
TOWARDS OPTIMAL PLACEMENT OF DEEP LEARNING TASKS

OVER EDGE AND CLOUD INFRASTRUCTURES

Anonymous authors
Paper under double-blind review

Abstract
Edge intelligent applications like VR/AR and surveillance
have become popular with the growth of IoT and mobile
devices. However, edge devices with limited capacity strug-
gle to serve increasingly large and complex deep learning
(DL) models. To mitigate such challenges, researchers have
proposed optimizing and offloading partitions of DL models
among user devices, edge servers, and the cloud. In this set-
ting, users can take advantage of different services to support
their intelligent applications. For example, edge resources of-
fer low response latency. In contrast, cloud platforms provide
low monetary cost computation resources for computation-
intensive workloads. However, communication between DL
model partitions can introduce transmission bottlenecks and
pose risks of data leakage. Recent research aims to balance
accuracy, computation delay, transmission delay, and privacy
concerns. They address these issues with model compression,
model distillation, transmission compression, and model ar-
chitecture adaptations, including internal classifiers. This
survey develops a systematic evaluation approach for state-
of-the-art model offloading methods and model adaptation
techniques. We formulate an optimization problem for edge
Deep Neural Network offloading that optimizes inference and
training latency, data privacy, and resource monetary cost.

1 Introduction

In recent decades, rich data have been generated on mobile or
IoT devices. Computing resources in the cloud remain more
flexible in scaling and management than those on the edge.
However, edge computing can mitigate the transmission bot-
tleneck [16]. Recent intelligent systems focus on offloading
user applications to the multi-layer cloud, edge, and personal
device systems [68,93,95], leveraging the computation capac-
ity of powerful edge servers or the core cloud while improving
latency, privacy, and monetary cost efficiency.

Machine Learning (ML) applications experience hetero-
geneous performance requirements and resource availability.
Mobile and IoT applications, for example object recogni-
tion in housekeeping AIoT devices [133] and localization of
autonomous cars [21], are constrained by energy consump-
tion [71] or are based on emerging infrastructures such as
5G/6G base stations and smart cities [38, 140, 142].

Meanwhile, the high monetary cost associated with com-
putational resources for AI/ML training and serving poses

a barrier, particularly for research institutions and smaller
companies. This is in contrast to large companies which
have the engineering capacity to build Deep Learning (DL)
clusters. For example, pre-training LLaMA-3.1-8B (LLaMA-
3.1-405B) requires 1.46 million (30.84 million) GPU hours
on H100-80GB GPUs [107], and ByteDance operates a clus-
ter of over 10,000 NVIDIA Ampere GPUs for their Large
Language Model (LLM) workloads [73].

As AI/ML applications become popular, building a mone-
tary cost ($) efficient, latency optimized, and privacy-aware
infrastructure for architecture-optimized models has emerged
as a critical area of research [44,51,158]. This survey focuses
on the computation offloading problem between the edge
and cloud. We also discuss orthogonal methods to improve
latency, privacy and monetary cost of ML systems in addi-
tion to computation offloading, including quantization [114],
weight pruning [91], distillation [47], privacy preserving dis-
tributed DL [162] and cost ($) based resource provisioning
using cloud services [30].

DL applications can be decomposed by splitting the layers
of neural networks (NN) and offloading the model partitions
to cloud, edge, and client mobile devices or IoT devices. By
considering each partition of an NN as a general operator,
we believe that insights of this survey also apply to general
application decomposition problems.

Machine Learning as a Service. Machine Learning as
a Service (MLaaS) is a type of cloud service with a cost-
effective cost model that abstracts the computation resources
for ML model training and inference, so that the user only
pays for the resources that their models leverage. Such sys-
tems face challenges in adapting to LLM training and in-
ference paradigms, which require massive computation re-
sources and inter-node communication bandwidth often found
in private GPU clusters [73]. However, MLaaS remains an
important service for many LLM tasks. Compared to pre-
training an LLM, parameter-efficient fine-tuning and infer-
ence on smaller models are more cost-effective. For exam-
ple, fine-tuning a Low-Rank Adapter (LoRA) for a model
with 65B weights requires only a single 48GB GPU for less
than 24 hours [31]. Additionally, running inference on a
Qwen2−7B− Instruct model using one A100−80GB GPU
achieves 41.20 Tokens per Second [121]. Therefore, instead
of constructing their own cluster, small-size companies can
fine-tune or serve the components of decomposed models,

Submitted to the Journal of Systems Research (JSys) 2025

such as LoRA adapters for LLM or traditional deep neural
networks, by acting as a broker offering a Machine Learning
as a Service (MLaaS) cost model to meet the demand of their
customers and for internal R&D.

