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Abstract

Script knowledge (Schank and Abelson, 1977)
proved useful to a variety of NLP tasks. How-
ever, existing resources only covering a small
number of activities, limiting its practical use-
fulness. In this work, we propose a zero-shot
learning approach to script parsing, the task
of tagging texts with pre-defined, scenario-
specific event and participant types, which
makes it possible to acquire script knowledge
without domain-specific annotations. We (1)
learn representations of potential event and
participant mentions by promoting cluster con-
sistency according to the annotated data; (2)
perform clustering on the event / participant
candidates from unannotated texts that be-
longs to an unseen scenario. We further ex-
ploit dependency and coreference information.
The model achieves 68.1/74.4 average F1 for
event / participant parsing, respectively, out-
performing a previous CRF model that has ac-
cess to domain-specific supervision.

1 Introduction

Script knowledge is a type of commonsense
knowledge that captures how people conduct ev-
eryday activities (Schank and Abelson, 1977). It
expresses that in a certain scenario, participants
tend to act out events in a certain order; an ex-
ample from the scenario FIXING A FLAT TIRE is
shown in Fig. 1. Humans use script knowledge
to fill in events that are not explicitly mentioned
in a text, and script knowledge is useful for many
downstream NLP applications, including referent
prediction (Ahrendt and Demberg, 2016; Modi
et al., 2017), discourse sense classification (Lee
etal., 2020), and story generation (Zhai et al., 2019,
2020).

A key challenge in dealing with script knowl-
edge is coverage: it is costly and time-consuming
to spell out the prototypical events and participants
of a scenario and how they can be expressed in
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Figure 1: A story about FIXING A FLAT TIRE from InScript.
Script parsing identifies events and from texts.
The picture is taken from Zhai et al. (2021).

language. Crowd-sourced script resources (Reg-
neri et al., 2010; Modi et al., 2016) address this
issue by annotating stories with script events and
participants (cf. Fig. 1). Script parsers, which
predict these event and participant labels given a
text, can achieve high accuracies on scenarios that
were seen in training (Ostermann et al., 2017; Zhai
et al., 2021). But the script resources are still lim-
ited in coverage (for instance, the InScript corpus
of Modi et al. (2016) covers ten scenarios), which
limits the practical usefulness of script parsers and
thus the practical usefulness of script knowledge
for downstream tasks in general.

In this paper, we tackle the task of zero-shot
script parsing: we present the first system which
accurately performs script parsing on scenarios that
were not seen at training time. For instance, given
training data that talks about taking a bath and go-
ing to a restaurant, the parser labels events and par-
ticipants in the FIXING A FLAT TIRE story of Fig. 1.
This offers a way of overcoming the coverage limi-
tations of script knowledge, by generalizing from
the training scenarios to arbitrary other ones. Our
method learns to extract script-specific representa-
tions from general-purpose pretrained word embed-
dings, and then uses agglomerative clustering at
inference time to group together natural-language
phrases that refer to the same event or participant
of the unseen script.

Our model achieves a micro-F1 score on zero-



shot event labeling of up to 68.1 and a micro-F1
on participant labeling of up to 74.4, on par with
the supervised model of Ostermann et al. (2017)
that assumes training data for the same scenario.
We find that our method yields script graphs with
reasonable event clusters that are temporally or-
dered in a reasonable way; the majority of errors
on event labeling are due to issues with the gran-
ularity of events. We also find in probing tasks
that our model learns to amplify information about
sentence ordering from the pretrained embeddings,
while suppressing low-level information about mor-
phology and syntax, which are less relevant for the
script parsing task.

2 Related work

Scripts were introduced as an approach to captur-
ing commonsense knowledge in Al by Schank and
Abelson (1977); see also Barr and Feigenbaum
(1981). Much research in NLP has simplified the
learning of script knowledge to identifying “event
chains” in narrative text (Chambers and Jurafsky,
2008, 2009). Event chains represent typical se-
quences of events, each represented by one verb,
and can be learned from large corpora. Other work
has followed in this tradition (Jans et al., 2012;
Modi and Titov, 2014; Pichotta and Mooney, 2014;
Rudinger et al., 2015).

