
Under review as submission to TMLR

Neuronal Learning Analysis using Cycle-Consistent Adver-
sarial Networks

Anonymous authors
Paper under double-blind review

Abstract

Recent advances in neural imaging technologies enable high-quality recordings from hun-
dreds of neurons over multiple days, with the potential to uncover how activity in neu-
ral circuits reshapes over learning. However, the complexity and dimensionality of popula-
tion responses pose significant challenges for analysis. To cope with this problem, existing
methods for studying neuronal adaptation and learning often impose strong assumptions
on the data or model that may result in biased descriptions of the activity changes. In this
work, we avoid such biases by developing a data-driven analysis method for revealing activ-
ity changes due to task learning. We use cycle-consistent adversarial networks (Zhu et al.,
2017) to learn the unknown mapping between pre- to post-learning neuronal responses. To
do so, we develop an end-to-end pipeline to preprocess, train, validate and interpret the
unsupervised learning framework with calcium imaging data. We validate our method on
two synthetic datasets with known ground-truth transformation, as well as on V1 record-
ings obtained from behaving mice, where the mice transition from novice to expert-level
performance in a visual-based behavioural experiment. We show that our models can iden-
tify neurons and spatiotemporal activity patterns relevant to learning the behavioural task,
in terms of sub-populations maximising behavioural decoding performance and task charac-
teristics not explicitly used for training the models. Together, our results demonstrate that
analysing neuronal learning processes with data-driven deep unsupervised methods can un-
ravel activity changes in complex datasets.

1 Introduction

One of the objectives in computational neuroscience is to study the dynamics of neural processing and
how neural activity reshapes when learning a task. A major hurdle in this endeavour was the difficulty in
obtaining high-quality neural recordings of the same set of neurons across an extended period of learning
a task (Stevenson & Kording, 2011; Lütcke et al., 2013; Dhawale et al., 2017). With the advent of modern
neural imaging technologies, it is now possible to monitor a large population of neurons over days or even
weeks (Williams et al., 2018a; Steinmetz et al., 2021), thus allowing experimentalists to obtain in vivo
recordings from the same set of neurons across different learning stages.

Significant efforts have been put into extracting interpretable descriptions of how the responses reshape
with experience, ranging from latent variable models and domain adaptation models to deep generative
models. One popular approach is to apply dimensionality reduction methods, including Principal Component
Analysis (PCA), Tensor Component Analysis (TCA), Gaussian Process Factor Analysis (GPFA), Gaussian
Process Factor Analysis with Dynamical Structure (GPFADS), and Preferential Subspace Identification
(PSID) (Cunningham & Byron, 2014; Williams et al., 2018b; Sani et al., 2021; Yu et al., 2009; Rutten et al.,
2020), to learn a set of latent factors that describe experimental variables (Hurwitz et al., 2021a). Using
Deep Neural Networks (DNNs) as latent dynamic models has become increasingly popular in recent years.
Pandarinath et al. (2018) introduced a Variational Autoencoder (VAE) called Latent Factor Analysis via
Dynamical Systems (LFADS) to learn the latent dynamics from single-trial spiking activities. Gao et al.
(2016) adapted the framework to work with calcium imaging data in Poisson feed-forward neural network
Linear Dynamical System (PfLDS). Hurwitz et al. (2021b) further extended LFADS with an additional linear

1

Under review as submission to TMLR

decoder to filter irrelevant behaviour dynamics which led to a better low-dimensional representation. In an
adjacent setting, numerous works pose the neural analysis task as a domain adaption problem and utilise
methods based on Generative Adversarial Networks (GANs), Canonical Correlation Analysis (CCA) and
VAEs to learn an aligned latent representation of neural responses obtained over multiple recording sessions
or days (Farshchian et al., 2018; Gallego et al., 2020; Jude et al., 2022). While these methods enabled
substantial progress in understanding the structure of neuronal activity, they impose strong assumptions
inherent in the modelling technique or the animal experiment, such as the linearity assumption in the linear
latent variable models and the requirement of an experimental setup with structured trials. On the other
hand, a fully data-driven method without strong assumptions about the experimental setup or response
statistics could provide an unbiased view of the neural activity.

Fully data-driven methods are challenging because they require large numbers of samples for training. How-
ever, the number of trials in neuroscience datasets is typically small. This problem is exacerbated for exper-
iments investigating learning where combinations of experience stages are of interest, e.g. novice and expert
animals. Learning the transformation between these stages in a supervised manner would require a pairing
of particular trials, compounding the need for large numbers of trials. Instead, we here explore the problem
of learning the transformation from one stage of learning to another with unknown sample pairing as an un-
supervised translation task. This way, we have more sample pairings at our disposal at the expense of being
agnostic to particular trials. Moreover, since we do not take trial information into consideration, the method
is applicable to experiments without a clear trial structure (e.g. experiments with freely roaming animals).

In this work, we use cycle-consistent adversarial networks (Zhu et al., 2017), or CycleGAN, to learn the
mapping between pre- and post-learning neuronal activities in an unsupervised and data-driven manner.
Such a transformation can be useful in follow-up studies to 1) identify neurons that are particularly important
for describing the changes in the overall response statistics, not limited to first or second-order statistics;
2) detect response patterns relevant for changes from pre- to post-learning; 3) determine what experimental
details are of particular interest for learning. To this end, our work includes the following contributions:

– We introduce two synthetic datasets with ground-truth transformation and one recorded dataset from
the primary visual cortex (V1) of behaving mice to validate the method.

– We demonstrate that our method is able to identify neurons and response patterns from the neural
recordings that are relevant to the behavioural task in a data-driven manner.

– We perform a decoding analysis on two behavioural variables and show that using the top-30 neurons
learned by the models, can achieve similar decoding performance as using all neurons.

– We propose a novel neuron ordering method that can improve the learning performance of convolutional-
based neural networks by pre-sorting the spatial order of the neurons as a preprocessing step.

Notations used in this manuscript are listed in Table A.1 for convenience.

2 Methods

In this section, we first formalise the problem we aim to tackle in this work, followed by the setup of the
animal experiment which we use to obtain pre- and post-learning recordings, and descriptions of two synthetic
datasets we introduce to validate our method. We then detail the unsupervised learning framework, as well
as the preprocessing, training, and evaluation procedures.

2.1 Task setting

Our goal is to model the transformation between pre-learning and post-learning activities. Given two sets
of neural recordings X and Y which correspond to the pre-learning and post-learning activities from the
same behaving animal, one could learn the transformation between the two sets in a supervised manner, i.e.
given a trial i = 1 in xi ∈ X, learn model G : X → Y to minimise the error in G(xi) and yi ∈ Y . However,
due to trial-to-trial variability in neuronal responses (Carandini, 2004), as well as external factors that can

2

Under review as submission to TMLR

influence the recording session (e.g. small changes in lighting or level of attention by the animal), trial-to-
trial pairings of X and Y tend to be noisy (i.e. we cannot ensure that trial i = 1 in X corresponds to trial
i = 1 in Y). Moreover, combinations of these factors are unlikely to occur multiple times, leading to a small
number of samples for training our models. Instead, we investigate the problem of learning the X → Y
transformation with unknown pairing as an unsupervised translation task. In other words, given the neural
recordings of a novice animal, can we translate the responses that correspond to the animal with expert-
level performance, and vice versa?

2.2 Recorded data

To record neuronal activities with pre- and post-learning responses, we conducted a virtual reality (VR)
experiment1 that follows a similar procedure as in Pakan et al. (2018) and Henschke et al. (2020). Briefly, a
head-fixed mouse was placed on a linear treadmill that allows it to move forward and backward. A lick spout
and two monitors were placed in front of the treadmill and a virtual corridor with a defined grating pattern
was shown to the mouse. A reward (water drop) was available if the mouse licked within the predefined reward
location in the virtual corridor (at 120 to 140 cm), in which a black screen is shown as a visual clue, and
the mouse learns to utilise both visual information and self-motion feedback to maximise reward. Figure 1
illustrates the experiment setup. The same set of neurons in the primary visual cortex was labelled with the
GCaMP6 calcium indicator and monitored throughout 5 days of experiments. The fluorescence signals were
then decontaminated and extracted from the calcium imaging data using FISSA (Keemink et al., 2018), and
the relative changes in fluorescence (∆F/F0) over time were used as a proxy for an action potential. Four
mice were trained in the experiment and all mice achieved expert-level performance within 4 days of training.
For instance, Mouse 1 took on average 36% less time to complete a trial with a 52% improvement in the
received rewards from day 1 to day 4. Trial information of Mouse 1 is shown in Table 1 (see Appendix C for
Mouse 2 - 4). This dataset provides excellent insights into how cortical responses reshape with experience,
and therefore, we utilise the recordings obtained on the 1st (pre-learning) and 4th day2 and represent their
distributions as Xrec and Yrec, respectively.

Ca 2+ imaging

n 1 n 2 n 3 n 102

(N, 2048, 102, 1)

Figure 1: (Left) illustration of the mouse virtual-environment setup. A defined grating pattern is displayed
on the monitors and the mouse can move forward and backward in the virtual corridor. When the mouse
approaches the reward zone, which was set at 120 cm to 140 cm from the initial start point, the grating
pattern would disappear and be replaced with a blank screen. If the mouse licked within the virtual reward
zone, then a droplet of water was given to the mouse as a reward. Trials reset at 160 cm. The figure is based
on Figure 1 in Pakan et al. (2018). (Right) original coordinates and annotation order of the 102 recorded
neurons. i.e. neuron 1 here would be at index 0 in the data matrix, and neuron 65 would be at index 64.

1Data used in this work will be made publicly available upon acceptance.
2Mouse 2 and 3 performed worse on day 5, hence, we use the recordings obtained on day 4 for all mice.

3

Under review as submission to TMLR

Table 1: Mouse 1 trial information where 102 V1 neurons were monitored across 5 days of training, and the
rodent achieved “expert” level by day 4 with a success rate of > 75% at the task.

Day Duration Num. trials Avg. trial duration Licks Rewards
1 894.73s 129 6.94s 2813 140
2 898.68s 177 5.08s 2364 182
3 897.16s 192 4.67s 2217 198
4 898.45s 203 4.43s 1671 213
5 897.25s 264 3.40s 1298 327

2.3 Synthetic data

To evaluate our model in a setting with known ground truth, we introduce two synthetic datasets: a simulated
dataset (Section 2.3.1) and an augmented dataset (Section 2.3.2). As these datasets contain known ground-
truth pairing, they allow us to evaluate our method by directly comparing the transformation results with
the synthetic labels. Moreover, the augmented dataset further enables us to inspect the transformation
results visually.

2.3.1 Simulated data

Figure 2: The (Left) average firing pattern of two simulated populations, (Blue) Xsim and (Orange) Ysim.
Each population has two firing patterns (i.e. Pattern 1 and 2). For instance, neurons in Xsim are high firing
between 1 s to 2 s or 8 s to 9 s. (Right) Two randomly selected spike trains and their convolved calcium-like
traces from the two simulated populations. Figure E.1 shows a sample population of xsim and ysim.

We first simulate the neuronal responses of two populations of size 128. Each trial is sampled from a Poisson
distribution with a trial duration of 10 s (i.e. 240 time-steps at 24 Hz) for a total of 1400 trials (i.e. about
the same as the Mouse 1 recorded data in Section 2.5). In addition to the background activity at ∼0.1 Hz,
each population consists of two distinct firing patterns. Half of the neurons in the first population are highly
active (∼3 Hz) from 1 s to 2 s, and the other half from 8 s to 9 s; whereas neurons in the second population
are active from 3 s to 4 s and from 6 s to 7 s. We use an exponential onset and double decay function fCa, as
described in Grewe et al. (2010), to obtain fluorescence-like traces from the spike times t:

fCa(t) =
{

0 for t ≤ t0[
1 − e−(t−t0)/τonset

][
A1e−(t−t0)/τ1 + A2e−(t−t0)/τ2

]
otherwise (1)

where A1, τ1, A2 and τ2 are the amplitude and decay time parameters for the first and second exponential
decay; τonset is the action potential onset time. We then add Gaussian noise (signal-to-noise ratio of 10) to the
convolved traces to improve realism. We denote the simulated responses from the two populations as Xsim
and Ysim, and their overall firing patterns and samples of calcium-like traces are shown in Figure 2. Notably,

4

Under review as submission to TMLR

we shuffle the neuron index such that the traces appear less structured and thus increase the difficulty for
the generators to learn the mapping between the two sets, an example of the shuffled populations is shown
in Figure E.1. The simulated dataset allows us to compare the activity patterns of the transformed traces,
ŷsim = G(xsim) and x̂sim = F (ysim), against the ground truth patterns.

