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Abstract
Edge intelligent applications like VR/AR and surveillance
have become popular with the growth of IoT and mobile
devices. However, edge devices with limited capacity strug-
gle to serve increasingly large and complex deep learning
(DL) models. To mitigate such challenges, researchers have
proposed optimizing and offloading partitions of DL models
among user devices, edge servers, and the cloud. In this set-
ting, users can take advantage of different services to support
their intelligent applications. For example, edge resources of-
fer low response latency. In contrast, cloud platforms provide
low monetary cost computation resources for computation-
intensive workloads. However, communication between DL
model partitions can introduce transmission bottlenecks and
pose risks of data leakage. Recent research aims to balance
accuracy, computation delay, transmission delay, and privacy
concerns. They address these issues with model compression,
model distillation, transmission compression, and model ar-
chitecture adaptations, including internal classifiers. This
survey develops a systematic evaluation approach for state-
of-the-art model offloading methods and model adaptation
techniques. We formulate an optimization problem for edge
Deep Neural Network offloading that optimizes inference and
training latency, data privacy, and resource monetary cost.

1 Introduction

In recent decades, rich data have been generated on mobile or
IoT devices. Computing resources in the cloud remain more
flexible in scaling and management than those on the edge.
However, edge computing can mitigate the transmission bot-
tleneck [16]. Recent intelligent systems focus on offloading
user applications to the multi-layer cloud, edge, and personal
device systems [68,93,95], leveraging the computation capac-
ity of powerful edge servers or the core cloud while improving
latency, privacy, and monetary cost efficiency.

Machine Learning (ML) applications experience hetero-
geneous performance requirements and resource availability.
Mobile and IoT applications, for example object recogni-
tion in housekeeping AIoT devices [133] and localization of
autonomous cars [21], are constrained by energy consump-
tion [71] or are based on emerging infrastructures such as
5G/6G base stations and smart cities [38, 140, 142].

Meanwhile, the high monetary cost associated with com-
putational resources for AI/ML training and serving poses

a barrier, particularly for research institutions and smaller
companies. This is in contrast to large companies which
have the engineering capacity to build Deep Learning (DL)
clusters. For example, pre-training LLaMA-3.1-8B (LLaMA-
3.1-405B) requires 1.46 million (30.84 million) GPU hours
on H100-80GB GPUs [107], and ByteDance operates a clus-
ter of over 10,000 NVIDIA Ampere GPUs for their Large
Language Model (LLM) workloads [73].

As AI/ML applications become popular, building a mone-
tary cost ($) efficient, latency optimized, and privacy-aware
infrastructure for architecture-optimized models has emerged
as a critical area of research [44,51,158]. This survey focuses
on the computation offloading problem between the edge
and cloud. We also discuss orthogonal methods to improve
latency, privacy and monetary cost of ML systems in addi-
tion to computation offloading, including quantization [114],
weight pruning [91], distillation [47], privacy preserving dis-
tributed DL [162] and cost ($) based resource provisioning
using cloud services [30].

DL applications can be decomposed by splitting the layers
of neural networks (NN) and offloading the model partitions
to cloud, edge, and client mobile devices or IoT devices. By
considering each partition of an NN as a general operator,
we believe that insights of this survey also apply to general
application decomposition problems.

Machine Learning as a Service. Machine Learning as
a Service (MLaaS) is a type of cloud service with a cost-
effective cost model that abstracts the computation resources
for ML model training and inference, so that the user only
pays for the resources that their models leverage. Such sys-
tems face challenges in adapting to LLM training and in-
ference paradigms, which require massive computation re-
sources and inter-node communication bandwidth often found
in private GPU clusters [73]. However, MLaaS remains an
important service for many LLM tasks. Compared to pre-
training an LLM, parameter-efficient fine-tuning and infer-
ence on smaller models are more cost-effective. For exam-
ple, fine-tuning a Low-Rank Adapter (LoRA) for a model
with 65B weights requires only a single 48GB GPU for less
than 24 hours [31]. Additionally, running inference on a
Qwen2−7B− Instruct model using one A100−80GB GPU
achieves 41.20 Tokens per Second [121]. Therefore, instead
of constructing their own cluster, small-size companies can
fine-tune or serve the components of decomposed models,
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such as LoRA adapters for LLM or traditional deep neural
networks, by acting as a broker offering a Machine Learning
as a Service (MLaaS) cost model to meet the demand of their
customers and for internal R&D.

Recently, organizations like Adobe [19, 22] and Work-
day [161], have built their MLaaS platforms by provisioning
cloud resources, including Virtual Machines (VMs), contain-
ers, etc., from cloud service providers, such as Amazon Web
Service (AWS), Microsoft Azure, and Google Cloud Platform
(GCP), while maintaining a private cloud cluster. They then
built their own ML services using that hybrid cloud infras-
tructure. This approach presents tradeoffs and opportunities
in service latency guarantee, user data privacy preservation,
and saving in monetary cost of computation resources.

For example, provisioning H100 GPUs in the cloud en-
ables low processing time, but results in a high monetary
resource cost ($) and potentially increases data transmission
time compared with edge resources. Similarly, allocating
computation resources in the cloud instead of processing data
securely at the edge, i.e., private cloud or user devices, can
minimize the monetary cost of resource maintenance ($) and
processing delay, but increases the risk of data leakage.

Furthermore, some service level objectives (accuracy, la-
tency, privacy, and monetary cost ($)) can be relaxed to im-
prove other service level objectives. For example, a software
vulnerability detection system for a data center has low sensi-
tivity to the privacy of the software discovered when report-
ing to the cluster administrator. Thus, an MLaaS broker can
take advantage of the high parallelism available in the cloud
for inference or training without incurring significant mon-
etary costs of computational resources [178]. Furthermore,
agreement-based user data sharing can further mitigate user
data privacy concerns [46, 118].

Investigating such tradeoffs even with traditional DNNs
as opposed to LLMs provides valuable insights for the fu-
ture design of MLaaS systems and for supporting large ML
systems with short latency, high privacy guarantee and low
monetary cost of resources for smaller companies and institu-
tions. Recent research has focused on computation-efficient
and privacy-aware ML models or cost-efficient resource or-
chestration methods. However, a study of the interactions
between all three aspects of latency, privacy, and monetary
cost remains an ongoing topic. In this survey, we explore
recent works and open issues surrounding these interactions
via resource and model adaptations.

What are the limitations of existing MLaaS systems? Ex-
isting MLaaS systems provide managed services in the cloud
and on the edge. Depending on their flexibility in configu-
ration, MLaaS systems manage different resources for users
at various levels of abstraction [171]. AWS provides a set of
AI services, including Amazon Rekognition [12], which hide
lower-level details like machine learning (ML) models and
computation resources from users. On the other hand, they

also offer ML services. For example, Amazon Sagemaker [13]
allows users to define models, data sources, and resource or-
chestration across Virtual Machine (VM) instances, serverless
instances, S3 object storage, etc. Sagemaker Edge [14] can
deploy an NN model and collect data on edge IoT devices
owned by the user for ML inference and model retraining.
However, these services do not incorporate much of the exist-
ing research in model adaptations for optimal latency [147],
privacy [116], and service cost [32, 165]. Sagemaker Edge
compiles NN models to utilize the client’s hardware architec-
ture and memory access patterns for optimal ML inference
and training speed [15], which is a small subset of model
adaptation.

Therefore, this survey investigates model architecture op-
timization and ML task resource provisioning strategies that
could become part of future MLaaS services, empowering
users to develop their applications in the cloud or at the edge.
We particularly study model offloading and model adaptation
techniques.

Why offloading DL tasks? ML applications that collect
large volumes of data and employ highly parameterized deep
learning models usually face a short latency requirement for
Quality of Service [52, 64, 99, 153]. As shown in Table 1,
recent lightweight DNN models used in Augmented Reality
(AR) applications running on edge devices, such as Rasp-
berry Pi or mobile phones, often struggle to meet the 30
FPS video requirements or 100ms human-sensible end-to-end
(frame refresh) latency target [28, 110]. Due to limitations
in computation capacity [39, 128], bandwidth [106], battery
capacity [80], and memory/storage space [98], edge devices
cannot sustain high performance.

Cloud resources offer alternatives to edge computing with
extra processing capacity, as shown in Table 2. However,
the public cloud faces privacy concerns [179] and transmis-
sion bottlenecks over the Internet [39, 181], which prohibit
transmitting source data to the cloud for various ML tasks.

To take advantage of the strengths of both edge and cloud
platforms, recent research has focused on partially offloading
computation from the cloud to the edge while securing cus-
tomer data at edge servers or user devices. In this approach, a
portion of the computation is performed on the client devices.
Only the essential hidden variables required to complete the
inference or training tasks at high accuracy are transmitted to
the cloud or edge server. This paradigm keeps the source data
on the client device, enhancing the efficiency and privacy of
transmission. Since data is only sent to remote servers when
necessary, this approach can reduce overall ML job comple-
tion latency. As shown in Table 3, some existing studies have
shown low latency and high model accuracy.