In this paper, we instead build upon work by
Regneri et al. (2010, 2011), who explicitly cap-
ture script knowledge about a given scenario in a
temporal script graph (see Fig. 4). A TSG speci-
fies the abstract events and participants that make
up a script with their temporal ordering; each of
these events and participants can be expressed in
language in many different ways. Regneri et al.
learned script graphs by crowdsourcing. We in-
stead rely on manually script-annotated corpora
(Modi et al., 2016; Wanzare et al., 2016).

With scenario-specific supervision, script pars-
ing can be performed accurately. Ostermann et al.
(2017) developed a linear CRF model to perform
script parsing as a sequence labelling task. Zhai
et al. (2021) developed a hierarchical model for su-
pervised script parsing, making use of pre-trained
contextualized word embeddings. The model
learns patterns at the level and the narrative level
with respective sequence models. These existing
approaches are limited to scenarios for which train-
ing data is available, whereas our work focuses on
unseen scenarios.

Zero-shot learning is a family of methods that
establishes a classifier for unseen classes, based
on labelled data from seen classes. One common
approach is to learn a latent representation space
that all instances embed into, thus the knowledge of
the source domain, encoded in the labelled training
instances, could be transferred to the target domain.
It tackles data scarcity in various situations, such
as machine translation for low-resource languages
(e.g. Pham et al., 2019; Zhang et al., 2020; Johnson
et al., 2017), generation (Duan et al., 2019; Philip
et al., 2020), text classification (see, e.g. Yin et al.,
2019) and question answering(e.g. Banerjee and
Baral, 2020).

3 Data and task

We work with InScript (Modi et al., 2016), a
crowdsourced corpus of around 100 stories about
each of 10 scenarios (see Fig. 1 for an example).
The authors were asked to write a story about a
given scenario (such as GOING GROCERY SHOP-
PING) “as if to a child”, step by step. InScript
was then hand-annotated with event and participant
classes; it also contains coreference and depen-
dency annotations.

In this paper, we consider the task of predict-
ing event and participant annotations for a scenario
that was not seen in training. Thus, our model must
learn to group verbs and noun phrases from an un-
seen scenario into abstract events and participants,
without knowing what the gold events and partici-
pants are. We split InScript into eight training, one
validation, and one test scenario. During inference,
the model takes the unannotated stories of the test
scenario as input and must label them with events
and participants that are consistent with the gold
annotations.

Following Ostermann et al. (2017), we distin-
guish between (1) events that are ‘related to the
scenario’, or commonly seen in a typical instantia-
tion of the scenario, which we call regular events,
and (2) the ones that take place in the course of a
specific story, but are not directly related to the sce-
nario, which we call irregular events. For exam-
ple, in Figure 1, ‘I found my bike pump’ describes
the regular event ‘get tools’, whereas the weather
was nice is irregular. We collapse all the subclasses
of irregular events, UNREL, RELNSCR, OTHER
and UNKNOWN, into a single irregular event class
for each scenario. 12,902 (33.5%) event instances
in InScript are regular. We also distinguish regu-



lar participants from irregular participants in a
similar manner: participants like ‘rain’ in Fig. 1 are
considered irregular to the FIXING A FLAT TIRE
scenario, as they are not directly relevant to the
scenario per se. Irregular participant instances take
a smaller proportion of 19.6%.

4 Method

The basic idea of our zero-shot script parser is as
follows. We will learn a transformation ¢ which
maps pretrained general-purpose word embeddings
into a representation space that is suitable for script
parsing. Identifying verb tokens as candidates for
event descriptions and noun and pronoun tokens
as candidates for participant descriptions, we will
train ¢ such that candidates that describe the same
event or participant are close together in the repre-
sentation space, whereas candidates for different
events and participants are distant. To parse a text
from an unseen scenario, we will apply ¢ to the
word embeddings of all candidates and perform
clustering to group them into events and partici-
pants.

4.1 Regular candidate identification

Throughout the paper, we will focus on regular
candidates, because irregular candidates are a di-
verse group without a tight semantic connection to
the scenario, and may not cluster easily in the rep-
resentation space. We ignore irregular candidates
in training. During inference, we evaluate against
the original gold standard.