2.3.2 Augmented data

In addition to testing the method’s capability to learn the transformation between two neuron populations,
we would also like to evaluate the method’s capacity to recover or generate neural activity from unpaired
data. To that end, we introduce an additional synthetic dataset – the augmented dataset Xaug and Yaug =
Φ(Xaug). We construct a handcrafted spatiotemporal transformation that introduces a clear triangular
pattern to the day 1 recordings from the VR experiment Xrec. For a given neural recording x ∈ X with
shape (N, H, W) where N is the number of samples, H is the time-steps and W is the number of neurons,
we define transformation Φ as:

MH×W
aug =

{
0 i ≤ sj, i ∈ H, j ∈ W
1 otherwise (2)

Φ(xaug) = Maugxaug + 0.25η (3)

where Maug is a H ×W matrix where values (i, j), i ≤ sj are set to 0 and s = 8 is the number of time-steps to
mask for each row (neuron). Φ replaces activities masked by Maug with Gaussian noise η ∈ N (µx, σ2

x) with
the per-neuron mean and standard deviation of xaug. Importantly, we shuffle the pairing of Xaug and Yaug
such that xi

aug ̸= Φ(yi
aug) for any sample i in the training set. This forces the model to learn from unpaired

samples but allows us to measure the transformation error in F (Yaug) and G(Xaug) against their ground-
truth data Xaug and Yaug using common distance metrics on the test set. An example of xaug and yaug is
available in Figure 3 (example traces are available in later Sections). Such spatiotemporal augmentation,
though biologically unrealistic, allows easy visual verification of the transformation learned by the generators.
In addition, one would expect the models to focus on regions surrounding the masked area in xaug and yaug,
thus, allowing us to ensure that the attention gate modules and localisation maps function as intended.

Figure 3: Example of a randomly selected segment from Mouse 1 recordings (Left) xaug and its corresponding
(Right) augmented yaug = Φ(xaug). Note that the bottom left corner in yaug has been masked with noise
added to the segment. The TURBO colormap is applied to improve readability.

2.4 CycleGAN

In this section, we describe the cycle-consistent adversarial network (CycleGAN, Zhu et al. 2017) framework
which is a core part of the unsupervised learning mechanism used in this work. Generative Adversarial
Networks (GANs, Goodfellow et al. 2014) is a class of deep generative models that have shown promising
results in synthesising neuronal activities that capture the low-level statistics of recordings obtained from
behaving animals (Molano-Mazon et al., 2018; Ramesh et al., 2019; Li et al., 2020). CycleGAN is an
unsupervised framework that utilises two GANs to learn the mapping between two unpaired distributions
X and Y via cycle-consistency optimisation.

CycleGAN consists of four networks: generators G : X → Y and F : Y → X which learn the transformation
from X to Y and vice versa; and discriminators DX : X → [0, 1] and DY : Y → [0, 1] which learn to

5

Under review as submission to TMLR

distinguish if a given input is part of distribution X and Y , respectively. In a forward cycle step (X →
Ŷ → X̄, illustrated in Figure B.1), we first sample x ∼ X and apply transformation G to obtain ŷ = G(x).
We expect ŷ to resemble data from the expert distribution Y . Hence DY learns to minimise (4) LDY =
−Ey∼Y [(DY (y)−1)2]+Ex∼X [DY (G(x))2]. Similar to a typical GAN, generator G learns to deceive DY with
the objective of (5) LG = −Ex∼X [(DY (G(x)) − 1)2]. This formulation is the loss function of LSGAN (Mao
et al., 2017) when the discriminator labels for generated and real samples are 0 and 1. However, DY only
verifies whether ŷ ∈ Y but cannot ensure that ŷ is the corresponding transformation of x. Moreover, since
X and Y are not paired, we cannot directly compare ŷ with samples in Y . To overcome this issue, another
transformation is applied to reconstruct x̄ = F (ŷ), and if both transformations G and F are reasonable, then
the distance between X and X̄ = F (G(X)) should be small. Therefore, the generators also optimise this
cycle-consistent loss (6) Lcycle = Ex∼X [∥ x − F (G(x)) ∥] + Ey∼Y [∥ y − G(F (y)) ∥]. In addition, we would
expect x̂ = F (x) and ŷ = G(y) to be in distributions X and Y given that F : Y → X and G : X → Y . Hence
we have the identity loss objective (7) LG

identity = Ey∼Y [∥ y−G(y) ∥]. Note that mean absolute error (MAE) was
used as the distance function for both cycle-consistent and identity loss in the original work (Zhu et al., 2017).

Taken all together, G optimises the following objectives: (8) LG
total = LG + λcycleLcycle + λidentityLG

identity,
where λidentity and λcycle are hyper-parameters for identity and cycle loss coefficients. All four networks
are trained jointly (LF

total and LDX are the same as LG
total and LDY but in opposite directions). The

framework has shown excellent results in a number of unsupervised translation tasks, including natural
language translation (Gomez et al., 2018) and molecular optimisation (Maziarka et al., 2020), to name a few.

2.5 Model pipeline

We devised an end-to-end analysis pipeline3 for calcium signals, including data preprocessing and augmen-
tation, model training and interpretation, and, finally, evaluation of the translated calcium signals and also
spike statistics. An illustration of the entire pipeline is shown in Figure 4.

As we want the models to identify patterns relevant to the animal experiment in a completely data-driven
manner, we apply little preprocessing to the fluorescence signals. For the augmented and recorded dataset, we
first segment the two datasets X and Y with a sliding window of size H = 2048 along the temporal dimension
(around 85s in wall time). This preprocessing step ignores the trial information in the animal experiment and
results in data with shape (N, H, W) where W is the number of neurons and N is the number of segments.
Note that the segmentation step is not needed for the simulated dataset since we already sample N trials
with shape (H, W). In order to take advantage of the spatiotemporal information in calcium responses using
2-dimensional convolutional neural networks (CNNs), we further convert the segment to shape (N, H, W, 1),
effectively treating each segment as a grey-scale image. We normalise each set to the range [0, 1], and divide
the datasets into train-validation-test sets with a ratio of 70%:15%:15%.

In addition to the cycle-consistency and identity loss comparison metrics to validate the transformation
performance, we also compare the first and second-order statistics of the translated responses X̂ = F (Y)
and Ŷ = G(X) against X and Y . To that end, we first infer spike trains from the fluorescence signals using
Cascade (Rupprecht et al., 2021), the state-of-the-art spike deconvolution algorithm. We then compute the
following spike train similarities and statistics: (1) mean firing rate for evaluating single neuron statistics; (2)
pairwise Pearson correlation for evaluating pairwise statistics; (3) pairwise van Rossum distance (Rossum,
2001) for evaluating general spike train similarity. These quantities are evaluated across the whole population
for each neuron or neuron pair and we compare the resulting distributions over these quantities obtained
from the original and translated data: (a) X | X̂ = F (Y), (b) X | X̄ = F (G(X)), (c) Y | Ŷ = G(X) and (d)
Y | Ȳ = G(F (Y)). We, therefore, validate the whole spatiotemporal first and second-order statistics as well
as general spike train similarities.

Finally, we incorporate two visual explanation methods into our generator architecture and pipeline to
uncover patterns in the neural activities, detailed in Section 2.6.1 and Section 2.7. We then evaluate the
explainability techniques via a decoding analysis on selected behavioural variables from the VR experiment.
Implementation details can be found in Section 2.8.

3The software codebase is attached as a supplementary file and it will be made publicly available upon acceptance.

6

Under review as submission to TMLR

All models were trained with the Adam optimiser (Kingma & Ba, 2014) for a maximum of 200 epochs
where all models converged. With mixed precision training Micikevicius et al. (2017), the method takes on
average 15 hours to fit on a single NVIDIA A100 GPU. We selected the hyper-parameters by a random
search (Bergstra & Bengio, 2012) on the augmented dataset, and the same settings were then used in the
other two datasets. The hyperparameter search space and final settings are shown in Table B.2 and B.3,
respectively.

2.6 Networks architecture

In this section, we detail the generator and discriminator architectures. In this work, we propose two
modifications to the generators from Zhu et al. (2017): (1) block residual connection – Model-R, and (2)
attention-gated residual connection – Model-AG. Figure 5 illustrates the architecture of the Model-AG.

2.6.1 Generator

Given a normalised input x with shape (N, H, W, C), the original generator in Zhu et al. (2017) first com-
presses x with 2 convolution blocks (DS1 and DS2), followed by 9 residual processing blocks (RBi, i ∈ {1, 9}),
then 2 up-sampling blocks (US1 and US2) to output a tensor with the same spatial-temporal dimension as
the x, and finally, a convolution layer with C filters and a kernel size of 1 and C and sigmoid activation.
Each down-sampling block (Blue box in Figure 5) uses a 2D strided convolution layer to reduce the spa-
tiotemporal dimensions by a factor of 2, then followed by Instance Normalisation (InstanceNorm, Ulyanov
et al. 2016), GELU (Hendrycks & Gimpel, 2016) activation and Spatial Dropout. Each up-sampling block
has the same structure as the down-sampling blocks but with a transposed convolution layer instead. Each
residual block consists of two convolution blocks with padding added to offset the dimensionality reduction
and a skip connection that connects the input to the block with the output of the last convolution block via
element-wise addition (Pink box in Figure 5).

As residual connections are known to improve gradient flow, especially in CNNs, thus mitigating the issue of
vanishing gradients (He et al., 2016a;b; Huang et al., 2017), the first modification we made to the generator
is to add residual connections between corresponding down-sampling blocks and up-sampling blocks, i.e.
concat(RB9, DS2) → US1 and concat(US1, DS1) → US2. Concretely, in the original model, the last residual block
RB9 outputs q which is then passed to US1 directly and upsampled via transposed convolution. Now, q is first
concatenated with the output of DS2 a in the channel dimension and then passed to US1, thus allowing better
gradient flow in the increasingly deeper networks. This level-wise residual connection was first introduced
and made popular in Ronneberger et al. (2015). We denote this generator architecture as Model-R.

The second modification we made to the generator is to adapt the additive attention gate (AG, Oktay et al.
2018) module into our residual connections. We denote this modification as Model-AG, which is illustrated
in the yellow block in Figure 5. Given q and a, the outputs of RB9 and DS2 respectively, AG1 first apply a
(separate) convolution with a kernel size of 1 and InstanceNorm for each variable, followed by an element-
wise summation sAG = InstanceNorm(CONV1×1(q)) + InstanceNorm(CONV1×1(a)) such that overlapping
regions in q and a are amplified. We then apply ReLU (Nair & Hinton, 2010) to eliminate negative values
in sAG, then learn a sigmoid mask mAG = Sigmoid(InstanceNorm(CONV1×1(ReLU(sAG)))) via a convolution
layer with a kernel size of 1 and InstanceNorm which has the same shape as q and a. Finally, we apply
the sigmoid mask mAG to a and concatenate with q in the channel dimension and pass its output to US1.
Conceptually, we learn mAG to eliminate irrelevant information in a (i.e. representation closer to the input)
with respect to q (i.e. representation after a number of low-dimensional processing blocks). If all of a is
relevant, then this formulation works like Model-R. AG is easy to implement and can be a simple replacement
for any block-wise residual concatenation layer. In addition, since mAG has the same shape as a and q, we can
overlay the sigmoid mask over either of the two variables and visualise the level of spatial-temporal attention
learned by the AG module, thus improving the interpretability of the method.

2.6.2 Discriminator

As for the discriminator, we use a PatchGAN-based (Isola et al., 2017) architecture, as it provides more
fine-grained discrimination information to the generators instead of the single value discrimination in the

7

Under review as submission to TMLR

discriminator in vanilla GAN. DX and DY contain 3 down-sampling blocks where each block reduces the
spatiotemporal dimension by a factor of 2, like the down-sampling blocks in the generators. For an input
sample with shape (H = 2048, W = 102, C = 1), the discriminator outputs a sigmoid activated vector with
shape (256, 13, 1). Each element has a range [0, 1] where a value closer to 1 suggests that the corresponding
patch is from a real sample. The discriminators are kept relatively simple so that the generators would not
be overpowered, especially in the initial phase of training.