Recently, organizations like Adobe [19, 22] and Work-
day [161], have built their MLaaS platforms by provisioning
cloud resources, including Virtual Machines (VMs), contain-
ers, etc., from cloud service providers, such as Amazon Web
Service (AWS), Microsoft Azure, and Google Cloud Platform
(GCP), while maintaining a private cloud cluster. They then
built their own ML services using that hybrid cloud infras-
tructure. This approach presents tradeoffs and opportunities
in service latency guarantee, user data privacy preservation,
and saving in monetary cost of computation resources.

For example, provisioning H100 GPUs in the cloud en-
ables low processing time, but results in a high monetary
resource cost ($) and potentially increases data transmission
time compared with edge resources. Similarly, allocating
computation resources in the cloud instead of processing data
securely at the edge, i.e., private cloud or user devices, can
minimize the monetary cost of resource maintenance ($) and
processing delay, but increases the risk of data leakage.

Furthermore, some service level objectives (accuracy, la-
tency, privacy, and monetary cost ($)) can be relaxed to im-
prove other service level objectives. For example, a software
vulnerability detection system for a data center has low sensi-
tivity to the privacy of the software discovered when report-
ing to the cluster administrator. Thus, an MLaaS broker can
take advantage of the high parallelism available in the cloud
for inference or training without incurring significant mon-
etary costs of computational resources [178]. Furthermore,
agreement-based user data sharing can further mitigate user
data privacy concerns [46, 118].

Investigating such tradeoffs even with traditional DNNs
as opposed to LLMs provides valuable insights for the fu-
ture design of MLaaS systems and for supporting large ML
systems with short latency, high privacy guarantee and low
monetary cost of resources for smaller companies and institu-
tions. Recent research has focused on computation-efficient
and privacy-aware ML models or cost-efficient resource or-
chestration methods. However, a study of the interactions
between all three aspects of latency, privacy, and monetary
cost remains an ongoing topic. In this survey, we explore
recent works and open issues surrounding these interactions
via resource and model adaptations.

What are the limitations of existing MLaaS systems? Ex-
isting MLaaS systems provide managed services in the cloud
and on the edge. Depending on their flexibility in configu-
ration, MLaaS systems manage different resources for users
at various levels of abstraction [171]. AWS provides a set of
AI services, including Amazon Rekognition [12], which hide
lower-level details like machine learning (ML) models and
computation resources from users. On the other hand, they

also offer ML services. For example, Amazon Sagemaker [13]
allows users to define models, data sources, and resource or-
chestration across Virtual Machine (VM) instances, serverless
instances, S3 object storage, etc. Sagemaker Edge [14] can
deploy an NN model and collect data on edge IoT devices
owned by the user for ML inference and model retraining.
However, these services do not incorporate much of the exist-
ing research in model adaptations for optimal latency [147],
privacy [116], and service cost [32, 165]. Sagemaker Edge
compiles NN models to utilize the client’s hardware architec-
ture and memory access patterns for optimal ML inference
and training speed [15], which is a small subset of model
adaptation.

Therefore, this survey investigates model architecture op-
timization and ML task resource provisioning strategies that
could become part of future MLaaS services, empowering
users to develop their applications in the cloud or at the edge.
We particularly study model offloading and model adaptation
techniques.

Why offloading DL tasks? ML applications that collect
large volumes of data and employ highly parameterized deep
learning models usually face a short latency requirement for
Quality of Service [52, 64, 99, 153]. As shown in Table 1,
recent lightweight DNN models used in Augmented Reality
(AR) applications running on edge devices, such as Rasp-
berry Pi or mobile phones, often struggle to meet the 30
FPS video requirements or 100ms human-sensible end-to-end
(frame refresh) latency target [28, 110]. Due to limitations
in computation capacity [39, 128], bandwidth [106], battery
capacity [80], and memory/storage space [98], edge devices
cannot sustain high performance.

Cloud resources offer alternatives to edge computing with
extra processing capacity, as shown in Table 2. However,
the public cloud faces privacy concerns [179] and transmis-
sion bottlenecks over the Internet [39, 181], which prohibit
transmitting source data to the cloud for various ML tasks.

