
Zero-Shot Script Parsing

Anonymous ACL submission

Abstract

Script knowledge (Schank and Abelson, 1977)001
proved useful to a variety of NLP tasks. How-002
ever, existing resources only covering a small003
number of activities, limiting its practical use-004
fulness. In this work, we propose a zero-shot005
learning approach to script parsing, the task006
of tagging texts with pre-defined, scenario-007
specific event and participant types, which008
makes it possible to acquire script knowledge009
without domain-specific annotations. We (1)010
learn representations of potential event and011
participant mentions by promoting cluster con-012
sistency according to the annotated data; (2)013
perform clustering on the event / participant014
candidates from unannotated texts that be-015
longs to an unseen scenario. We further ex-016
ploit dependency and coreference information.017
The model achieves 68.1/74.4 average F1 for018
event / participant parsing, respectively, out-019
performing a previous CRF model that has ac-020
cess to domain-specific supervision.021

1 Introduction022

Script knowledge is a type of commonsense023

knowledge that captures how people conduct ev-024

eryday activities (Schank and Abelson, 1977). It025

expresses that in a certain scenario, participants026

tend to act out events in a certain order; an ex-027

ample from the scenario FIXING A FLAT TIRE is028

shown in Fig. 1. Humans use script knowledge029

to fill in events that are not explicitly mentioned030

in a text, and script knowledge is useful for many031

downstream NLP applications, including referent032

prediction (Ahrendt and Demberg, 2016; Modi033

et al., 2017), discourse sense classification (Lee034

et al., 2020), and story generation (Zhai et al., 2019,035

2020).036

A key challenge in dealing with script knowl-037

edge is coverage: it is costly and time-consuming038

to spell out the prototypical events and participants039

of a scenario and how they can be expressed in040

Figure 1: A story about FIXING A FLAT TIRE from InScript.
Script parsing identifies events and participants from texts.
The picture is taken from Zhai et al. (2021).

