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ABSTRACT

Image compression for machines aims to remove redundancies in images while
minimizing degradation in machine vision performance. However, existing meth-
ods use identical compression strategies for luma and chroma components, ignor-
ing their perceptual differences in machine vision. To address this issue, a Chroma
Superpixel Aggregation-based Learned Image Compression (CSA-LIC) method is
proposed in this paper, which processes luma and chroma components differently
according to their perceptual importance, and removes redundancies by exploit-
ing intra-chroma and luma-chroma inter-component correlations. Specifically, a
chroma adaptive sampling coding strategy is proposed, in which a superpixel-
based chroma sampling module is designed to reduce chroma data volume by
adaptively aggregating region-level semantic information based on chroma simi-
larity, and a chroma generation module is built to enhance color integrity via luma
compensation, thereby improving reconstructed chroma quality. To further elimi-
nate cross-component redundancies, a cross-component feature transform module
is designed to exploit luma-chroma inter-component correlations. Experimental
results demonstrate that CSA-LIC outperforms state-of-the-art image compres-
sion methods in compression efficiency.

1 INTRODUCTION

With the rapid advancement of the Internet of Things (IoT) and deep learning technologies,
Machine-to-Machine (M2M) communication accounts for a growing proportion of Internet traf-
fic in applications such as autonomous driving (Li et al., 2024; Wu et al., 2025; Huang et al., 2025),
video surveillance (Liu et al., 2025), and action recognition (Fan et al., 2022; Li et al., 2025a;b).
In M2M systems, edge devices continuously collect and transmit large volumes of image data to
cloud or edge servers for machine-based analysis, including object detection (Ren et al., 2017; Dang
et al., 2023) and instance segmentation (He et al., 2017; Dai et al., 2025). This creates signifi-
cant challenges for efficiently transmitting and storing massive image data, especially under limited
bandwidth. However, most existing image compression methods are primarily optimized for signal
fidelity (Zou et al., 2022; Liu et al., 2023; Jiang et al., 2025; Feng et al., 2025) or human visual per-
ception (He et al., 2022; Pan et al., 2025), and thus fail to meet the demands of machine intelligence.
Therefore, there is an urgent need to develop advanced Image Compression for Machines (ICM)
tailored to machine intelligence.

To compress images for intelligent analysis, traditional ICM methods (Fischer et al., 2021; Kwak
et al., 2023) utilize pre-trained task networks (e.g., Faster R-CNN (Ren et al., 2017) and Mask
R-CNN (He et al., 2017)) to extract salient spatial regions and adaptively adjust quantization param-
eters. Subsequently, these methods apply standard codecs, such as High Efficiency Video Coding
(HEVC) (Sullivan et al., 2012; Pan et al., 2020) and Versatile Video Coding (VVC) (Bross et al.,
2021; Yuan et al., 2024), to compress the transmitted images. However, these traditional methods
cannot optimize the coding framework end-to-end, which hinders further improvements in coding
efficiency. To address this limitation, learned ICM methods have been developed, which can be
broadly categorized into two types: attention mechanism-based methods (Le et al., 2021b; Fischer
et al., 2023; Peng et al., 2024; Li et al., 2025c) and task loss-based methods (Le et al., 2021a; Yang
et al., 2024; Zhang et al., 2024; Fischer et al., 2025). Attention mechanism-based methods focus
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on preserving critical spatial regions for machine vision, while task loss-based methods jointly opti-
mize the framework by integrating predictions or intermediate features into the rate-distortion loss.
However, these methods apply identical compression strategies to luma and chroma components,
neglecting their perceptual differences in machine vision, thereby limiting coding efficiency.