To take advantage of the strengths of both edge and cloud
platforms, recent research has focused on partially offloading
computation from the cloud to the edge while securing cus-
tomer data at edge servers or user devices. In this approach, a
portion of the computation is performed on the client devices.
Only the essential hidden variables required to complete the
inference or training tasks at high accuracy are transmitted to
the cloud or edge server. This paradigm keeps the source data
on the client device, enhancing the efficiency and privacy of
transmission. Since data is only sent to remote servers when
necessary, this approach can reduce overall ML job comple-
tion latency. As shown in Table 3, some existing studies have
shown low latency and high model accuracy.

Challenges of DL task offloading. Finding an optimal of-
floading plan for DL applications is not trivial. Given a Neu-
ral Network (NN) model and a data source, the model can

2

Submitted to the Journal of Systems Research (JSys) 2025

Model Device End-to-End Latency Power Pred Metrics Dataset/Task Citation

MobileNetV3 [57] Raspberry Pi 4B+ 595ms NA
79.23%
accuracy

48∗48-pixel
RAF-DB [90]

[64]

MobileNetV2 [134] Raspberry Pi 4B+ 3571ms NA
81.16%
accuracy

48∗48-pixel
RAF-DB [90]

[64]

MobileNetV2+SSDLite [134] Google Pixel 1 162ms NA 22.1% mAP COCO [94] [57]
MobileNetV3+SSDLite [134] Google Pixel 1 137ms NA 22.0% mAP COCO [94] [57]

YOLO(YOLOv3) [126] Google Pixel 2 4500ms 4.4W 40% IOU Imagenet Video [79] [24]
Tiny-YOLO(YOLOv2) [125] Google Pixel 2 1200ms 4W 40% IOU [79] [24]

Table 1: DNN performances at edge in recent works

Model Hardware Processing Latency Pred Metrics Dataset/Task Citation
YOLOv4-608 [126] Tesla V100 16.1ms 43.5% COCOmAP COCO [94] [25]
YOLOv3-608 [126] Nvidia Titan X 57.9ms 33% COCOmAP COCO [94] [126]
YOLOv2-544 [125] Nvidia Titan X NA 21.6% COCOmAP COCO [94] [126]

Table 2: DNN performances at cloud in recent works

Model Edge Cloud
End-to-End

Latency
Pred Metrics Bandwidth Dataset/Task Citation

Faster R-CNN
(ResNet-50) [127]

NV Jetson TX2 NV Titan XP 34.56ms 70% IoU 82.8Mbps
Object detection
Xiph dataset [11]

Baseline [100]

Faster R-CNN
(ResNet-50) [127]

NV Jetson TX2 NV Titan XP 22.96ms 75.8% IoU 276Mbps
Object detection
Xiph dataset [11]

Baseline [100]

Faster R-CNN
(ResNet-50) [127]

NV Jetson TX2 NV Titan XP 17.23ms 86.4% IoU 82.8Mbps
Object detection
Xiph dataset [11]

DRE+PSI
+MvOT [100]

Faster R-CNN
(ResNet-50) [127]

NV Jetson TX2 NV Titan XP 15.52ms 91.1% IoU 276Mbps
Object detection
Xiph dataset [11]

DRE+PSI
+MvOT [100]

Table 3: End-to-end DNN performances combining edge and cloud in recent works

be partitioned and deployed on the cloud, edge server, or
client devices. However, a naïve offloading plan can result
in long transmission and processing delays, privacy breaches,
or resource under-provisioning and over-provisioning. In this
survey, we formulate an optimization problem trading off
optimization objectives, including Latency, Privacy, and Mon-
etary Cost ($), based on various existing methods. Previous
surveys have addressed aspects of optimizing monetary cost,
latency or privacy for AI applications (Table 4). However,
they do not formulate the optimization problem nor discuss
monetary cost ($) based approaches. Detailed cost analysis
using real-world cloud resources for low-cost ($) ML serving
and training remains limited. Furthermore, while some exist-
ing surveys [105, 158] provide valuable insights, they often
lack comprehensive discussions on source data privacy in dis-
tributed inference and training systems. To address this gap,
our survey highlights recent work addressing model inversion
attacks [41, 156, 169].