2.7 Visual explanation

The AG modules in Model-AG operate in a low-dimensional latent space, which can be difficult to identify
from fine-grained patterns in the neural activity. To address this shortcoming, we incorporated an addi-
tional technique for assessing feature importance and allowing further visual interpretation of the models.
Gradient-weighted Class Activation Mapping (GradCAM), introduced by Selvaraju et al. (2017), is a post
hoc algorithm that identifies region(s) in the input (i.e. a natural image) that a CNN classifier deems impor-
tant. Briefly, GradCAM computes the gradient information flow between logits yc of class c and the feature
map Ak ∈ Ru×v of a specific convolutional layer (usually the final layer) with k filters. The gradients are
then pooled over the spatial dimensions to calculate the unit importance weights (9) αc

k = 1
N

∑u
i

∑v
j

∂yc

∂Ak
i,j

where N = u × v. The GradCAM activation map is the weighted combination of the feature maps fol-
lowed by ReLU activation to eliminate features with negative influence (10) MGradCAM = ReLU(

∑
k αc

kAk).
Similar to a sigmoid mask in the AG module (see Section 2.6.1), here, we can overlay the activation map
MGradCAM on top of the input to visually interpret region(s) that the model is focussing on. We applied the
same method on the two discriminators to monitor the final convolution layer, and instead of a scalar pre-
diction yc, we compute the gradient flow between the feature maps of the target layer and the outputs.

2.8 Decoding analysis

The GradCAM visual explanation method make it possible to identify regions or neurons in the responses
to which the models are more attentive. For instance, we expect the generators to focus on the activities
surrounding the reward zone in the virtual corridor as the grating patterns disappear on the monitors. We
hypothesise that a subset of neurons is more informative in the neuronal learning transformation and that the
models should learn to be more attentive toward this group of neurons. To that end, we trained a regression
model to decode behavioural variables (position and velocity) when provided with calcium responses of (1)
all neurons, (2) top-30 (out of 102) neurons according to the activation maps, (3) rest of the neurons and (4)
30 randomly selected neurons. We kept the regression model fairly simple since we are only interested in the
change in performance when training the model with different combinations of neurons. Here, we trained
a recurrent neural network (RNN) decoder which consists of a GRU-layer (Cho et al., 2014) with 128 units
followed by a fully-connected layer to output a scalar. The model was trained to optimise the mean-squared
error (MSE) between its predictions and the behavioural variables using Adam (Kingma & Ba, 2014). Finally,
for each variable-neuron combination, we fit the decoder 20 times, each with a different random seed, and
compare their performance in terms of R2 on the test set. If the selected neurons are indeed more influential,
then in contrast to using (1) all neurons, we expect a drop in performance when the model is trained with
the (3) rest of the neurons. Moreover, the decoding accuracy when provided with (2) top-30 neurons should
be significantly different from (4) selecting 30 neurons randomly.

2.9 Neuron ordering

As discussed in Section 2.6, we are using convolutional-based networks for the generators and discriminators.
It has been shown that CNNs with a smaller kernel can often perform as well or even better than models with
larger kernels while maintaining fewer trainable parameters thus easier to train (He et al., 2016a; Li et al.,
2021). Nevertheless, a small kernel can potentially limit the receptive field of the model, or the region in the
input that the model is exposed to in each convolution step (Araujo et al., 2019). In addition, the recordings
obtained from the VR experiment were annotated based on how visible the neurons were in the calcium
image, rather than ordered in a particular statistical manner (see Figure 1). This could potentially restrict
CNNs with a small receptive field to learn meaningful spatial-temporal information from the population

8

Under review as submission to TMLR

responses. To mitigate this issue, we propose a novel procedure to pre-sort X and Y , such that neurons that
are highly correlated or relevant are nearby in their ordering. A naive approach is to sort the neurons by
their firing rate or pairwise correlation, where the neuron with the highest firing rate or the neuron that, on
average, is most correlated to other neurons is ranked first in the input array. However, it is possible that not
all high-firing neurons or the most correlated neurons are the most influential in the learning process. This
calls for an automated and data-driven approach to rank neurons in a meaningful order. Deep autoencoders
have shown excellent results in feature extraction and representation learning (Gondara, 2016; Wang et al.,
2016; Tschannen et al., 2018), and we can take advantage of their unsupervised feature learning ability.

We employed a deep autoencoder AE which learns to reconstruct calcium signals in X and Y jointly. The
AE model consists of three (encoder) down-sampling and (decoder) up-sampling convolution blocks, and
a bottleneck layer of dimension (256, 128). The down-sampling block consists of a 1D convolution layer
followed by InstanceNorm, GELU activation, and Spatial Dropout, whereas a 1D transpose convolution is
used in the up-sampling block instead. We fit the model by minimising the reconstruction loss (11) LAE =
MSE(X, AE(X)) + MSE(Y, AE(Y)). Then we compute the per-neuron reconstruction error on the validation set
and sort the neurons in ascending order. That is, we rearrange the order in the neuron (3rd) dimension of
the data matrix of shape (N, H, W, C = 1) where H = 2048 and W = 102 for Xrec and Yrec, as shown in
Figure 1. It is important to note that the proposed neuron ordering process is an optional data preprocessing
step that allows 2D convolution-based models to take advantage of the spatial information presented in
neuronal responses and is not mandatory for the rest of this work to function. We also compare our method
against neurons ordered by their original annotation, as well as neurons ordered by their average firing rate,
and pairwise correlation. Furthermore, to demonstrate that 2D convolution can indeed better learn the
spatial structure in neuronal responses, we added a 1D variant of Model-AG (denote as Model-AG-1D) as a
baseline model which applies 1D convolution over the temporal dimension of the data and disregards spatial
information in the neural recordings.

2.10 Baseline models

Here, we introduce three simple models for baseline comparisons: (1) Identity model: the Identity model
performs no operation on the input, i.e. X = Identity(X). We expect the generators to translate X and Y
to representations that are closer to Y and X, respectively. (2) Linear model: the Linear model is a linear
autoencoder that learns a low-dimensional representation from X via principal component analysis (PCA),
followed by a linear decoder to project the latent variable to Y . We convert the input responses X to shape
(N ×H, W) and apply PCA with NPCA components that can explain ∼ 95% of the variance over a single time
frame. The linear decoder is then fit to minimise the reconstruction error between targets Y and projected
outputs Ŷ . (3) VAE model: the VAE model is a vanilla variational autoencoder (Kingma & Welling, 2013).
Briefly, the encoder learns to approximate the distribution q(z|x) where z is a latent representation given
input x. The decoder then samples from the latent distribution p(z) and generates p(y|z). The architectures
of the encoder and decoder are fairly simple. The encoder consists of three 2D convolution layers with 32
filters, a kernel size of 4, a stride size of 2, and GELU activation then followed by a dense layer that outputs
the mean and log-variance of the latent space z with a latent dimension of 4. Almost mirroring the encoder,
the decoder inputs the latent variable and outputs ŷ with the same dimension as input x via three 2D
transpose convolution layers followed by a 2D convolution layers with a kernel size of 3 and a stride size of 1.
VAE learns to maximise the evidence lower bound on the marginal likelihood log p(y) which can be expressed
as minimising (12) LVAE = log p(y|z) + log p(z) − log q(z|x) (Kingma et al., 2019). We optimise VAE and the
decoder of Linear using Adam (Kingma & Ba, 2014) with early stopping for a maximum of 200 epochs. For
completeness, we also fit the three baseline models on the opposite transformation Y → X.

9

Under review as submission to TMLR

cycle-consistent loss

Autoencoder Preprocessing

segementation

order neurons

augmentation

normalization

Generator G Generator F

Discriminator DXDiscriminator DY

1

2

3

4

3

5

6

6

Anaylsis

Ca2+ comparsion

attention visualization

spike inference

spike analysis

decoding analysis

CycleGAN

Figure 4: Illustration of the complete pipeline used in this work. Black directed lines represent the flow of
data and the numbers indicate its order. Note that only the forward cycle step X → Y → X is shown here
for better readability.

10

Under review as submission to TMLR

Padding

CONV Block

×9

Input

CONV Block DS1

CONV
InstanceNorm

GELU
2D Dropout

CONV Block DS2

Residual Block RBi

Attention Gate AG1

CONV Block

+

Padding
CONV Block

Padding

CONV Block US1

Attention Gate AG2

CONV Block US2

CONV Block

Padding

Sigmoid

Output

q

+

InstanceNorm
1×1 CONV

InstanceN
orm

1×1 CO
N

V

a

InstanceNorm
1×1 CONV

ReLU

Sigmoid

×
Concat

CONV Block

Residual Block

Attention Gate

Figure 5: Architecture diagram of Model-AG generator. + and × denote addition and element-wise multi-
plication respectively. Note that if we replace the AG module with a concatenation layer that concatenates
a and q in the channel dimension, then architecture is the same as Model-R.

11

Under review as submission to TMLR

3 Results

The main objective of the framework is to identify a meaningful transformation between two neuronal
datasets in a data-driven manner. We first assessed the framework’s ability to learn the mapping between two
data distributions using two synthetic datasets with known ground truth pairing. We then applied the same
method to recorded data obtained from the primary visual cortex of behaving mice in the VR experiment.

3.1 Simulated data

We first validate our method on the simulated dataset to test its capability to learn the transformation
between two calcium response populations with distinct activity patterns. In order to increase the difficulty
of the mapping task, neurons in Xsim and Ysim were shuffled jointly prior to model training (see Figure E.1).
To quantify the transformation results, we compute the coefficient of determination R2 between the average
ground-truth and the average translated responses (Table 2). The baseline model Linear failed to capture the
Xsim → Ysim transformation with a R2 = 0.1738 and is worse than the Identity model. VAE and Model-AG
trained with the LSGAN objective, on the other hand, are able to learn the transformations very well with
R2 ≥ 0.9 in both directions. The average activity patterns translated by Model-AG are shown in Figure 6.

Table 2: The R2 between the average ground truth and average translated responses in the test set. The
average responses of Model-AG and Linear are shown in Figure 6 and Figure E.2.

Model Xsim vs F (Ysim) Ysim vs G(Xsim)
Identity 0.1994 0.1994
Linear (NP CA = 115) 0.1738 0.1786
VAE 0.9401 0.9288
Model-AG & LSGAN 0.9680 0.9845

Figure 6: The average response patterns (∆F/F) in (Left) X̂sim against Xsim, and (Right) Ŷsim against
Ysim by Model-AG trained with the LSGAN objective. The solid and dotted lines indicate the two activity
patterns in each population, the grey and coloured lines correspond to the average simulated and translated
responses, and the shaded areas show their variance. Table 2 shows the transformation results in terms of R2.

3.2 Augmented data

Next, we fit our models on the augmented dataset, with known handcrafted augmentation, to show that
our method is capable of learning subtle differences and recovering responses from unpaired calcium traces.
Figure 9 shows calcium signals of the forward and backward cycle transformation from 3 neurons in a
population, each with a different level of masked activities. Without paired samples, G was able to learn
the augmentation Φ and mask out the appropriate regions in xaug, and conversely, F was able to recover
responses from the masked regions in yaug. For instance, F was able to recover the 4 spikes of fluorescence
signals from the augmented input in Neuron 98 (bottom panel in Figure 9). Given that the difference
between Xaug and Yaug is replacing the responses of higher-index neurons with noise, we expect DY to

12

Under review as submission to TMLR

discriminate based on activities around the augmentation region. The activation map of DY (yaug), shown
in Figure 8, indeed indicates a high level of attention along the edge of the diagonal region. On the other
hand, since no augmentation was done on the input to DX , the localisation map does not appear to have a
particular structural area of focus. Interestingly, once we overlay the reward zones onto the input segment,
we observed that the areas of focus learned by DX are loosely aligned with the reward zones. Note that
reward zones are external task-relevant regions that are expected to shape the neural activity in V1 as the
visual patterns change when the mouse enters the reward zone. These findings suggested that DY learned
to distinguish an input by predominantly focusing on the edge of the masking area, whereas DX learned
distinctive patterns from higher-index neurons around the reward zones. We then inspected the AG modules
learned by the two generators, shown in Figure 7. We observed that both generators ignore responses in
the augmentation region, which is likely caused by the fact that information in that area is not relevant
to either transformation. G learns to replace the calcium traces from the to-be-masked region with noise,
hence ignoring the information from that region; F learns to recover responses in the masked region, as the
information from the masked region is noise and hence not relevant for the model to learn from.