To solve this problem, a Chroma Superpixel Aggregation-based Learned Image Coding (CSA-LIC)
method is proposed in this paper, which performs differentiated processing for luma and chroma
components based on their perceptual differences in machine vision. Since chroma components
generally exhibit higher redundancies than luma components in machine vision, CSA-LIC elimi-
nates redundancies by exploiting intra-chroma and luma-chroma cross-component correlations. To
improve chroma coding efficiency, a Chroma Adaptive Sampling Coding (CASC) strategy is devel-
oped, which comprises a Superpixel-based Chroma Sampling Module (SCSM) and a Chroma Gen-
eration Module (CGM). The SCSM is designed to reduce chroma data volume via adaptive region-
level semantic aggregation, and the CGM is built to enhance reconstructed color integrity through
luma compensation. To further eliminate cross-component redundancies between luma and chroma
components, a Cross-component Feature Transform Module (CFTM) is designed to bridge spatial
structure differences and extract cross-component correlations. Experimental results demonstrate
that the proposed CSA-LIC achieves superior compression efficiency compared to state-of-the-art
methods. The main contributions of this work are summarized as follows:

• We propose a CSA-LIC method that processes luma and chroma components differently
according to their perceptual importance in machine vision, significantly improving coding
efficiency.

• To effectively improve the coding efficiency of chroma components, a CASC strategy is
developed, in which an SCSM is designed to reduce the chroma data volume via region-
level semantic aggregation, and a CGM is built to enhance color fidelity through luma-
guided compensation.

• To effectively remove cross-component redundancies, a CFTM is designed to align luma
and chroma features and exploit their correlations.

• Experimental results demonstrate that CSA-LIC achieves superior compression efficiency
compared to state-of-the-art image compression methods.

2 RELATED WORKS

2.1 TRADITIONAL ICM METHODS

To compress images for machine analysis, numerous traditional ICM methods (Shi & Chen, 2020;
Fischer et al., 2021; Huang et al., 2021; Kwak et al., 2023; Kim et al., 2023) have been devel-
oped, demonstrating impressive compression performance. Shi & Chen (2020) transformed the bit
allocation problem into a Markovian decision process, and introduced reinforcement learning to de-
termine the quantization parameter of each Coding Tree Unit (CTU). Fischer et al. (2021) proposed
a saliency-driven versatile video coding framework, in which a decision criterion based on salient
regions is designed to identify salient CTUs for adaptive quantization parameter adjustment. Huang
et al. (2021) introduced a visual analysis-motivated rate-distortion model, in which a CTU-level bit
allocation strategy is developed according to the region of interest for machine, and a multi-scale
feature distortion is designed to provide spatial context information. Kwak et al. (2023) developed
a feature-guided machine-centric image compression method, which employs gradient maps be-
tween the original and reconstructed images to preserve task-relevant regions. Kim et al. (2023)
introduced a machine-attention-based video compression method, which allocates higher bitrates to
task-relevant regions through a maximum a posteriori-based bit allocation strategy. However, these
methods fail to optimize the coding framework in an end-to-end manner, which limits compression
efficiency.

2.2 LEARNED ICM METHODS

Learned ICM methods (Le et al., 2021a;b; Chen et al., 2023; Wang et al., 2023; Qi et al., 2023; Aho-
nen et al., 2023; Shindo et al., 2024a;b; Peng et al., 2024; Li et al., 2025c; Yin et al., 2025) optimize
the compression framework in an end-to-end manner. Wang et al. (2023) developed a multi-task
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collaborative optimization strategy that employs task loss to preserve critical semantic information.
Qi et al. (2023) designed a saliency-guided bit allocation strategy, which allocates higher bitrates
to key regions for improving semantic fidelity and task performance. Ahonen et al. (2023) intro-
duced a region-of-interest image compression method, which employs a pre-trained task network to
extract salient regions and refines feature representation via spatial attention. Shindo et al. (2024a)
designed a region-guided mechanism to extract task-relevant features and incorporated a feature dis-
tortion loss for rate-distortion optimization. Shindo et al. (2024b) presented an edge structure-aware
compression method, in which a segment-anything model is used to extract object edges, and an
edge guidance mechanism is designed to preserve structure information. Peng et al. (2024) devel-
oped a saliency map-guided learned image compression method, in which a saliency map-guided
mean square error loss is used to prioritize key spatial regions. Li et al. (2025c) implemented a spa-
tial mask mechanism and a channel attention module to enhance task-relevant features across spatial
and channel dimensions. Yin et al. (2025) developed a unified compression method for both human
perception and machine vision, which introduces a contrastive language-image pre-training model
to alleviate reliance on task networks. However, these methods fail to differentiate coding strategies
between luma and chroma components according to their perceptual importance in machine vision,
thereby limiting coding efficiency.

