
standardized to zero mean and unit variance prior to integration to ensure balanced scaling and stable
training dynamics.

We evaluate two variants of STAMP: STAMP-GPS, which leverages a GPS backbone for attention-
enhanced message passing, and STAMP-GCN, which utilizes a simpler GCN backbone for a lighter-
weight alternative. This design enables a fair analysis of the benefits of spectral-topological aug-
mentation across different levels of architectural expressiveness. Our implementation is available
at https://github.com/1999-karthik/STAMP.git

4.1 Results

In Tables 3 and 4, we present both per-dataset accuracies and cross-dataset summaries for all methods
across five label budgets K ∈ {1, 5, 10, 25, 50}. Table 3 reports accuracy on each TU dataset, while
Table 4 aggregates performance using two complementary metrics with lower being better: Average
Rank (the mean rank of a method across datasets within each K column) and Average Gap (the mean
absolute difference in percentage points to the column-best accuracy). We compare four categories:
direct nonparametric descriptors (Topo-Degree, Topo-HKS, DOS-hist, DOS-KDE), our prototype
embeddings (Euclidean and cosine) that combine these descriptors, standard parametric baselines
(GCN, GAT, GSAGE, GIN, GPS), and our hybrids STAMP-GCN and STAMP-GPS.

Low-label regimes. Across ten TU benchmarks and label budgets K ∈ {1, 5, 10, 25, 50}, our
prototype embeddings are strongest when labels are extremely scarce. The cosine variant, which fuses
all direct descriptors (Topo-Degree, Topo-HKS, DOS-hist, DOS-KDE) into a similarity-to-prototype
space, attains the best average ranks at K=1 and K=5 and the smallest or near-smallest average gaps
in Table 4. Topo-Degree alone is often second or third. Standard deep baselines trail by a wide margin
in this regime, confirming that aggregating multiple stable structural views benefits generalization
when supervision is minimal.

8

https://github.com/1999-karthik/STAMP.git

Low-Shot Graph Learning

(a) Direct Embeddings
(b) Deep Models

Figure 3: Reddit-B: Performance Evolution. Performance evolution for direct embeddings (left)
and deep models (right) in low-data settings on the Reddit-B dataset. The corresponding figures for
other datasets are given in Appendix B.

Growing label budgets. As K increases, the STAMP hybrids dominate. Beginning at K=10,
STAMP-GPS achieves the best overall rank and the lowest average gap and remains on top at K=25
and K=50. STAMP-GCN shows the same pattern, slightly behind STAMP-GPS yet ahead of all non-
hybrid methods. These gains indicate that conditioning message passing on global spectral and
topological descriptors yields a clear sample-efficiency benefit once a modest number of labels are
available.

Takeaway. Use nonparametric structure when labels are tiny, then switch to the hybrid. Our
prototype embeddings, which combine all direct descriptors into a unified prototype space, are the
most effective choice for K ≤ 5. For K ≥ 10, STAMP consistently delivers the best overall accuracy
and rank. These trends are clearly illustrated in Figures 3, 4 and 5, where the transition from prototype
embeddings to STAMP as K grows is visually evident.

Limitations and future work. Our descriptors assume access to reliable structural cues and require
a modest amount of spectral computation; very large graphs may benefit from additional accelerations.
Extending the approach to dynamic, attributed, and heterogeneous graphs, and combining STAMP
with active learning or semi-supervised objectives, are promising directions. Another avenue is to
study sample complexity and representation alignment more formally, and to explore synergy with
self-supervised pretraining. We hope this structure-aware perspective encourages the community to
treat nonparametric graph descriptors as first-class citizens in low-shot learning.

5 Conclusion
We revisited graph classification under small label budgets and showed that structure first methods are
a powerful and complementary alternative to purely deep approaches. We evaluated two label-free
families of descriptors, topological vectors from persistent homology and spectral vectors from the
Laplacian density of states, and introduced prototype embeddings that combine these views in a
unified similarity space. We further proposed STAMP, a compact controller that conditions GNN
and Graph Transformer backbones on these descriptors through simple concatenation and layerwise
modulation. Across ten TU benchmarks and K ∈ {1, 5, 10, 25, 50}, prototype embeddings dominate
in the extreme low label regime, while STAMP achieves the best overall rank and the lowest accuracy
gaps once K ≥ 10. Together with stability bounds and ablations, these results establish that explicit
structural priors can materially improve label efficiency without pretraining.