language. Crowd-sourced script resources (Reg- 041

neri et al., 2010; Modi et al., 2016) address this 042

issue by annotating stories with script events and 043

participants (cf. Fig. 1). Script parsers, which 044

predict these event and participant labels given a 045

text, can achieve high accuracies on scenarios that 046

were seen in training (Ostermann et al., 2017; Zhai 047

et al., 2021). But the script resources are still lim- 048

ited in coverage (for instance, the InScript corpus 049

of Modi et al. (2016) covers ten scenarios), which 050

limits the practical usefulness of script parsers and 051

thus the practical usefulness of script knowledge 052

for downstream tasks in general. 053

In this paper, we tackle the task of zero-shot 054

script parsing: we present the first system which 055

accurately performs script parsing on scenarios that 056

were not seen at training time. For instance, given 057

training data that talks about taking a bath and go- 058

ing to a restaurant, the parser labels events and par- 059

ticipants in the FIXING A FLAT TIRE story of Fig. 1. 060

This offers a way of overcoming the coverage limi- 061

tations of script knowledge, by generalizing from 062

the training scenarios to arbitrary other ones. Our 063

method learns to extract script-specific representa- 064

tions from general-purpose pretrained word embed- 065

dings, and then uses agglomerative clustering at 066

inference time to group together natural-language 067

phrases that refer to the same event or participant 068

of the unseen script. 069

Our model achieves a micro-F1 score on zero- 070

1



shot event labeling of up to 68.1 and a micro-F1071

on participant labeling of up to 74.4, on par with072

the supervised model of Ostermann et al. (2017)073

that assumes training data for the same scenario.074

We find that our method yields script graphs with075

reasonable event clusters that are temporally or-076

dered in a reasonable way; the majority of errors077

on event labeling are due to issues with the gran-078

ularity of events. We also find in probing tasks079

that our model learns to amplify information about080

sentence ordering from the pretrained embeddings,081

while suppressing low-level information about mor-082

phology and syntax, which are less relevant for the083

script parsing task.084

2 Related work085

Scripts were introduced as an approach to captur-086

ing commonsense knowledge in AI by Schank and087

Abelson (1977); see also Barr and Feigenbaum088

(1981). Much research in NLP has simplified the089

learning of script knowledge to identifying “event090

chains” in narrative text (Chambers and Jurafsky,091

2008, 2009). Event chains represent typical se-092

quences of events, each represented by one verb,093

and can be learned from large corpora. Other work094

has followed in this tradition (Jans et al., 2012;095

Modi and Titov, 2014; Pichotta and Mooney, 2014;096

Rudinger et al., 2015).097

In this paper, we instead build upon work by098

Regneri et al. (2010, 2011), who explicitly cap-099

ture script knowledge about a given scenario in a100

temporal script graph (see Fig. 4). A TSG speci-101

fies the abstract events and participants that make102

up a script with their temporal ordering; each of103

these events and participants can be expressed in104

language in many different ways. Regneri et al.105

learned script graphs by crowdsourcing. We in-106

stead rely on manually script-annotated corpora107

(Modi et al., 2016; Wanzare et al., 2016).108

With scenario-specific supervision, script pars-109

ing can be performed accurately. Ostermann et al.110

(2017) developed a linear CRF model to perform111

script parsing as a sequence labelling task. Zhai112

et al. (2021) developed a hierarchical model for su-113

pervised script parsing, making use of pre-trained114

contextualized word embeddings. The model115

learns patterns at the level and the narrative level116

with respective sequence models. These existing117

approaches are limited to scenarios for which train-118

ing data is available, whereas our work focuses on119

unseen scenarios.120

Zero-shot learning is a family of methods that 121

establishes a classifier for unseen classes, based 122

on labelled data from seen classes. One common 123

approach is to learn a latent representation space 124

that all instances embed into, thus the knowledge of 125

the source domain, encoded in the labelled training 126

instances, could be transferred to the target domain. 127

It tackles data scarcity in various situations, such 128

as machine translation for low-resource languages 129

(e.g. Pham et al., 2019; Zhang et al., 2020; Johnson 130

et al., 2017), generation (Duan et al., 2019; Philip 131

et al., 2020), text classification (see, e.g. Yin et al., 132

2019) and question answering(e.g. Banerjee and 133

Baral, 2020). 134

3 Data and task 135

We work with InScript (Modi et al., 2016), a 136

crowdsourced corpus of around 100 stories about 137

each of 10 scenarios (see Fig. 1 for an example). 138

The authors were asked to write a story about a 139

given scenario (such as GOING GROCERY SHOP- 140

PING) “as if to a child”, step by step. InScript 141

was then hand-annotated with event and participant 142

classes; it also contains coreference and depen- 143

dency annotations. 144

In this paper, we consider the task of predict- 145

ing event and participant annotations for a scenario 146

that was not seen in training. Thus, our model must 147

learn to group verbs and noun phrases from an un- 148

seen scenario into abstract events and participants, 149

without knowing what the gold events and partici- 150

pants are. We split InScript into eight training, one 151

validation, and one test scenario. During inference, 152

the model takes the unannotated stories of the test 153

scenario as input and must label them with events 154

and participants that are consistent with the gold 155

annotations. 156

Following Ostermann et al. (2017), we distin- 157

guish between (1) events that are ‘related to the 158

scenario’, or commonly seen in a typical instantia- 159

tion of the scenario, which we call regular events, 160

and (2) the ones that take place in the course of a 161

specific story, but are not directly related to the sce- 162

nario, which we call irregular events. For exam- 163

ple, in Figure 1, ‘I found my bike pump’ describes 164

the regular event ‘get tools’, whereas the weather 165

was nice is irregular. We collapse all the subclasses 166

of irregular events, UNREL, RELNSCR, OTHER 167

and UNKNOWN, into a single irregular event class 168

for each scenario. 12,902 (33.5%) event instances 169

in InScript are regular. We also distinguish regu- 170

2



lar participants from irregular participants in a171

similar manner: participants like ‘rain’ in Fig. 1 are172

considered irregular to the FIXING A FLAT TIRE173

scenario, as they are not directly relevant to the174

scenario per se. Irregular participant instances take175

a smaller proportion of 19.6%.176

4 Method177

The basic idea of our zero-shot script parser is as178

follows. We will learn a transformation ϕ which179

maps pretrained general-purpose word embeddings180

into a representation space that is suitable for script181

parsing. Identifying verb tokens as candidates for182

event descriptions and noun and pronoun tokens183

as candidates for participant descriptions, we will184

train ϕ such that candidates that describe the same185

event or participant are close together in the repre-186

sentation space, whereas candidates for different187

events and participants are distant. To parse a text188

from an unseen scenario, we will apply ϕ to the189

word embeddings of all candidates and perform190

clustering to group them into events and partici-191

pants.192

4.1 Regular candidate identification193

Throughout the paper, we will focus on regular194

candidates, because irregular candidates are a di-195

verse group without a tight semantic connection to196

the scenario, and may not cluster easily in the rep-197

resentation space. We ignore irregular candidates198

in training. During inference, we evaluate against199

the original gold standard.200

We train a classifier to distinguish regular and201

irregular candidates so the latter could be ex-202

cluded from training. We use the same archi-203

tecture as in the supervised script parser of Zhai204

et al. (2021), but trained only to distinguish regular205

candidates from irregular candidates. We obtain206

training data for this task by grouping the origi-207

nal labels into one of REGULAR_EVENT, IRREG-208

ULAR_EVENT, REGULAR_PARTICIPANT and IR-209

REGULAR_PARTICIPANT. The model is trained on210

the 8 training scenarios and validated on the valida-211

tion scenario. Finally, we perform inference on the212

test scenario. The classifier achieves on average 85213

points F1-score.214

4.2 Training215

We will now describe how to learn ϕ. For any216

given text that we want to parse, we will run XL-217

Net (Yang et al., 2019) to obtain contextualized218

word embeddings f(c) for each event and partici- 219

pant candidate c. We will then train ϕ to minimize 220

distances within the same event and participant 221

class and maximize them between different ones 222

(§4.2.1); the general framework is illustrated in 223

Fig. 2. We will then describe several extensions to 224

the loss function (§4.2.2–§4.2.3) and then discuss 225

replacing XLNet embeddings with more special- 226

ized word embeddings (§4.2.4).1. 227

4.2.1 Learning script-specific representations 228

Let C be the set of all event candidates or the set
of all participant candidates in a text, and let π(C)
be a partition of C which clusters candidates into
equivalence classes; at training time, each class
contains the candidates that are labeled with the
same event or participants. We define π(c) as the
element of the partition to which the candidate c
belongs. Given a pre-trained embedding function
f and the transformation ϕθ that we want to learn,
we consider the average distance between instances
belonging to different clusters:

dext(π(C); θ) = mean
c, c′ ∈ C :

π(c) 6= π(c′)

d(ϕθ(f(c), ϕθ(f(c
′))

We would like to push the embeddings of two can-
didates from different classes away if they are too
close to each other. We do so by maximizing the
external consistency of the partition π:

γext(π(C); θ) = mean
c, c′ : π(c) 6= π(c′),

d(ϕθ(f(c), ϕθ(f(c
′))

< σ1dext(π(C); θ)

d(ϕθ(f(c), ϕθ(f(c
′))

σ1 ∈ (0, 1) is a threshold that quantifies being ‘too
close’. This definition captures the intuition that
ϕ should map candidates from different classes to
dissimilar vectors. Likewise, consider the average
distances between embeddings of candidates from
same classes:

dint(π(C); θ) = mean
c,c′:π(c)=π(c′)

d(ϕθ(f(c), ϕθ(f(c
′))

We would like to pull the embeddings of two candi- 229

dates from the same class towards each other if they 230

are too far away. In a similar spirit, we maximize 231

the internal consistency of π: 232

γint(π(C); θ) = 1− mean
c, c′ : π(c) = π(c′),

d(ϕθ(f(c), ϕθ(f(c
′))

> σ2dint(π; θ)

d(ϕθ(f(c), ϕθ(f(c
′))

(1) 233

1See the appendix for more implementation details; we
will release our code upon acceptance.

3



Figure 2: The overall framework. We learn a representation from annotated corpus and apply it to unannotated texts. The
coreference and dependency terms are not visualized.