Challenges of DL task offloading. Finding an optimal of-
floading plan for DL applications is not trivial. Given a Neu-
ral Network (NN) model and a data source, the model can
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Model Device End-to-End Latency Power Pred Metrics Dataset/Task Citation

MobileNetV3 [57] Raspberry Pi 4B+ 595ms NA
79.23%
accuracy

48∗48-pixel
RAF-DB [90]

[64]

MobileNetV2 [134] Raspberry Pi 4B+ 3571ms NA
81.16%
accuracy

48∗48-pixel
RAF-DB [90]

[64]

MobileNetV2+SSDLite [134] Google Pixel 1 162ms NA 22.1% mAP COCO [94] [57]
MobileNetV3+SSDLite [134] Google Pixel 1 137ms NA 22.0% mAP COCO [94] [57]

YOLO(YOLOv3) [126] Google Pixel 2 4500ms 4.4W 40% IOU Imagenet Video [79] [24]
Tiny-YOLO(YOLOv2) [125] Google Pixel 2 1200ms 4W 40% IOU [79] [24]

Table 1: DNN performances at edge in recent works

Model Hardware Processing Latency Pred Metrics Dataset/Task Citation
YOLOv4-608 [126] Tesla V100 16.1ms 43.5% COCOmAP COCO [94] [25]
YOLOv3-608 [126] Nvidia Titan X 57.9ms 33% COCOmAP COCO [94] [126]
YOLOv2-544 [125] Nvidia Titan X NA 21.6% COCOmAP COCO [94] [126]

Table 2: DNN performances at cloud in recent works

Model Edge Cloud
End-to-End

Latency
Pred Metrics Bandwidth Dataset/Task Citation

Faster R-CNN
(ResNet-50) [127]

NV Jetson TX2 NV Titan XP 34.56ms 70% IoU 82.8Mbps
Object detection
Xiph dataset [11]

Baseline [100]

Faster R-CNN
(ResNet-50) [127]

NV Jetson TX2 NV Titan XP 22.96ms 75.8% IoU 276Mbps
Object detection
Xiph dataset [11]

Baseline [100]

Faster R-CNN
(ResNet-50) [127]

NV Jetson TX2 NV Titan XP 17.23ms 86.4% IoU 82.8Mbps
Object detection
Xiph dataset [11]

DRE+PSI
+MvOT [100]

Faster R-CNN
(ResNet-50) [127]

NV Jetson TX2 NV Titan XP 15.52ms 91.1% IoU 276Mbps
Object detection
Xiph dataset [11]

DRE+PSI
+MvOT [100]

Table 3: End-to-end DNN performances combining edge and cloud in recent works

be partitioned and deployed on the cloud, edge server, or
client devices. However, a naïve offloading plan can result
in long transmission and processing delays, privacy breaches,
or resource under-provisioning and over-provisioning. In this
survey, we formulate an optimization problem trading off
optimization objectives, including Latency, Privacy, and Mon-
etary Cost ($), based on various existing methods. Previous
surveys have addressed aspects of optimizing monetary cost,
latency or privacy for AI applications (Table 4). However,
they do not formulate the optimization problem nor discuss
monetary cost ($) based approaches. Detailed cost analysis
using real-world cloud resources for low-cost ($) ML serving
and training remains limited. Furthermore, while some exist-
ing surveys [105, 158] provide valuable insights, they often
lack comprehensive discussions on source data privacy in dis-
tributed inference and training systems. To address this gap,
our survey highlights recent work addressing model inversion
attacks [41, 156, 169].

We organize the paper based on optimization objectives. In
Sec. 2, we introduce the optimization problem by studying
the challenges of ML task offloading given different optimiza-
tion objectives, including Latency in Sec. 2.1.1, Privacy in
Sec. 2.1.2, and Monetary Cost ($) in Sec. 2.1.3. Then, we

formulate the optimization problem for Latency (Sec. 2.2.1),
Privacy (Sec. 2.2.2) and Monetary Cost (Sec. 2.2.3). In Sec. 3,
we discuss popular adaptive learning methods to deploy a
DNN model across the spectrum of cloud, edge, and client
resources by optimizing Latency (Sec. 3.1), Privacy (Sec. 3.2),
and Monetary Cost (Sec. 3.3). Sec. 4 concludes the paper.

2 Problem Definition

Recent studies have explored offloading a Deep Neural Net-
work (DNN) model, both training and inference jobs, across
the core cloud, edge, and client devices to meet resource
constraints and privacy guarantees. With environment dynam-
ics, each inference request can adaptively go through model
partitions using the most capable resources to minimize la-
tency and meet privacy guarantees constrained on other per-
formance requirements. Similarly, for training jobs, although
all partitions should participate in the training, using the most
capable resources also minimizes training dataset transmis-
sion delay and training time, while enhancing data privacy by
limiting the exposure of sensitive information. However, par-
titioning the NN model introduces new challenges. Between
model partitions, hidden variables and gradients transmit-
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Optimization
Formulation

Monetary Cost ($) Latency Privacy DL Placement Scope Inference Training Reference

! ! ! ! ! !
Edge Devices &
Edge & Cloud

! ! (Our Work)

# ! ! # ! !
Graph in

Mobile & Cloud
! ! 2020 [154]

# # ! ! ! !
AIoT &

Edge & Cloud
! ! 2021 [26]

# # ! ◦ ! !
Early Exit in

Mobile & Cloud
! ! 2022 [105]

# # ! ! ! !
End Device &
Edge & Cloud

! ! 2023 [35]

# # ! ◦ ! !
End Device &
Edge & Cloud

! ! 2024 [158]

Table 4: Related survey comparison: !indicates the corresponding survey covers up-to-date or more comprehensive discussion.
◦ indicates our work is more complementary or has different discussion than the corresponding work. #means the corresponding
work does not discuss this aspect.

ted during forward and backward propagation add additional
transmission overhead [39, 170, 181] and cause client data
leakage [150, 179]. Meanwhile, byproducts of running on the
edge, for example, extra processing delays [61, 104] and en-
ergy consumption [75], should be minimized. In this section,
we discuss model offloading challenges (Sec. 2.1) and prob-
lem definitions over cloud, edge, and resource-constrained
client devices (Sec. 2.2).

2.1 DNN Offloading Challenges

Existing MLaaS systems manage cloud resources [12] or user
devices to run DL jobs [14]. Meanwhile, cloud-managed edge
computing resources, including AWS Local Zones [5] and
Wavelength [6], and edge ML model optimizer have become
important building blocks for ML services used by companies
such as Holo-Light [60], Netflix [115], and SKT [143], etc.
With AWS Sagemaker Edge [14] and AWS Greengrass [4],
a user can optimize their edge application by a compilation
that targets their specific hardware (CPU architecture) and
operating system. In the future, we envision MLaaS service
providers adopting more model and resource adaptations in
their optimizers, improving latency of processing and trans-
mission, privacy of the source data, and the monetary cost of
resources. To enable such optimizers, we study the challenges
of achieving high DNN performance when a DL model is
partitioned between cloud, edge, and user devices.

2.1.1 Latency

The time spent in a distributed ML training or inference sys-
tem can be decomposed into transmission and processing
delays. When large volumes of data are sent between model
partitions, transmission overhead can dominate training or
inference latency [98, 179]. Meanwhile, offloading too many
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Figure 1: Hidden variable sizes of VGG16 with CiFAR-10
and batch size of 16.

model parameters to constrained edge resources can also
overwhelm user devices, resulting in long processing delays.
Ideally, a practical NN partitioning paradigm should optimize
for both delays to ensure optimal latency performance.
Transmission. For a partitioned NN, hidden variables (or
activations)1 and gradients must be sent between partitions to
complete forward and backward propagation, often over the
internet limited by bandwidth in IoT or mobile device-based
systems. In Fig. 1, we profiled the hidden variable sizes using
a VGG-16 model [141] and CiFAR-10 [78] with a batch size
of 16. The x-axis indicates the NN layer where the model is
split, where the head part of the DNN (from the input layer
up to and including the splitting layer) runs on a client device,
and the tail part runs on an edge or cloud server. The y-axis
shows the output size of different splitting layers. Different
splitting layers yield different output sizes. Therefore, the
model splitting can be optimized for short delays [75].

1We use the terms "hidden variables" and "activations" interchangeably.
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Furthermore, previous work has explored the use of in-
termediate data and model compression methods to re-
duce communication overhead. By incorporating a bot-
tleneck network, such as Auto-Encoder, at the splitting
point, previous works select the key features for transmis-
sion [39,62,63,104,138,170,181]. On the other hand, model
trimming techniques, such as model distillation [56] and quan-
tization [61,66,101,135], can also minimize the size of hidden
variables (activations) and gradients to send.

The sparse model activates a subset of the model parame-
ters during inference and training. For example, the Internal
Classifier (IC) allows forward propagation to end in one parti-
tion, and no intermediate data transmission [81, 147]. When
a classifier gains confidence in the prediction, it emits the
output, and no subsequent feature extraction is needed.
Processing. Another challenge for offloaded deep learning
systems is the limited processing capacity of edge and client
devices. As shown in Table 1, edge devices such as Raspberry
Pi [64] and mobile phones [24, 57] often struggle to meet
the latency or accuracy requirements demanded by machine
learning applications.

To overcome these limitations, related work has explored
model adaptations, including quantization [91], pruning [53,
96, 159, 168], and knowledge distillation [56]. Such methods
reduce model weights, allowing applications deployed on
edge devices or the cloud to meet QoS requirements.

In addition, other works have explored the use of cloud
computing capacity to assist edge intelligence applications.
However, this approach introduces challenges in privacy and
transmission [62, 175].