We organize the paper based on optimization objectives. In
Sec. 2, we introduce the optimization problem by studying
the challenges of ML task offloading given different optimiza-
tion objectives, including Latency in Sec. 2.1.1, Privacy in
Sec. 2.1.2, and Monetary Cost ($) in Sec. 2.1.3. Then, we

formulate the optimization problem for Latency (Sec. 2.2.1),
Privacy (Sec. 2.2.2) and Monetary Cost (Sec. 2.2.3). In Sec. 3,
we discuss popular adaptive learning methods to deploy a
DNN model across the spectrum of cloud, edge, and client
resources by optimizing Latency (Sec. 3.1), Privacy (Sec. 3.2),
and Monetary Cost (Sec. 3.3). Sec. 4 concludes the paper.

2 Problem Definition

Recent studies have explored offloading a Deep Neural Net-
work (DNN) model, both training and inference jobs, across
the core cloud, edge, and client devices to meet resource
constraints and privacy guarantees. With environment dynam-
ics, each inference request can adaptively go through model
partitions using the most capable resources to minimize la-
tency and meet privacy guarantees constrained on other per-
formance requirements. Similarly, for training jobs, although
all partitions should participate in the training, using the most
capable resources also minimizes training dataset transmis-
sion delay and training time, while enhancing data privacy by
limiting the exposure of sensitive information. However, par-
titioning the NN model introduces new challenges. Between
model partitions, hidden variables and gradients transmit-

3

Submitted to the Journal of Systems Research (JSys) 2025

Optimization
Formulation

Monetary Cost ($) Latency Privacy DL Placement Scope Inference Training Reference

! ! ! ! ! !
Edge Devices &
Edge & Cloud

! ! (Our Work)

! ! # ! !
Graph in

Mobile & Cloud
! ! 2020 [154]

! ! ! !
AIoT &

Edge & Cloud
! ! 2021 [26]

! ◦ ! !
Early Exit in

Mobile & Cloud
! ! 2022 [105]

! ! ! !
End Device &
Edge & Cloud

! ! 2023 [35]

! ◦ ! !
End Device &
Edge & Cloud

! ! 2024 [158]

Table 4: Related survey comparison: !indicates the corresponding survey covers up-to-date or more comprehensive discussion.
◦ indicates our work is more complementary or has different discussion than the corresponding work. #means the corresponding
work does not discuss this aspect.

ted during forward and backward propagation add additional
transmission overhead [39, 170, 181] and cause client data
leakage [150, 179]. Meanwhile, byproducts of running on the
edge, for example, extra processing delays [61, 104] and en-
ergy consumption [75], should be minimized. In this section,
we discuss model offloading challenges (Sec. 2.1) and prob-
lem definitions over cloud, edge, and resource-constrained
client devices (Sec. 2.2).

2.1 DNN Offloading Challenges

Existing MLaaS systems manage cloud resources [12] or user
devices to run DL jobs [14]. Meanwhile, cloud-managed edge
computing resources, including AWS Local Zones [5] and
Wavelength [6], and edge ML model optimizer have become
important building blocks for ML services used by companies
such as Holo-Light [60], Netflix [115], and SKT [143], etc.
With AWS Sagemaker Edge [14] and AWS Greengrass [4],
a user can optimize their edge application by a compilation
that targets their specific hardware (CPU architecture) and
operating system. In the future, we envision MLaaS service
providers adopting more model and resource adaptations in
their optimizers, improving latency of processing and trans-
mission, privacy of the source data, and the monetary cost of
resources. To enable such optimizers, we study the challenges
of achieving high DNN performance when a DL model is
partitioned between cloud, edge, and user devices.

2.1.1 Latency

The time spent in a distributed ML training or inference sys-
tem can be decomposed into transmission and processing
delays. When large volumes of data are sent between model
partitions, transmission overhead can dominate training or
inference latency [98, 179]. Meanwhile, offloading too many

in
pu

t
fe

at
_R

eL
U_

1
fe

at
_R

eL
U_

3
fe

at
_M

ax
Po

ol
2d

_4
fe

at
_R

eL
U_

6
fe

at
_R

eL
U_

8
fe

at
_M

ax
Po

ol
2d

_9
fe

at
_R

eL
U_

11
fe

at
_R

eL
U_

13
fe

at
_R

eL
U_

15
fe

at
_M

ax
Po

ol
2d

_1
6

fe
at

_R
eL

U_
18

fe
at

_R
eL

U_
20

fe
at

_R
eL

U_
22

fe
at

_M
ax

Po
ol

2d
_2

3
fe

at
_R

eL
U_

25
fe

at
_R

eL
U_

27
fe

at
_R

eL
U_

29
fe

at
_M

ax
Po

ol
2d

_3
0

clf
_f

la
t

clf
_L

in
ea

r_
0

clf
_R

eL
U_

1
clf

_L
in

ea
r_

3
clf

_R
eL

U_
4

clf
_L

in
ea

r_
6

0

2

4
Nu

m
be

r o
f e

le
m

en
ts 1e7

Figure 1: Hidden variable sizes of VGG16 with CiFAR-10
and batch size of 16.