(a) There is a bus stop down the street from my house . If
you take it going south , it leads to the city...

(b) ...Ipassenger fed my coinsmoney into the slot where you
put your money...
...Ipassenger boarded the bus and paid for my ride with
my changemoney ...

(c) ...the bus arrivedbus_stops at the bus stop closest to the
beach...
...I would need the bus to stopbus_stops next to the hos-
pital...

Figure 3: Illustrations of the refined consistency mea-
sures.

234

We write d(·, ·) for the distance function in the
representation space, with values in [0, 1]. Em-
pirically, the following variant of cosine distance
worked well: √

1

2
− 1

2
cos(∠(v, w))

Here ∠(v, w) ∈ [0, π] denotes the angle between235

v, w.236

We obtain an overall consistency measure γ,
which we maximize in training; λi is a hyper-
parameter that balances the terms.

γ(π(C); θ) = γext(π(C); θ) + λiγint(π(C); θ)

4.2.2 Coreference237

We can now further refine this baseline consistency238

model with script-specific knowledge. First, within239

a text, noun phrases that refer to the same entity240

form a coreference chain: for example, all men-241

tions of the bus in the scenario TAKING A BUS242

(Fig. 3a). As they refer to the same entity, these243

noun phrases should belong to the same participant244

cluster and thus have similar representations.245

We capture this intuition as follows. Let η(Cc)
be the set of all coreference chains on participant

candidates. Like π above, η(Cc) also specifies an
equivalence relation, in that two candidates are in
the same class iff they are in the same coreference
chain. We can thus formulate a coreference-based
consistency measure as

β(θ) := γint(η(Cc); θ)

Note that this is a soft constraint; coreferent en- 246

tities are rewarded for being in the same class, not 247

forced into them. This increases robustness against 248

noise in the coreference annotations. 249

4.2.3 Event-participant dependencies 250

Second, events and participants in a script are 251

tightly linked: if two verbs have arguments from 252

the same participant class, they tend to describe the 253

same event (Fig. 3b); and if two noun phrases are 254

arguments of the same event, they tend to describe 255

the same participant (Fig. 3c). 256

Let cp be the set of event candidates that have
participant p as an argument; we would like to
encourage ϕ to map the elements of cp to simi-
lar representations. Let ξ(Cde ) be the set of all cp.
Analogously, let ξ(Cdp) be the set of participant can-
didate sets that depend on the same events. We can
formulate a dependency-based consistency mea-
sure as

α(θ) = γint(ξ(Ce); θ) + γint(ξ(Cp); θ)