2.1.2 Privacy

Privacy of source data has become a critical concern for DL
systems. Partitioning and offloading an NN to edge devices
helps keep raw source data private, as user data is not sent
over the network. However, data breaches can still occur,
as adversaries can exploit information in intermediate data
through model inversion attacks [41, 156, 169].

Recent works [103, 150, 175, 179] discuss the use of Auto-
Encoders [17, 131] to reconstruct the source data from the
intermediate data sent from the edge to the cloud during for-
ward propagation. The Auto-Encoder consists of an encoder
neural network (NN) and a decoder NN, and uses a loss func-
tion, e.g., Mean Squared Error (MSE), to gauge the error
between the source data and reconstructed data. The encoder
mirrors the architecture of the NN on client devices, while
the decoder reflects the encoder structure.

One can then train an Auto-Encoder with a dataset similar
to the private source data to reconstruct the client source
data from activations sent by clients. For example, trained
with KMNIST, the decoder NN could reconstruct MNIST
hand-writings [179]. Or, with generic facial images from the
Internet, a trained decoder NN can reconstruct the source data

of a facial recognition classifier [41].
Such an attack is practical in real-world settings. First,

the decoder structure can be flexible and it is not required to
precisely mirror the client model [89, 179]. Second, many
recent large-scale DL training systems are variants of Feder-
ated Learning schemes [89, 106] where multiple computing
nodes simultaneously train local models using their private
dataset and then aggregate and share their model weights. An
honest but curious node can exploit these shared weights to
build an Auto-Encoder [89] to reconstruct the source data of
other nodes.

Privacy-preserving methods for model and user data are
critical for an MLaaS system. Recent work has focused on
training privacy-preserving models. One approach involves
encryption [74, 113], which, however, can cause significant
slowdown [33, 111]. As shown in Table 5, without an encryp-
tion method, using Nvidia Titan Xp, each inference with the
ImageNet dataset and the VGG-16 network achieves 14.5ms.
However, with FALCON encryption, using CPUs, previous
work reported 12,960ms for the same task [111].

Another privacy-preserving approach introduces a sec-
ondary loss function, e.g., distance correlation [70, 150, 179],
to constrain the similarity between intermediate and source
data during model training. Similar works also incorporate an
Auto-Encoder to model training, using reconstruction error
as privacy metric [89]. Furthermore, previous works utilize
DNN pruning with masks to remove mutual information be-
tween the source and intermediate data [33, 111].

Other privacy-preserving methods apply perturbations to
intermediate data [103, 175]. Thus, given the adversarial
objective, the intermediate data retain minimal sensitive in-
formation, while the cloud NN learns to extract key elements
for model inference or training.

2.1.3 Monetary Cost

As cloud infrastructure has evolved over the past decades,
there are other cloud services other than VMs that are more
cost-efficient. For example, different cloud services from
different providers, have individualized cost models [119]
and various accuracy performances [165]. For example, there
are Function-as-a-Service (FaaS) and Container-as-a-Service
(CaaS) clusters in the cloud [1, 2] and AWS Lambda@Edge
and Local Zones at the edge [3, 5] that offer a fine-grained
monetary resource cost ($) and low latency [137]. An MLaaS
system should adaptively configure the cost-efficient runtime
environment and model architecture for its ML jobs.

For computation-intensive training jobs, achieving cost-
efficiency requires designing models and training paradigms
that minimize the overall computational burden. Previous
works have explored minimizing training rounds before con-
vergence by strategically selecting key data samples, or re-
ducing the per-update computational cost using parameter-
efficient fine-tuning (PEFT) techniques such as LoRA. Ex-
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Model Hardware Processing Latency Dataset/Task Privacy Source
VGG-16 [151] Nvidia P100 57ms Tiny ImageNet [82] Plaintext [151]
VGG-16 [151] CPU 1,300ms Tiny ImageNet [82] Plaintext [151]
VGG-16 [151] CPU(Local Area Network) 40,000ms Tiny ImageNet [82] SMPC(FALCON) [151]
VGG-16 [151] CPU(Local Area Network) 59,000ms Tiny ImageNet [82] SMPC(FALCON) [151]
VGG-16 [111] Nvidia Titan Xp 14.5ms ImageNet [132] Plaintext [111]
VGG-16 [111] CPU 12,960ms ImageNet [132] SMPC(FALCON) [111]
VGG-16 [111] Nvidia Titan Xp 14.5ms ImageNet [132] Plaintext(Cloak) [111]

Table 5: Privacy-preserving DNN inference performances in the core cloud in recent works

amples include methods for Federated Learning (FL) client
selection to balance non-IID client data [155] and the applica-
tion of PEFT within FL settings [177].

More recent research also proposes a Split Federated Learn-
ing (SFL) paradigm [148] where under FL setting, each
node participating in the training can be offloaded from the
cloud to the edge. They explore the transmission and com-
putation demand given different model offloading and ag-
gregation algorithms leveraging individual cost models of
resources at the edge and cloud. FSL [179] proposes an of-
floading approach that tradeoffs transmission and processing
delays, privacy and accuracy with different strategies. Other
work [97, 119, 149, 160] focuses on resource cost models
and tradeoff monetary cost and training time when offloading
model partitions.

For highly dynamic inference workloads, slow scaling
in the core cloud might result in under or overprovision-
ing of resources and consequently missing the QoS target
or wasting the monetary cost of resources [123, 124]. Re-
lated works have explored dynamically directing workload
to a deep NN in the cloud and a shallow NN at the edge for
cost savings [32]. Other works deploy NN partitions using
Function-as-a-Service (FaaS) [69]. This approach leverages
the pay-per-use nature of FaaS, where the user only pays for
the actual computation time used, to avoid the costs of keep-
ing VMs constantly running and provisioned, including node
cold start and model loading time.

Furthermore, specific adaptations to the NN architecture
can enable resource provisioning for individual NN layers,
achieving cost-effective QoS tracking. By incorporating inter-
nal classifiers [76,157] or neuron skipping methods [77], only
a subset of the network’s neurons is used for prediction. Thus,
users can minimize the monetary resource cost ($) based on
different cloud resource pricing models [124]. Specifically,
low-workload layers can be provisioned on demand with FaaS
platforms [2,3,137] without relying on reserved VMs, so there
is less idle time for computation resources. Such adaptations
can be applied across different ML tasks. For example, in an
image classification task, the shallow layers might capture
the contour of a banana, while the deep layers that focus on
the details of the banana are less critical to some classifica-
tions [76,111]. Consequently, these less frequently used deep
layers are well-suited for FaaS.

2.2 Problem Formulation
We devise a deep learning (DL) model adaptation and re-
source provisioning problem formulation by integrating three
sub-formulations to partition the model between edge and
cloud resources. The formulation addresses the challenges
outlined in the previous section, including

• Challenge 1: To achieve overall short training or infer-
ence latency, an NN partition strategy should balance
processing and transmission delays.

• Challenge 2: An adversary can use an Auto-Encoder NN
to reconstruct source data from hidden variables, which
introduces data leakage concerns.

• Challenge 3: We need a fine-grained resource provi-
sioning approach that fits the model architecture to save
monetary cost while keeping track of Service Level Ob-
jectives.

Specifically, we minimize a weighted sum of loss func-
tions, including Latency (Ll), Privacy(Lp), and Cost (Lc), as a
constrained multi-objective optimization problem below.

min(wLLL +wPLP +wCLC) (1)
s.t. constraints on training loss and inference accuracy. (2)

Constraints for each objective are discussed in Sec. 2.2.1,
2.2.2 and 2.2.3. We illustrate the solutions in Sec. 3.

2.2.1 Latency(Ll)

Balancing and minimizing transmission and processing delays
are essential to DL training and inference tasks. Arbitrary
model partitioning can cause excessive data transmission. In
contrast, deploying too many layers on computation-limited
edge devices yields a long processing time.

We focus on a DL model composed of M partitions
(Fpid , pid ∈ 1,2, ...,M in Fig. 2) with the notations defined in
Table 6. An individual model partition pid can be offloaded
to the edge or cloud based on the estimation of its training
or inference time (denoted by Tpid , which is the sum of trans-
mission delay T T

pid and computation delay TC
pid), the hidden

variable size (Size(.)) and the profiles of floating point oper-
ations performed by layers in the partition (FLOPs j

i (.)) In
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practice, however, from shallow to deep NN partitions, when
the offloading decision of one partition changes, the same
decision follows for all subsequent partitions to minimize the
transmission delay [63, 75, 147].

A model partition can be adapted to reduce inference time
(πpid and πpid+1 both sides of the dashed line in Fig. 2). Each
partition pid can be adapted by attaching Qpid internal clas-
sifiers, where each classifier c has the confidence threshold
αc

pid , request exit rate βc
pid , and the observed test metrics Ac

πpid
,

including precision, and recall [61, 81, 86]. We denote the
sum of the exit percentages for partition pid as βpid .

Partitions can also be adapted with transmission and model
compression methods. For each partition pid, we denote by
xpid the hidden variable output (x0 refers to the source data)
and two model compression ratios: (1) γpid for latent space
compression layers (in Fig. 2, dark blue layers represent an
encoder and dark orange layers represent the decoder), and
(2) κpid for model compression like knowledge distillation,
neuron pruning and quantization [62, 88, 104, 117, 138, 170]
as exemplified by light blue and light orange layers in Fig. 2.