model parameters to constrained edge resources can also
overwhelm user devices, resulting in long processing delays.
Ideally, a practical NN partitioning paradigm should optimize
for both delays to ensure optimal latency performance.
Transmission. For a partitioned NN, hidden variables (or
activations)1 and gradients must be sent between partitions to
complete forward and backward propagation, often over the
internet limited by bandwidth in IoT or mobile device-based
systems. In Fig. 1, we profiled the hidden variable sizes using
a VGG-16 model [141] and CiFAR-10 [78] with a batch size
of 16. The x-axis indicates the NN layer where the model is
split, where the head part of the DNN (from the input layer
up to and including the splitting layer) runs on a client device,
and the tail part runs on an edge or cloud server. The y-axis
shows the output size of different splitting layers. Different
splitting layers yield different output sizes. Therefore, the
model splitting can be optimized for short delays [75].

1We use the terms "hidden variables" and "activations" interchangeably.

4

Submitted to the Journal of Systems Research (JSys) 2025

Furthermore, previous work has explored the use of in-
termediate data and model compression methods to re-
duce communication overhead. By incorporating a bot-
tleneck network, such as Auto-Encoder, at the splitting
point, previous works select the key features for transmis-
sion [39,62,63,104,138,170,181]. On the other hand, model
trimming techniques, such as model distillation [56] and quan-
tization [61,66,101,135], can also minimize the size of hidden
variables (activations) and gradients to send.

The sparse model activates a subset of the model parame-
ters during inference and training. For example, the Internal
Classifier (IC) allows forward propagation to end in one parti-
tion, and no intermediate data transmission [81, 147]. When
a classifier gains confidence in the prediction, it emits the
output, and no subsequent feature extraction is needed.
Processing. Another challenge for offloaded deep learning
systems is the limited processing capacity of edge and client
devices. As shown in Table 1, edge devices such as Raspberry
Pi [64] and mobile phones [24, 57] often struggle to meet
the latency or accuracy requirements demanded by machine
learning applications.

To overcome these limitations, related work has explored
model adaptations, including quantization [91], pruning [53,
96, 159, 168], and knowledge distillation [56]. Such methods
reduce model weights, allowing applications deployed on
edge devices or the cloud to meet QoS requirements.

In addition, other works have explored the use of cloud
computing capacity to assist edge intelligence applications.
However, this approach introduces challenges in privacy and
transmission [62, 175].

2.1.2 Privacy

Privacy of source data has become a critical concern for DL
systems. Partitioning and offloading an NN to edge devices
helps keep raw source data private, as user data is not sent
over the network. However, data breaches can still occur,
as adversaries can exploit information in intermediate data
through model inversion attacks [41, 156, 169].

Recent works [103, 150, 175, 179] discuss the use of Auto-
Encoders [17, 131] to reconstruct the source data from the
intermediate data sent from the edge to the cloud during for-
ward propagation. The Auto-Encoder consists of an encoder
neural network (NN) and a decoder NN, and uses a loss func-
tion, e.g., Mean Squared Error (MSE), to gauge the error
between the source data and reconstructed data. The encoder
mirrors the architecture of the NN on client devices, while
the decoder reflects the encoder structure.

One can then train an Auto-Encoder with a dataset similar
to the private source data to reconstruct the client source
data from activations sent by clients. For example, trained
with KMNIST, the decoder NN could reconstruct MNIST
hand-writings [179]. Or, with generic facial images from the
Internet, a trained decoder NN can reconstruct the source data

of a facial recognition classifier [41].
Such an attack is practical in real-world settings. First,

the decoder structure can be flexible and it is not required to
precisely mirror the client model [89, 179]. Second, many
recent large-scale DL training systems are variants of Feder-
ated Learning schemes [89, 106] where multiple computing
nodes simultaneously train local models using their private
dataset and then aggregate and share their model weights. An
honest but curious node can exploit these shared weights to
build an Auto-Encoder [89] to reconstruct the source data of
other nodes.