We train a classifier to distinguish regular and
irregular candidates so the latter could be ex-
cluded from training. We use the same archi-
tecture as in the supervised script parser of Zhai
et al. (2021), but trained only to distinguish regular
candidates from irregular candidates. We obtain
training data for this task by grouping the origi-
nal labels into one of REGULAR_EVENT, IRREG-
ULAR_EVENT, REGULAR_PARTICIPANT and IR-
REGULAR_PARTICIPANT. The model is trained on
the 8 training scenarios and validated on the valida-
tion scenario. Finally, we perform inference on the
test scenario. The classifier achieves on average 85
points Fl-score.

4.2 Training

We will now describe how to learn . For any
given text that we want to parse, we will run XL-
Net (Yang et al., 2019) to obtain contextualized

word embeddings f(c) for each event and partici-
pant candidate c. We will then train ¢ to minimize
distances within the same event and participant
class and maximize them between different ones
(§4.2.1); the general framework is illustrated in
Fig. 2. We will then describe several extensions to
the loss function (§4.2.2—§4.2.3) and then discuss
replacing XLNet embeddings with more special-
ized word embeddings (§84.2.4).1.

4.2.1 Learning script-specific representations

Let C be the set of all event candidates or the set
of all participant candidates in a text, and let 7(C)
be a partition of C which clusters candidates into
equivalence classes; at training time, each class
contains the candidates that are labeled with the
same event or participants. We define 7(c) as the
element of the partition to which the candidate ¢
belongs. Given a pre-trained embedding function
f and the transformation ¢y that we want to learn,
we consider the average distance between instances
belonging to different clusters:

deact(ﬂ-(c); 0) = me,anc d(ea(f(c), @9(]0(01))
c,cel:
w(c) # m(c)
We would like to push the embeddings of two can-
didates from different classes away if they are too
close to each other. We do so by maximizing the
external consistency of the partition 7:

Yeat ((C); 0) = d(e(f(c), pa(f())

e, d im(e) # (),

d(po(f(c), po(f(<))

< 01deat(m(C); 0)
o1 € (0,1) is a threshold that quantifies being ‘too
close’. This definition captures the intuition that
 should map candidates from different classes to
dissimilar vectors. Likewise, consider the average
distances between embeddings of candidates from

same classes:

dint(m(C); ) = d(pe(f(c), po(f(c))

mean
¢,c:m(e)=m(c)
We would like to pull the embeddings of two candi-
dates from the same class towards each other if they
are too far away. In a similar spirit, we maximize
the internal consistency of 7:

mean
c,c :m(c) = (),
d(po(£(c), po(£(c))
6)

> oadine (m;

Yint(7(C); 0) =1 — d(pe(f(c), o (f(c"))
M

'See the appendix for more implementation details; we
will release our code upon acceptance.
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Figure 2: The overall framework. We learn a representation from annotated corpus and apply it to unannotated texts. The

coreference and dependency terms are not visualized.

(a) There is a bus stop down the street from my house . If
you take it going south , it leads to the city...

(b) ...0passenger fed my coinsmoney into the slot where you
put your money...
...]passenger boarded the bus and paid for my ride with
my changemoney-..

(c) ...the bus arrivedy,s_stops at the bus stop closest to the
beach...
...I would need the bus to st0pyus_stops Next to the hos-
pital...

Figure 3: Illustrations of the refined consistency mea-
sures.

We write d(-, -) for the distance function in the
representation space, with values in [0, 1]. Em-
pirically, the following variant of cosine distance
worked well:

1 1
\/2 - 5005(4(1},10))

Here Z(v,w) € [0, 7] denotes the angle between
v, W.

We obtain an overall consistency measure -,
which we maximize in training; J); is a hyper-
parameter that balances the terms.

Y((C);0) = Yeut(m(C); 0) + Aivint(7(C); )

4.2.2 Coreference

We can now further refine this baseline consistency
model with script-specific knowledge. First, within
a text, noun phrases that refer to the same entity
form a coreference chain: for example, all men-
tions of the bus in the scenario TAKING A BUS
(Fig. 3a). As they refer to the same entity, these
noun phrases should belong to the same participant
cluster and thus have similar representations.