Xaug and Yaug are paired in the test set, which enables us to directly evaluate the transformation result
with common distance metrics, making this a good testbed to compare different generator architectures and
neuron ordering methods. Results on the intermediate transformations F (Yaug) and G(Xaug) are summarised
in Table 3, and the complete results are available in Table F.1. Sensibly, all methods performed better in
the Xaug

Φ−→ Yaug transformation as the models have to augment the responses with noise, whereas in the
opposite direction, the models have to learn the reconstruction of the augmented activities. The baseline
models Linear and VAE failed to learn the augmentation with results that are worse than Identity, i.e.
MAE(Xaug, Linear(Yaug)) = 0.2423, MAE(Xaug, VAE(Yaug)) = 0.2558 and MAE(Xaug, Identity(Yaug)) = 0.1328;
Model-AG trained with the LSGAN objectives, on the other hand, achieved MAE(Xaug, X̂aug) = 0.1081,
outperformed the baseline models and as well as Model-R (i.e. MAE(Xaug, X̂aug) = 0.1191). Next, we
evaluated different neuron ordering strategies. Model-AG-1D, which disregards spatial information in the
data, performed noticeably worse than its 2D counterpart, suggesting that the spatial structure in the neural
activities is indeed essential and learnable by the models. Overall, models trained on sorted neurons achieved
better results with ordering neurons by AE reconstruction loss being the most performant.

Figure 7: Attention masks AG1 and AG2 from Model-AG generators (Left) G and (Right) F where AG1
and AG2 learn the sigmoid attention masks with shape (512, 26) and (1024, 51), respectively. The attention
masks showed that the generators learned to ignore the augmentation region in latent space. The histogram
on the right of each panel shows the attention distribution over the 2nd (i.e. neuron) dimension of the mask.

3.3 Recorded data

The results from the two synthetic datasets demonstrated the framework’s capability in learning the unknown
mappings in calcium traces. Moreover, the visual explanation methods indicated that the networks are indeed
learning meaningful features. Next, we evaluated our method on the (Xrec) pre-learning and (Yrec) post-

13

Under review as submission to TMLR

Figure 8: Activation maps of (Left) DX(xaug) and (Right) DY (yaug) overlaid their respective input. As
expected, DY was attentive toward activities along the diagonal masking area as the most prominent feature
of yaug is the augmentation region. Interestingly, DX focused on neuronal activities surrounding the reward
zones (indicated by the yellow and orange vertical dotted lines). Neurons in AE order.

Figure 9: Forward and backward cycle steps of neurons 37, 69, and 98 (top, middle, and bottom of the
population) from a randomly selected test segment. G learns to perturb the initial part of the traces (i.e.
from red solid box to red dotted box) and F learns to reconstruct augmented regions in the traces (i.e. from
green dotted box to green solid box). We expect the traces in the green solid box to resemble signals in the
yellow solid box and the yellow dotted box in the green dotted box. Example transformation on the entire
population is available in Figure F.1.

learning recordings obtained from mouse V1. Figure 10 shows the cycle transformation of 3 randomly selected
neurons. Visually, G and F were able to reconstruct x̄rec = F (G(xrec)) and ȳrec = G(F (yrec)), and that the
two generators were not simply passing through xrec and yrec in an intermediate step to translate ŷrec =
G(xrec) and x̂rec = F (yrec). We also compared the cycle-consistent and identity loss to get a better sense of the
transformations, shown in Table G.1. The Model-AG model trained with the LSGAN objective and AE neuron
orders achieved a cycle-consistent loss of MAE(Xrec, F (G(Xrec))) = 0.0733 and MAE(Yrec, G(F (Yrec))) = 0.0737,
and identity losses for MAE(Yrec, G(Yrec)) = 0.0101 and MAE(Yrec, G(Yrec)) = 0.0069, which are significantly
better than the identity MAE(Xrec, Yrec) = 0.3674. The low identity loss also suggests that the generators can
correctly identify whether or not the given input is already in their respective target distributions, hence

14

Under review as submission to TMLR

Table 3: Transformation errors (MAE) in the augmented test set. FR, CORR and AE indicate neurons ordered
by firing rate, pairwise correlation and AE reconstruction loss, respectively. Full results in Table F.1.

Xaug vs F (Yaug) Yaug vs G(Xaug)
Identity 0.1328 ± 0.2103 0.1328 ± 0.2103
Linear (NP CA = 40) 0.2423 ± 0.4189 0.2583 ± 0.4388
VAE 0.2558 ± 0.3885 0.2437 ± 0.4061
Model-R & LSGAN 0.1191 ± 0.2204 0.1268 ± 0.2294
Model-AG & LSGAN 0.1081 ± 0.1816 0.1175 ± 0.2008
Model-AG-1D & LSGAN 0.2313 ± 0.3065 0.2372 ± 0.3749
Model-AG & LSGAN & FR 0.1043 ± 0.2675 0.1154 ± 0.2164
Model-AG & LSGAN & CORR 0.1030 ± 0.1870 0.1193 ± 0.3396
Model-AG & LSGAN & AE 0.1024 ± 0.1856 0.1103 ± 0.2858

performing no operation. Again, as demonstrated in Section 3.2, Model-AG-1D performed measurably worse
than 2D convolutional-based models. In all cases, models trained with neurons ordered by AE reconstruction
error achieved the best losses, and ordering neurons in any meaningful way brings measurable improvements.

(a) Forward cycle: Xrec → Y → Xrec

(b) Backward cycle: Yrec → Xrec → Yrec

Figure 10: (a) forward and (b) backward cycle of neurons 37, 69, and 98 from a randomly selected test
sample. The transformation of the entire population is available in Figure G.1.

As the recorded data are not paired on a trial-by-trial basis, we cannot compare Xrec with X̂rec = F (Yrec)
nor Yrec with Ŷrec = G(Xrec) directly. In order to verify that the two intermediate steps are reasonable
transformations, we instead compared three commonly used spike train statistics: (a) pairwise correlation,
(b) firing rate, and (c) pairwise van Rossum distance. We expected that the distribution of the translated
data resembles their corresponding recorded data, i.e. Xrec ∼ F (Yrec) and Yrec ∼ G(Xrec). In addition, since
each spike metric is represented as a distribution over neurons or samples, we quantified the transformation
performance by measuring the average KL divergence of each distribution pair. The distribution comparison
for each metric is available in Section G.2.1. Table 4 summarises the average KL divergence of the three spike

15

Under review as submission to TMLR

Figure 11: Attention masks AG1 and AG2 from Model-AG generator G with (Left column) neurons sorted
by AE reconstruction error and (Right column) no neuron ordering. The histogram to the right of each panel
indicates the spatial attention (i.e. 2nd dimension) intensity. When the responses were ordered, a higher
level of attention toward the neurons at the top (i.e. those with lower reconstruction loss) is very prominent
across all attention modules, in contrast to the attention distribution being uniform across neurons when
neurons were not ordered. The same behaviour is observed in generator F , shown in Figure G.2. Note that
AG1 and AG2 learn the sigmoid attention masks with shape (512, 26) and (1024, 51), respectively.

statistics in the intermediate transformation step. Overall, models trained with the CycleGAN framework
vastly outperformed the baseline models: Linear and VAE failed to capture the first and second order
statistics of the target distributions (Figure G.7 shows the distribution comparisons of Xrec and VAE(Yrec)).
On the other hand, Model-AG trained with the LSGAN objectives and AE neuron order is able to translate
the responses with firing rate distributions of X̂rec and Ŷrec closely matching Xrec and Yrec, with average KL
value of 1.1648 and 1.0697, respectively. When evaluated on pairwise correlation, the model achieved a low
KL divergences of KL(Xrec, X̂rec) = 0.0479 and KL(Yrec, Ŷrec) = 0.0493. We expected that each neuronal
activity in X̂rec should resemble a corresponding response in X. We, therefore, computed the van Rossum
distance between X and X̂rec for each neuron across the test set, which can be represented in the form of a
heatmap. We observed a clear diagonal line of low-intensity values in the heatmaps for most neurons (e.g.
Figure G.5 and G.6 for G and F). To summarise the spike similarity results, we also computed the KL
divergence of pairwise van Rossum distance distributions with KL(Xrec, X̂rec) = 0.2387 and KL(Yrec, Ŷrec) =
0.3031. The spike statistics indicated that the generators can indeed learn the transformation from pre- and
post-learning activities, and vice-versa, and translated results can closely match the first and second-order
statistics of their corresponding recorded data. We obtained similar results when fitting the same models on
data recorded from Mouse 2, 3, and 4 (see Sections G.3, G.4 and G.5).

In the previous section, we were able to identify and interpret the learned features in a relatively straight-
forward manner due to the systematic augmentation we introduced into the data. However, visualising and
interpreting the attention maps on pre- and post-learning data is more challenging as there are no obvious
patterns in the inputs to anticipate. Nevertheless, we expected a higher level of activities in the V1 neurons
when the mouse was about to enter or was inside of the reward zone, where the grating pattern on the virtual
walls turned blank. Subsequently, the models should learn meaningful features from responses surrounding
the reward zones. Figure 11 shows the learned AG attention masks of G and F superimposed on the latent
inputs. When the neurons were ordered, either by firing rate or autoencoder, we observed that the genera-
tors allocate more attention toward neurons that rank higher. This suggests that by grouping neurons in a
meaningful manner, the convolutional layers in the generators can extract relevant features more effectively
as compared to when neurons were randomly ordered. The spike analysis showed that ordering neurons in
a structured manner does indeed yield better results across the board. In most cases, ordering the neurons
according to the reconstruction error achieved the best results.

16

Under review as submission to TMLR

Table 4: The average KL divergence between recorded (Xrec and Yrec), translated (X̂rec = F (Yrec) and
Ŷrec = G(Xrec)) distributions in three spike statistics. FR, CORR and AE denote neurons ordered by firing
rate, correlation and AE reconstruction error, respectively. The complete results are available in Table G.2.

Xrec vs F (Yrec)) Yrec vs G(Xrec)
(a) pairwise correlation

Identity 0.0875 ± 0.0549 0.0821 ± 0.0471
Linear (NP CA = 40) 2.9071 ± 0.3869 4.4880 ± 0.6209
VAE 1.1532 ± 0.3885 2.2670 ± 0.4557
Model-AG-1D & LSGAN 0.2027 ± 0.1040 0.1901 ± 0.1003
Model-AG & LSGAN 0.0552 ± 0.0419 0.0583 ± 0.0553
Model-AG & LSGAN & FR 0.0507 ± 0.0358 0.0504 ± 0.0438
Model-AG & LSGAN & CORR 0.0539 ± 0.0329 0.0534 ± 0.0474
Model-AG & LSGAN & AE 0.0479 ± 0.0372 0.0493 ± 0.0448

(b) firing rate
Identity 8.0705 ± 6.5500 7.7781 ± 6.7338
Linear (NP CA = 40) 19.5507 ± 1.6473 19.5703 ± 1.3806
VAE 13.4533 ± 6.6228 15.9878 ± 5.6384
Model-AG-1D & LSGAN 3.5688 ± 3.8895 3.0572 ± 3.1114
Model-AG & LSGAN 1.5401 ± 1.2491 1.8527 ± 1.3563
Model-AG & LSGAN & FR 1.3402 ± 1.0450 1.6994 ± 1.4170
Model-AG & LSGAN & CORR 1.4006 ± 1.1079 1.4088 ± 1.0828
Model-AG & LSGAN & AE 1.1648 ± 0.7934 1.0697 ± 0.7689

(c) pairwise van Rossum distance
Identity 0.5510 ± 0.2960 0.3053 ± 0.1211
Linear (NP CA = 40) 2.0803 ± 0.2934 3.4271 ± 0.4390
VAE 0.7336 ± 0.2057 1.9896 ± 0.5960
Model-AG-1D & LSGAN 0.3613 ± 0.1597 0.3764 ± 0.1565
Model-AG & LSGAN 0.2790 ± 0.2186 0.3216 ± 0.1352
Model-AG & LSGAN & FR 0.2539 ± 0.1708 0.3080 ± 0.1173
Model-AG & LSGAN & CORR 0.2629 ± 0.1877 0.2953 ± 0.1230
Model-AG & LSGAN & AE 0.2387 ± 0.1488 0.3031 ± 0.1138

We then inspected the activation maps of the discriminators, shown in Figure 12. Similar to the activation
map of DX obtained from the synthetic dataset, we observed that both discriminators DX and DY focused
on activities surrounding the reward zones in the VR experiment. Nevertheless, the activation patterns
shown in the figures are not that clear due to having multiple trials in the segment. We, therefore, derived
a procedure to allow better visualisation of the relationship between activation patterns in the Model-AGnd
the virtual position (0 to 160 cm) of the rodent. With DX , for instance, we first extract the activation
map for each test sample in Xrec. Then at each virtual position (in cm), we aggregate the activation value
for each neuron over all the activation maps, resulting in a matrix with shape (W = 102, 161). Figure 12
shows the normalised positional activation maps for DX and DY . The only objective of the discriminators
was to distinguish if a given sample was from a particular distribution, and thus the discriminators could
have learned trivial features. Instead, DX focused on a specific group of neurons from 120 to 150 cm, which
coincides with the end of the reward zone. Moreover, DY learned to focus on a broader group of neurons
with activation patterns that were also in alignment with the reward zone. Similarly, we could extract these
positional attention maps for G and F following the same procedure, where we monitor the gradient flow
between the convolution layer in the RB9 and the output. Likewise, both generators focused on responses
towards the middle and end of the reward zone, with G concentrated on a very small subset of neurons.