Privacy-preserving methods for model and user data are
critical for an MLaaS system. Recent work has focused on
training privacy-preserving models. One approach involves
encryption [74, 113], which, however, can cause significant
slowdown [33, 111]. As shown in Table 5, without an encryp-
tion method, using Nvidia Titan Xp, each inference with the
ImageNet dataset and the VGG-16 network achieves 14.5ms.
However, with FALCON encryption, using CPUs, previous
work reported 12,960ms for the same task [111].

Another privacy-preserving approach introduces a sec-
ondary loss function, e.g., distance correlation [70, 150, 179],
to constrain the similarity between intermediate and source
data during model training. Similar works also incorporate an
Auto-Encoder to model training, using reconstruction error
as privacy metric [89]. Furthermore, previous works utilize
DNN pruning with masks to remove mutual information be-
tween the source and intermediate data [33, 111].

Other privacy-preserving methods apply perturbations to
intermediate data [103, 175]. Thus, given the adversarial
objective, the intermediate data retain minimal sensitive in-
formation, while the cloud NN learns to extract key elements
for model inference or training.

2.1.3 Monetary Cost

As cloud infrastructure has evolved over the past decades,
there are other cloud services other than VMs that are more
cost-efficient. For example, different cloud services from
different providers, have individualized cost models [119]
and various accuracy performances [165]. For example, there
are Function-as-a-Service (FaaS) and Container-as-a-Service
(CaaS) clusters in the cloud [1, 2] and AWS Lambda@Edge
and Local Zones at the edge [3, 5] that offer a fine-grained
monetary resource cost ($) and low latency [137]. An MLaaS
system should adaptively configure the cost-efficient runtime
environment and model architecture for its ML jobs.

For computation-intensive training jobs, achieving cost-
efficiency requires designing models and training paradigms
that minimize the overall computational burden. Previous
works have explored minimizing training rounds before con-
vergence by strategically selecting key data samples, or re-
ducing the per-update computational cost using parameter-
efficient fine-tuning (PEFT) techniques such as LoRA. Ex-

5

Submitted to the Journal of Systems Research (JSys) 2025

Model Hardware Processing Latency Dataset/Task Privacy Source
VGG-16 [151] Nvidia P100 57ms Tiny ImageNet [82] Plaintext [151]
VGG-16 [151] CPU 1,300ms Tiny ImageNet [82] Plaintext [151]
VGG-16 [151] CPU(Local Area Network) 40,000ms Tiny ImageNet [82] SMPC(FALCON) [151]
VGG-16 [151] CPU(Local Area Network) 59,000ms Tiny ImageNet [82] SMPC(FALCON) [151]
VGG-16 [111] Nvidia Titan Xp 14.5ms ImageNet [132] Plaintext [111]
VGG-16 [111] CPU 12,960ms ImageNet [132] SMPC(FALCON) [111]
VGG-16 [111] Nvidia Titan Xp 14.5ms ImageNet [132] Plaintext(Cloak) [111]

Table 5: Privacy-preserving DNN inference performances in the core cloud in recent works

amples include methods for Federated Learning (FL) client
selection to balance non-IID client data [155] and the applica-
tion of PEFT within FL settings [177].

More recent research also proposes a Split Federated Learn-
ing (SFL) paradigm [148] where under FL setting, each
node participating in the training can be offloaded from the
cloud to the edge. They explore the transmission and com-
putation demand given different model offloading and ag-
gregation algorithms leveraging individual cost models of
resources at the edge and cloud. FSL [179] proposes an of-
floading approach that tradeoffs transmission and processing
delays, privacy and accuracy with different strategies. Other
work [97, 119, 149, 160] focuses on resource cost models
and tradeoff monetary cost and training time when offloading
model partitions.

For highly dynamic inference workloads, slow scaling
in the core cloud might result in under or overprovision-
ing of resources and consequently missing the QoS target
or wasting the monetary cost of resources [123, 124]. Re-
lated works have explored dynamically directing workload
to a deep NN in the cloud and a shallow NN at the edge for
cost savings [32]. Other works deploy NN partitions using
Function-as-a-Service (FaaS) [69]. This approach leverages
the pay-per-use nature of FaaS, where the user only pays for
the actual computation time used, to avoid the costs of keep-
ing VMs constantly running and provisioned, including node
cold start and model loading time.