Entropy Coding

Decoder

Encoder
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I

y

y

Chroma Adaptive Sampling Coding (CASC)
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s

CI

s

CI

LI

CI

Figure 1: The overall architecture of the proposed CSA-LIC.

3 PROPOSED CSA-LIC

3.1 OVERALL ARCHITECTURE

To efficiently compress images for machine vision, we propose a CSA-LIC method, which employs
differentiated processing strategies for luma and chroma components based on their perception dif-
ferences in machine vision. The overall architecture of the proposed CSA-LIC is shown in Figure 1,
which consists of four components: a CASC strategy, an encoder, an entropy coding, and a decoder.
The CASC strategy is developed to effectively remove redundancies within chroma components,
which contains an SCSM and a CGM. The SCSM is designed to reduce chroma data volume by
aggregating region-level semantic information, and the CGM is built to enhance the quality of re-
constructed chroma components by adaptively compensating chroma components with luma compo-
nents. The encoder removes cross-component redundancies between luma and chroma components,
in which a CFTM is designed to eliminate co-located spatial structure gaps and extract luma-chroma
feature correlations. The entropy coding (Minnen & Singh, 2020) estimates latent feature distribu-
tions, while the decoder reconstructs the compressed luma and chroma components. The workflow
of the proposed CSA-LIC is summarized as follows.
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The input image I is first transformed into luma components IL and chroma components IC via
color space conversion (Cheng et al., 2001). To reduce chroma data volume, IC is processed by
the SCSM to generate sampled chroma components IsC . The encoder jointly compresses IL and IsC
to learn compact latent features y. Specifically, a feature extraction module extracts luma features
from IL and chroma features from IsC . These features are transformed by the CFTM to remove cross-
component redundancies. The fused features are fed to an analysis transform module (Zou et al.,
2022) to generate y. Next, y are quantized to ŷ and compressed using a channel-wise autoregressive
entropy model (Minnen & Singh, 2020). The decoder reconstructs luma components ÎL and chroma
components ÎsC from ŷ. To improve the quality of reconstructed chroma components, ÎsC is enhanced
by the CGM to obtain the final reconstructed chroma components ÎC . Finally, the reconstructed
image Î is obtained through color space inverse conversion of ÎL and ÎC for machine vision tasks.

3.2 CHROMA ADAPTIVE SAMPLING CODING (CASC)

Machine vision is particularly sensitive to structure properties present in luma components. The
critical structure properties can effectively support machine intelligence even with constrained color
information (Hou et al., 2020), indicating that chroma components contain higher redundancies
than luma components. However, existing ICM methods (Chen et al., 2023; Peng et al., 2024; Yin
et al., 2025; Fischer et al., 2025) generally adopt identical compression strategies for both luma and
chroma components, neglecting their differential perceptual importance in machine vision, which
consequently limits compression efficiency. To address this issue, we propose a CASC strategy to
effectively remove chroma redundancies. The overall architecture of the proposed CASC is illus-
trated in Figure 1, which consists of an SCSM and a CGM. The SCSM aims to reduce chroma
data volume via adaptive sampling, while the CGM enhances reconstruction quality through luma
compensation.

3.2.1 SUPERPIXEL-BASED CHROMA SAMPLING MODULE (SCSM)

To reduce chroma data volume, an SCSM is proposed, which adaptively aggregates local regions
based on chroma content similarity. The SCSM leverages a superpixel sampling network (Jampani
et al., 2018) to merge chroma regions with consistent colors into unified superpixel representations,
thereby effectively eliminating intra-region redundancies. Specifically, initial superpixel represen-
tations S0 are generated by averaging pixel values within regular grid regions. The module then
computes associations between each chroma pixel and its neighboring superpixels to produce an
association matrix. This matrix serves as pixel weights for iteratively updating the superpixel rep-
resentations. After n refinement iterations, the final superpixel representations S are obtained. The
working process of the proposed SCSM is described as,

S0 = Avg(IC),

Qt = δ
(

IC⊗(St−1)>√
d

)
,

St = (Qt)> ⊗ IC ,
(1)

where Avg(·) represents the 4 × 4 average pooling; δ(·) denotes the softmax function; ⊗ indicates
the matrix multiplication; Qt represents the association matrix at the tth iteration; > denotes the
matrix transposition; and d indicates the channel dimension of chroma components.

