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Introduction
The recent advancements in large language models (LLMs)
have brought about a significant revolution in various as-
pects of natural language processing (NLP). The emergence
of potent open-source LLMs has paved the way for domain-
specific fine-tuning within the clinical field. A recent survey
comprehensively summarized the latest applications in con-
structing clinical LLMs, highlighting both their challenges
and applications (Zhou et al. 2023b). In this study, we aim
to build upon this previous work and provide further in-
depth analysis into existing clinical LLMs, with a focus on
their domain adaption approaches. Our objective is to stim-
ulate meaningful discussions among participants during the
AAAI workshop. We believe that by delving into these as-
pects, we can contribute to a better understanding of the po-
tential and limitations of clinical LLMs.

Methods
We compared a selection of recently published clinical
LLMs that focused on medical knowledge injection in Ta-
ble 1. These works encompassed either domain-specific tun-
ing of open-source LLMs or pretraining from scratch us-
ing medical corpora. We have excluded models lacking pub-
lished documentation detailing their training processes.

Notably, varying factors — model size, prompting strat-
egy, and the use of proprietary versus open-source models
— significantly complicate the process of directly compar-
ing performance across different models. Despite these chal-
lenges, our analysis yielded several interesting observations.

Results
Top performers in MedQA and PubMedQA The
MedQA test is frequently used as a benchmark for med-
ical knowledge. The leading model of Palmyra-Med was
developed by simply fine-tuning the proprietary Palmyra-
40B model on the training sets of PubMedQA and MedQA
. This approach resulted in a significant improvement from
the baseline (43.1 to 72.4 in MedQA, and 64.1 to 81.1 in
PubMedQA). However, the reason for its improvement is
difficult to discern, given its non-open-source nature and the
employment of standard task-specific tuning steps.
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PubMedQA serves as a benchmark for testing reasoning
abilities over biomedical research texts. The leading model
on this task, Meditron-70B, underwent the largest amount
of continuous pretraining on the PubMed corpus. Notably, a
much smaller model, BioGPT, pretrained with PubMed ab-
stracts from scratch achieved comparably high performance.

Continuous pretraining vs. supervised fine-tuning (SFT)
Prior research suggests that the majority of LLM’s knowl-
edge is acquired during the pretraining phase (Zhou et al.
2023a). Consistent with this, we observed robust perfor-
mances from models that underwent continuous pretrain-
ing on domain-specific corpora. Notably, several studies
employed instruction tuning based on question-answering
pairs or dialogues infused with medical knowledge (e.g., cu-
rated from medical knowledge graphs). This specialized ap-
proach to SFT has demonstrated effectiveness, as evidenced
in models like Clinical Camel and PMC-LLaMA. An in-
triguing finding can be seen from the ablation studies of
PMC-LLaMA, which engaged in both continuous pretrain-
ing and SFT. The most substantial improvement in MedQA
scores occurred during the instruction tuning phase. How-
ever, this improvement was only observed after the models
had undergone the pretraining phase first.

Model size vs. compute power In practical scenarios, de-
velopers are often constrained by fixed computing budgets.
Assuming that achieving the highest benchmark score is the
ultimate goal (which may not be realistic in real-world ap-
plications), the efficiency of different approaches can vary
significantly. For instance, the gain in PubMedQA perfor-
mance per compute unit for BioMedGPT-LM is almost 40
times higher than that of Meditron (See Appendix). This dif-
ference is largely attributable to the smaller model size of
BioMedGPT-LM.

Training data The majority of the models employed
the PubMed corpus, supplemented with additional sources
such as medical textbooks, clinical guidelines, and med-
ical knowledge graphs. However, there appears to be a
lack of a rigorous selection process for high-quality medi-
cal data. Notably, the sole LLM trained from scratch using
electronic medical records (EMR) data from real patients,
GatorTronGPT, scored the lowest in both MedQA and Pub-
MedQA. This finding suggests that EMR data alone may not
possess adequate medical knowledge.