We formulate a constrained multi-objective optimization
problem for processing and transmission time.

LL = min
pid,αc

pid ,κpid ,γpid
(ξT

0 T T
0 +

M

∑
pid=1

Tpid) (1)

s.t.
M

∑
pid=1

Qpid

∑
c=1

β
c
pid ∗Ac

πpid
≥ Atar (2)

βpid =

Qpid

∑
c=1

Pr(α
′c
pid > α

c
pid) = FlagTrain ∗

Qpid

∑
c=1

β
c
pid (3)

xpid = πpid(Fpid)(xpid−1) (4)

T T
pid =

(1−κpid)(1−βpid)(1− γpid)Size(Fpid(xpid−1))

bandwidth
(5)

T T
0 =

(1− γ0)Size(x0)

bandwidth
(6)

TC
pid =

FLOPspid
pid(xpid−1,πpid)

µpid
(7)

Tpid = ξ
C
pidTC

pid +ξ
T
pidT T

pid (8)

α
c
pid ∈ [0,1],κpid ∈ [0,1], (9)

γpid ∈ [0,1],ξ ∈ R+,FlagTrain ∈ {0,1} (10)

In line 2, Atar is a user-defined model accuracy constraint
and βc

pid denotes the percentage of requests leaving the inter-

nal classifier c in partition pid. In line 3, α
′c
pid is the profiled

mean confidence during inference for the internal classifier
c in partition pid, αc

pid is the confidence threshold for the
internal classifier c in partition pid, and βpid indicates the
percentage of requests leaving partition pid during inference.
Notice that we introduce a flag parameter FlagTrain ∈ {0,1}
to specify whether the formulation is for training or inference.

Notation Definition

πLat
pid(.)

Adapt partition Fpid
to minimize inference latency

αc
pid

Confidence thresholds
for classifier c in partition pid

κpid
Output compression rate

of model knowledge distillation

γpid
Output compression rate

of compression layers(encoder&decoder)

γ0
Source data compression rate

of compression layers(encoder&decoder)

βc
pid

Percentage of request exit
at classifier c in partition pid

βpid Percentage of request exit in partition pid
x0 Source data

Qpid Quantity of classifier in partition pid
Ac

πpid
Observed model accuracy after adaptation

Atar User-defined model target accuracy
T T

pid Estimated transmission time
TC

pid Estimated computation time

FLOPs j
i (.) FLOPs from layer i to layer j inclusive

Table 6: Latency Optimization Formulation Notations

Distilled 

Distilled Encoder
Internal Classifier

Decoder

Figure 2: Illustration of latency optimization problem.

When FlagTrain = 1, the formulation optimizes for inference
latency, as it considers the portion of requests that leave the
internal classifiers at earlier partitions. For FlagTrain = 0, the
formulation optimizes the training latency, as it ignores early
exits and ensures that all internal classifiers make predictions
and deep partitions are trained.

In line 4, we define the output of partition pid as
πpid(Fpid)(xpid−1), where the model partition Fpid adapted
with πpid(.) takes xpid−1 as input. Notice that the model adap-
tations include the introduction of internal classifier(s) and
transmission and model compression. To quantify the effect
of those adaptations in training and inference latency, in line 5,
we estimate the transmission delay from the adapted parti-
tion pid to pid +1 based on input size Size(xpid−1), the early
exiting ratio βpid and the two compression ratios (γpid and
κpid), for which we will discuss the specific model adaptation
methods in Sec. 3.1. Then, in line 6, we estimate the trans-
mission time for the source data to the location of the first
NN partition. γ0 is the compression ratio of the source data.

In line 7, FLOPspid
pid(xpid−1,πpid) is the profiled count of

7
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Distilled Distilled Noise Generator

Figure 3: Illustration of Privacy optimization problem.

Notation Definition

π
pri
pid(.)

Fine-tune partition Fpid
for better privacy guarantee

τ(.) Noise generator method
λ Output bounding parameter

∆Fpid Sensitivity of partition pid

Table 7: Privacy Optimization Formulation Notations

FLOPs (FLoating-point OPerations) for partition pid, given
input (xpid−1) and adaptation (πpid). The subscript and super-
script of FLOPspid

pid(.) indicates the start and end partitions to
count FLOPs. When we focus on one partition, the subscript
and superscript are the same.

2.2.2 Privacy(Lp)

We study the privacy of source data in the distributed DNN
training and inference application. This section explores
remedies for data leakage when hidden variables are exposed
and vulnerable to model inversion attacks [41, 156, 169].

Regularization [55,89,150,179] methods adapt model train-
ing to resist source data reconstruction. Perturbation [55,112]
methods (τ(.)) inject noises based on partition sensitivity
(∆Fpid), which gauges the range of partition output enforced
by an output bounding parameter λ. We show their applica-
tion in Fig. 3. There are three stages, divided by the dashed
lines. The left and right portions represent model partitions
pid and pid + 1 enhanced by privacy-aware regularization
(πpri

pid). The middle portion represents the added perturbation
τ(∆Fpid). The constrained optimization problem to optimize
π

pri
pid ,∆,λ is formulated below, with notations in Table 7.

LP = min
π

pri
pid ,∆,λ

(wCECE(ŷ,y)−
M

∑
pid=1

wpMSE(F−1
pid (xpid),xpid−1))

(1)

s.t. CE(ŷ,y)≥ T hrCE (2)

xpid = λπ
pri
pid(Fpid)(xpid−1)+ τ(∆Fpid) (3)

∀pid > 1 (4)

The objective optimization function (line 1) balances
source data privacy (MSE(F−1

pid (xpid),xpid−1)), where F−1
pid

Distilled DistilledInternal
Classifier IaaS Infra FaaS Infra

Figure 4: Illustration of cost($) optimization problem.

Notation Definition
Latency Latency bound

TI Observed Mean IaaS Time
TF Observed Mean FaaS Time

T cutid
cold FaaS function cold start time

T cutid
trans Transmission delay from IaaS to FaaS

CI(.) Unit cost of IaaS given VM capacity
CF (.) Unit cost of FaaS given function capacity

µI VM capacity
µF Function capacity

Table 8: Cost($) Optimization Formulation Notations

is the inverse approximation of NN partition Fpid , and Cross-
Entropy (CE) between the prediction ŷ and the ground truth
y subject to the CE threshold (T hrCE in line 2). In line 3,
we specify the forward propagation step for each fine-tuned
NN partition, incorporating output bounding (λ) and noise
(∆(∆Fpid)) to the intermediate data.

2.2.3 Monetary Cost(Lc)

Resource provisioning approaches based on resource cost ($)
for DL training and inference tasks remain underexplored.
Using detailed cost models of different cloud and edge ser-
vices, an MLaaS broker can determine cost-efficient resource
provisioning strategies for different workloads. In particular,
for decomposable ML models, fine-grained resource provi-
sioning and load balancing for submodels are essential to
achieve cost-efficient ML training and inference.

In our formulation, we minimize the costs of provisioning
cloud and edge resources by using Infrastructure-as-a-Service
(IaaS) and Function-as-a-Service (FaaS) platforms at the edge
and cloud. FaaS provisions serverless functions to serve user
workload, which has a finer granularity cost model than IaaS.
FaaS only charges users when the deployed model is used,
which is suitable for low-rate workloads compared to IaaS
resources, for example, a temporary spike in DNN inference
workload [65, 69]. On the other hand, the IaaS platform auto-
matically scales virtual machines (VMs), which have a longer
cold start time needed for hardware and operating system
provisioning compared to FaaS. Due to the coarse granularity
of VM scaling (extra cold start time), a user tends to over-
provision VMs to satisfy a service-level objective (SLO) of
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a dynamic ML inference workload, which wastes monetary
cost of resources. Nevertheless, when the workload allows the
user to fully utilize the VMs, the monetary cost of using VMs
would be lower than the cost of using serverless functions.
Such workloads are often characterized by a steady high-rate
of data for processing, for example, the steady portion of a
DNN inference workload or ML training tasks [72].

Motivated by recent progress in sparse model design, where
only a subset of neurons are activated during training and in-
ference [59], and the need to partition a large model to fit in
edge devices [75], we model a dependent acyclic graph of sub-
models representing a partitioned sequential NN with internal
classifiers at each partition, as shown in Fig. 4. For inference
tasks, the partition Fpid has βpid percentage of requests that
exit at the internal classifier. And the partition Fpid+1 pro-
cesses the remaining portion of the requests. Notice that the
shallow partitions experience steady high-rate traffic, while
the deep partitions experience low-rate traffic. Thus, consid-
ering a consistent N requests per second, we can use VMs for
the rmax portion of N requests processed by shallow partitions
that can fully utilize the VMs. For all remaining requests, we
use FaaS to avoid under-utilization of any individual VM.