Practically, our findings suggest a simple recipe for small data settings. Start with a nonparametric
structure when labels are tiny, using prototype embeddings that fuse topological and spectral signals.
As labels grow, switch to the STAMP hybrid, which retains the robustness of explicit descriptors
while leveraging task-specific adaptation through message passing. The method is lightweight, easy
to integrate into standard backbones, and yields consistent gains across heterogeneous datasets.

9

Low-Shot Graph Learning

Acknowledgements. This research was partially supported by the National Science Foundation
under grants DMS-2220613 and DMS-2229417. The authors thank Prof. Lakshman Tamil for
insightful discussions. The authors acknowledge the Texas Advanced Computing Center (TACC) at
UT Austin for providing computational resources that have contributed to this paper.

References
[1] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion

Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv
preprint arXiv:2007.08663, 2020. URL https://chrsmrrs.github.io/datasets. 1, 6

[2] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In Advances in Neural Information Processing Systems (NeurIPS), 2020. 1

[3] Robert L Peach, Alexis Arnaudon, Julia A Schmidt, Henry A Palasciano, Nathan R Bernier,
Kim E Jelfs, Sophia N Yaliraki, and Mauricio Barahona. Hcga: Highly comparative graph
analysis for network phenotyping. Patterns, 2(4), 2021. 1

[4] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9),
2011.

[5] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein, and Emmanuel Müller.
Netlsd: Hearing the shape of a graph. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD), pages 2347–2356, 2018. 1, 2, 3

[6] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
Discrete & Computational Geometry, 37(1):103–120, 2007. 2, 3

[7] Peter Bubenik. Statistical topological data analysis using persistence landscapes. Journal of
Machine Learning Research, 16:77–102, 2015.

[8] Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei Umeda.
Perslay: A neural network layer for persistence diagrams and new graph topological signatures.
In AISTATS, pages 2786–2796, 2020. 2

[9] Kun Dong, Austin R. Benson, and David Bindel. Network density of states. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD), pages 1152–1161, 2019. 2, 3

[10] Lin Lin, Yousef Saad, and Chao Yang. Approximating spectral densities of large matrices.
SIAM Review, 58(1):34–65, 2016. 2, 3

[11] Shunyu Jiang, Fuli Feng, Weijian Chen, Xiang Li, and Xiangnan He. Structure-enhanced
meta-learning for few-shot graph classification. AI Open, 2:160–167, 2021. 2

[12] Song Wang, Yushun Dong, Xiao Huang, Chen Chen, and Jundong Li. Faith: Few-shot graph
classification with hierarchical task graphs. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence (IJCAI), pages 2284–2290, 2022. 2

[13] Donato Crisostomi et al. Metric based few-shot graph classification. In Proceedings of the First
Learning on Graphs Conference (LoG), volume 198, pages 33:1–33:22. PMLR, 2022. 2

[14] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances
in Neural Information Processing Systems (NeurIPS), 2021. 2

[15] Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

[16] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations (ICLR), 2020. 2

[17] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. In ICLR, 2020. 2

10

http://www.tacc.utexas.edu
https://chrsmrrs.github.io/datasets

Low-Shot Graph Learning

[18] Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph
filtration learning. In International Conference on Machine Learning, pages 4314–4323. PMLR,
2020. 2

[19] Phu Pham, Quang-Thinh Bui, Ngoc Thanh Nguyen, Robert Kozma, Philip S Yu, and Bay
Vo. Topological data analysis in graph neural networks: Surveys and perspectives. IEEE
Transactions on Neural Networks and Learning Systems, 2025. 2

[20] Bastian Rieck, Christian Bock, and Karsten Borgwardt. A persistent weisfeiler-lehman pro-
cedure for graph classification. In International Conference on Machine Learning, pages
5448–5458. PMLR, 2019. 2

[21] Qi Zhao, Ze Ye, Chao Chen, and Yusu Wang. Persistence enhanced graph neural network. In
International Conference on Artificial Intelligence and Statistics, pages 2896–2906. PMLR,
2020. 2

[22] Chaolong Ying, Xinjian Zhao, and Tianshu Yu. Boosting graph pooling with persistent homol-
ogy. Advances in Neural Information Processing Systems, 37:19087–19113, 2024. 2

[23] Andac Demir, Baris Coskunuzer, Yulia Gel, Ignacio Segovia-Dominguez, Yuzhou Chen, and
Bulent Kiziltan. Todd: Topological compound fingerprinting in computer-aided drug discovery.
NeurIPS, 35:27978–27993, 2022. 2

[24] Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, Yusu Wang, and Chao Chen. Neural
approximation of graph topological features. Advances in neural information processing
systems, 35:33357–33370, 2022. 2