17

Under review as submission to TMLR

This suggests that to learn the transformation from post- to pre-learning responses, the activities the mouse
exhibits as it approaches the reward zone were deemed more important by the networks.

Figure 12: Activation maps of (Left) DX(xrec) and (Right) DY (yrec) overlaid on their respective inputs.
Without providing any trial-relevant information to the models, the discriminators were able to pick up
information related to the reward zones (yellow and orange vertical dotted lines). Neurons in AE order.

Figure 13: Positional activation maps of the discriminators and generators with respect to the virtual
position. Overall, the models were focusing on a subset of responses surrounding the reward zone (yellow
and orange dotted lines) in their discrimination and transformation processes. Neurons in AE order.

3.3.1 Decoding performance

The positional attention maps highlighted localised neurons in the responses with respect to the virtual
position. To investigate our hypothesis that these neurons are more influential in the visual experiment and,
subsequently, important for learning, we evaluated the decoding performance (i.e. position and velocity)
with different subsets of neurons: (1) all neurons, (2) top-30 neurons, (3) rest of the neurons, and (4) 30
randomly selected neurons (see Section 2.8). Since G and F input Xrec and Yrec respectively, the extracted
positional activation maps represent different recording sessions. We therefore separately computed the
top-30 neurons to decode behaviour variables from Day 1 and Day 4 of the recording. Note that we are
interested in the relative change in performance when providing different combinations of neurons, rather
than the overall decoding accuracy. Figure 14 shows the decoding results on the two behavioural variables
from Day 1 and Day 4. Overall, we observed a substantial drop in performance when the top-30 neurons
were removed. In addition, the models trained with the top-30 neurons outperformed the models with 30
randomly selected neurons, with the exception of decoding the mouse velocity on Day 1 recordings, though
all decoders performed poorly in this specific task. Our decoding analysis thus shows that the neurons
identified in the positional activation maps are more informative in the behavioural decoding tasks.

18

Under review as submission to TMLR

Figure 14: The decoding performance (R2) of (a) virtual position and (b) velocity on Mouse 1 recordings
when provided with: (1) all neurons, (2) top-30 neurons, (3) rest of the neurons and (4) 30 random neurons.
The decoding accuracy values are listed in Table G.3.

4 Discussion

We demonstrated that the CycleGAN (Zhu et al., 2017) framework is a capable data-driven method to
model the unknown transformation between pre- and post-learning neural responses. We evaluated our
method on two synthetic datasets with known ground-truth transformations, and on V1 recordings obtained
from behaving animals. We showed that our method significantly outperforms the baseline models on the
recorded dataset. In addition, the AG module and GradCAM visualisation techniques provided the means to
inspect region(s) of interest in the calcium responses learned by the generators and discriminators. Finally,
we introduced a novel and easy-to-implement neuron ordering method that can assist convolutional-based
models to learn better representations of neural data.

Intriguingly, without providing trial information in the training process, the models self-identified activities
surrounding the reward zone in the VR experiment to be highly influential. This result aligns with our
understanding from previous studies where responses in the visual cortex are shaped by the change in visual
cues (Pakan et al., 2018; Henschke et al., 2020). Moreover, the behaviour decoding result showed that a
subset of neurons, self-identified by the generators, achieved performance on par with when all neurons
were provided, and performed significantly better than randomly selected neurons (see Section 3.3.1). This
demonstrates the effectiveness of our method to self-identify neurons that are relevant to the task in contrast
to previous works in identifying neuron contribution in decoding accuracy which requires manual iteration
over neurons (Montijn et al., 2014). Interestingly, when analysing the firing rate and pairwise correlation of
this subset of neurons, we did not notice any significant distinction in their statistics as compared to the rest of
the population, suggesting that the models have learned features that cannot be easily captured or identified.

4.1 Limitations

The fully data-driven property of the proposed framework also comes with a number of limitations. First
and foremost, as with most DNNs, this framework requires a significant amount of data, across the number
of trials, the duration of each trial, and the number of neurons. For instance, we experimented with using
fewer neurons, such as W = 4 or W = 8, and there was a significant decrease in performance.

Another notable constraint in our method is the fundamental one-to-one mapping limitation in the CycleGAN
framework. The generators learn a deterministic mapping between the two domains and only associate each
input with a single output. However, most cross-domain relationships consist of one-to-many or many-to-
many mappings. More recently proposed methods, such as Augmented CycleGAN (Almahairi et al., 2018),
aim to address such fundamental limitations by introducing auxiliary noise to the two distributions, and are
thus able to generate outputs with variations. Nevertheless, these methods are most effective when trained
in a semi-supervised manner which is not possible with our unpaired neural activity.

Lastly, a significant portion of the neuronal activity validation in Section 3.3 was performed in spike trains
inferred from the recorded and generated calcium responses using Cascade (Rupprecht et al., 2021), which is

19

Under review as submission to TMLR

a recently introduced method that has outperformed the existing model-based algorithms. However, reliable
spike inference from calcium signals remains an active area of research (Theis et al., 2016). For instance,
Vanwalleghem et al. (2020) demonstrated that spiking activities could be missed due to the implicit non-
negativity assumption in calcium imaging data which exists in many deconvolution algorithms, including
Cascade. Nonetheless, Cascade was used to deconvolve calcium signals for all datasets and thus all inferred
spike trains were subject to the same bias.

4.2 Conclusion

The CycleGAN framework’s capacity to self-identify patterns in neural recordings makes it useful for
analysing large-scale and unstructured animal experiments. As interpretability techniques for deep unsu-
pervised models progress, and neural recordings in different learning phases from behaving animals have be-
come readily available, there is potential for novel insights into fundamental learning mechanisms.

References
Amjad Almahairi, Sai Rajeshwar, Alessandro Sordoni, Philip Bachman, and Aaron Courville. Augmented

cyclegan: Learning many-to-many mappings from unpaired data. In International Conference on Machine
Learning, pp. 195–204. PMLR, 2018.

André Araujo, Wade Norris, and Jack Sim. Computing receptive fields of convolutional neural networks.
Distill, 2019. doi: 10.23915/distill.00021. https://distill.pub/2019/computing-receptive-fields.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875,
2017.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of machine
learning research, 13(2), 2012.

Matteo Carandini. Amplification of trial-to-trial response variability by neurons in visual cortex. PLoS
biology, 2(9):e264, 2004.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

John P Cunningham and M Yu Byron. Dimensionality reduction for large-scale neural recordings. Nature
neuroscience, 17(11):1500–1509, 2014.

Ashesh K Dhawale, Rajesh Poddar, Steffen BE Wolff, Valentin A Normand, Evi Kopelowitz, and Bence P
Ölveczky. Automated long-term recording and analysis of neural activity in behaving animals. Elife, 6:
e27702, 2017.

Ali Farshchian, Juan A Gallego, Joseph P Cohen, Yoshua Bengio, Lee E Miller, and Sara A Solla. Adversarial
domain adaptation for stable brain-machine interfaces. arXiv preprint arXiv:1810.00045, 2018.

Juan A Gallego, Matthew G Perich, Raeed H Chowdhury, Sara A Solla, and Lee E Miller. Long-term stability
of cortical population dynamics underlying consistent behavior. Nature neuroscience, 23(2):260–270, 2020.

Yuanjun Gao, Evan W Archer, Liam Paninski, and John P Cunningham. Linear dynamical neural population
models through nonlinear embeddings. Advances in neural information processing systems, 29:163–171,
2016.

Aidan N Gomez, Sicong Huang, Ivan Zhang, Bryan M Li, Muhammad Osama, and Lukasz Kaiser. Unsu-
pervised cipher cracking using discrete gans. arXiv preprint arXiv:1801.04883, 2018.

Lovedeep Gondara. Medical image denoising using convolutional denoising autoencoders. In 2016 IEEE
16th international conference on data mining workshops (ICDMW), pp. 241–246. IEEE, 2016.

20

Under review as submission to TMLR

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

Benjamin F Grewe, Dominik Langer, Hansjörg Kasper, Björn M Kampa, and Fritjof Helmchen. High-speed
in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nature methods,
7(5):399–405, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
European conference on computer vision, pp. 630–645. Springer, 2016b.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

Julia U Henschke, Evelyn Dylda, Danai Katsanevaki, Nathalie Dupuy, Stephen P Currie, Theoklitos
Amvrosiadis, Janelle MP Pakan, and Nathalie L Rochefort. Reward association enhances stimulus-specific
representations in primary visual cortex. Current Biology, 2020.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolu-
tional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4700–4708, 2017.

Cole Hurwitz, Nina Kudryashova, Arno Onken, and Matthias H Hennig. Building population models for
large-scale neural recordings: Opportunities and pitfalls. Current Opinion in Neurobiology, 70:64–73,
2021a.

Cole Hurwitz, Akash Srivastava, Kai Xu, Justin Jude, Matthew Perich, Lee Miller, and Matthias Hennig.
Targeted neural dynamical modeling. Advances in Neural Information Processing Systems, 34:29379–
29392, 2021b.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1125–1134, 2017.

Justin Jude, Matthew G Perich, Lee E Miller, and Matthias H Hennig. Robust alignment of cross-session
recordings of neural population activity by behaviour via unsupervised domain adaptation. arXiv preprint
arXiv:2202.06159, 2022.

Sander W Keemink, Scott C Lowe, Janelle MP Pakan, Evelyn Dylda, Mark CW Van Rossum, and Nathalie L
Rochefort. Fissa: A neuropil decontamination toolbox for calcium imaging signals. Scientific reports, 8
(1):1–12, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. Foundations and
Trends® in Machine Learning, 12(4):307–392, 2019.

Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence and stability of gans. arXiv
preprint arXiv:1705.07215, 2017.

Bryan M Li, Theoklitos Amvrosiadis, Nathalie Rochefort, and Arno Onken. CalciumGAN: A generative
adversarial network model for synthesising realistic calcium imaging data of neuronal populations. arXiv
preprint arXiv:2009.02707, 2020.

21

Under review as submission to TMLR

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural networks:
analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, 2021.

Henry Lütcke, David J Margolis, and Fritjof Helmchen. Steady or changing? long-term monitoring of
neuronal population activity. Trends in neurosciences, 36(7):375–384, 2013.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least squares
generative adversarial networks. In Proceedings of the IEEE international conference on computer vision,
pp. 2794–2802, 2017.

Łukasz Maziarka, Agnieszka Pocha, Jan Kaczmarczyk, Krzysztof Rataj, Tomasz Danel, and Michał Warchoł.
Mol-cyclegan: a generative model for molecular optimization. Journal of Cheminformatics, 12(1):1–18,
2020.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017.

Manuel Molano-Mazon, Arno Onken, Eugenio Piasini*, and Stefano Panzeri*. Synthesizing realistic neural
population activity patterns using generative adversarial networks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=r1VVsebAZ.

Jorrit S Montijn, Martin Vinck, and Cyriel MA Pennartz. Population coding in mouse visual cortex: re-
sponse reliability and dissociability of stimulus tuning and noise correlation. Frontiers in computational
neuroscience, 8:58, 2014.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In Icml,
2010.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa, Kensaku
Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net: Learning where to
look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.

Janelle MP Pakan, Stephen P Currie, Lukas Fischer, and Nathalie L Rochefort. The impact of visual cues,
reward, and motor feedback on the representation of behaviorally relevant spatial locations in primary
visual cortex. Cell reports, 24(10):2521–2528, 2018.

Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky, Jonathan C
Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg, et al. Inferring single-
trial neural population dynamics using sequential auto-encoders. Nature methods, pp. 1, 2018.

Poornima Ramesh, Mohamad Atayi, and Jakob H. Macke. Adversarial training of neural encoding models
on population spike trains. 2019 Conference on Cognitive Computational Neuroscience, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted interven-
tion, pp. 234–241. Springer, 2015.

MCW van Rossum. A novel spike distance. Neural computation, 13(4):751–763, 2001.