We capture this intuition as follows. Let 7(C€)
be the set of all coreference chains on participant

candidates. Like 7 above, 1(C€) also specifies an
equivalence relation, in that two candidates are in
the same class iff they are in the same coreference
chain. We can thus formulate a coreference-based
consistency measure as

B(6) := Yint(n(C°); 0)

Note that this is a soft constraint; coreferent en-
tities are rewarded for being in the same class, not
forced into them. This increases robustness against
noise in the coreference annotations.

4.2.3 Event-participant dependencies

Second, events and participants in a script are
tightly linked: if two verbs have arguments from
the same participant class, they tend to describe the
same event (Fig. 3b); and if two noun phrases are
arguments of the same event, they tend to describe
the same participant (Fig. 3c).

Let ¢, be the set of event candidates that have
participant p as an argument; we would like to
encourage ¢ to map the elements of ¢, to simi-
lar representations. Let £(CY) be the set of all c,,.
Analogously, let £ (Cg ) be the set of participant can-
didate sets that depend on the same events. We can
formulate a dependency-based consistency mea-
sure as

a(f) = Yint (§(C%); 0) + 7in: (§(CP); 0)

The final training objective, with hyperparame-
ters A\c, Aq and cluster assignment 7*(C¢) of event
candidates and 7*(CP) of participant candidates in
InScript, is

0" = arg(rfaxh(ﬂ*(ce); 0) + X\py(7*(CP); 0)

+ AB(0) + Aaar(0)]  (2)



4.2.4 Specialized word embeddings

We further investigated whether our zero-shot ap-
proach can benefit by using more specialized word
embeddings as input instead of the general-purpose
XLNet embeddings. We thus replaced f with the
representations from the pre-final layer of the su-
pervised script parser of Zhai et al. (2021). These
representations are also based on XLNet, but then
trained to predict InScript events and participants
on known scenarios.

We deviate from Zhai et al.’s training setup in
two ways. (1) Data. In order not to neutralize the
zero-shot setting, we train the model from Zhai et
al. on the 9 scenario we reserved for training and
validation, whereas keep the test scenario unseen.
(2) The parser is trained on regular event/partic-
ipants only, to be consistent with the clustering
settings. Its performance is at 95 points F1-score
on its validation set.

4.3 Inference

4.3.1 Clustering

At inference time, we first determine the event and
participant candidates by taking the nouns, pro-
nouns and verbs, and classify them for regular-
ity. We then acquire a representation g (f(c)) for
each candidate ¢ and group them into classes by
clustering (cf. Fig. 2).

We use agglomerative clustering, a bottom-up
hierarchical clustering algorithm that iteratively
merges the most similar pair of clusters. It ter-
minates when either the number of clusters de-
creases to a pre-defined quantity or the minimum
dis-similarity between the current clusters goes be-
yond a predefined threshold. As the number of
event and participant classes vary across scenarios,
we do not fix the number of cluster, but instead
define a dissimilarity threshold estimated from the
training scenarios. If the number of clusters result-
ing from this process was too extreme (>30 or <
10), we reran the process to yield 20 clusters.

4.3.2 Protagonists

As one final optimization, we give special treat-
ment to the protagonist of each scenario — for ex-
ample, the passenger in TAKING A TRAIN or the
customer in GROCERY SHOPPING. The protagonist
is the most frequent participant in all scenarios and
always makes the largest class of participant candi-
dates. We thus identify it by following the longest
coreference chain. This simple heuristic yields an

F-score of 98 at inference time for the protagonist
class. We thus ignore protagonists in training.

5 [Evaluation

We evaluate our method with 10-fold cross-
validation on InScript by alternating the selection
of validation and test scenarios. Note that the texts
in the validation and test data are always from sce-
narios that were unseen in training.

5.1 Metric

Given a cluster assignment, what we are interested
in is how well the predicted clusters align with gold
classes. We seek to establish a ‘best’ assignment of
the clusters to the gold classes, with which we can
evaluate the ‘accuracy’ of the clustering results as if
it were a classification task. One approach is to find
the assignment that maximizes this accuracy. This
is a linear assignment problem, which is solved in
cubic time by the Hungarian algorithm (see, e.g.
Kuhn, 1955), thus tractable given the scale of our
problem. We call the F1 score evaluated according
to this optimal assignment Hungarian F1, and use
it as our main evaluation metric. This metric allows
us to compare the results of the clustering-based
parsers to that of the classification-based parsers.