LC = min
cutid,µF ,µI ,α

k
pid

CI(µI)TI

cutid

∑
pid=1

βpid

+CF(µF)TF

M

∑
pid=cutid+1

βpid (1)

s.t. Latency ≥ TI +TF (2)

M

∑
pid=1

Qpid

∑
c=1

β
c
pidAc

πpid
≥ Atar (3)

βpid =

Qpid

∑
c=1

Pr(α
′c
pid > α

c
pid)

= FlagTrain

Qpid

∑
c=1

β
c
pid (4)

TF =
FLOPsM

cutid+1(xcutid)

µF
+T cutid

cold (5)

TI =
FLOPscutid

1 (x0)

µI
+T cutid

trans (6)

cutid ∈ [1,M], α
k
pid ∈ [0,1], (7)

FlagTrain ∈ {0,1}, (8)
µF ∈ {FaaS Capacities}, (9)
µI ∈ {IaaS Capacities} (10)

Focus on Inference Tasks: The optimization above focuses
on consistent rmax DNN inference requests per second that can
fully utilize VMs. It identifies the resource configurations of
using IaaS, FaaS or hybrid offloading of some requests from
IaaS to FaaS so they complete their processing of deep layers.

The optimization adjusts the FaaS configuration (µF ), the IaaS
configuration (µI), internal classifier thresholds (αc

pid), and
the model partitioning index (cutid, assuming two partitions
in total), which are constrained by a latency bound in line 2.

CI and CF represent the cost mappings (in $) for differ-
ent resource configurations, based on the average processing
times (TI for IaaS VM’s reservation time and TF for FaaS
execution time) obtained through profiling for each forward
propagation. In line 4, the percentage of forward propagations
exiting at a specific NN partition pid (βpid) is shown based
on confidence thresholds (αc

pid). Lines 5 and 6 define the pro-
filed mean durations for FaaS and IaaS, respectively. For any
given cutid, we calculate the duration by dividing a tunable
capacity (µF or µI) by the required FLOPs (FLOPsM

cutid+1
signifies the number of operations from partition cutid + 1
to M), assuming that forward propagation does not revert to
IaaS after being offloaded to FaaS. This step overestimates
the utilization of each service because requests can exit the
internal classifiers before reaching partition M. To estimate
the expected inference duration, we multiply the empirical
early exit rates (∑M

pid=cutid+1 βpid for TF and ∑
cutid
pid=1 βpid for

TI , respectively, in line 1). Furthermore, we incorporate the
delay for transmitting hidden variables from a VM to a server-
less instance (T cutid

trans ) in TI (line 6), because the serverless
function is not yet invoked and would not incur monetary cost
for FaaS (unlike a VM that keeps running). On the other hand,
we also include the short cold start time of serverless function
instances (T cutid

cold ) in TF (line 5), as such cold start duration for
a serverless function involves setting up hardware and loading
of the model and would incur monetary cost.2

Next, using the resource configuration for rmax requests
per second, we can optimize a load balancing pipeline for
rmax requests per second to be served by the shallow layers on
fully-utilized VMs. The remaining requests (including those
that need further processing by deep layers) are directed to
FaaS.
Adaptation to Training Tasks: Our monetary cost formu-
lation also applies to ML training setting. Although FaaS is
generally unfavorable for training tasks, we can generalize
TF , µF , CF and rmax as duration, computation capacity, unit
cost of edge resources, and training batch size, respectively.
And we should set FlagTrain = 0, so that βpid = 0.

Previous works have proposed various distributed deep
learning training paradigms that leverage resource-specific
cost models across edge and cloud environments. One exam-
ple is Federated Learning (FL), where multiple nodes train
local models independently and aggregate their outputs. A
more recent variant, Split Federated Learning, enhances FL

2Notice that major FaaS providers would keep the serverless instance
running after a request finishes to minimize this cold start duration [23, 45,
109, 137]. Thus, the cold start duration (T cutid

cold ) does not apply to every
request, and thus the formulation overestimates the FaaS cost. Also, the cold
start time of a VM is not shown in the formulation, because this formulation
assumes long-running VMs serving a consistent rmax workload.
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by offloading portions of each node’s model from the cloud to
the edge, thereby improving privacy and training efficiency.

These paradigms introduce new challenges, concerning
transmission efficiency between the cloud and edge, as well
as privacy preservation given varying depths of the edge NN
partition. For example, placing a deeper NN partition at the
edge enhances data privacy by limiting raw data exposure.
However, this approach may increase processing delays due
to the limited computational resources of edge devices. Addi-
tionally, transmission latency can be affected by the size of
intermediate data outputs, which varies with different parti-
tioning strategies. Addressing these issues requires revisit-
ing the monetary cost models for edge and cloud resources,
balancing factors such as latency, energy consumption, and
privacy requirements.

3 Problem Solutions

In the preceding section, we formulated an optimization prob-
lem for deploying a dependent acyclic graph of submodels,
accounting for latency, source data privacy, and resource cost
($) savings. In this section, we discuss the solutions to these
optimization problems, such as early exits, compression, and
privacy-preserving training and inference techniques. Further-
more, we identify open issues, including latency-sensitive
selection of hidden variables, prediction of privacy level,
and cost-aware dynamic NN partitioning. These techniques
can serve as valuable control mechanisms for ML service
providers, improving Quality of Service (QoS), and increas-
ing revenue.

3.1 Latency
The end-to-end latency of a neural network model comprises
both processing and transmission delays. Building on ear-
lier discussions, existing work dynamically minimizes the
transmission of excessive hidden variables and combines ca-
pable cloud services. This section begins by exploring dy-
namic deep neural network offloading [75, 167]. Then, we
discuss internal classifiers which allow early exit and save
computation for deep layers [37, 81, 85–87]. Furthermore,
we examine transmission data and model compression ap-
proaches [39, 61, 81, 104, 117, 138, 176, 181].

3.1.1 Dynamic Partitioning

When dynamically partitioning a neural network, the compu-
tation (FLOPs j

i (.)) and activation size (Size(.)) can be esti-
mated based on the model weights and input size [10, 144].
Thus, delays, especially inference durations (T T

pid and TC
pid)

can be modeled using regression methods, by profiling the
NN model, across the cloud and resource-limited edge envi-
ronments [75,167]. Previous work estimates transmission and
processing delays for various model configurations, factoring

Internal
Classifiers

Figure 5: Internal Classifier Architecture: Each internal clas-
sifier allows requests to exit in the middle of an NN. For
example, βpid of requests exit at NN partition Fpid .

in computation resources and input sizes to devise a deploy-
ment plan for M NN partitions that minimizes latency and
energy consumption [75]. However, feasible solutions may
not always exist for a given model architecture or environ-
ment, for example, when resource availability is constrained.
Next, we explore orthogonal methods to reduce demands on
transmission and processing resources.

3.1.2 Early Exits

Background. Shallower layers of a DNN model extract high-
level features which can be sufficient for accurate request
classification, while deeper layers can focus on certain fine
details, sometimes resulting in misclassification. The issue
of overthinking was diagnosed in the ShallowDeepNet pa-
per [76]. Related research [76, 163, 183] addresses this con-
cern, proposing the reuse of features extracted from various
layers for prediction to improve convergence time and infer-
ence cost via internal classifiers (Fig. 5).

Internal classifiers were first proposed for cost-efficient
DNN inference in BranchyNet [146]. These classifiers share
a structure similar to traditional NN classifier layers, typically
comprising feature reduction (pooling) layers, fully connected
layers, and a softmax activation function. However, internal
classifiers are attached to the hidden layers. To trigger early
exits, one can configure a threshold [76] for the Bayesian
probabilities of class predictions at each classifier [50, 129].

In deep learning (DL) tasks, incorporating early exits and
residual connections at various internal layers of a DL model
allows for better utilization of insights during training and in-
ference. This integration improves prediction accuracy while
minimizing computational waste. Early exits prevent exces-
sive forwarding of requests (hidden variables) to deep layers
for classification. As exemplified in Fig. 5, an internal classi-
fier allows βpid portion of requests to exit the model partition
Fpid , highlighted in blue. Subsequent works have leveraged
this approach to minimize inference delay in distributed infer-
ence applications.
Methods. Recent research [61, 81, 147] models the relation-
ship between the confidence threshold (α) of internal classi-
fiers and the proportion of early exits (β) when formulating
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delays. As shown in our latency optimization framework,
this allows tuning β through α to meet a specific mean la-
tency target (lines 2 and 3.) However, lowering the confidence
threshold can negatively impact model accuracy, as it allows
requests to exit with reduced output probabilities, potentially
resulting in decreased accuracy.

When accuracy is low, previous studies explore combining
internal classifiers with dynamic layers offloading to the edge
or cloud based on network conditions, as in lines 4, 5, and
7. For example, SPINN [81] empirically demonstrates that
under high and stable WAN bandwidth, more layers can be of-
floaded to cloud nodes. The increased computational capacity
compensates for additional communication delays, reducing
overall latency. In contrast, when network bandwidth is lim-
ited, the approach shifts more layers to resource-limited edge
nodes. Despite an increase in processing time at the edge,
overall latency is optimized by minimizing reliance on WAN
communication.

3.1.3 Input and output compression

Background. When training an ML model, not all available
features are necessary for a classification task. Feature engi-
neering addresses this by combining features or eliminating
unnecessary ones. Apart from traditional statistical or heuris-
tic methods [152], Deep Neural Networks (DNNs), specifi-
cally Auto-Encoder NNs, can facilitate feature selection to
preserve prediction performance [138]. An Auto-Encoder NN
consists of two components: an encoder, which transforms
inputs to a condensed output representation, and a decoder,
responsible for inverting the dimensionality reduction [131].
On the other hand, model compression methods can also re-
duce feature size. These methods will be explored further in
Sec. 3.1.4.
Methods. In our latency optimization (LL), we denote the
cropping and compression of input data with rate γ0 (line 6).
The compression rate of intermediate data achieved through
model compression is denoted as κpid , while the rate achieved
through feature engineering methods such as Auto-Encoder is
represented as γpid . We encapsulate the computation overhead
of Autoencoder NN in the model transformation πpid .