Peter Rupprecht, Stefano Carta, Adrian Hoffmann, Mayumi Echizen, Antonin Blot, Alex C Kwan, Yang
Dan, Sonja B Hofer, Kazuo Kitamura, Fritjof Helmchen, et al. A database and deep learning toolbox for
noise-optimized, generalized spike inference from calcium imaging. Nature Neuroscience, pp. 1–14, 2021.

Virginia Rutten, Alberto Bernacchia, Maneesh Sahani, and Guillaume Hennequin. Non-reversible gaussian
processes for identifying latent dynamical structure in neural data. Advances in Neural Information
Processing Systems, 2020.

22

https://openreview.net/forum?id=r1VVsebAZ

Under review as submission to TMLR

Omid G Sani, Hamidreza Abbaspourazad, Yan T Wong, Bijan Pesaran, and Maryam M Shanechi. Modeling
behaviorally relevant neural dynamics enabled by preferential subspace identification. Nature Neuroscience,
24(1):140–149, 2021.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision, pp. 618–626, 2017.

Nicholas A Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius Pachitariu, Marius Bauza,
Maxime Beau, Jai Bhagat, Claudia Böhm, Martijn Broux, et al. Neuropixels 2.0: A miniaturized high-
density probe for stable, long-term brain recordings. Science, 372(6539), 2021.

Ian H Stevenson and Konrad P Kording. How advances in neural recording affect data analysis. Nature
neuroscience, 14(2):139–142, 2011.

Lucas Theis, Philipp Berens, Emmanouil Froudarakis, Jacob Reimer, Miroslav Román Rosón, Tom Baden,
Thomas Euler, Andreas S Tolias, and Matthias Bethge. Benchmarking spike rate inference in population
calcium imaging. Neuron, 90(3):471–482, 2016.

Michael Tschannen, Olivier Bachem, and Mario Lucic. Recent advances in autoencoder-based representation
learning. arXiv preprint arXiv:1812.05069, 2018.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient
for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Gilles Vanwalleghem, Lena Constantin, and Ethan K Scott. Calcium imaging and the curse of negativity.
Frontiers in neural circuits, 14, 2020.

Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality reduction. Neurocomputing,
184:232–242, 2016.

Alex H. Williams, Tony Hyun Kim, Forea Wang, Saurabh Vyas, Stephen I. Ryu, Krishna V. Shenoy, Mark
Schnitzer, Tamara G. Kolda, and Surya Ganguli. Unsupervised discovery of demixed, low-dimensional
neural dynamics across multiple timescales through tensor component analysis. Neuron, 98(6):1099–
1115.e8, 2018a. ISSN 0896-6273. doi: https://doi.org/10.1016/j.neuron.2018.05.015. URL https://www.
sciencedirect.com/science/article/pii/S0896627318303878.

Alex H Williams, Tony Hyun Kim, Forea Wang, Saurabh Vyas, Stephen I Ryu, Krishna V Shenoy, Mark
Schnitzer, Tamara G Kolda, and Surya Ganguli. Unsupervised discovery of demixed, low-dimensional
neural dynamics across multiple timescales through tensor component analysis. Neuron, 98(6):1099–1115,
2018b.

Byron M Yu, John P Cunningham, Gopal Santhanam, Stephen I Ryu, Krishna V Shenoy, and Maneesh
Sahani. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population
activity. Journal of neurophysiology, 102(1):614–635, 2009.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer
vision, pp. 2223–2232, 2017.

23

https://www.sciencedirect.com/science/article/pii/S0896627318303878
https://www.sciencedirect.com/science/article/pii/S0896627318303878

Under review as submission to TMLR

A Appendix

Table A.1: List of notations and their descriptions used in this manuscript.

Term Colour Description
N The number of segments.
H The duration (in time-steps) of each segment.
W The number of neurons.

X, Y Two unpaired data distributions.
G, F generators that learn the mapping of X → Y and Y → X.

DX , DY Discriminators that learn to distinguish if samples are of distribution
X and Y , respectively.

x, y Sample from X and Y .
X̂, Ŷ the intermediate distributions X̂ = G(X) and Ŷ = F (Y).
X̄, Ȳ the cycle distributions X̄ = F (Ŷ) and Ȳ = F (X̂).
Xsim First group of simulated neurons.
Ysim Second group of simulated neurons.
Φ The handcrafted augmentation to replace neural activity with random noise.

Xaug V1 recordings obtained from the 1st day of the VR experiment.
Yaug Augmented Xaug using the transformation function Φ, see Section 2.3.2.
Xrec V1 recordings obtained from the 1st day (i.e. pre-learning) of the VR experiment.
Yrec V1 recordings obtained from the 4th day (i.e. post-learning) of the VR experiment.
VAE Variational autoencoder.
CNN Convolution neural network.
RNN Recurrent neural network.

Identity Identity baseline model.
Linear A linear autoencoder consists of a PCA encoder and a linear decoder.
NP CA The number of PCA components to explains 95% of variance.
VAE A VAE baseline that learns to generate X → Y .
AE An autoencoder that learns to reconstruction calcium responses and we pre-sort

neurons based on the the reconstruction loss.
Model-R The generator architecture with level-wise residual connection (Ronneberger et al.,

2015), see Section 2.6.1.
USi, DSi The ith down-sampling and up-sampling block in Model-R.

RBi The ith residual block in Model-R.
Model-AG The proposed Model-R generator architecture with Additive Attention Gate

module (Oktay et al., 2018), see Section 2.6.1.
AGi The ith Additive Attention Gate module (layer) in Model-AG.

Model-AG-1D Model-AG with 1D convolutional layers instead of 2D.
MAE Mean absolute error.
MSE Mean squared error.
R2 The coefficient of determination or R-squared.

24

Under review as submission to TMLR

B CycleGAN

cycle consistent loss

Figure B.1: Illustration of (Left) the data flow and (Right) the cycle-consistency in a forward cycle X → Y →
X. G and F are generators that learn the transformation of X → Y and Y → X respectively. We first sample
x ∼ X, then apply transformation G to obtain ŷ = G(x). To ensure ŷ resembles distribution Y , we train
discriminator DY to distinguish generated samples from real samples. However, even if ŷ is of distribution
Y , we cannot verify that ŷ is the direct correspondent of x. Hence, we apply transformation F which convert
x̄ = G(ŷ) back to X. If both F and G are reasonable transformations, then the cycle consistency MAE(x, x̄)
should be minimal. The backward cycle Y → X → X is a mirrored but opposite operation that runs
concurrently with the forward cycle. Illustration re-created from Figure 3 in Zhu et al. (2017).

Table B.1: The objectives for G and DY in GAN, LSGAN, WGANGP and DRAGAN formulations (Goodfel-
low et al., 2014; Mao et al., 2017; Arjovsky et al., 2017; Kodali et al., 2017). λGP denotes the gradient penalty
coefficient in WGANGP and DRAGAN, ϵ is the [0, 1] linear interpolation coefficient for WGANGP and c is
the Gaussian standard deviation for DRAGAN. The objectives for F and DX are symmetric to G and DY .

Model Loss functions of G and DY

GAN LG = − E
x∼X

[
log(DY (G(x)

]
LDY = − E

y∼Y

[
log(DY (y))

]
− E

x∼X

[
log(1 − DY (G(x)))

]
LSGAN LG = − E

x∼X

[
(DY (G(x)) − 1)2

]
LDY = − E

y∼Y

[
(DY (y) − 1)2

]
+ E

x∼X

[
DY (G(x))2

]
WGANGP LG = − E

x∼X

[
DY (G(x))

]
LDY = E

x∼X

[
DY (G(x))

]
− E

y∼Y

[
DY (y)

]
+ λGP E

x∼X,y∼Y

[(
∥ ∇D(ϵy + (1 − ϵ)G(x)) ∥2 −1

)2
]

DRAGAN LG = E
x∼X

[
log(1 − DY (G(x)))

]
LDY = − E

y∼Y

[
log(Dy(y))

]
− E

x∼X

[
log(1 − DY (G(x)))

]
+ λGP E

y∼Y,z∼N (0,c)

[(
∥ ∇D(y + z) ∥2 −1

)2
]

25

Under review as submission to TMLR

Table B.2: The hyperparameters search space. αG and αD are the learning rates of the generators and
discriminators. λ GP is the gradient penalty coefficient for WGANGP and DRAGAN and c is the Gaussian
variance hyper-parameter in DRAGAN. nD is the number of discriminator updates for each generator update.

Hyperparameters GAN LSGAN WGANGP DRAGAN
Filters power of 2 from 2 to 128
Kernel size 1 to 7, integer
Stride size [2, 3, 4]
Activation [Tanh, ReLU, Leaky ReLU, GELU]
Normalisation [BatchNorm, LayerNorm, InstanceNorm]
Spatial Dropout multiple of 0.05 from 0 to 0.8)
λcycle integer from 1 to 20
λidentity integer from 1 to 20
λGP N/A N/A integer from 1 to 20
c N/A N/A N/A integer from 1 to 20
nD 1 to 5, integer
αG log uniform from 1e-5 to 1e-3
αD log uniform from 1e-5 to 1e-3
Distance Function mean absolute error

Table B.3: The hyperparameters used for each objective formulation. αG and αD are the learning rates of the
generators and discriminators. beta1 and beta2 are the exponential decay rates for the 1st and 2nd moment
estimates, and ϵadam is the small constant value for numerical stability in Adam optimiser (Kingma & Ba,
2014). λ GP is the gradient penalty coefficient for WGANGP and DRAGAN and c is the Gaussian variance
hyper-parameter in DRAGAN. nD is the number of discriminator updates for each generator update.

Hyperparameters GAN LSGAN WGANGP DRAGAN
Filters 32
Kernel size 4
Stride size 2
Activation GELU (Hendrycks & Gimpel, 2016)
Normalization InstanceNorm (Ulyanov et al., 2016)
Spatial Dropout 0.25
Weight Initialisation random normal N (0, 0.02)
λcycle 10
λidentity 5
λGP N/A N/A 10 10
c N/A N/A N/A 10
nD 1 1 5 1
batch size 2
αG 0.0001
αD 0.0004
β1 0.9
β2 0.999
ϵadam 1e-7
Distance Function mean absolute error

26

Under review as submission to TMLR

C Mouse information

The trial information of Mouse 2 to 4 in the VR experiment (see Section 2.2).

Table C.1: Mouse 2 performance in the experiment where 59 V1 neurons were monitored across 5 days of
training.

Day Duration Num. trials Avg. trial duration Licks Rewards
1 897.84s 61 14.72s 1038 75
2 892.29s 107 8.34s 1572 115
3 898.20s 196 4.58s 2330 204
4 897.07s 199 4.51s 1338 304
5 895.48s 122 7.34s 1069 157

Table C.2: Mouse 3 performance in the experiment where 21 V1 neurons were monitored across 5 days of
training.

Day Duration Num. trials Avg. trial duration Licks Rewards
1 895.19s 68 13.16s 919 98
2 897.11s 76 11.80s 1369 86
3 898.85s 131 6.86s 1146 173
4 895.78s 177 5.06s 1065 302
5 898.56s 190 4.73s 2334 196

Table C.3: Mouse 4 performance in the experiment where 32 V1 neurons were monitored across 5 days of
training.

Day Duration Num. trials Avg. trial duration Licks Rewards
1 895.06s 147 6.09s 1239 192
2 898.54s 300 3.00s 1024 487
3 895.91s 215 4.17s 1982 220
4 896.83s 227 3.95s 2493 230
5 897.88s 299 3.00s 1750 303

27

Under review as submission to TMLR

D Neuron ordering

Figure D.1: Neuron ordering based on (Left) original annotation, (Right) autoencoder reconstruction loss.
The original order was based on how visible the neuron was in the calcium image, hence not sorted in a
particular manner. We proposed to train an autoencoder that learns to reconstruct X and Y jointly, and
sort neurons based on the average reconstruction error on the validation set (see Section 2.9).

Table D.1: Mouse 1 neuron ordering based on the (OG) original annotation, (FR) firing rate, (CORR) average
pairwise correlation, and (AE) autoencoder reconstruction loss.