5.2 Baselines

We compare the results of our zero-shot parser to a
number of baselines. First, we compare against the
supervised script parsers of Zhai et al. (2021) and
Ostermann et al. (2017) (retrained on the train-test
split of Zhai et al.). These parsers are evaluated
on a subset of InScript that contains texts from
the same scenarios as in the training set, thus the
numbers are not directly comparable to ours.

Second, we compare against a baseline where we
cluster event and participant candidates at inference
time based on the bare XLNet embeddings, rather
than the ones that were transformed by our learned
g~ Finally, in addition to our full model, as speci-
fied by 2 with the specialized embeddings of §4.2.4,
we also present results for ablated versions without
the extensions regarding event-participant depen-
dencies (dep), coreference (coref), and specialized
embeddings (specialized).

For each of the clustering-based methods, we re-
port two results: one where we assume gold infor-
mation about whether an event or participant candi-
date is regular, and one where this is predicted by
the classifier from §4.1. All variants use the same



model gold regularity events participants
macro F1 micro F1 macro F1 micro F1
Ostermann et al. (2017) v 58.1 66.0 n/a n/a
Zhai et al. (2021) X 75.1 85.7 80.3 90.3
‘Bare XLNet ) X 402 532 3937 60.5
w/o dep, coref, specialized X 46.0428 584407 4754126 757118
w/o dep, coref X 48.6452 627137 445133 71.8421
w/o dep X 51 .0;&3_7 66.83:4 3 52.0:&3 7 74.8:&2 9
Full model X 534415 681103 517416 744414
‘Bare XLNet /T 431 51,6 439 61.0
w/o dep, coref, specialized v 461419 5544929 511427 753113
w/o dep, coref Ve 55.33:2 8 65.8:{:2 8 52.5:&3 1 73.63:2 1
w/o dep v 56.7+33 674137 53.64129 74210,
Full model \/ 57.6:{:1 3 68.1:{:1 3 52.8:&1 4 73.73:1 4

Table 1: Results averaged from ten-fold cross validation over five training runs. These quantities are the Hungarian
versions of F1 defined in §5.1. Some models train and inference according to the regularity annotations in InScript,
instead of the predictions of our regular candidate identifier. Ostermann et al. and Zhai et al. use a data split where
the models see the test scenario during training; the other variants use the zero-shot data split described in §3.

number of trials for hyperparameter tuning. After-
wards, we do 5 parallel training sessions to test the
models’ robustness against random initializations.

6 Results

The results are shown in Table 1. All variants of our
model outperform clustering based on raw XLNet
embeddings by a considerable margin. Our model
also performs on par with Ostermann’s, although
we do not have access to scenario-specific super-
vision whereas Ostermann’s does, and our model
additionally performs participant parsing. In gen-
eral, we obtain a higher micro-F1 for participants
than for events. This is due to the more skewed dis-
tribution of the sizes of the participant class sizes
than those of the event classes.

The model extensions boost parsing accuracy
significantly. Access to coreference information
improves participant parsing performance. De-
pendency information grants a performance boost
in event parsing. A closer inspection shows that
with dependency information, the parser is better at
grouping together event candidates with different
verbs but share arguments. For example, event sink
into water in TAKING A BATH could be evoked
by slide into water, sink into water, slip into the
tub, lower into the tub, etc. The verbs in these
event candidates all share arguments / and water
or tub, which our parser correctly clusters together.
Without dependency information, the parser mostly
group together candidates whose predicate is ‘sink’,
the most frequent verbalization of the event.

The accuracy of our script parser differs from

fold to fold. For example, we get 70.1 micro-
F1 for participant parsing on TAKING A BATH,
but only 43.8 on BORROWING A BOOK FROM LI-
BRARY. These differences result from two factors.
(1) Generalization from the training scenario to
the test scenario. Script parsing sometimes benefit
from scenario-specific knowledge (more on this in
§7.3.1), thus generalization is easier when the test
scenario is more similar to the training scenarios.
For example, TAKING A TRAIN would be more
informative to TAKING A FLIGHT than to FIXING
A FLAT TIRE. (2) Differences in the qualities of the
original annotation among different scenarios.