[25] Minghua Wang, Yan Hu, Ziyun Huang, Di Wang, and Jinhui Xu. Persistent local homology in
graph learning. Transactions on Machine Learning Research, 2024. 2

[26] Andries E. Brouwer and Willem H. Haemers. Spectra of Graphs. Universitext. Springer, New
York, 2012. 3

[27] Fan R.K. Chung. Spectral Graph Theory, volume 92 of CBMS Regional Conference Series in
Mathematics. American Mathematical Society, 1997. 3, 14

[28] Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(f(a)) via stochastic lanczos
quadrature. SIAM Journal on Matrix Analysis and Applications, 38(4):1075–1099, 2017. 3

[29] David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via
spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150, 2011. 3

[30] David I. Shuman et al. The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains. IEEE Signal Processing
Magazine, 30(3):83–98, 2013.

[31] Feng Gao, Guy Wolf, and Matthew Hirn. Geometric scattering for graph data analysis. In Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2122–2131. PMLR, 2019.

[32] Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. Graph
learning: A survey. IEEE Transactions on Artificial Intelligence, 2(2):109–127, 2021. 3

[33] Tamal Krishna Dey and Yusu Wang. Computational Topology for Data Analysis. Cambridge
University Press, 2022. 3, 13

[34] Baris Coskunuzer and Cüneyt Gürcan Akçora. Topological methods in machine learning: A
tutorial for practitioners. arXiv preprint arXiv:2409.02901, 2024. 3, 13

[35] Dashti Ali et al. A survey of vectorization methods in topological data analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023. 3

[36] Daniel A Spielman. Spectral graph theory and its applications. In 48th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’07), pages 29–38. IEEE, 2007. 3

[37] Nils Kriege et al. Subgraph matching kernels for attributed graphs. In ICML, pages 291–298,
2012. 6

[38] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In KDD, pages 1365–1374, 2015.
6

[39] Primoz Skraba and Katharine Turner. Wasserstein stability for persistence diagrams.
arXiv:2006.16824, 2020. 13

11

Low-Shot Graph Learning

[40] Paweł Dłotko and Davide Gurnari. Euler characteristic curves and profiles: a stable shape
invariant for big data problems. GigaScience, 12:giad094, 2023. 13

[41] Megan Johnson and Jae-Hun Jung. Instability of the Betti sequence for persistent homology
and a stabilized version of the Betti sequence. Journal of the Korean Society for Industrial and
Applied Mathematics, 25(4):296–311, 2021. 13

[42] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416,
2007. 14

12

Low-Shot Graph Learning

Appendix

A Proofs of Stability Theorems
In this part, we prove the stability results for our descriptors.

A.1 Stability of Topological Descriptors.

To establish the stability of Betti vectors, we begin by recalling two fundamental results from applied
topology. The first lemma addresses the stability of persistence diagrams under sublevel filtrations,
while the second focuses on the stability of Betti vectorizations with respect to the L1-norm. In the
following, ∥ · ∥p represents Lp-norm, andWp(·, ·) represents the Wasserstein distance [33, 34].

Lemma A.1. [39] Let X be a compact metric space, and f, g : X → R be two filtration functions.
Then, for any p ≥ 1, we have Wp(PDk(X , f),PDk(X , g)) ≤ ∥f − g∥p.

The next lemma is on the stability of Betti curves by [40].

Lemma A.2. [40] Let βk(X) is the kth Betti function obtained from the persistence module PMk(X).
Then, ∥β⃗k(X)− β⃗k(Y)∥1 ≤ 2W1(PDk(X),PDk(Y)) where β⃗k(X) represents the Betti curves
corresponding to PDk(X)

Now, we are ready to prove our stability result for Betti vectors. In the following, let G = (V, E) be a
graph and let f, g : V → R be two filtration functions. Fix the number of thresholds N and width
parameter m as introduced in Section 2.2. Define the thresholds as N -quantiles of the sets f(V) and
g(V), and define the subgraphs {Gi}Ni=1 from filtration process accordingly. Let Ĝi be the clique
complex of Gi. Let β̂k(G, f), β̂k(G, g) be the N -dimensional Betti vectors for filtration functions
f, g, respectively.

Theorem A.3. Let G = (V, E) be a graph and let f, g : V → R be two filtration functions. Then, for
k ≥ 0, we have ∥β̂k(G, f)− β̂k(G, g)∥1 ≤ Ck · ∥f − g∥1.