The final training objective, with hyperparame- 257

ters λc, λd and cluster assignment π∗(Ce) of event 258

candidates and π∗(Cp) of participant candidates in 259

InScript, is 260

261

θ∗ = argmax
θ

[γ(π∗(Ce); θ) + λpγ(π
∗(Cp); θ) 262

+ λcβ(θ) + λdα(θ)] (2) 263

4



4.2.4 Specialized word embeddings264

We further investigated whether our zero-shot ap-265

proach can benefit by using more specialized word266

embeddings as input instead of the general-purpose267

XLNet embeddings. We thus replaced f with the268

representations from the pre-final layer of the su-269

pervised script parser of Zhai et al. (2021). These270

representations are also based on XLNet, but then271

trained to predict InScript events and participants272

on known scenarios.273

We deviate from Zhai et al.’s training setup in274

two ways. (1) Data. In order not to neutralize the275

zero-shot setting, we train the model from Zhai et276

al. on the 9 scenario we reserved for training and277

validation, whereas keep the test scenario unseen.278

(2) The parser is trained on regular event/partic-279

ipants only, to be consistent with the clustering280

settings. Its performance is at 95 points F1-score281

on its validation set.282

4.3 Inference283

4.3.1 Clustering284

At inference time, we first determine the event and285

participant candidates by taking the nouns, pro-286

nouns and verbs, and classify them for regular-287

ity. We then acquire a representation ϕθ∗(f(c)) for288

each candidate c and group them into classes by289

clustering (cf. Fig. 2).290

We use agglomerative clustering, a bottom-up291

hierarchical clustering algorithm that iteratively292

merges the most similar pair of clusters. It ter-293

minates when either the number of clusters de-294

creases to a pre-defined quantity or the minimum295

dis-similarity between the current clusters goes be-296

yond a predefined threshold. As the number of297

event and participant classes vary across scenarios,298

we do not fix the number of cluster, but instead299

define a dissimilarity threshold estimated from the300

training scenarios. If the number of clusters result-301

ing from this process was too extreme (>30 or <302

10), we reran the process to yield 20 clusters.303

4.3.2 Protagonists304

As one final optimization, we give special treat-305

ment to the protagonist of each scenario – for ex-306

ample, the passenger in TAKING A TRAIN or the307

customer in GROCERY SHOPPING. The protagonist308

is the most frequent participant in all scenarios and309

always makes the largest class of participant candi-310

dates. We thus identify it by following the longest311

coreference chain. This simple heuristic yields an312

F-score of 98 at inference time for the protagonist 313

class. We thus ignore protagonists in training. 314

5 Evaluation 315

We evaluate our method with 10-fold cross- 316

validation on InScript by alternating the selection 317

of validation and test scenarios. Note that the texts 318

in the validation and test data are always from sce- 319

narios that were unseen in training. 320

5.1 Metric 321

Given a cluster assignment, what we are interested 322

in is how well the predicted clusters align with gold 323

classes. We seek to establish a ‘best’ assignment of 324

the clusters to the gold classes, with which we can 325

evaluate the ‘accuracy’ of the clustering results as if 326

it were a classification task. One approach is to find 327

the assignment that maximizes this accuracy. This 328

is a linear assignment problem, which is solved in 329

cubic time by the Hungarian algorithm (see, e.g. 330

Kuhn, 1955), thus tractable given the scale of our 331

problem. We call the F1 score evaluated according 332

to this optimal assignment Hungarian F1, and use 333

it as our main evaluation metric. This metric allows 334

us to compare the results of the clustering-based 335

parsers to that of the classification-based parsers. 336

5.2 Baselines 337

We compare the results of our zero-shot parser to a 338

number of baselines. First, we compare against the 339

supervised script parsers of Zhai et al. (2021) and 340

Ostermann et al. (2017) (retrained on the train-test 341

split of Zhai et al.). These parsers are evaluated 342

on a subset of InScript that contains texts from 343

the same scenarios as in the training set, thus the 344

numbers are not directly comparable to ours. 345

Second, we compare against a baseline where we 346

cluster event and participant candidates at inference 347

time based on the bare XLNet embeddings, rather 348

than the ones that were transformed by our learned 349

ϕθ∗ . Finally, in addition to our full model, as speci- 350

fied by 2 with the specialized embeddings of §4.2.4, 351

we also present results for ablated versions without 352

the extensions regarding event-participant depen- 353

dencies (dep), coreference (coref ), and specialized 354

embeddings (specialized). 355

For each of the clustering-based methods, we re- 356

port two results: one where we assume gold infor- 357

mation about whether an event or participant candi- 358

date is regular, and one where this is predicted by 359

the classifier from §4.1. All variants use the same 360

5



model gold regularity events participants

macro F1 micro F1 macro F1 micro F1

Ostermann et al. (2017) X 58.1 66.0 n/a n/a
Zhai et al. (2021) X 75.1 85.7 80.3 90.3
Bare XLNet X 40.2 53.2 39.3 60.5
w/o dep, coref, specialized X 46.0±2.8 58.4±2.7 47.5±2.6 75.7±1.8

w/o dep, coref X 48.6±5.2 62.7±3.7 44.5±3.3 71.8±2.1

w/o dep X 51.0±3.7 66.8±4.3 52.0±3.7 74.8±2.9

Full model X 53.4±1.8 68.1±2.3 51.7±1.6 74.4±1.4

Bare XLNet X 43.1 51.6 43.9 61.0
w/o dep, coref, specialized X 46.1±1.9 55.4±2.2 51.1±2.7 75.3±1.3

w/o dep, coref X 55.3±2.8 65.8±2.8 52.5±3.1 73.6±2.1

w/o dep X 56.7±3.3 67.4±3.7 53.6±2.9 74.2±2.0

Full model X 57.6±1.3 68.1±1.3 52.8±1.4 73.7±1.4

Table 1: Results averaged from ten-fold cross validation over five training runs. These quantities are the Hungarian
versions of F1 defined in §5.1. Some models train and inference according to the regularity annotations in InScript,
instead of the predictions of our regular candidate identifier. Ostermann et al. and Zhai et al. use a data split where
the models see the test scenario during training; the other variants use the zero-shot data split described in §3.

number of trials for hyperparameter tuning. After-361

wards, we do 5 parallel training sessions to test the362

models’ robustness against random initializations.363

6 Results364

The results are shown in Table 1. All variants of our365

model outperform clustering based on raw XLNet366

embeddings by a considerable margin. Our model367

also performs on par with Ostermann’s, although368

we do not have access to scenario-specific super-369

vision whereas Ostermann’s does, and our model370

additionally performs participant parsing. In gen-371

eral, we obtain a higher micro-F1 for participants372

than for events. This is due to the more skewed dis-373

tribution of the sizes of the participant class sizes374

than those of the event classes.375

The model extensions boost parsing accuracy376

significantly. Access to coreference information377

improves participant parsing performance. De-378

pendency information grants a performance boost379

in event parsing. A closer inspection shows that380

with dependency information, the parser is better at381

grouping together event candidates with different382

verbs but share arguments. For example, event sink383

into water in TAKING A BATH could be evoked384

by slide into water, sink into water, slip into the385

tub, lower into the tub, etc. The verbs in these386

event candidates all share arguments I and water387

or tub, which our parser correctly clusters together.388

Without dependency information, the parser mostly389

group together candidates whose predicate is ‘sink’,390

the most frequent verbalization of the event.391

The accuracy of our script parser differs from392

fold to fold. For example, we get 70.1 micro- 393

F1 for participant parsing on TAKING A BATH, 394

but only 43.8 on BORROWING A BOOK FROM LI- 395

BRARY. These differences result from two factors. 396

(1) Generalization from the training scenario to 397

the test scenario. Script parsing sometimes benefit 398

from scenario-specific knowledge (more on this in 399

§7.3.1), thus generalization is easier when the test 400

scenario is more similar to the training scenarios. 401

For example, TAKING A TRAIN would be more 402

informative to TAKING A FLIGHT than to FIXING 403

A FLAT TIRE. (2) Differences in the qualities of the 404

original annotation among different scenarios. 405

7 Further analysis 406

7.1 Temporal script graphs 407

The events in each scenario are partially ordered 408

with respect to their temporal order: one can only 409

grab a shopping cart after arriving at grocery store, 410

whereas go to the meat section and go to the cheese 411

section can be done in arbitrary order. As men- 412

tioned above, Regneri et al. (2010) use temporal 413

script graphs to represent the typical temporal or- 414

dering of the events in a scenario. 415

Given the clustering results, we can consider 416

the stories in the test scenario as “annotated” and 417

induce temporal script graphs for unseen scenarios. 418

We establish temporal order as follows: event e1 419

precedes event e2 iff in stories where they both 420

occur, the proportion where e1 takes place before e2 421

is beyond a threshold ζ . We expand the precedence 422

relation to its transitive closure afterwards. Finally, 423

if neither e1 precedes e2 nor e2 precedes e1, we 424

6



Figure 4: A part of the temporal script graph for TAKING A
BATH inferred from our parsing result. Each node illustrates
3 random candidates from the cluster. The event classes that
the Hungarian algorithm assigned to each of these clusters are
shown on the side. Further edges that could be inferred by
transitivity are omitted. We see one could either undress first
or add scent (to the bath tub) first before sink into water.