7 Further analysis

7.1 Temporal script graphs

The events in each scenario are partially ordered
with respect to their temporal order: one can only
grab a shopping cart after arriving at grocery store,
whereas go fo the meat section and go to the cheese
section can be done in arbitrary order. As men-
tioned above, Regneri et al. (2010) use temporal
script graphs to represent the typical temporal or-
dering of the events in a scenario.

Given the clustering results, we can consider
the stories in the test scenario as “annotated” and
induce temporal script graphs for unseen scenarios.
We establish temporal order as follows: event e;
precedes event es iff in stories where they both
occur, the proportion where e; takes place before e
is beyond a threshold (. We expand the precedence
relation to its transitive closure afterwards. Finally,
if neither e; precedes ez nor ey precedes ey, we



( | start by closing the drain at the bottom of the tub.

.First , | plugged the bath drain...

N
Close the drain
.. plug the tub with a water stop per...

( .| started running the water in the tub...

... turned on the faucet s and felt the water...

Turn water on
L .| drew the water as hot s | could...

p

..filled the tub with hot water while I took off my clothes...
.| removed all of my clothes to prepare for my bath...

... dropped a little bit of the bubble bath in the water...

I happily took off my clothes.
... poured my nice smelling bath salt s into the tub...

| pour a glass of wine while the water runs... J

undress Add scent
Islidinto the water and enjoyed the relaxing warmth.

... slowly lower myself into the tub... W
I slowly placed myself into the bathtub and it a few candles. Sink into water

Figure 4: A part of the temporal script graph for TAKING A
BATH inferred from our parsing result. Each node illustrates
3 random candidates from the cluster. The event classes that
the Hungarian algorithm assigned to each of these clusters are
shown on the side. Further edges that could be inferred by
transitivity are omitted. We see one could either undress first
or add scent (to the bath tub) first before sink into water.

decide they could follow arbitrary order.

Our clustering results yields 75 points F1 score
on the identification of temporally ordered pairs,
when evaluated against the results learned from
annotations in InScript. See Fig. 4 for an exam-
ple. Observe that the model has learned that each
event can be expressed in many different ways that
are semantically similar only in the context of the
scenario.

7.2 Probing

We conjectured above that the transformation ¢
was needed to distill the relevant information for
script parsing out of the pretrained XLNet embed-
dings. We investigate whether this is true by freez-
ing the embeddings ¢(f(c)) (zero-shot) and the
pretrained embeddings f(c) (XLNet) and training
models for a variety of NLP tasks that take these
embeddings as input.

We probe with the following tasks. (1) Part of
speech tagging and (2) named entity recognition;
these mostly depend on the token itself and its lo-
cal context. (3) Noun phrase chunking, which is
determined by sentence-level syntax. (4) Sentence
ordering, where we randomly shuffle the order of
the sentences in a story and train a binary classi-
fier to detect whether the story is shuffled. The
task would need information across the entire story
to conduct. POS tagging, NER and chunking are
formulated as sequence labelling tasks; sentence or-
dering is a binary classification task. For all these
tasks, a respective linear classifier maps the em-
beddings to the predictions. The experiments are
conducted on InScript, with the same data split as is
used to train our representation. InScript includes
POS annotations; for NER and chunking, the labels
are generated with Spacy (Honnibal and Montani,

0.9782

0.9406 0.924 0.9148

0.816
7502 7724 0.749.1

I

ACCURACY

POS NER Chunking Order
mXLNet m Zero-shot

Figure 5: Performance on probing tasks. Our representation
clearly favours the sentence ordering task. The error bars show
one standard deviation. All differences between these pairs
are significant at « = 0.05 according to independent T-test.

2017, model en_core_web_trf). In each of these
probing tasks, both representations use the same
amount of GPU budget. See Fig. 5 for the results.
The transformed representations ¢( f(c)) incur
performance drops on most tasks, compared to the
general-purpose embeddings f(c). However, the
performance on sentence ordering sees a significant
improvement. This supports our hypothesis that
 amplifies higher level features, which are more
important to script parsing than to generic language
modelling. In comparison, lower-level information
about morphology and syntax is deemphasized.