Proof. The proof follows from the results above. Let Ĝ be the clique complex of G. Then, by using
the filtration functions f, g : V → R, we can induce a function on the clique complex f̂ , ĝ : Ĝ → R
such that for any k-simplex σ = [vi0 , vi1 , . . . , vik], define f̂(σ) = maxvi∈σ{f(vi)} ([39]-Section 2).
Then, by Lemma A.1, we have

W1(PDk(Ĝ, f),PDk(Ĝ, g)) ≤ ∥f − g∥1 (1)

Next by using simplicial complex Ĝ as the compact space and f̂ , ĝ as simplicial maps, in Lemma A.2,
we obtain persistence modules PMk(G, f) and PM(G, g), which gives

∥β⃗k(Ĝ, f)− β⃗k(Ĝ, g)∥1 ≤ 2W1(PDk(Ĝ, f),PDk(Ĝ, g)) (2)

Hence, by combining Equations (1) and (2), the proof follows.

We note that L1-stability result above does not extend to L∞-norm [41].

Stability of Spectral Descriptors. Next, we prove the stability of the density of states (DoS)
vectors under edge modifications.

Theorem 3.2. Let G and G′ be two graphs differing by at most k edge modifications (insertions or
deletions). Then, the Wasserstein distance between the spectral descriptors ψ and ψ′ is bounded by
Ck/n, where n = |V| and C is a constant depending on the eigenvalue distribution.

Proof. Let G and G′ be two graphs differing by at most k edge insertions or deletions. Let ψ,ψ′ be
the corresponding spectral descriptors.

Next, we recall the following results from spectral graph theory.

13

Low-Shot Graph Learning

• Adding or deleting an edge modifies at most two entries in the normalized Laplacian matrix.

• The matrix perturbation theory for eigenvalues (see, e.g., [42]) implies that if L and L′ differ by
a matrix of spectral norm at most ϵ, then the eigenvalues of L and L′ differ by at most ϵ.

• Since each edge modification changes at most O(1/n) in spectral norm [27], k edge changes
induce a perturbation of size at most O(k/n).

• Therefore, the Wasserstein (matching) distance between the DOS histograms is bounded as
W1(ψ,ψ

′) = O
(
k
n

)
, whereW1 denotes the 1-Wasserstein distance.

This impliesW1(ψ,ψ
′) ≤ Ck/n for some C > 0. The proof follows.

B Additional Performance Evolution Figures
In this section, we present the full set of performance–evolution figures for all benchmark datasets.
For each dataset, results are shown separately for direct embeddings (left) and deep models (right),
with accuracy plotted against the number of labels per class K ∈ {1, 5, 10, 25, 50}. These figures
complement the REDDIT-B example in the main text and provide a detailed view of how different
model families behave under varying label budgets. Together, they highlight the regimes where
nonparametric descriptors, prototype embeddings, and STAMP hybrids are most effective.

Figure 4: Accuracy vs. # training samples. Performance evolution for direct embeddings (left) and
deep models (right) in low-data settings on benchmark datasets.

(a) Direct Embeddings (b) Deep Models

14

Low-Shot Graph Learning

Figure 5: Accuracy vs. # training samples. Performance evolution for direct embeddings (left) and
deep models (right) in low-data settings on benchmark datasets.

15

Low-Shot Graph Learning

C STAMP Training and Forward Pass

In this part, we provide details on how STAMP is implemented and optimized. We break the method
into three parts and provide self-contained pseudocode for each. First, we precompute and standardize
the global descriptors for every graph: Betti vectors xG and DOS vectors yG are computed once, and
z-score parameters are fitted on the training split only, then reused for validation and test. Second, a
small controller encodes the standardized descriptors (zx, zy) into a global context g that is shared
across all layers. Third, each backbone layer is modulated by g through biasing, gating, and affine
normalization, after which pooled node embeddings are concatenated with (zx, zy) for classification.
Reusable routines for these steps are given in Algorithm 1; the full mini-batch training loop appears
in Algorithm 2; and the inference-time forward pass is summarized in Algorithm 3.

The algorithms expose common choices as arguments: the backbone (Backbone ∈ {GCN,GPS}),
normalization (Norm ∈ {GN,LN,BN}), and pooling (Pool ∈ {mean,sum,max,JK}). Two scalars
control modulation strength: s scales the affine parameters (γ, β) and λt gates residual contributions;
we treat λt as a schedule during training for flexibility but fix it to the constant value 0.25 in all
experiments for stability and reproducibility. Unless otherwise noted, positional encodings are
zero-filled if absent, and all standardization statistics are computed strictly on the training set.