decide they could follow arbitrary order.425

Our clustering results yields 75 points F1 score426

on the identification of temporally ordered pairs,427

when evaluated against the results learned from428

annotations in InScript. See Fig. 4 for an exam-429

ple. Observe that the model has learned that each430

event can be expressed in many different ways that431

are semantically similar only in the context of the432

scenario.433

7.2 Probing434

We conjectured above that the transformation ϕ435

was needed to distill the relevant information for436

script parsing out of the pretrained XLNet embed-437

dings. We investigate whether this is true by freez-438

ing the embeddings ϕ(f(c)) (zero-shot) and the439

pretrained embeddings f(c) (XLNet) and training440

models for a variety of NLP tasks that take these441

embeddings as input.442

We probe with the following tasks. (1) Part of443

speech tagging and (2) named entity recognition;444

these mostly depend on the token itself and its lo-445

cal context. (3) Noun phrase chunking, which is446

determined by sentence-level syntax. (4) Sentence447

ordering, where we randomly shuffle the order of448

the sentences in a story and train a binary classi-449

fier to detect whether the story is shuffled. The450

task would need information across the entire story451

to conduct. POS tagging, NER and chunking are452

formulated as sequence labelling tasks; sentence or-453

dering is a binary classification task. For all these454

tasks, a respective linear classifier maps the em-455

beddings to the predictions. The experiments are456

conducted on InScript, with the same data split as is457

used to train our representation. InScript includes458

POS annotations; for NER and chunking, the labels459

are generated with Spacy (Honnibal and Montani,460

Figure 5: Performance on probing tasks. Our representation
clearly favours the sentence ordering task. The error bars show
one standard deviation. All differences between these pairs
are significant at α = 0.05 according to independent T-test.

2017, model en_core_web_trf ). In each of these 461

probing tasks, both representations use the same 462

amount of GPU budget. See Fig. 5 for the results. 463

The transformed representations ϕ(f(c)) incur 464

performance drops on most tasks, compared to the 465

general-purpose embeddings f(c). However, the 466

performance on sentence ordering sees a significant 467

improvement. This supports our hypothesis that 468

ϕ amplifies higher level features, which are more 469

important to script parsing than to generic language 470

modelling. In comparison, lower-level information 471

about morphology and syntax is deemphasized. 472

7.3 Error analysis 473

As a side product of evaluating Hungarian F1s, we 474

get the optimal assignment of output clusters to 475

gold candidate classes, which equivalently labels 476

each candidate with a event/participant class. For 477

example, in figure 4, the candidates in the boxes 478

are assigned to the gold class labeled aside. Errors 479

are cases where this assignment is different that 480

its original annotation. We manually inspected 481

30% of the test errors made by our full model with 482

predicted regularity case by case and categorized 483

them (see Table 2 for a breakdown). 484

7.3.1 Events 485

Granularity Many events could be divided into 486

multiple sub-events, forming a hierarchy of events. 487

This fact manifested itself into various types of 488

errors. To begin with, the set of event labels in 489

InScript often consists of events of different gran- 490

ularities. For example, in the TAKING A BATH 491

scenario, we have prepare for bath, undress and 492

grab a towel. For many event candidates, this situ- 493

ation renders multiple cluster assignments feasible 494

(e.g. ... I took a clean towel with me ... in ei- 495

ther prepare for bath or grab a towel), which not 496

only confuses our parser, but also, judging from 497

the corpus per se, confused many annotators of In- 498

7



Type Granularity Shared Verb/Arguments #Clusters Scenario-specific Large Clusters The Rest
Event 66.7% 7.8% 9.8% 15.6% n/a 0
Participant 16.3% n/a 11.0% 16.5% 61.5% 9.5%

Table 2: A breakdown of the parsing error types made by full. For a small proportion of errors we were not able to
spot an obvious cause.

Script. As a result, the parser sometimes confuses499

one event cluster with another that includes it, or500

group together different events that actually fit to-501

gether (turn on water and fill tub with water). In502

recognition of a same cause, we classify all these503

errors into Granularity.504

Shared predicate or argument Some wrongly505

clustered events share the verb or some arguments506

with another class, especially when light verbs are507

involved, which makes the distinction harder. For508

example, in TAKING A TRAIN, a few get ticket509

events (e.g. “I took the ticket from him”) are pre-510

dicted as conductor checks ticket (e.g. “I gave the511

ticket to him”).2512

Number of clusters As the test scenario is un-513

seen, our parser does not know how many clusters514

there should be, but rather terminates the clustering515

process with a similarity threshold. Therefore, we516

often end up having a different number of clusters517

than the corpus, which results in larger classes be-518

ing split into more than one or multiple smaller519

classes being merged into one. For example, in520

the TAKING A TRAIN scenario, the model yields521

14 event clusters whereas there are 15 in the cor-522

pus. In such cases, the parser has to compromise,523

causing damage to its performance. As a result, no524

predicted cluster was assigned to the door opens525

event, which refers to the door of the train opening526

before passengers board it. Instead, 5 out of its 6527

instances end up in the same cluster that mostly528

comprises instances of the get on the train event, a529

fair compromise.530

Scenario-specific knowledge Some candidates531

are only equivalent when conditioned on the sce-532

nario. For example, the spend time in the train533

event collects activities like purchasing a coffee,534

taking a nap, looking out of the window, settling535

with a book, etc. These instances are hard; our536

parser can address these instances as it has access537

2The dependency term moderately magnifies this issue, as
with it the parser tend to cluster candidates that share similar
dependents together. But this is outweighed by the perfor-
mance gain it grants.