Figure 2: An example of the original chroma com-
ponents and its corresponding region-level aggre-
gation results.

To intuitively demonstrate the effectiveness of
the proposed SCSM, Figure 2 compares orig-
inal chroma components with their aggregated
region-level representations. It can be seen that
chroma components with similar characteris-
tics are effectively clustered into coherent re-
gions, such as the tie of the middle person.
The visualization results strongly demonstrate
that the proposed SCSM can effectively reduce
chroma data volume, while significantly en-
hancing the representation capability of chroma
components.
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3.2.2 CHROMA GENERATION MODULE (CGM)

Figure 3: The architecture of the proposed CGM.

Superpixel-based chroma sampling leads to
color information loss, degrading reconstructed
image quality and task performance. To re-
move chroma redundancies while preserving
the color integrity of chroma components, we
propose a CGM, which adaptively compen-
sates for chroma components using luma com-
ponents, thereby improving the quality of re-
constructed chroma components. The proposed
CGM enhances both structure and content rep-
resentations by extracting local structure and
global semantic correlations between luma and
chroma components. Figure 3 illustrates the ar-
chitecture of the proposed CGM. To enhance
spatial structure consistency between reconstructed luma and chroma components, deformable con-
volution (Dai et al., 2017) is applied to adaptively mine local structure correlations. Specifically,
luma features are first processed by a convolution layer to generate spatial offsets, which guide the
deformable convolution layer to achieve precise spatial alignment. The proposed CGM effectively
compensates for chroma spatial details through this adaptive receptive field adjustment guided by
luma components. The aligned chroma features are then refined using a convolution layer. In paral-
lel, luma features are processed through a down-sampling residual block (He et al., 2016) for feature
refinement. Additionally, to achieve comprehensive content enhancement, we employ non-local at-
tention mechanism (Vaswani et al., 2017) to model global semantic correlations between luma and
chroma features. This attention mechanism adaptively extracts salient semantic information, thereby
enhancing content integrity. Lastly, two up-sampling residual blocks refine the weighted chroma
features to generate high-quality reconstructed chroma components ÎC . The working process of the
proposed CGM is described as follows,

fc = Conv3

(
DeConv3

(
ÎsC ,Conv4(ÎL)

))
,

fl = ResB2↓(ÎL),

frc = Conv3

(
DeConv3

(
fc,Conv2(fl)

))
,

frl = ResB2↓(fl),

fw = NonAtten
(
Concat[frc , f

r
l ]
)
,

ÎC = ResB

(
ResB2↑

(
ResB

(
ResB2↑(fw)

)))
,

(2)

where Convk(·) and DeConvk(·) denote the convolution and deformable convolution layers with
a kernel size of k × k, respectively; ResB2↓(·) and ResB2↑(·) represent the down-sampling and
up-sampling residual blocks with a kernel size of 3×3 and a stride of 2, respectively; Concat[·] rep-
resents the channel-wise concatenation; NonAtten(·) denotes the non-local attention mechanism.

3.3 CROSS-COMPONENT FEATURE TRANSFORM MODULE (CFTM)

Figure 4: The architecture of the proposed CFTM.

Due to the strong spatial and semantic corre-
lations between luma and chroma components,
their feature representations exhibit substantial
cross-component redundancies. While feature
fusion through luma-chroma correlation extrac-
tion can effectively reduce these redundancies,
there exist spatial structure gaps between co-
located luma and sampled chroma features.
Conventional fusion methods (e.g., channel-
wise concatenation) fail to establish effective
inter-feature interactions, which severely lim-
its redundancy elimination efficiency. To ad-
dress this problem, a CFTM is designed, which bridges spatial structure gaps via dynamic cross-
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component interaction and performs robust feature fusion through channel-spatial attention. The
architecture of the proposed CFTM is illustrated in Figure 4.