7.3 Error analysis

As a side product of evaluating Hungarian F1s, we
get the optimal assignment of output clusters to
gold candidate classes, which equivalently labels
each candidate with a event/participant class. For
example, in figure 4, the candidates in the boxes
are assigned to the gold class labeled aside. Errors
are cases where this assignment is different that
its original annotation. We manually inspected
30% of the test errors made by our full model with
predicted regularity case by case and categorized
them (see Table 2 for a breakdown).

7.3.1 Events

Granularity Many events could be divided into
multiple sub-events, forming a hierarchy of events.
This fact manifested itself into various types of
errors. To begin with, the set of event labels in
InScript often consists of events of different gran-
ularities. For example, in the TAKING A BATH
scenario, we have prepare for bath, undress and
grab a towel. For many event candidates, this situ-
ation renders multiple cluster assignments feasible
(e.g. I took a clean towel with me ... in ei-
ther prepare for bath or grab a towel), which not
only confuses our parser, but also, judging from
the corpus per se, confused many annotators of In-



Type Granularity ~ Shared Verb/Arguments  #Clusters  Scenario-specific ~ Large Clusters  The Rest
Event 66.7% 7.8% 9.8% 15.6% n/a 0
Participant 16.3% n/a 11.0% 16.5% 61.5% 9.5%

Table 2: A breakdown of the parsing error types made by full. For a small proportion of errors we were not able to

spot an obvious cause.

Script. As a result, the parser sometimes confuses
one event cluster with another that includes it, or
group together different events that actually fit to-
gether (turn on water and fill tub with water). In
recognition of a same cause, we classify all these
errors into Granularity.

Shared predicate or argument Some wrongly
clustered events share the verb or some arguments
with another class, especially when light verbs are
involved, which makes the distinction harder. For
example, in TAKING A TRAIN, a few get ticket
events (e.g. “I took the ticket from him”) are pre-
dicted as conductor checks ticket (e.g. “‘l gave the
ticket to him”).?

Number of clusters As the test scenario is un-
seen, our parser does not know how many clusters
there should be, but rather terminates the clustering
process with a similarity threshold. Therefore, we
often end up having a different number of clusters
than the corpus, which results in larger classes be-
ing split into more than one or multiple smaller
classes being merged into one. For example, in
the TAKING A TRAIN scenario, the model yields
14 event clusters whereas there are 15 in the cor-
pus. In such cases, the parser has to compromise,
causing damage to its performance. As a result, no
predicted cluster was assigned to the door opens
event, which refers to the door of the train opening
before passengers board it. Instead, 5 out of its 6
instances end up in the same cluster that mostly
comprises instances of the get on the train event, a
fair compromise.

Scenario-specific knowledge Some candidates
are only equivalent when conditioned on the sce-
nario. For example, the spend time in the train
event collects activities like purchasing a coffee,
taking a nap, looking out of the window, settling
with a book, etc. These instances are hard; our
parser can address these instances as it has access

The dependency term moderately magnifies this issue, as
with it the parser tend to cluster candidates that share similar
dependents together. But this is outweighed by the perfor-
mance gain it grants.

to the entire event chain of the story (so it knows
all these events happen between take a seat and
get off the train). But the signal is weaker, which
incurs weaker performance.

7.3.2 Participants

Participant parsing also sees errors resulting from
granularity, number of clusters and scenario-
specific knowledge, all of which mirrors the sit-
uation of event parsing. Yet errors in participant
parsing present a different landscape: most errors
come from the existence of large participant classes
that end up forming more that one clusters.

For example, there are two output clusters that
collects instances of train station: one contains ref-
erences to the departing station whereas the other
contains references to the destination train station.
Instances of participant train also yield two clus-
ters: one collects references to trains in general
whereas the other collects references to the train
after the passenger boards it. These errors have to
do with agglomerative clustering not being good at
clusters whose sizes adopt a skewed distribution.

8 Conclusion

We have presented the first approach to script pars-
ing without scenario-specific knowledge. We do
this by clustering specialized word representations
which are trained by optimizing cluster consistency;
the model is further improved by the use of coref-
erence and event-participant dependency informa-
tion. The model greatly outperforms a baseline
with general-purpose word embeddings, and per-
forms on par with an earlier supervised model.