to the entire event chain of the story (so it knows 538

all these events happen between take a seat and 539

get off the train). But the signal is weaker, which 540

incurs weaker performance. 541

7.3.2 Participants 542

Participant parsing also sees errors resulting from 543

granularity, number of clusters and scenario- 544

specific knowledge, all of which mirrors the sit- 545

uation of event parsing. Yet errors in participant 546

parsing present a different landscape: most errors 547

come from the existence of large participant classes 548

that end up forming more that one clusters. 549

For example, there are two output clusters that 550

collects instances of train station: one contains ref- 551

erences to the departing station whereas the other 552

contains references to the destination train station. 553

Instances of participant train also yield two clus- 554

ters: one collects references to trains in general 555

whereas the other collects references to the train 556

after the passenger boards it. These errors have to 557

do with agglomerative clustering not being good at 558

clusters whose sizes adopt a skewed distribution. 559

8 Conclusion 560

We have presented the first approach to script pars- 561

ing without scenario-specific knowledge. We do 562

this by clustering specialized word representations 563

which are trained by optimizing cluster consistency; 564

the model is further improved by the use of coref- 565

erence and event-participant dependency informa- 566

tion. The model greatly outperforms a baseline 567

with general-purpose word embeddings, and per- 568

forms on par with an earlier supervised model. 569

Our model makes it possible, for the first time, 570

to label large quantities of unannotated data with 571

script information. On InScript, it predicts event 572

structures which are quite accurate with respect to 573

temporal ordering. However, InScript is a quite 574

specific type of text, in which all the sentences are 575

simple and pertinent to the scenario, and they are 576

already in the correct temporal order. In the future, 577

we will therefore extend our approach to parsing 578

naturally occurring text. 579

8



References580

Simon Ahrendt and Vera Demberg. 2016. Improving581
event prediction by representing script participants.582
In Proceedings of the 2016 Conference of the North583
American Chapter of the Association for Computa-584
tional Linguistics: Human Language Technologies,585
pages 546–551.586

Pratyay Banerjee and Chitta Baral. 2020. Self-587
supervised knowledge triplet learning for zero-shot588
question answering. In Proceedings of the 2020589
Conference on Empirical Methods in Natural Lan-590
guage Processing (EMNLP), pages 151–162, Online.591
Association for Computational Linguistics.592

Avron Barr and Edward Feigenbaum. 1981. The Hand-593
book of Artificial Intelligence: Volume 2. William594
Kaufman Inc, Los Altos, CA.595

James Bergstra and Yoshua Bengio. 2012. Random596
search for hyper-parameter optimization. Journal of597
Machine Learning Research, 13(Feb):281–305.598

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-599
pervised learning of narrative event chains. Proceed-600
ings of ACL-08: HLT, pages 789–797.601

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-602
pervised learning of narrative schemas and their par-603
ticipants. In Proceedings of the Joint Conference604
of the 47th Annual Meeting of the ACL and the605
4th International Joint Conference on Natural Lan-606
guage Processing of the AFNLP: Volume 2-Volume607
2, pages 602–610. Association for Computational608
Linguistics.609

Xiangyu Duan, Mingming Yin, Min Zhang, Boxing610
Chen, and Weihua Luo. 2019. Zero-shot cross-611
lingual abstractive sentence summarization through612
teaching generation and attention. In Proceedings of613
the 57th Annual Meeting of the Association for Com-614
putational Linguistics, pages 3162–3172, Florence,615
Italy. Association for Computational Linguistics.616

Matt Gardner, Joel Grus, Mark Neumann, Oyvind617
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew618
Peters, Michael Schmitz, and Luke S. Zettlemoyer.619
2017. Allennlp: A deep semantic natural language620
processing platform.621

Matthew Honnibal and Ines Montani. 2017. spaCy 2:622
Natural language understanding with Bloom embed-623
dings, convolutional neural networks and incremen-624
tal parsing. To appear.625

Bram Jans, Steven Bethard, Ivan Vulić, and626
Marie Francine Moens. 2012. Skip n-grams627
and ranking functions for predicting script events.628
In Proceedings of the 13th Conference of the629
European Chapter of the Association for Computa-630
tional Linguistics, pages 336–344, Avignon, France.631
Association for Computational Linguistics.632

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim633
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,634

Fernanda Viégas, Martin Wattenberg, Greg Corrado, 635
Macduff Hughes, and Jeffrey Dean. 2017. Google’s 636
multilingual neural machine translation system: En- 637
abling zero-shot translation. Transactions of the As- 638
sociation for Computational Linguistics, 5:339–351. 639

Diederik P Kingma and Jimmy Ba. 2015. Adam: 640
A method for stochastic optimization. In ICLR 641
(Poster). 642

Harold W Kuhn. 1955. The hungarian method for the 643
assignment problem. Naval research logistics quar- 644
terly, 2(1-2):83–97. 645

I-Ta Lee, Maria Leonor Pacheco, and Dan Goldwasser. 646
2020. Weakly-supervised modeling of contextual- 647
ized event embedding for discourse relations. In 648
Findings of the Association for Computational Lin- 649
guistics: EMNLP 2020, pages 4962–4972, Online. 650
Association for Computational Linguistics. 651

Ashutosh Modi, Tatjana Anikina, Simon Ostermann, 652
and Manfred Pinkal. 2016. Inscript: Narrative texts 653
annotated with script information. In Proceedings 654
of the Tenth International Conference on Language 655
Resources and Evaluation (LREC’16), pages 3485– 656
3493. 657

Ashutosh Modi and Ivan Titov. 2014. Inducing neu- 658
ral models of script knowledge. In Proceedings of 659
the Eighteenth Conference on Computational Nat- 660
ural Language Learning, pages 49–57, Ann Arbor, 661
Michigan. Association for Computational Linguis- 662
tics. 663

Ashutosh Modi, Ivan Titov, Vera Demberg, Asad Say- 664
eed, and Manfred Pinkal. 2017. Modeling seman- 665
tic expectation: Using script knowledge for referent 666
prediction. Transactions of the Association for Com- 667
putational Linguistics, 5:31–44. 668

Simon Ostermann, Michael Roth, Stefan Thater, and 669
Manfred Pinkal. 2017. Aligning script events with 670
narrative texts. In Proceedings of the 6th Joint Con- 671
ference on Lexical and Computational Semantics (* 672
SEM 2017), pages 128–134. 673

Ngoc-Quan Pham, Jan Niehues, Thanh-Le Ha, and 674
Alexander Waibel. 2019. Improving zero-shot trans- 675
lation with language-independent constraints. In 676
Proceedings of the Fourth Conference on Machine 677
Translation (Volume 1: Research Papers), pages 13– 678
23, Florence, Italy. Association for Computational 679
Linguistics. 680