Heuristic-based compression methods, such as JPEG for
image inputs, can help reduce feature dimension. In particular,
certain activation functions, for example relu [20], produce
zero or near-zero outputs, allowing compression from a dense
matrix into a sparse matrix that is storage and transmission
efficient [61]. Moreover, related works [61, 66, 101, 135]
explore the quantization of weights and intermediate data rep-
resentations. Rather than using double precision floats, these
methods consider 8-bit [66] or in the extreme case single-
bit [101] approximations.

Other works explore content-based transmission compres-
sion methods. For example, in an AMBER Alert system, if the
model only requires identifying a car or person in the scene,

the edge device only transmits cropped images focusing on
Region of Interest (ROI) to the cloud for analysis [130]. This
approach minimizes transmission delay, although accuracy
may vary depending on the effectiveness of the cropping tech-
niques. Moreover, some studies suggest that focusing on the
relevant data not only reduces transmission costs, but also
enhances accuracy [117].

Similarly, previous work has applied ML-based dimen-
sionality reduction tools to reduce transmission data and
maintain accuracy. One idea is to introduce a bottleneck be-
tween two neural network partitions using an Auto-Encoder
NN [39, 63, 104, 138, 170, 181]. This Auto-Encoder is trained
by minimizing the Mean Squared Error (MSE) loss between
the input and output data. In this setup, the encoder maps
the intermediate data into a more space-efficient latent space,
effectively reducing the channels, width, and height. The
decoder, which serves as an approximation of an inverted
encoder function, reconstructs the input of the previous parti-
tion using the compressed intermediate data. This approach
enables a compact representation of intermediate data, en-
hancing efficiency without significant loss of accuracy.

To better maintain the accuracy of the model, recent stud-
ies [63, 138, 170] propose optimizing the entire model, en-
compassing both the backbone and the Auto-Encoder NN.
This approach enhances model accuracy by guiding the Auto-
Encoder NN to focus on features essential for predictions.
However, finding an optimal compressed feature space for
both high accuracy and high γpid) remains a challenging task
that requires extensive hyperparameter tuning. To address this,
recent research [62] uses explainable AI techniques, including
Integrated Gradients [145], to construct an intermediate data
space that emphasizes features with the greatest impact on
predictions.

Summary of data compression methods: In our latency opti-
mization framework, we adjust the data compression rates γpid
and κpid to minimize transmission overhead. The introduc-
tion of data compression adds FLOPs in each partition (πpid
in line 4), creating a trade-off among reduced transmission
overhead, increased computation overhead, and potentially
compromised model accuracy. Various data compression
methods are detailed in Table 9, highlighting the practicality
of both Auto-Encoder and quantization techniques as they are
broadly model and data agnostic. However, an Auto-Encoder
offers greater flexibility compared to quantization, which en-
ables fine-tuning the compression model (encoder), inversion
model (decoder), and feature ranking techniques (such as ex-
plainable AI tools) to optimize latency and accuracy based
on the user’s specific use case. While an Auto-Encoder intro-
duces additional computational overhead, a quantized model
and activations also require specialized training tools due
to the discrete space. For example, stochastic gradient de-
scent (SGD) must be adapted to accommodate the discrete
space [66, 114].
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Pre-Processing
[117]

Heuristic
[61]

Quantization
[61, 66, 101, 135]

AE
[39, 63, 104, 138, 170, 181]

AE(XAI)
[62, 63, 104, 138, 170]

Computation low low low medium medium
Compression medium medium medium low low

Accuracy high high medium medium high
Practicality low low high high medium

Table 9: Comparison of Input and Intermediate Data Compression Methods: The accuracy of the pre-processing method [117]
depends on the ability of the algorithm to accurately identify and crop the features of interest before sending data to the model
(low practicality, high accuracy given good cropping algorithm, low extra computation for cropping input, and overall medium
compression rate for cropping). Heuristic-based compression algorithms, like clustering for zeros, rely on user expertise (low
practicality, high accuracy, low extra computation, and overall medium compression rate depending on the inputs and heuristics
applied). Intermediate data quantization shortens data representation but may impact accuracy (high practicality, medium
accuracy, and medium compression rate compared to other task-oriented methods) and demands an adapted optimization method
for discrete space (low extra computation). The Auto-Encoder (AE) can be applied to various data representations (high
practicality) and can be adapted to different ML tasks by using shallower layers to minimize computation overhead (medium
computation overhead) or designing smaller latent spaces to create a narrow bottleneck that tradeoffs accuracy (medium accuracy
and low compression rate). Naïve input or intermediate data compression can significantly compromise model accuracy if the
features selected for transmission are suboptimal. In contrast, AE approaches leveraging explainable AI (XAI) tools selectively
transmit crucial features for classifications, reducing transmission delay while maintaining high accuracy (overall medium
practicality based on feature selection methods, overall medium computation demand with AE, high model accuracy, and low
compression rate).

3.1.4 Model Compression and Knowledge Distillation

Background. Deep Learning (DL) models can be customized
to meet specific Machine Learning (ML) tasks and computa-
tional constraints. For latency-sensitive applications, simpli-
fying the model can enable faster response times. Such sim-
plification can be achieved through quantization [91], layer
skipping [96], adding, removing, or editing the layer blocks
of a neural network [168], and knowledge distillation [56].

A common tradeoff of reducing model parameters is poten-
tial accuracy degradation. However, such a drawback might
be tolerable given the use case or in certain settings the model
would not suffer a significant accuracy drop, as model simpli-
fication can be considered a form of regularization that mit-
igates overfitting and discourages shortcut learning [43, 67].
Thus, model simplification is considered a versatile approach
applicable across many different ML systems, achieving short
processing times without significant accuracy loss.

For example, in large ML systems, such as large lan-
guage models (LLM), the Mixture of Experts model archi-
tecture [48, 139] decomposes a high-dimensional model into
smaller experts with a router NN selecting a subset of sub-
models for each request, reducing computational demands.
In certain LLM-based chatbot applications, chats generated
by simplified LLMs on user devices can be enhanced by con-
straining the output space or leveraging cached outputs from
full-sized LLMs deployed in the cloud. This allows the fi-
nal chatbot responses to match full-sized LLM quality while
maintaining high throughput on the device [7, 34].

On the other hand, distilled or quantized LLMs can assist
original LLMs in speeding up chat generation. Tradition-

ally, chat generation proceeds sequentially token-by-token,
resulting in low throughput. Instead, a smaller LLM can spec-
ulatively generate the next t tokens, which the original LLM
then verifies and either accepts or rejects them in parallel
based on the speculatively generated context. This specula-
tive decoding approach significantly boosts chatbot through-
put [27, 84, 108].

We first discuss simplifications for standalone ML systems
and then generalize them to the distributed setting.

Quantization or compression of neural network (NN)
weights and activations is a popular technique to reduce com-
putation complexity [91]. Previous work introduces Post-
Training Quantization (PTQ) and Quantization-Aware Train-
ing (QAT). For small models or large models with aggres-
sive quantization, recent studies have shown that using lower
precision during training, for example 8 bits [66] and 1.58
bits [102], for NN weights can achieve accuracy comparable
to higher precision representations. In contrast, for very large
models including LLMs, quantization training introduces sig-
nificant overhead. In AWQ [92], SmoothQuant [164] and
OPTQ [40], researchers adjust the Scale and Zero Point (ori-
gin) for weights in pretrained models with static analysis
of activation and weights. Quantization improves inference
latency and reduces storage requirements for various deep
learning (DL) inference tasks. For model compression, in
EIE [52], the authors introduce a novel representation and ma-
trix multiplication algorithm that omits most common values
in activations, optimizing computation and storage efficiency.

We can also dynamically skip layers or make predictions
before the neural network (NN) model completes its full pass
without modifying the base model. This approach, known
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as dynamic inference [53, 166], involves training additional
gating networks to determine which layers or channels within
a layer to skip, indicated by 0 (skip) or 1 (use). In DDI [159]
and SkipNet [157], the authors use a Long Short-Term Mem-
ory (LSTM) NN to make skipping decisions.

Methods focusing on weight and layer changes can be sub-
optimal in reducing latency, as they introduce minimal struc-
tural changes to the model. Knowledge Distillation [47, 56]
trains a lightweight high-performance model (Student Model)
using the inputs and outputs (including hidden variables
or logits) of a more complex model (Teacher Model). As
the Teacher Model is often over-parameterized, the Student
Model can attain similar accuracy with reduced computa-
tional complexity. Furthermore, the Teacher Model can also
be further refined with weighted outputs from the Student
Models (soft labels) and ground truth labels in a student-
student knowledge distillation setting [174, 176, 180]. In this
process, the output of the student model serves as a form of
regularization to prevent overfitting.
Methods. In our latency optimization formulation in a dis-
tributed setting (Sec. 2.2.1), we use πpid to represent all
adaptations, including model compression. The function
FLOPs j

i (.) estimates the number of floating point operations
given different partition configurations πpid and partition in-
put size Size(xpid−1). In a dense NN, the FLOP count is
linearly proportional to the number of model weights and the
size of input data, so more layers or larger input sizes lead to
longer processing times. To minimize computation latency,
we can employ model compression or knowledge distillation
methods for each NN partition. As a beneficial byproduct,
model compression can also reduce the size of hidden vari-
ables which improves κpid introduced in Sec. 3.1.3.