Our model makes it possible, for the first time,
to label large quantities of unannotated data with
script information. On InScript, it predicts event
structures which are quite accurate with respect to
temporal ordering. However, InScript is a quite
specific type of text, in which all the sentences are
simple and pertinent to the scenario, and they are
already in the correct temporal order. In the future,
we will therefore extend our approach to parsing
naturally occurring text.
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A Implementation and Optimization

The model was implemented with AllenNLP 1.2
Gardner et al. (2017). The pre-trained XLNet
model we used was xInet-base-cased (https://
github.com/zihangdai/xlnet/). The training
is also regularized with weight decay. The opti-
mization is performed with adam (Kingma and Ba,
2015) in conjunction with early-stopping which
monitors validation loss, and the hyper-parameter
tuning is performed with random hyper-parameter
search (Bergstra and Bengio, 2012). Optimiza-
tion takes on average 5 hours on a singe Tesla
v100. We performed 20 trial for choosing the hyper-
parameters.

The implementations of agglomerative cluster-
ing and Hungarian algorithm are from the scipy
library. Table 3 shows the hyper-parameters for the
best performing single run on each fold (full model,
predicted regularity).

B Examples

Table 4 illustrates a couple of sample clusters. The
candidates vary in their surface forms.


https://github.com/zihangdai/xlnet/
https://github.com/zihangdai/xlnet/
https://github.com/zihangdai/xlnet/

fold Ir weight decay Aei Api Ap o1 o2 Ac Ad
0 1.10E-05 0.000155 1.03 0.0147 0.343 0.887 0.263  0.00372  0.00795
1 2.06E-05 0.00677 0.457 0.882 0.125 0.392 0391 0.0101 0.0485
2 0.000126 0.000896 0.0105  0.0148 0.0144 0903 0.728 0.00533 0.0118
3 2.91E-05 0.000166 0.0237  0.0649 0256 0373 0.544 0.0619  0.00867
4 7.08E-05 0.00051 0.15 0.0711 0.745 0.681 0.562 0.0121 0.0216
5 0.000353 0.00121 1.51 0.0371  0.00211 0.171 0.692  0.0872 0.016
6 0.000423 1.07E-05 0.204 0.018 0.177 0.113  0.632 0242 0.00517
7 7.88E-05 0.00303 0.734  0.0136 0.517 0.189 0.948  0.0047 0.111
8 2.72E-05 7.32E-05 0.568 0.00151 0.0589 0.676 0.566 0.00424  0.0475
9 2.09E-05 5.19E-05 0.0327 0.555 0.243 0.788  0.95 0.0866 0.0119
Table 3: Hyper-parameters

ground truth text

turn water on bath ... I might drain the tub and put in more water ...

sink into water ... I turn off the faucet and sink into bliss ...

sink into water ... Then I slid into the water and enjoyed the relaxing warmth for twenty or more minutes...

sink into water ... I gingerly lowered myself into the nice warm water and immediately began to relax...

sink into water ... l eased my way into the tub and let myself sink into the water ...

sink into water ... I slowly sunk the rest of my body , and closed my eyes...

sink into water ... the tub was full and ready . I slipped into the tub and soaked in the bliss...

washing tools ...then I lather up with either soap or shower gel ...

water ...After I scrub really good and finish singing , I pour water continuously on my body...

washing tools ...] pour water continuously on my body until all the soap was he s off...

washing tools ...I cleaned my hair with some shampoo and washed my body with a wash cloth and rinsed...

washing tools ...shampooed my hair and applied some conditioner then washed my body...

washing tools ...applied some condition er then washed my body using some liquid body wash...

washing tools ...After I have washed everything , I rinse the soap from my body with the water in the tub...

washing tools ...on the corner of the bathtub . I lather ed it up and washed my arms , my legs...

washing tools ...take a wash cloth and soap or body wash to give yourself a good scrub down...

washing tools ...You can put the shampoo in your hair...

washing tools ...place your head under the faucet to rinse out the soap . Enjoy your bath !

washing tools ...washed myself with a wash cloth and soap . Then I leaned my head against...

washing tools ...stepped into the bath tub . [ used soap and a wash cloth to clean myself...

Table 4: Example output clusters. Top: event; bottom: participant. The table presents a random selection of
instances from these clusters as the original output could contain hundreds of instances.
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