To eliminate spatial structure gaps, a dynamic cross-component interaction is proposed to achieve
co-located spatial structure alignment. Specifically, two residual blocks are first applied to enhance
luma and chroma features through local receptive fields. Then, the enhanced luma and chroma
features are concatenated in a channel-wise manner, and subsequently fed into three convolution
layers to dynamically generate spatial mapping relationships through non-local interactions. Finally,
two residual blocks are used to refine the aligned luma and chroma features. This progressive method
effectively eliminates spatial structure gaps between luma and chroma components, while preserving
their component-specific characteristics. Moreover, to effectively fuse the aligned luma and chroma
features, a channel-spatial attention mechanism (Woo et al., 2018) is employed to extract luma-
chroma correlations through channel and spatial attention, thereby eliminating cross-component
redundancies. The working process of the proposed CFTM is formulated as follows,

f tL = ResB(fL), f tC = ResB(fC),

fpL = Concat[f tL, f
t
C ], fpC = Concat[f tC , f

t
L],

faL = δ
(
Conv1(fpL)⊗ Conv1(fpL)>

)
⊗ Conv1(fpL),

faC = δ
(
Conv1(fpC)⊗ Conv1(fpC)>

)
⊗ Conv1(fpC),

f∗L = ResB(faL), f∗C = ResB(faC),

fi = Concat[f∗L, f
∗
C ],

fs = ChanAtten(fi) + fi,

fo = SpatAtten(fs) + fs,

(3)

where fL and fC denote the luma and chroma features, respectively; ResB(·) indicates a resid-
ual block with a kernel size of 3 × 3; f∗C and f∗L represent the aligned chroma and luma features,
respectively; ChanAtten(·) and SpatAtten(·) mean the channel and spatial attention modules, re-
spectively.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS

The proposed CSA-LIC is trained on the COCO2017 training dataset (Lin et al., 2014). The original
dataset contains 118,287 images, of which 117,465 with resolutions exceeding 256 × 256 pixels
are retained for training. For each image, a 256 × 256 patch is randomly cropped as input to the
CSA-LIC. We evaluate compression efficiency on the COCO2017 and OpenImagesV6 validation
datasets (Kuznetsova et al., 2020), comparing the proposed method with other state-of-the-art image
compression methods.

4.1.2 TRAINING SETTINGS

We use object detection and instance segmentation as machine vision tasks, employing Detectron2’s
Faster/Mask R-CNN X101-FPN (Wu et al., 2019) as the task network. CSA-LIC is optimized using
rate-distortion loss, defined as,

L = R+ λ(Di +Df ), (4)

where R represents the rate loss; Di denotes the pixel-level reconstruction loss between the recon-
structed image Î and original image I using the Mean Squared Error (MSE) function; Df indicates
the feature-level reconstruction loss from the task network’s intermediate features using the MSE
function; λ ∈ {0.001, 0.0025, 0.005, 0.01} serves as the Lagrangian multiplier controlling the rate-
distortion trade-off. We minimize this loss using the Adam optimizer (Kingma & Ba, 2015) with
a batch size of 8 for 200 epochs. The learning rate follows a staged decay strategy: initially fixed
at 1×10−4 for the first 50 epochs, then halved every 30 epochs until reaching below 5×10−6. The
proposed CSA-LIC is implemented in PyTorch on an Ubuntu 20.04 platform with NVIDIA RTX
4090 GPUs.
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4.2 RESULTS AND ANALYSIS