Method Order
OG 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102

FR 18, 14, 12, 30, 8, 15, 36, 4, 21, 19, 3, 7, 43, 33, 20, 42, 13, 6, 11, 39, 2, 22, 75,
28, 55, 100, 31, 62, 10, 67, 63, 54, 17, 40, 52, 46, 99, 88, 61, 77, 57, 34, 85, 41,
27, 98, 84, 47, 65, 73, 5, 1, 44, 101, 58, 80, 16, 29, 87, 9, 26, 83, 92, 74, 24,
45, 49, 23, 97, 48, 68, 60, 71, 76, 59, 53, 70, 89, 25, 93, 32, 56, 66, 81, 72, 94,
38, 64, 79, 82, 50, 51, 96, 90, 37, 86, 95, 91, 102, 69, 35, 78

CORR 36, 27, 46, 28, 39, 30, 42, 20, 92, 10, 18, 11, 67, 14, 4, 33, 19, 77, 75, 13, 24,
99, 8, 43, 65, 101, 63, 7, 25, 44, 12, 76, 80, 9, 47, 3, 34, 71, 87, 52, 22, 1, 85,
61, 84, 29, 45, 31, 93, 100, 5, 58, 57, 17, 74, 21, 96, 55, 82, 91, 2, 48, 6, 56,
83, 62, 49, 16, 26, 81, 97, 53, 73, 94, 89, 59, 40, 95, 23, 32, 54, 66, 98, 72, 35,
88, 15, 41, 50, 60, 90, 70, 78, 68, 69, 86, 38, 51, 64, 79, 37, 102

AE 89, 59, 8, 4, 18, 52, 37, 35, 99, 81, 44, 97, 83, 22, 87, 93, 90, 91, 69, 10, 100,
21, 96, 46, 39, 3, 25, 36, 53, 20, 86, 95, 38, 101, 50, 51, 78, 11, 64, 58, 92, 82,
84, 54, 66, 5, 62, 32, 72, 9, 61, 71, 73, 24, 23, 55, 68, 60, 17, 13, 1, 65, 27, 56,
102, 29, 40, 41, 94, 33, 26, 12, 49, 88, 16, 80, 34, 76, 70, 28, 2, 42, 77, 98, 63,
45, 48, 14, 43, 85, 7, 74, 6, 57, 31, 30, 19, 47, 15, 67, 75, 79

28

Under review as submission to TMLR

E Simulation data

Figure E.1: The top panels show the calcium-like traces of all 128 neurons from xsim ∼ Xsim and ysim ∼ Ysim,
and the bottom panels show the same population with neuron ordered shuffled, which are then feed into the
unsupervised learning framework. The shuffling process is added to increase the difficulties for the generators
to learn the transformation as the responses are less structured. TURBO colourmap is used to improve visibility.

Figure E.2: The average response patterns (∆F/F) in (Left) Xsim against X̂sim, and (Right) Ysim against
Ŷsim by the Linear model. The solid and dotted lines indicate the two activity patterns in each population,
the grey and coloured lines correspond to the average simulated and translated responses, and the shaded
areas show their variance. Table 2 shows the transformation results in terms of R2.

29

Under review as submission to TMLR

F Augmented data

Figure F.1: The (Left column) forward and (Right column) backward cycle of the entire neuron population
from a randomly selected trial, using the Model-AG architecture and trained with LSGAN objectives. G
learns the augmentation function Φ (described in Section 2.3.2) which mask out the lower left corner of
input xaug, whereas F learns to recover the masked regions from unpaired data. TURBO colourmap is used
to improve visibility.

30

Under review as submission to TMLR

Table F.1: Test performance (in MAE) in the two intermediate transformations Xaug vs F (Yaug) and Yaug
vs G(Xaug), and the two cycle transformations Xaug vs F (G(Xaug)) and Yaug vs G(F (Yaug)) on the aug-
mented dataset. Linear (NPCA = 40), VAE and Identity are baseline models which do not rely on cycle-
consistency, whereas Model-AG-1D, which uses 1D convolutions, disregards the neuron spatial structure and
is added to verify that 2D convolutions do indeed take advantage of the spatial information in neural re-
sponses. We evaluate the CycleGAN framework with different (A) generator architectures, (B) GAN objec-
tive formulations, and (C) neuron ordering. FR, CORR, and AE indicate neurons ordered by their firing
rate, correlation, and AE reconstruction loss, respectively. Models trained with WGANGP and DRAGAN
failed to learn either of the intermediate transformations (and cycle transformations for WGANGP). More-
over, DX(F (Yaug)) and DY (G(Xaug)) were neither informative nor impactful to the overall objective. Gen-
erators focused on optimising the cycle-consistent loss instead. It is likely that the gradient penalty term in
DRAGAN and WGANGP further complicates the already perplexing overall optimisation objective, hence
hindering the discriminators from learning meaningful features and being overpowered by the generators.

Xaug vs F (Yaug) Xaug vs F (G(Xaug)) Yaug vs G(Xaug) Yaug vs G(F (Yaug))
Identity 0.1328 ± 0.2103 0 0.1328 ± 0.2103 0
Linear 0.2423 ± 0.4189 N/A 0.2583 ± 0.4388 N/A
VAE 0.2558 ± 0.3885 N/A 0.2437 ± 0.4061 N/A

(a) LSGAN objective against different generator architectures
Model-R 0.1191 ± 0.2204 0.0253 ± 0.0481 0.1268 ± 0.2294 0.0281 ± 0.0567
Model-AG 0.1081 ± 0.1816 0.0589 ± 0.0592 0.1175 ± 0.2008 0.0645 ± 0.0700

(b) Model-AG architecture against different objectives
GAN 0.1753 ± 0.2221 0.2009 ± 0.2538 0.2246 ± 0.2708 0.2200 ± 0.2494
WGANGP 3.9094 ± 2.8441 2.5724 ± 2.0950 3.9362 ± 2.7241 1.7874 ± 1.3328
DRAGAN 3.0314 ± 2.4206 0.1681 ± 0.2496 3.8994 ± 2.7172 0.1302 ± 0.1673

(c) Model-AG and LSGAN objective against different neuron ordering
Model-AG-1D 0.2313 ± 0.3065 0.1839 ± 0.1828 0.2372 ± 0.3749 0.1712 ± 0.2872
FR 0.1043 ± 0.2675 0.0514 ± 0.0632 0.1154 ± 0.2164 0.0649 ± 0.0814
CORR 0.1030 ± 0.1870 0.0760 ± 0.0995 0.1193 ± 0.3396 0.0559 ± 0.0766
AE 0.1024 ± 0.1856 0.1111 ± 0.2260 0.1103 ± 0.2858 0.1267 ± 0.2633

31

Under review as submission to TMLR

G Recorded data

G.1 Mouse 1 results

Figure G.1: The (Left column) forward and (Right column) backward cycle of the entire population from a
randomly selected segment xrec ∼ Xrec and yrec ∼ Yrec. The model was trained with Model-AG generators
using the LSGAN objective on the recorded dataset and neurons were in AE order. TURBO colourmap is used
to improve visibility.

Figure G.2: Attention masks AG1 and AG2 from generator F with (Left column) neurons sorted by AE
reconstruction error and (Right column) no neuron ordering. The histogram to the right of each panel
indicates the spatial attention intensity learned by the attention module.

32

Under review as submission to TMLR

Table G.1: Cycle-consistent and identity loss in the test set, where neurons were ordered by (OG) original
annotation, (FR) firing rate, (CORR) pairwise correlation, (AE) AE reconstruction loss, respectively. For
reference, MAE(Xrec, Yrec) = 0.3674 ± 0.0236 in the test set.

Order Xrec vs F (Xrec) Xrec vs F (G(Xrec)) Yrec vs G(Yrec) Yrec vs G(F (Yrec))
Model-AG-1D 0.1502 ± 0.0064 0.1806 ± 0.0077 0.1463 ± 0.0149 0.1811 ± 0.0163
OG 0.0123 ± 0.0015 0.0874 ± 0.0037 0.0101 ± 0.0010 0.0766 ± 0.0025
FR 0.0108 ± 0.0013 0.0760 ± 0.0030 0.0070 ± 0.0005 0.0752 ± 0.0028
CORR 0.0111 ± 0.0012 0.0778 ± 0.0028 0.0089 ± 0.0022 0.0757 ± 0.0024
AE 0.0101 ± 0.0012 0.0733 ± 0.0025 0.0069 ± 0.0007 0.0737 ± 0.0027

Table G.2: The average KL divergence between recorded and translated distributions in (a) pairwise corre-
lation, (b) firing rate, and (c) pairwise van Rossum distance. We repeated the same experiments with differ-
ent neuron ordering methods as well as Model-AG-1D which uses 1D convolutions instead of 2D convolutions
and does not take neuron spatial information into consideration. The PCA encoder in Linear consists of
NPCA = 40 components to capture 9% of the variance in the input. OG, FR, CORR, and AE indicate neu-
rons ordered by their original annotation, firing rate, correlation, and AE reconstruction loss, respectively.

Xrec vs F (Yrec) Xrec vs F (G(Xrec)) Yrec vs G(Xrec) Yrec vs G(F (Yrec))
(a) pairwise correlation

identity 0.0875 ± 0.0549 0 0.0821 ± 0.0471 0
Linear 2.9071 ± 0.3869 N/A 4.4880 ± 0.6209 N/A
VAE 1.1532 ± 0.3885 N/A 2.2670 ± 0.4557 N/A
Model-AG-1D 0.2027 ± 0.1040 0.4715 ± 0.2051 0.1901 ± 0.1003 0.4149 ± 0.2194
OG 0.0552 ± 0.0419 0.0754 ± 0.0353 0.0583 ± 0.0553 0.0174 ± 0.0110
FR 0.0507 ± 0.0358 0.0266 ± 0.0146 0.0504 ± 0.0438 0.0267 ± 0.0176
CORR 0.0539 ± 0.0329 0.0339 ± 0.0176 0.0534 ± 0.0474 0.0205 ± 0.0133
AE 0.0479 ± 0.0372 0.0329 ± 0.0163 0.0493 ± 0.0448 0.0283 ± 0.0206

(b) firing rate
identity 8.0705 ± 6.5500 0 7.7781 ± 6.7338 0
Linear 19.5507 ± 1.6473 N/A 19.5703 ± 1.3806 N/A
VAE 13.4533 ± 6.6228 N/A 15.9878 ± 5.6384 N/A
Model-AG-1D 3.5688 ± 3.8895 7.9101 ± 5.3517 3.0572 ± 3.1114 8.3185 ± 5.5950
OG 1.5401 ± 1.2491 2.0442 ± 2.0936 1.8527 ± 1.3563 1.4697 ± 1.1412
FR 1.3402 ± 1.0450 1.2658 ± 1.0784 1.6994 ± 1.4170 1.4152 ± 1.2221
CORR 1.4006 ± 1.1079 1.5450 ± 1.0786 1.4088 ± 1.0828 1.4674 ± 1.3505
AE 1.1648 ± 0.7934 1.4022 ± 1.2734 1.0697 ± 0.7689 1.2705 ± 1.1148

(c) pairwise van Rossum distance
identity 0.5510 ± 0.2960 0 0.3053 ± 0.1211 0
Linear 2.0803 ± 0.2934 N/A 3.4271 ± 0.4390 N/A
VAE 0.7336 ± 0.2057 N/A 1.9896 ± 0.5960 N/A
Model-AG-1D 0.3613 ± 0.1597 0.8045 ± 0.1846 0.3764 ± 0.1565 1.3897 ± 0.8256
OG 0.2790 ± 0.2186 0.1878 ± 0.0477 0.3216 ± 0.1352 0.1581 ± 0.0664
FR 0.2539 ± 0.1708 0.1003 ± 0.0514 0.3080 ± 0.1173 0.1536 ± 0.0663
CORR 0.2629 ± 0.1877 0.1905 ± 0.0485 0.2953 ± 0.1230 0.1797 ± 0.0696
AE 0.2387 ± 0.1488 0.1041 ± 0.0376 0.3031 ± 0.1138 0.1328 ± 0.0592

33

Under review as submission to TMLR

G.2 Decoding performance

Table G.3: The decoding performances (R2) in (a) virtual position and (b) velocity on Mouse 1 recordings
from Day 1 and Day 4 of the VR experiment. We trained RNN regression models on the calcium responses of
(1) all 102 neurons, (2) top-30 neurons, (3) the rest of the neurons, and (4) 30 randomly selected neurons. We
fit the regression models 20 times using different random seeds and compute the p-value between (2) and (4).
As the GradCAM activation map from G and F are extracted with respect to inputs Xrec and Yrec, and thus
we selected the (2) top-30 neurons for Day 1 and Day 4 separately, each according to the positional activation
maps from the two generators (see Figure 13). The best result for each decoding task is shown in bold.