Algorithm 1 Reusable Procedures for STAMP

1: function PRECOMPUTEDESCRIPTORS(S, Nth,M)
2: for all G ∈ S do
3: xG ← BettiVector(G,Nth) ▷ xG ∈ R2Nth

4: yG ← DOSVector(G,M) ▷ yG ∈ RM

5: end for
6: end function
7: function FITSTANDARDIZERS(Strain)
8: (µx, σx)← FitZScore({xG}G∈Strain)
9: (µy, σy)← FitZScore({yG}G∈Strain)

10: return (µx, σx, µy, σy)
11: end function
12: function STANDARDIZEGLOBALS(xG, yG, µx, σx, µy, σy)
13: zx ← (xG − µx)/σx; zy ← (yG − µy)/σy
14: return (zx, zy)
15: end function
16: function CONTROLLER(zx, zy)
17: return ReLU(LayerNorm(Wg[zx ∥ zy]))
18: end function
19: function LAYERSTEP(h, g, ℓ, E, b,Backbone,Norm, s, λt)
20: m← BackboneLayerℓ(h,E, b)
21: u← m⊙

(
1 + tanh(W ℓ

biasg)[b]
)

22: u←
(
1 + λt · σ(W ℓ

gateg)[b]
)
⊙ u

23: û← Norm(u)
24: γ ← 1 + s · tanh(W ℓ

γg); β ← s · tanh(W ℓ
βg)

25: return u+ (γ[b]− 1)⊙ û+ β[b]
26: end function
27: function POOLANDCLASSIFY(h, b, zx, zy)
28: z ← Pool(h, b)
29: return MLP(z ∥ zx ∥ zy)
30: end function

16

Low-Shot Graph Learning

Algorithm 2 Training STAMP

Require: D; Nth; M ; H; L; s; schedule λt (default constant 0.25);
Require: Norm ∈ {GraphNorm,LayerNorm,BatchNorm}; Pool ∈ {mean,sum,max,JK};

Backbone ∈ {GCN,GPS}
1: Split D into Dtrain,Dval,Dtest
2: PRECOMPUTEDESCRIPTORS(Dtrain, Nth,M); PRECOMPUTEDESCRIPTORS(Dval, Nth,M);

PRECOMPUTEDESCRIPTORS(Dtest, Nth,M)
3: (µx, σx, µy, σy)←FITSTANDARDIZERS(Dtrain)
4: Initialize controller, modulation heads, backbone, classifier
5: for epoch = 1, . . . do
6: for mini-batch B ⊂ Dtrain do
7: build (X,E, b); gather {xG, yG}G∈B
8: (zx, zy)←STANDARDIZEGLOBALS(xG, yG, µx, σx, µy, σy)
9: g ←CONTROLLER(zx, zy)

10: ensure PE (zeros if absent); h← Linear(X ∥ PE)
11: for ℓ = 1 to L do
12: h←LAYERSTEP(h, g, ℓ, E, b,Backbone,Norm, s, λt)
13: if ℓ < L then
14: h← ReLU(h); h← Dropout(h)
15: end if
16: end for
17: o←POOLANDCLASSIFY(h, b, zx, zy); L ← loss(o, y)
18: Backprop & optimizer step
19: end for
20: end for
21: return best checkpoint by validation performance

Note: in all experiments we use constant λt ≡ 0.25.

Algorithm 3 Forward Pass of STAMP

Require: (X,E, b, {xG, yG}); (µx, σx), (µy, σy); L, s, λt
1: (zx, zy)←STANDARDIZEGLOBALS(xG, yG, µx, σx, µy, σy)
2: g ←CONTROLLER(zx, zy); ensure PE; h← Linear(X ∥ PE)
3: for ℓ = 1 to L do
4: h←LAYERSTEP(h, g, ℓ, E, b,Backbone,Norm, s, λt)
5: if ℓ < L then
6: h← ReLU(h); h← Dropout(h)
7: end if
8: end for
9: return POOLANDCLASSIFY(h, b, zx, zy)

17

	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Persistent Homology
	2.3 Density of States for Graphs
	2.4 Problem setting: low-shot fixed split

	3 Methodology
	3.1 Direct Embeddings
	3.2 STAMP — Spectral-Topological Augmented Message Passing*
	3.3 Stability of Topological and Spectral Embeddings.

	4 Experiments
	4.1 Results

	5 Conclusion
	A Proofs of Stability Theorems
	A.1 Stability of Topological Descriptors.

	B Additional Performance Evolution Figures
	C STAMP Training and Forward Pass