Table 1: Overview of clinical LLMs on MedQA and PubMedQA performance

Model MedQA PudMedQA Training data Approach

Palmyra-Med (Kamble
and AlShikh 2023)

72.4 81.1 160K data from traing set of Pub-
MedQA and MedQA

SFT on Palmyra 40B

Meditron (Chen et al.
2023)

64.4 81.6 47B tokens of PubMed data plus clini-
cal guidelines

CP (1 epoch) on LLaMA-2 70B

Clinical Camel (Toma
et al. 2023)

60.7 77.3 174K multi-step dialogues pairs for
knowledge encoding

SFT on LLaMA-2 70B with Qlora (5
epochs)

PMC-LLaMA (Wu
et al. 2023)

56.4 77.9 8B tokens of medical literature for CP,
200M tokens of medical question an-
swering pairs for SFT

CP (3 epochs) and SFT (5 epochs) on
LLaMA 13B

BioMedGPT-LM (Luo
et al. 2023)

50.4 76.1 26B tokens from from PubMed data CP (1 epoch) on LLaMA-2 7B Chat

GatorTronGPT (Peng
et al. 2023)

45.1 77.6 82 billion words from EMR and 195
billion words from general domain

Pretrain from scratch (1 epoch), GPT-3
architecture with 30B

BioGPT (Luo et al.
2022)

- 81.0 15M PubMed abstracts Pretrain from scratch (1 epoch), GPT-2
architecture with 1.5B

AntGLM-Med (Li et al.
2023)

- 80.6 15B tokens of medical literature for CP,
632K medical instruction data for SFT

CP and SFT on AntGLM-10B

LLaMA-2-7B 29.1 49.1
LLaMA-2-70B 49.0 72.8
MedPaLM-2 85.4 81.8
GPT-4 78.6 82.0

For each model, only listed best performance. Base model performance of LLaMA-2, MedPaLM-2 and GPT-4 obtained from (Chen et al.
2023) and respective task’s leaderboard. CP: continued pretraining. SFT: supervised fine-tuning.

Discussions
Medical knowledge injection The models discussed in
this study primarily focus on medical knowledge injec-
tion, employing two main approaches: continued pretraining
and SFT. A recent study suggested that retrieval-augmented
generation (RAG) consistently outperforms continued pre-
training for knowledge injection. However, that study did
not incorporate downstream instructional tuning, which, as
demonstrated in the case of PMC-LLaMA (Wu et al. 2023),
may be an essential step in activating the knowledge ac-
quired during pretraining. Future research could compare
SFT with continued pretraining to evaluate computational
efficiency and effectiveness. Additionally, integrating RAG
with these methods could offer further insights.

Training data selection It remains unclear whether the
extensive corpus of PubMed literature necessarily consti-
tutes “high-quality” data for the purpose of medical knowl-
edge injection. For instance, a well-written clinical guide-
line published a decade ago might contain outdated treat-
ment recommendations. Incorporating such data into train-
ing could be inaccurate and misleading to the model. An
intriguing question pertains to the nature of knowledge em-
bedded in EMR: it may reflect the peculiarities of clinical
documentation, which is known to exhibit significant varia-
tion in writing style among providers, or it might encompass
medical knowledge. As evidenced by the GatorTronGPT
study (Peng et al. 2023), one could hypothesize that inject-
ing medical knowledge using clinical notes is less effec-
tive compared to training from dedicated medical knowledge

sources.

Copyright concern A proportion of the resources in-
cluded in the commonly utilized PubMed corpus may be
subject to non-transferable licenses (IDSA 2024). In the
wake of the recent lawsuit, The New York Times vs. OpenAI
(NYT 2023), it becomes crucial to consider the implications
of using such unauthorized materials in model training. A
promising alternative approach could involve the utilization
of synthetic data generated by domain-adapted LLMs for fu-
ture applications.

Downstream use cases Although much of the current re-
search focuses on medical knowledge benchmarks, it re-
mains uncertain whether a clinical foundation model would
excel in knowledge-intensive downstream tasks. In enter-
prise use cases, LLM might be more suitable for tasks that
can accommodate a higher tolerance for error and inaccu-
racy. Potential examples within the clinical domain could
include administrative procedures (e.g., insurance appeals),
patient flow processes (e.g., scheduling appointments), or
clinical documentations. Bridging the gap between possible
clinical applications and academic research efforts is crucial.