Quantization [63,88,114] and neuron skipping [61,83,181]
can be applied to each NN partition. Intuitively, weights
close to zero contribute little to classification and can be
pruned to save processing time without significantly affecting
accuracy. In CLIO [61], a certain percentage of weights,
sorted by distance to zero, is ignored. However, with a higher
compression rate, such approaches suffer from low prediction
performance.

To maintain accuracy in cases of significant compression
for resource-constrained edge partition NNs, Lee et al. [83]
suggest the use of a deep decoder NN at the cloud node. The
deep decoder with high inversion approximation capabilities
compensates for the aggressively compressed NN partition,
helping to preserve the model’s accuracy.

Instead of compressing a base model, training a lightweight
model replacement can effectively scale model size down to fit
the capacity constraints. With limited edge capacity, applying
knowledge distillation to partitions could save processing
time with minimal loss in accuracy [104].
Summary of model compression methods: In our latency
optimization framework (Sec. 2.2.1), πpid represents model
adaptations including both model compression and distilla-

tion, which reduce model complexity yielding a placement
with minimal processing time. This section reviewed the ap-
plication of quantization, knowledge distillation, and weight
pruning, each with strengths and weaknesses. While these
methods are orthogonal and should be evaluated together to
optimize model complexity and placement, they vary in terms
of practicality and computational overhead. Table 10 presents
a summary and comparison of these model compression tech-
niques.

Among these techniques, knowledge distillation is the most
configurable, offering various student model designs and dis-
tillation approaches to achieve high model accuracy. Thus,
it is considered the most practical, but with the highest com-
putation overhead. In contrast, quantization is less config-
urable, so we position it at medium practicality but with the
lowest computation overhead. The effectiveness of weight-
pruning depends largely on the underlying data distribution.
For example, pruning weights close to zero is a well-explored
method to maintain accuracy while reducing computational
complexity. However, mask-based pruning methods may re-
quire training specific to each source data distribution [33],
leading to medium practicality but low computation overhead
for each mask.

3.1.5 Open Issue: Dynamic Feature Extraction Tuning

In sequential DNN models, each layer extracts different fea-
tures and feeds the hidden variables to the subsequent lay-
ers. Previous works have explored combining knowledge
extracted at different layers. Residual NNs [54] propagate
primitive features to the deeper layers. Early exit architec-
tures [146] leverage low-level features for classification. Zero
Time Waste [163] combines features at different levels to
improve classification. Such works enable dynamic DNN of-
floading by incorporating classifiers at partitions of the model.
However, when model partitions are being offloaded to a
user device for low transmission latency, to the cloud for low
processing latency, or to the edge for balanced delays, the
inference or training service should remain active. The addi-
tional workload introduced to the user device, edge or cloud
due to offloading should not degrade service performance.

Understanding the reasons for offloading helps optimize
performance. Offloading partitions to the user device typically
addresses network transmission bottlenecks, while shifting
them to the cloud helps alleviate computational limitations
at the edge. To ensure consistent performance, particularly
for critical tasks identified by the application, we discuss a
potential approach that focuses on the initial partitions at the
edge. The core idea is to ensure that shallow DNN partitions
at the edge achieve high accuracy specifically for these critical
tasks. This prioritization might come at the expense of re-
duced accuracy for non-critical tasks, but allows the system to
rely on efficient, local edge computations for its most impor-
tant functions, preserving their performance and minimizing
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Quantization [63, 88] KD [104] Weight-Pruning [61, 83, 181]
Computation low high low

Accuracy medium high high
Practicality medium high medium

Table 10: Comparing Model Compression and Knowledge Distillation (KD) Methods: KD preserves essential weights to ensure
high model accuracy, which involves model building and training (high computation). However, it can be applied to models
of any size (high practicality). Quantization reduces the precision of all weights. While it is generally task-agnostic, model
accuracy can degrade (medium accuracy and practicality). The process quantizes the representation and adapts the optimization
method, which is lightweight (low computation). The effectiveness of weight pruning depends on the distribution of weights and
the specific task (medium practicality, high accuracy, and medium weight size). Heuristic-based pruning method also has low
computation complexity.

Fine-Tuning Adapter Store

Edge Cloud

Hit and Run Failure to
Yield

Adapter
Application ...

Internal
Classifier

Figure 6: Dynamic feature extraction tuning: Shallow edge
partitions apply task-specific adapters (e.g., LoRA [58]) to
preserve recall for critical tasks, enabling early exits and avoid-
ing deeper cloud inference during model offloading.

disruptions when deeper partitions are dynamically relocated.
One way to implement this strategy for inference tasks in-

volves adapting the feature extraction process in the shallow
partitions at the edge. By tailoring these shallow partitions to
focus specifically on features relevant to critical tasks, shal-
low internal classifiers integrated at these early partitions can
achieve high confidence predictions for those specific tasks.
This enables critical requests to exit early with low latency
directly from the edge. However, this specialization may lead
to higher false positive or false negative rates for non-critical
task handled by these adapted shallow layers.

Since critical tasks represent a subset of the full task space
addressed by the complete model, we can use the outputs of
a model partition that performs well on these critical tasks to
guide and train the shallow partitions deployed at the edge.
This form of feature adaptation is conceptually similar to
knowledge distillation, particularly self-distillation [176]. To
implement this efficiently, Parameter-Efficient Fine-Tuning
(PEFT) methods, such as LoRA (Low-Rank Adaptation) [58],
can be employed. As illustrated in the system design (Fig. 6),
an offline process can fine-tune and generate lightweight
LoRA adapters tailored for specific subtasks (e.g., different
types of traffic violations) and save them in a Fine-Tuning
Adapter Store. Each compact adapter can be associated with
an embedding fingerprint, allowing for rapid retrieval and

deployment at the edge when needed.
Applying this concept to traffic surveillance, for instance,

involves attaching these lightweight LoRA adapters to the
shallow DNN partitions deployed at the edge. These adapters
enhance the shallow partitions’ ability to accurately classify
specific life-threatening traffic violations during periods of
model partition offloading. Consequently, the system can
maintain high recall for these critical violations by primar-
ily utilizing the computationally inexpensive shallow edge
layers, ensuring timely detection even when deeper network
segments are being offloaded.

3.2 Privacy
Distributed DL systems processing sensitive personal data
raise data leakage concerns. Private data should be inacces-
sible outside the customer’s infrastructure or protected from
reconstruction during transmission over wide area networks
(WAN). As described in Section 2.1.2, an adversary could
reconstruct the intermediate data transmitted between DNN
partitions [150] using an Auto-Encoder Neural Network. To
protect against this vulnerability for model training and in-
ference, previous research adds Perturbation to intermediate
data [55, 112] or incorporates a Regularization step during
training [55, 89, 150, 179]. Such methods preserve only essen-
tial features for ML tasks and remove sensitive information.

3.2.1 Perturbation

Background. Differential privacy (DP) has been used to
improve privacy in statistical databases by adding noise to
query outputs proportional to the sensitivity of the query [36,
175]. Consider a query f : D → R on a dataset D with samples
x,x

′ ∈ D. The global sensitivity ∆ f of this query is defined
as:

∆ f = max
x,x′

∥ f (x)− f (x
′
)∥ (1)

Users can set the Privacy Budget ε. Then, noise can be drawn
from a Laplace distribution, X ∼ Laplace(∆ f

ε
), to achieve the

desired level of privacy based on various privacy definitions.
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More specifically, the probability density function (PDF) is

p(x) = 1
2b e

−∥x∥
b , where b = ∆ f

ε
. The value of ε can be de-

termined by a grid search against the attack model. With a
smaller ε, we spread the PDF and introduce more diverse
noise to the output, so less information is preserved.

In practice, finding the global sensitivity ∆ f is challenging
as it requires testing all inputs. Instead, previous work bounds
the sensitivity in model partition output [18, 175].

x′pid =
xpid

max(1, ∥xpid∥
C )

(1)

where C is the clipping threshold. In this way, ∥x′pid∥ < C.
Notice that clipping modifies the hidden variables which leads
to accuracy degradation. To optimize C, the common practice
is to set the median of xpid based on the training dataset [18].

Previous studies apply this practical DP implementation in
DP-SGD [18, 173] during training to mitigate the risk of re-
constructing training datasets from trained models. They add
Gaussian noise to gradients, reducing the model’s sensitivity
to individual training samples. As a result, the distribution of
prediction confidences for training dataset samples is similar
to other samples, preventing over-concentration on the true
label. It complicates membership inference attacks, in which
adversaries deduce whether a sample was part of the training
data based on prediction logits [42].

In edge inference and training settings, recent work sug-
gests injecting noise to hidden variables that obscure sensitive
information, for example, race, age, or gender, transmitted
over the Internet [55, 112].
Methods. In our privacy optimization formulation
(Sec. 2.2.2), in line 3, an MLaaS system can inject noise
to intermediate data (τ(∆ f )) based on its sensitivity ∆ f . With
differential privacy, recent studies [55, 103, 112, 175] have
developed fitted noise layers that either sample noise from a
distribution or nullify specific entries. This approach is highly
flexible, allowing users to choose different noise layers to
append to the final layer on the edge device when the source
data distribution changes. The noise injected during training
and inference complicates the inversion approximation used
by the attacker. Meanwhile, the model retains its capacity to
extract relevant information for accurate predictions.