4.2.1 OBJECTIVE QUALITY ANALYSIS

To validate the effectiveness of the proposed CSA-LIC, we compare it with four state-of-the-art
image compression methods: VVC-Intra (Zhang et al., 2021), LALIC (Feng et al., 2025), SMIC-
Net (Peng et al., 2024), and UG-ICM (Yin et al., 2025). Compression efficiency is quantified us-
ing two metrics: Bjøntegaard Delta bitrate (BD-rate, η1) for bitrate savings and Bjøntegaard Delta
mean Average Precision (BD-mAP, η2) at IoU threshold 0.5 for task performance improvements,
both measured against the VVC-Intra anchor. As shown in Tables 1, CSA-LIC demonstrates supe-
rior performance across both object detection and instance segmentation tasks. On the COCO2017
dataset, it achieves average (BD-rate, BD-mAP) of (-16.068%, +3.781%), (-19.602%, +4.443%),
and (-4.920%, +2.970%) against LALIC, SMIC-Net, and UG-ICM, respectively. Corresponding re-
sults on OpenImagesV6 are (-20.493%, +1.843%), (-30.548%, +2.682%), and (-3.460%, +1.257%).
This advantage of the proposed CSA-LIC stems from two key innovations: (1) The SCSM re-
duces chroma data volume through region-level semantic aggregation, while the CGM enhances
reconstruction quality via luma compensation. (2) The CFTM effectively removes cross-component
redundancies to boost compression efficiency.

Table 1: Compression performance comparison in terms of BD-rate (η1, %) and BD-mAP (η2, %)
on the COCO2017 and OpenImagesV6 datasets (anchor: VVC-Intra)

Dataset COCO2017 OpenImagesV6

Task Detction Segmentation Average Detction Segmentation Average

Method η1/η2 η1/η2 η1/η2 η1/η2 η1/η2 η1/η2
LALIC -32.370/4.417 -28.942/3.623 -30.656/4.020 -24.147/1.402 -28.698/1.821 -26.423/1.612
SMIC-Net -29.121/3.732 -25.122/2.983 -27.122/3.358 -14.476/0.555 -18.259/0.990 -16.368/0.773
UG-ICM -42.238/6.123 -41.369/3.538 -41.804/4.831 -40.513/2.237 -46.398/2.158 -43.456/2.198
Proposed -48.526/8.119 -44.922/7.482 -46.724/7.801 -43.345/3.221 -50.488/3.688 -46.916/3.455

For intuitive comparison of compression efficiency, Figure 5 presents the rate-accuracy curves of
CSA-LIC versus other methods on both object detection and instance segmentation tasks. The
results demonstrate that CSA-LIC consistently outperforms compared methods across these tasks.
These findings indicate that the proposed method effectively minimizes performance degradation in
machine vision tasks while achieving superior redundancy reduction. Furthermore, the consistent
performance gains across diverse datasets validate the robustness and generalization capability of
CSA-LIC.

Figure 5: Rate-accuracy curves of each image compression method.
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4.2.2 SUBJECTIVE QUALITY ANALYSIS

To visually verify the superiority of CSA-LIC, we select two representative samples from the
COCO2017 dataset for qualitative analysis. Figure 6 compares the visual results of different meth-
ods on object detection and instance segmentation tasks. Notably, CSA-LIC achieves significantly
higher accuracy while maintaining better bitrate efficiency (lower bpp) than other methods. These
visual comparisons conclusively validate the dual-function capability of CSA-LIC, which achieves
significant redundancy reduction while maintaining task performance without noticeable degrada-
tion.

Proposed

bpp: 0.061

bpp: 0.026

Figure 6: Qualitative comparison of object detection and instance segmentation performance on the
COCO2017 dataset.

Figure 7: Reconstructed image quality for human
perception.

To further evaluate the reconstructed image
quality for human perception, we select one
representative image from the COCO2017
dataset for quality comparison. Figure 7 shows
the reconstructed image quality of each im-
age compression method. We can see that the
proposed method achieves the lowest bpp of
0.298, significantly outperforming other meth-
ods in terms of compression efficiency. In
terms of image quality, the proposed method
achieves a PSNR of 23.143 dB, which is the
second-highest among all the methods, closely
following the LALIC method, which achieves
the highest PSNR of 24.414 dB. However, the
bpp of the proposed method is nearly half of
LALIC’s 0.530, illustrating its superior com-
pression performance without compromising image quality significantly. Overall, the proposed
method offers an excellent balance between compression efficiency and reconstructed image quality,
demonstrating a favorable trade-off compared to other image compression methods.