Conclusion
The early adoption of foundation models in the clinical do-
main is encouraging. However, many open questions remain
to be addressed in this rapidly evolving field.
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htashami, A.; et al. 2023. MEDITRON-70B: Scaling Medi-
cal Pretraining for Large Language Models. arXiv preprint
arXiv:2311.16079.
IDSA. 2024. Terms of Use. https://www.idsociety.org/
termsofuse/. Accessed: Jan, 2024.
Kamble, K.; and AlShikh, W. 2023. Palmyra-Med:
Instruction-Based Fine-Tuning of LLMs Enhancing Medi-
cal Domain Performance.
Li, Q.; Yang, X.; Wang, H.; Wang, Q.; Liu, L.; Wang, J.;
Zhang, Y.; Chu, M.; Hu, S.; Chen, Y.; et al. 2023. From Be-
ginner to Expert: Modeling Medical Knowledge into Gen-
eral LLMs. arXiv preprint arXiv:2312.01040.
Luo, R.; Sun, L.; Xia, Y.; Qin, T.; Zhang, S.; Poon, H.;
and Liu, T.-Y. 2022. BioGPT: generative pre-trained trans-
former for biomedical text generation and mining. Briefings
in Bioinformatics, 23(6): bbac409.
Luo, Y.; Zhang, J.; Fan, S.; Yang, K.; Wu, Y.; Qiao, M.;
and Nie, Z. 2023. Biomedgpt: Open multimodal genera-
tive pre-trained transformer for biomedicine. arXiv preprint
arXiv:2308.09442.
NYT. 2023. The New York Times.
Peng, C.; Yang, X.; Chen, A.; Smith, K. E.; PourNejatian,
N.; Costa, A. B.; Martin, C.; Flores, M. G.; Zhang, Y.;
Magoc, T.; et al. 2023. A Study of Generative Large Lan-
guage Model for Medical Research and Healthcare. arXiv
preprint arXiv:2305.13523.
Toma, A.; Lawler, P. R.; Ba, J.; Krishnan, R. G.; Ru-
bin, B. B.; and Wang, B. 2023. Clinical Camel: An
Open-Source Expert-Level Medical Language Model with
Dialogue-Based Knowledge Encoding. arXiv preprint
arXiv:2305.12031.
Wu, C.; Zhang, X.; Zhang, Y.; Wang, Y.; and Xie, W. 2023.
Pmc-llama: Further finetuning llama on medical papers.
arXiv preprint arXiv:2304.14454.
Zhou, C.; Liu, P.; Xu, P.; Iyer, S.; Sun, J.; Mao, Y.; Ma, X.;
Efrat, A.; Yu, P.; Yu, L.; et al. 2023a. Lima: Less is more for
alignment. arXiv preprint arXiv:2305.11206.
Zhou, H.; Gu, B.; Zou, X.; Li, Y.; Chen, S. S.; Zhou, P.;
Liu, J.; Hua, Y.; Mao, C.; Wu, X.; et al. 2023b. A survey of
large language models in medicine: Progress, application,
and challenge. arXiv preprint arXiv:2311.05112.

Appendix
Calculate benchmark improvements per compute
unit
The basic equation giving the cost to train a transformer
model is given by:

C = 6PD

where:
• C is the compute required to train the transformer model,

in total floating point operations
• C = Cforward + Cbackward

• Cforward ≈ 2PD

• Cbackward ≈ 4PD

• P is the number of parameters in the transformer model
• D is the dataset size, in tokens

Subsequently, we can calculate a simple Score Improve-
ment per Compute Unit (SICU) using the improvement of
benchmark score and the total compute.

SICU =
∆Benchmark Score

C

Based on Table 1, PubMedQA SICU is 0.0027 for Med-
itron, and 0.1071 for BioMedGPT-LM.