3.2.2 Regularization

Background. We can also solve the privacy of the source
data as an optimization problem. One approach is to incorpo-
rate source data privacy as a secondary objective by adding
a regularization term to the loss function. Thus, we encour-
age the model to preserve only the features that contribute
to prediction. On the other hand, deep edge neural networks
(NNs) with non-invertible hidden variables, such as rectangu-
lar matrices, are harder to approximate an inversion matrix.
Therefore, we can optimize the placement of NN partitions to
maximize the privacy level of the source data.

Methods. In our privacy optimization formulation
(Sec. 2.2.2), we incorporate the privacy loss, exemplified
as MSE(F−1

pid (xpid),xpid−1) into the loss function in line 1.
The mean square error gauges differences between the re-
constructed and original source data. Then, we can tune the
privacy level of model inference by specifying hyperparame-
ters wCE and wp for training [89,150,179] and model partition
placements [55, 179].

There are ways to incorporate privacy objectives into model
training. For example, we can include a distance correlation
loss function, comparing intermediate data and source data
in addition to the Cross-Entropy loss [150]. Alternatively,
additional training epochs can be dedicated to optimizing
the privacy objective [179]. For more task-specific solutions,
ResSFL [89] introduces a privacy loss function that compares
the source data and the reconstructed data derived from in-
termediate data using a decoder following the threat model
in model inversion attacks. Thus, by designing decoders
with different capacity, the model can defend against different
model inversion attacks.

3.2.3 Open Issue: Privacy and Accuracy Estimation

By profiling the model partition running time, the size of hid-
den variables and gradients, and the available bandwidth,
we can fit a regression model to estimate the processing
and transmission delays of different offloading plans for DL
models [75]. However, the relationship between privacy-
preserving training approaches and their resulting privacy
guarantees and impact on model accuracy is often poorly
understood before training. As shown in our privacy for-
mulation (Sec. 2.2.2, line 1), the results of CE(ŷ,y) and
(F−1

pid (xpid),xpid−1) given different combinations of hyper-

parameters {π
pri
pid ,∆,λ} only become apparent after the model

training converges.
This leads to two major challenges. First, hyperparam-

eter tuning becomes extremely time-consuming, requiring
numerous full training cycles. Second, the tuning process
itself is vulnerable to privacy breaches, as exchanging hid-
den variables and gradients between partitions during tuning
can expose data before effective privacy configurations are
identified and implemented. Although some heuristics might
offer limited guidance (e.g., higher compression generally
correlating with lower cross-entropy), systematically narrow-
ing the search space for optimal privacy hyperparameters in
distributed training remains an underexplored and critical
research area.

Some related work attempts to mitigate privacy risks during
training by employing transfer learning [89]. This strategy
involves first training a privacy-aware DNN model with a
publicly available image classification dataset, where data
leakage is not a concern. Then, this pre-trained model is
fine-tuned using the private dataset via transfer learning. The
intention is to provide a privacy-aware starting point, poten-
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tially reducing data leakage risks during the initial epochs of
training on the sensitive data. However, this approach faces
limitations, particularly when adapting from a relatively sim-
ple pre-training task (e.g., CIFAR-10) to a significantly more
complex target task (e.g., CIFAR-100). In such scenarios,
effective transfer learning may be infeasible, necessitating
extensive fine-tuning or even complete model retraining on
the private data to achieve acceptable accuracy. Consequently,
again each training trial during the lengthy hyperparameter
tuning phase becomes vulnerable to privacy leaks and con-
sumes significant computational resources. Thus, efficiently
and securely tuning hyperparameters for privacy-aware train-
ing remains a largely unresolved issue.

3.3 Cost($)

Deep learning tasks require substantial resources due to their
high computation and memory demands. For example, the re-
cent deep transformer models encounter memory bottlenecks
when loading and saving attention layers [44]. Previous work
discusses splitting model states [122], kernel fusion tech-
niques [29], and sparse attention mechanism [172] to reduce
GPU memory demands and transmission between CPU and
GPU memory.

Previous works emphasize low-level DL task scheduling.
Instead, this survey focuses on the higher level aspects of
resource provisioning. Organizations developing intelligent
applications using an MLaaS system often face budget con-
straints when provisioning resources from cloud providers.
For instance, the daily running cost for ChatGPT can reach up
to $700,000 [9]. Furthermore, cloud services have different
cost models that factor in billing granularity, scaling speed,
availabilities, etc. A cost-efficient MLaaS system should
strategically choose, configure, and load balance the cloud
resources to optimize expenses while meeting performance
demands.

3.3.1 Methods

To bridge this gap and promote ML systems with low mone-
tary cost of cloud resource usage, various organizations pro-
vide services to construct intelligent applications on diverse
infrastructures, with an emphasis on minimizing costs. For
example, Redhat OpenShift AI [8] provides a container-based
Machine Learning as a Service for on-demand model serving.

Previous research has examined the dynamic scheduling of
neural network and model partitions across edge and cloud
resources [61, 81, 97, 119, 182], as well as specific cloud ser-
vices, such as Function as a Service (FaaS) [69], to balance
processing and transmission demands while minimizing ex-
penses. However, detailed cost analyses using real-world
cloud resources for low-cost ($) ML serving and training re-
main limited. Many studies model resource expenses on the
edge and in the cloud using generic unit costs [97, 119, 182].

However, the specific provisioning factors for each edge and
cloud resources, including container cold starts and billing
time granularity, are critical to minimizing real-world cloud
usage costs.

3.3.2 Open Issue: Monetary Cost Optimized Resource
Provisioning for ML Inference

The unique cost models of cloud services influence ML re-
source provisioning decisions. In LIBRA [124], they iden-
tify a Cost Indifference Point showing high steady-rate traf-
fic is best served by reserved VMs and low-rate traffic can
be handled by FaaS for cost-efficiency. Serverless (FaaS)
platforms provide fine-grained resource provisioning with
response times measured in milliseconds, making them ideal
for dynamic or transient workloads and for minimizing idle re-
source costs [49]. In contrast, reserved VMs, although slower
to respond to QoS targets, offer a lower cost per request for
sustained workloads that fully utilize the VMs [137].

To build a ML system with low monetary cost of resource
usage, studies of ML model designs and cloud services pro-
visioning systems have introduced new research problems,
including cloud versus edge routing based on input embed-
dings [32, 136], ensemble model serving [59, 77, 120, 178],
etc. We also speculate that a fine-grained resource provision-
ing approach for individual NN partitions can save resource
monetary cost for partitioned NN with internal classifiers.

When offloading a DNN, the NN partitions comprise a
Directed Acyclic Graph (DAG), where partitions extract fea-
tures and pass them to subsequent layers. In partitioned neural
networks with internal classifiers, requests can leave early at
shallow layers, resulting in reduced workloads for deeper
layers. Relying only on Virtual Machines (VMs) could lead
to idle resources, as all VM instances must meet the latency
requirements for every request. To optimize monetary cost,
a high-granularity resource provisioning approach, such as
FaaS, can be employed for deeper layers, scaling resources
dynamically based on workload demands. As our initial eval-
uation shows, for a consistent workload with rmax requests per
second and a partitioned NN with internal classifiers allow-
ing most requests to exit in the middle of the NN, switching
from only using a large VM (c6i.xlarge) to Hybrid Offloading
hidden variables from a small VM (c6i.large) to a serverless
instance (8845 MB) saves from 5% to 50% of monetary cost.
These savings were achieved across evaluations with different
Service Level Objectives (SLOs), assuming the conserva-
tive worst-case scenario where all requests traverse the entire
network. In general, a more relaxed SLO allows running
more partitions on the small VM and reserving the serverless
instance mainly for infrequently used deep partitions, poten-
tially increasing savings. Conversely, under very strict SLOs,
finding a practical Hybrid Offloading or FaaS configuration
may be difficult, an area we plan to investigate further in
future work.

16



Submitted to the Journal of Systems Research (JSys) 2025

4 Conclusion

In this survey, we develop a systematic evaluation of state-
of-the-art model offloading methods and model adaptations.
Previous work focused on offloading full models between
the resource-constrained edge and the core cloud, or the user
devices and the edge servers. However, given the popularity
of IoT and mobile computing devices, DL services with parti-
tioned NN models at the edge have gained more attention due
to privacy concerns and low latency requirements. Since the
MLaaS broker model preferred by smaller organizations is
based on cloud services [19,22,161], there is a huge potential
for future edge-cloud-fused MLaaS systems to better serve
the growing demands of edge intelligence applications.

We have discussed common issues for edge intelligence
applications, including transmission delay, processing delay,
and privacy guarantees. Then we further studied the corre-
sponding solutions as control knobs for an MLaaS broker to
maintain QoS in resource-constrained edge or client devices.

We also suggest future directions to reduce resource cost ($)
and dynamically adapt offloading decisions based on network
conditions and source data distribution. In general, there are
many open issues and ongoing research in edge intelligence.
We believe that this survey serves as a starting point for future
advancements in this area.
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