4.3 ABLATION ANALYSIS

Table 2: Ablation study of CSA-LIC components:
BD-rate (η1, %) and BD-mAP (η2, %), anchor:
VVC-Intra

SCSM CFTM CGM Detection Segmentation

η1/η2 η1/η2
7 7 7 -14.226/1.915 -9.810/1.243
7 4 7 -43.186/7.338 -40.165/5.873
4 7 4 -44.267/7.648 -41.256/6.026
4 4 4 -48.526/8.119 -44.922/7.482

The proposed CSA-LIC comprises two core
components: CASC and CFTM. The CASC en-
hances chroma coding efficiency through two
novel mechanisms: (1) an SCSM that re-
duces chroma data volume via adaptive region-
level semantic aggregation, and (2) a CGM
that improves reconstructed chroma quality
through luma compensation. The CFTM elim-
inates cross-component redundancies by bridg-
ing spatial structure gaps and exploiting luma-
chroma correlations. Ablation studies on the
COCO2017 dataset (Table 2) validate each
component’s contribution: removing CASC degrades (BD-rate, BD-mAP) performance by (5.340%,
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0.781%) and (4.757%, 1.609%) for object detection and instance segmentation tasks, respectively,
while replacing CFTM with channel-wise concatenation causes reductions of (4.259%, 0.471%)
and (3.666%, 1.456%). These results conclusively validate the contributions of all components to
CSA-LIC’s superior coding efficiency.

Figure 8: Reconstructed image quality of CASC.

To intuitively verify the effectiveness of the
proposed CASC, we select one representative
image from the COCO2017 dataset for quality
comparison. The reconstructed images of the
proposed CASC are presented in Figure 8. We
can observe that the proposed CASC achieves
bpp saving of 0.059, while yielding higher
PSNR of 24.696 dB. These results strongly ver-
ify that its SCSM effectively removes chroma
redundancies, and its CGM can improve the
quality of reconstructed chroma components.

Figure 9: Feature visualization of the proposed
CFTM.

To further validate the effectiveness of the pro-
posed CFTM, Figure 9 compares feature vi-
sualization maps between channel-wise con-
catenation and CFTM. The results demonstrate
that the proposed CFTM effectively eliminates
cross-component redundancies while preserv-
ing salient spatial regions. This improvement
stems from CFTM’s dynamic cross-component
interaction, which bridges spatial structure gaps
between luma and chroma features. Addition-
ally, it leverages robust feature fusion through
channel-spatial attention mechanisms.

4.4 COMPLEXITY ANALYSIS

Table 3: Computational complexity comparison
on the COCO dataset

Method FLOPs Parameters Encoding Decoding
(G) (M) Time (s) Time (s)

LALIC 620.31 116.48 0.29 0.16
SMIC-Net 173.26 12.43 3.36 7.55
UG-ICM 360.34 117.78 0.22 0.28
Proposed 258.36 77.93 0.12 0.15

We evaluate the computational complexity of
CSA-LIC and other learned image compres-
sion methods by analyzing FLOPs, parameter
counts, encoding time, and decoding time. As
shown in Table 3, CSA-LIC achieves lower
computational costs than compared methods:
(1) Compared to LALIC and UG-ICM, it re-
quires fewer FLOPs and parameters; (2) While
SMIC-Net has reduced parameters and FLOPs,
its compression performance is substantially
worse; (3) Both encoding and decoding times
are significantly shorter than other methods. These results demonstrate that CSA-LIC provides su-
perior compression efficiency with lower computational overhead across all metrics.

5 CONCLUSION

In this paper, we propose a CSA-LIC method that implements differentiated processing for both
luma and chroma components to remove redundancies. The proposed CSA-LIC consists of two key
components: CASC and CFTM. The CASC improves chroma redundancy elimination efficiency
through an SCSM and a CGM. Specifically, the SCSM reduces chroma data volume through region-
level semantic information aggregation, whereas the CGM enhances reconstructed chroma quality
with luma compensation. The CFTM addresses spatial structure gaps between luma and chroma fea-
tures by extracting luma-chroma correlations for eliminating cross-component redundancies. Exten-
sive experiments demonstrate that CSA-LIC outperforms other state-of-the-art image compression
methods.
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