Day (1) all (2) top-30 (3) rest (4) random-30 p-value
(a) Virtual position

1 0.8721 ± 0.0883 0.8123 ± 0.1255 0.7597 ± 0.1494 0.5947 ± 0.1300 6.0858 × 10−6 (****)
4 0.8555 ± 0.0698 0.7912 ± 0.0551 0.7657 ± 0.0676 0.6736 ± 0.0479 2.3413 × 10−8 (****)

(b) Velocity
1 0.2225 ± 0.0533 0.1900 ± 0.0387 0.1894 ± 0.0802 0.1778 ± 0.0879 0.5827 (n.s.)
4 0.5786 ± 0.0461 0.3053 ± 0.0600 0.4728 ± 0.0915 0.1320 ± 0.0455 3.1032 × 10−12 (****)

34

Under review as submission to TMLR

G.2.1 Mouse 1 spike analysis

Figure G.3: Spike statistics comparison between Xrec and X̂rec = F (Yrec) of (Top row) pairwise correlation
from 2 randomly selected samples, (Middle row) firing rate of 2 randomly selected neurons and (Bottom row)
van Rossum distance of 2 randomly selected segments. The 3rd column shows the KL divergence of each
metric and Table G.2 shows the mean and standard deviation of the KL divergence comparisons. Neurons
in AE order and the ground-truth Xrec is in grey colour.

35

Under review as submission to TMLR

Figure G.4: Spike statistics comparison between Xrec and X̄rec = F (G(Xrec)) of (Top row) pairwise corre-
lation from 2 randomly selected samples, (Middle row) firing rate of 2 randomly selected neurons and (Bot-
tom row) van Rossum distance of 2 randomly selected segments. The 3rd column shows the KL divergence
of each metric and Table G.2 shows the mean and standard deviation of the KL divergence comparisons.
Neurons in AE order and the ground-truth Xrec is in grey colour.

36

Under review as submission to TMLR

Figure G.5: Spike statistics comparison between Yrec and Ŷrec = G(Xrec) of (Top row) pairwise correlation
from 2 randomly selected samples, (Middle row) firing rate of 2 randomly selected neurons and (Bottom row)
van Rossum distance of 2 randomly selected segments. The 3rd column shows the KL divergence of each
metric and Table G.2 shows the mean and standard deviation of the KL divergence comparisons. Neurons
in AE order and the ground-truth Yrec is in grey colour.

37

Under review as submission to TMLR

Figure G.6: Spike statistics comparison between Yrec and Ȳrec = F (G(Yrec)) of (Top row) pairwise correlation
from 2 randomly selected samples, (Middle row) firing rate of 2 randomly selected neurons and (Bottom row)
van Rossum distance of 2 randomly selected segments. The 3rd column shows the KL divergence of each
metric and Table G.2 shows the mean and standard deviation of the KL divergence comparisons. Neurons
were ordered by AE reconstruction loss and the ground-truth Yrec is in grey colour.

38

Under review as submission to TMLR

Figure G.7: Spike statistics comparison between Xrec and VAE(Yrec). (Top row) pairwise correlation from 2
randomly selected samples, (Middle row) firing rate of 2 randomly selected neurons and (Bottom row) van
Rossum distance of 2 randomly selected segments. The 3rd column shows the KL divergence of each metric
and Table G.2 shows the mean and standard deviation of the KL divergence comparisons. Ground-truth
Yrec is in grey colour.

39

Under review as submission to TMLR

G.3 Mouse 2 results

Table G.4: Cycle-consistent and identity loss of Model-AG on Mouse 2 recordings, where neurons were ordered
by (OG) original annotation, (FR) firing rate, (AE) AE reconstruction error. For reference, MAE(Xrec, Yrec) =
0.6057 ± 0.1146 in the test set. The lowest loss in each category is marked in bold.

Order Xrec vs F (Xrec) Xrec vs F (G(Xrec)) Yrec vs G(Yrec) Yrec vs G(F (Yrec))
OG 0.1292 ± 0.0168 0.5875 ± 0.1050 0.0923 ± 0.0064 0.4416 ± 0.0763
FR 0.1276 ± 0.0152 0.5794 ± 0.1055 0.0894 ± 0.0048 0.4396 ± 0.0793
AE 0.1030 ± 0.0099 0.5692 ± 0.1008 0.0101 ± 0.0018 0.4378 ± 0.0769

Table G.5: The average KL divergence between generated and recorded distributions of Mouse 2 in (a)
pairwise correlation, (b) firing rate, and (c) population pairwise van Rossum distance. We compare Model-AG
results with different neuron ordering methods. Note that we added the identity model (first row of each
sub-table) as a baseline where we should obtain perfect cycle reconstruction.

Xrec vs F (Yrec)) Xrec vs F (G(Xrec)) Y vs G(Xrec) Yrec vs G(F (Yrec))
(a) pairwise correlation

Identity 0.6528 ± 0.4980 0 0.4583 ± 0.4366 0
OG 0.5523 ± 0.4251 0.1617 ± 0.0715 0.1212 ± 0.0833 0.0499 ± 0.0266
FR 0.5639 ± 0.4679 0.1951 ± 0.1031 0.1126 ± 0.0831 0.0399 ± 0.0231
AE 0.5209 ± 0.5554 0.0582 ± 0.0361 0.1231 ± 0.0988 0.0352 ± 0.0228

(b) firing rate
Identity 8.3096 ± 6.1580 0 5.5783 ± 5.8451 0
OG 1.2881 ± 1.1147 2.5786 ± 2.7222 1.5782 ± 1.2217 1.6722 ± 1.3286
FR 1.2181 ± 0.9909 2.4912 ± 2.5037 1.3656 ± 1.1475 1.1767 ± 1.0625
AE 0.8087 ± 0.5764 1.1326 ± 1.3149 1.2521 ± 0.9649 1.0592 ± 1.0722

(c) pairwise van Rossum distance
Identity 1.3894 ± 2.0529 0 1.1240 ± 1.5159 0
OG 1.3392 ± 1.6653 0.5782 ± 0.9743 0.6043 ± 0.5250 0.2497 ± 0.2443
FR 1.2464 ± 1.7505 0.5946 ± 0.9352 0.5638 ± 0.4181 0.1977 ± 0.1234
AE 0.6946 ± 0.5687 0.1996 ± 0.3232 0.5287 ± 0.3897 0.1775 ± 0.0959

40

Under review as submission to TMLR

G.4 Mouse 3 results

Table G.6: Cycle-consistent and identity loss of Model-AG on Mouse 3 recordings, where neurons were ordered
by (OG) original annotation, (FR) firing rate, (AE) AE reconstruction error. For reference, MAE(Xrec, Yrec) =
0.4764 ± 0.1520 in the test set.

Order Xrec vs F (Xrec) Xrec vs F (G(Xrec)) Yrec vs G(Yrec) Yrec vs G(F (Yrec))
OG 0.0656 ± 0.0037 0.2684 ± 0.0290 0.0796 ± 0.0047 0.3229 ± 0.0476
FR 0.0585 ± 0.0034 0.2679 ± 0.0309 0.0777 ± 0.0043 0.3192 ± 0.0477
AE 0.0554 ± 0.0023 0.2677 ± 0.0282 0.0672 ± 0.0034 0.3199 ± 0.0487

Table G.7: The average KL divergence between generated and recorded distributions of Mouse 3 in (a)
pairwise correlation, (b) firing rate, and (c) population pairwise van Rossum distance. We compare Model-AG
results with different neuron ordering methods. Note that we added the identity model (first row of each
sub-table) as a baseline comparison and should obtain perfect cycle reconstruction.

Xrec vs F (Yrec)) Xrec vs F (G(Xrec)) Y vs G(Xrec) Yrec vs G(F (Yrec))
(a) pairwise correlation

Identity 1.0188 ± 0.5731 0 0.7363 ± 0.3732 0
OG 0.5361 ± 0.2817 0.5678 ± 0.3145 0.6975 ± 0.2202 0.7381 ± 0.2977
FR 0.5021 ± 0.2596 0.5184 ± 0.2536 0.6281 ± 0.2830 0.6616 ± 0.2850
AE 0.5140 ± 0.2538 0.4751 ± 0.2421 0.6137 ± 0.2997 0.4625 ± 0.2443

(b) firing rate
Identity 12.2077 ± 7.3556 0 12.4075 ± 7.3156 0
OG 1.0164 ± 0.7129 1.8203 ± 1.9280 1.2904 ± 0.9448 1.4786 ± 1.4374
FR 0.9371 ± 0.6735 1.7893 ± 2.5419 1.0712 ± 0.7793 1.2805 ± 1.5136
AE 0.8936 ± 0.5655 1.1152 ± 0.6797 1.2114 ± 0.7281 0.6928 ± 0.4643

(c) pairwise van Rossum distance
Identity 4.2704 ± 2.0834 0 4.9623 ± 1.4393 0
OG 3.0412 ± 1.8467 2.0246 ± 1.3422 4.6059 ± 2.0664 3.0293 ± 1.5854
FR 2.9009 ± 1.7587 1.6458 ± 1.2375 4.1910 ± 1.7950 2.8613 ± 1.7788
AE 2.8383 ± 1.5942 1.4747 ± 1.1150 3.9709 ± 1.7732 1.4767 ± 1.0195

41

Under review as submission to TMLR

G.5 Mouse 4 results

Table G.8: Cycle-consistent and identity loss of Model-AG on Mouse 4 recordings, where neurons were ordered
by (OG) original annotation, (FR) firing rate, (AE) AE reconstruction error. For reference, MAE(Xrec, Yrec) =
0.4383 ± 0.2354 in the test set.

Order Xrec vs F (Xrec) Xrec vs F (G(Xrec)) Yrec vs G(Yrec) Yrec vs G(F (Yrec))
OG 0.0443 ± 0.0015 0.2538 ± 0.0399 0.0808 ± 0.0061 0.2403 ± 0.0395
FR 0.0376 ± 0.0015 0.2511 ± 0.0389 0.0764 ± 0.0067 0.2388 ± 0.0406
AE 0.0382 ± 0.0012 0.2489 ± 0.0381 0.0764 ± 0.0053 0.2367 ± 0.0396

Table G.9: The average KL divergence between generated and recorded distributions of Mouse 4 in (a)
pairwise correlation, (b) firing rate, and (c) population pairwise van Rossum distance. We compare Model-AG
results with different neuron ordering methods. Note that we added the identity model (first row of each
sub-table) as a baseline comparison and should obtain perfect cycle reconstruction. Entries with the lowest
value are marked in bold.

Xrec vs F (Yrec)) Xrec vs F (G(Xrec)) Y vs G(Xrec) Yrec vs G(F (Yrec))
(a) pairwise correlation

Identity 0.3724 ± 0.2169 0 0.5124 ± 0.3238 0
OG 0.2849 ± 0.1552 0.1735 ± 0.0918 0.3536 ± 0.2541 0.5750 ± 0.2883
FR 0.2482 ± 0.1502 0.1478 ± 0.0848 0.3482 ± 0.2561 0.5471 ± 0.2577
AE 0.2096 ± 0.1155 0.1587 ± 0.0867 0.3460 ± 0.2568 0.4795 ± 0.2457

(b) firing rate
Identity 5.8031 ± 4.8030 0 5.1383 ± 5.4684 0

OG 1.3062 ± 1.0097 0.6034 ± 0.6294 1.4253 ± 1.5599 2.9196 ± 3.1077
FR 1.0818 ± 0.9274 0.5480 ± 0.5043 1.2120 ± 1.2971 2.8206 ± 2.7266
AE 1.0564 ± 1.1415 0.5474 ± 0.5223 1.1570 ± 1.0830 2.1015 ± 2.2399

(c) pairwise van Rossum distance
Identity 2.2670 ± 1.2707 0 2.8134 ± 1.5536 0

OG 1.8698 ± 1.1525 0.5625 ± 0.4399 2.4011 ± 1.4879 3.3849 ± 1.7608
FR 1.5416 ± 0.9327 0.3931 ± 0.2821 2.1379 ± 1.4338 3.3865 ± 1.9320
AE 1.3246 ± 0.8537 0.4578 ± 0.3639 2.2134 ± 1.3838 2.6537 ± 1.6526

42

	Introduction
	Methods
	Task setting
	Recorded data
	Synthetic data
	Simulated data
	Augmented data

	CycleGAN
	Model pipeline
	Networks architecture
	Generator
	Discriminator

	Visual explanation
	Decoding analysis
	Neuron ordering
	Baseline models

	Results
	Simulated data
	Augmented data
	Recorded data
	Decoding performance

	Discussion
	Limitations
	Conclusion

	Appendix
	CycleGAN
	Mouse information
	Neuron ordering
	Simulation data
	Augmented data
	Recorded data
	Mouse 1 results
	Decoding performance
	Mouse 1 spike analysis

	Mouse 2 results
	Mouse 3 results
	Mouse 4 results