Jerin Philip, Alexandre Berard, Matthias Gallé, and 681
Laurent Besacier. 2020. Monolingual adapters for 682
zero-shot neural machine translation. In Proceed- 683
ings of the 2020 Conference on Empirical Methods 684
in Natural Language Processing (EMNLP), pages 685
4465–4470, Online. Association for Computational 686
Linguistics. 687

Karl Pichotta and Raymond Mooney. 2014. Statisti- 688
cal script learning with multi-argument events. In 689
Proceedings of the 14th Conference of the European 690

9

https://aclanthology.org/N16-1067.pdf
https://aclanthology.org/N16-1067.pdf
https://aclanthology.org/N16-1067.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.11
https://doi.org/10.18653/v1/2020.emnlp-main.11
https://doi.org/10.18653/v1/2020.emnlp-main.11
https://doi.org/10.18653/v1/2020.emnlp-main.11
https://doi.org/10.18653/v1/2020.emnlp-main.11
https://books.google.de/books/about/The_Handbook_of_Artificial_Intelligence.html?id=xP7iBQAAQBAJ&redir_esc=y
https://books.google.de/books/about/The_Handbook_of_Artificial_Intelligence.html?id=xP7iBQAAQBAJ&redir_esc=y
https://books.google.de/books/about/The_Handbook_of_Artificial_Intelligence.html?id=xP7iBQAAQBAJ&redir_esc=y
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://aclanthology.org/P08-1090.pdf
https://aclanthology.org/P08-1090.pdf
https://aclanthology.org/P08-1090.pdf
https://aclanthology.org/P09-1068.pdf
https://aclanthology.org/P09-1068.pdf
https://aclanthology.org/P09-1068.pdf
https://aclanthology.org/P09-1068.pdf
https://aclanthology.org/P09-1068.pdf
https://doi.org/10.18653/v1/P19-1305
https://doi.org/10.18653/v1/P19-1305
https://doi.org/10.18653/v1/P19-1305
https://doi.org/10.18653/v1/P19-1305
https://doi.org/10.18653/v1/P19-1305
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://www.aclweb.org/anthology/E12-1034
https://www.aclweb.org/anthology/E12-1034
https://www.aclweb.org/anthology/E12-1034
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://openreview.net/forum?id=8gmWwjFyLj
https://openreview.net/forum?id=8gmWwjFyLj
https://openreview.net/forum?id=8gmWwjFyLj
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://doi.org/10.18653/v1/2020.findings-emnlp.446
https://doi.org/10.18653/v1/2020.findings-emnlp.446
https://doi.org/10.18653/v1/2020.findings-emnlp.446
https://aclanthology.org/L16-1555.pdf
https://aclanthology.org/L16-1555.pdf
https://aclanthology.org/L16-1555.pdf
https://doi.org/10.3115/v1/W14-1606
https://doi.org/10.3115/v1/W14-1606
https://doi.org/10.3115/v1/W14-1606
https://transacl.org/index.php/tacl/article/view/968
https://transacl.org/index.php/tacl/article/view/968
https://transacl.org/index.php/tacl/article/view/968
https://transacl.org/index.php/tacl/article/view/968
https://transacl.org/index.php/tacl/article/view/968
https://aclanthology.org/S17-1016.pdf
https://aclanthology.org/S17-1016.pdf
https://aclanthology.org/S17-1016.pdf
https://doi.org/10.18653/v1/W19-5202
https://doi.org/10.18653/v1/W19-5202
https://doi.org/10.18653/v1/W19-5202
https://doi.org/10.18653/v1/2020.emnlp-main.361
https://doi.org/10.18653/v1/2020.emnlp-main.361
https://doi.org/10.18653/v1/2020.emnlp-main.361
https://doi.org/10.3115/v1/E14-1024
https://doi.org/10.3115/v1/E14-1024
https://doi.org/10.3115/v1/E14-1024


Chapter of the Association for Computational Lin-691
guistics, pages 220–229, Gothenburg, Sweden. As-692
sociation for Computational Linguistics.693

Michaela Regneri, Alexander Koller, and Manfred694
Pinkal. 2010. Learning script knowledge with web695
experiments. In Proceedings of the 48th Annual696
Meeting of the Association for Computational Lin-697
guistics, pages 979–988, Uppsala, Sweden. Associa-698
tion for Computational Linguistics.699

Michaela Regneri, Alexander Koller, Josef Ruppen-700
hofer, and Manfred Pinkal. 2011. Learning script701
participants from unlabeled data. In Proceedings702
of the International Conference Recent Advances in703
Natural Language Processing 2011, pages 463–470.704

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,705
and Benjamin Van Durme. 2015. Script induction as706
language modeling. In Proceedings of the 2015 Con-707
ference on Empirical Methods in Natural Language708
Processing, pages 1681–1686, Lisbon, Portugal. As-709
sociation for Computational Linguistics.710

Roger C Schank and Robert P Abelson. 1977. Scripts,711
plans, goals, and understanding: An inquiry into hu-712
man knowledge structures. Psychology Press.713

Lilian DA Wanzare, Alessandra Zarcone, Stefan Thater,714
and Manfred Pinkal. 2016. Descript: A crowd-715
sourced database of event sequence descriptions for716
the acquisition of high-quality script knowledge. In717
Proceedings of the Tenth International Conference718
on Language Resources and Evaluation (LREC’16),719
pages 3494–3501.720

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-721
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.722
Xlnet: Generalized autoregressive pretraining for723
language understanding. In Advances in neural in-724
formation processing systems, pages 5753–5763.725

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019.726
Benchmarking zero-shot text classification:727
Datasets, evaluation and entailment approach.728
In Proceedings of the 2019 Conference on Empiri-729
cal Methods in Natural Language Processing and730
the 9th International Joint Conference on Natural731
Language Processing (EMNLP-IJCNLP), pages732
3914–3923, Hong Kong, China. Association for733
Computational Linguistics.734

Fangzhou Zhai, Vera Demberg, and Alexander Koller.735
2020. Story generation with rich details. In Proceed-736
ings of the 28th International Conference on Com-737
putational Linguistics, pages 2346–2351, Barcelona,738
Spain (Online). International Committee on Compu-739
tational Linguistics.740

Fangzhou Zhai, Vera Demberg, Pavel Shkadzko, Wei741
Shi, and Asad Sayeed. 2019. A hybrid model for742
globally coherent story generation. In Proceedings743
of the Second Workshop on Storytelling, pages 34–744
45, Florence, Italy. Association for Computational745
Linguistics.746

Fangzhou Zhai, Iza Škrjanec, and Alexander Koller. 747
2021. Script parsing with hierarchical sequence 748
modelling. In Proceedings of* SEM 2021: The 749
Tenth Joint Conference on Lexical and Computa- 750
tional Semantics, pages 195–201. 751

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sen- 752
nrich. 2020. Improving massively multilingual neu- 753
ral machine translation and zero-shot translation. In 754
Proceedings of the 58th Annual Meeting of the Asso- 755
ciation for Computational Linguistics, pages 1628– 756
1639, Online. Association for Computational Lin- 757
guistics. 758

10

https://www.aclweb.org/anthology/P10-1100
https://www.aclweb.org/anthology/P10-1100
https://www.aclweb.org/anthology/P10-1100
https://aclanthology.org/R11-1064.pdf
https://aclanthology.org/R11-1064.pdf
https://aclanthology.org/R11-1064.pdf
https://doi.org/10.18653/v1/D15-1195
https://doi.org/10.18653/v1/D15-1195
https://doi.org/10.18653/v1/D15-1195
https://aclanthology.org/L16-1556.pdf
https://aclanthology.org/L16-1556.pdf
https://aclanthology.org/L16-1556.pdf
https://aclanthology.org/L16-1556.pdf
https://aclanthology.org/L16-1556.pdf
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://www.aclweb.org/anthology/2020.coling-main.212
https://doi.org/10.18653/v1/W19-3404
https://doi.org/10.18653/v1/W19-3404
https://doi.org/10.18653/v1/W19-3404
https://aclanthology.org/2021.starsem-1.18/
https://aclanthology.org/2021.starsem-1.18/
https://aclanthology.org/2021.starsem-1.18/
https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.18653/v1/2020.acl-main.148


759 A Implementation and Optimization 760

The model was implemented with AllenNLP 1.2 761

Gardner et al. (2017). The pre-trained XLNet 762

model we used was xlnet-base-cased (https:// 763

github.com/zihangdai/xlnet/). The training 764

is also regularized with weight decay. The opti- 765

mization is performed with adam (Kingma and Ba, 766

2015) in conjunction with early-stopping which 767

monitors validation loss, and the hyper-parameter 768

tuning is performed with random hyper-parameter 769

search (Bergstra and Bengio, 2012). Optimiza- 770

tion takes on average 5 hours on a singe Tesla 771

v100. We performed 20 trial for choosing the hyper- 772

parameters. 773

The implementations of agglomerative cluster- 774

ing and Hungarian algorithm are from the scipy 775

library. Table 3 shows the hyper-parameters for the 776

best performing single run on each fold (full model, 777

predicted regularity). 778

B Examples 779

Table 4 illustrates a couple of sample clusters. The 780

candidates vary in their surface forms. 781

11

https://github.com/zihangdai/xlnet/
https://github.com/zihangdai/xlnet/
https://github.com/zihangdai/xlnet/


fold lr weight decay λei λpi λp σ1 σ2 λc λd
0 1.10E-05 0.000155 1.03 0.0147 0.343 0.887 0.263 0.00372 0.00795
1 2.06E-05 0.00677 0.457 0.882 0.125 0.392 0.391 0.0101 0.0485
2 0.000126 0.000896 0.0105 0.0148 0.0144 0.903 0.728 0.00533 0.0118
3 2.91E-05 0.000166 0.0237 0.0649 0.256 0.373 0.544 0.0619 0.00867
4 7.08E-05 0.00051 0.15 0.0711 0.745 0.681 0.562 0.0121 0.0216
5 0.000353 0.00121 1.51 0.0371 0.00211 0.171 0.692 0.0872 0.016
6 0.000423 1.07E-05 0.204 0.018 0.177 0.113 0.632 0.242 0.00517
7 7.88E-05 0.00303 0.734 0.0136 0.517 0.189 0.948 0.0047 0.111
8 2.72E-05 7.32E-05 0.568 0.00151 0.0589 0.676 0.566 0.00424 0.0475
9 2.09E-05 5.19E-05 0.0327 0.555 0.243 0.788 0.95 0.0866 0.0119

Table 3: Hyper-parameters

ground truth text
turn water on bath ... I might drain the tub and put in more water ...
sink into water ... I turn off the faucet and sink into bliss ...
sink into water ... Then I slid into the water and enjoyed the relaxing warmth for twenty or more minutes...
sink into water ... I gingerly lowered myself into the nice warm water and immediately began to relax...
sink into water ... I eased my way into the tub and let myself sink into the water ...
sink into water ... I slowly sunk the rest of my body , and closed my eyes...
sink into water ... the tub was full and ready . I slipped into the tub and soaked in the bliss...
washing tools ...then I lather up with either soap or shower gel ...
water ...After I scrub really good and finish singing , I pour water continuously on my body...
washing tools ...I pour water continuously on my body until all the soap was he s off...
washing tools ...I cleaned my hair with some shampoo and washed my body with a wash cloth and rinsed...
washing tools ...shampooed my hair and applied some conditioner then washed my body...
washing tools ...applied some condition er then washed my body using some liquid body wash...
washing tools ...After I have washed everything , I rinse the soap from my body with the water in the tub...
washing tools ...on the corner of the bathtub . I lather ed it up and washed my arms , my legs...
washing tools ...take a wash cloth and soap or body wash to give yourself a good scrub down...
washing tools ...You can put the shampoo in your hair...
washing tools ...place your head under the faucet to rinse out the soap . Enjoy your bath !
washing tools ...washed myself with a wash cloth and soap . Then I leaned my head against...
washing tools ...stepped into the bath tub . I used soap and a wash cloth to clean myself...

Table 4: Example output clusters. Top: event; bottom: participant. The table presents a random selection of
instances from these clusters as the original output could contain hundreds of instances.

12