Furthermore, specific adaptations to the NN architecture
can enable resource provisioning for individual NN layers,
achieving cost-effective QoS tracking. By incorporating inter-
nal classifiers [76,157] or neuron skipping methods [77], only
a subset of the network’s neurons is used for prediction. Thus,
users can minimize the monetary resource cost ($) based on
different cloud resource pricing models [124]. Specifically,
low-workload layers can be provisioned on demand with FaaS
platforms [2,3,137] without relying on reserved VMs, so there
is less idle time for computation resources. Such adaptations
can be applied across different ML tasks. For example, in an
image classification task, the shallow layers might capture
the contour of a banana, while the deep layers that focus on
the details of the banana are less critical to some classifica-
tions [76,111]. Consequently, these less frequently used deep
layers are well-suited for FaaS.

2.2 Problem Formulation
We devise a deep learning (DL) model adaptation and re-
source provisioning problem formulation by integrating three
sub-formulations to partition the model between edge and
cloud resources. The formulation addresses the challenges
outlined in the previous section, including

• Challenge 1: To achieve overall short training or infer-
ence latency, an NN partition strategy should balance
processing and transmission delays.

• Challenge 2: An adversary can use an Auto-Encoder NN
to reconstruct source data from hidden variables, which
introduces data leakage concerns.

• Challenge 3: We need a fine-grained resource provi-
sioning approach that fits the model architecture to save
monetary cost while keeping track of Service Level Ob-
jectives.

Specifically, we minimize a weighted sum of loss func-
tions, including Latency (Ll), Privacy(Lp), and Cost (Lc), as a
constrained multi-objective optimization problem below.

min(wLLL +wPLP +wCLC) (1)
s.t. constraints on training loss and inference accuracy. (2)

Constraints for each objective are discussed in Sec. 2.2.1,
2.2.2 and 2.2.3. We illustrate the solutions in Sec. 3.

2.2.1 Latency(Ll)

Balancing and minimizing transmission and processing delays
are essential to DL training and inference tasks. Arbitrary
model partitioning can cause excessive data transmission. In
contrast, deploying too many layers on computation-limited
edge devices yields a long processing time.

We focus on a DL model composed of M partitions
(Fpid , pid ∈ 1,2, ...,M in Fig. 2) with the notations defined in
Table 6. An individual model partition pid can be offloaded
to the edge or cloud based on the estimation of its training
or inference time (denoted by Tpid , which is the sum of trans-
mission delay T T

pid and computation delay TC
pid), the hidden

variable size (Size(.)) and the profiles of floating point oper-
ations performed by layers in the partition (FLOPs j

i (.)) In

6

Submitted to the Journal of Systems Research (JSys) 2025

practice, however, from shallow to deep NN partitions, when
the offloading decision of one partition changes, the same
decision follows for all subsequent partitions to minimize the
transmission delay [63, 75, 147].

A model partition can be adapted to reduce inference time
(πpid and πpid+1 both sides of the dashed line in Fig. 2). Each
partition pid can be adapted by attaching Qpid internal clas-
sifiers, where each classifier c has the confidence threshold
αc

pid , request exit rate βc
pid , and the observed test metrics Ac

πpid
,

including precision, and recall [61, 81, 86]. We denote the
sum of the exit percentages for partition pid as βpid .

Partitions can also be adapted with transmission and model
compression methods. For each partition pid, we denote by
xpid the hidden variable output (x0 refers to the source data)
and two model compression ratios: (1) γpid for latent space
compression layers (in Fig. 2, dark blue layers represent an
encoder and dark orange layers represent the decoder), and
(2) κpid for model compression like knowledge distillation,
neuron pruning and quantization [62, 88, 104, 117, 138, 170]
as exemplified by light blue and light orange layers in Fig. 2.

We formulate a constrained multi-objective optimization
problem for processing and transmission time.

LL = min
pid,αc

pid ,κpid ,γpid
(ξT

0 T T
0 +

M

∑
pid=1

Tpid) (1)

s.t.
M

∑
pid=1

Qpid

∑
c=1

β
c
pid ∗Ac

πpid
≥ Atar (2)

βpid =

Qpid

∑
c=1

Pr(α
′c
pid > α

c
pid) = FlagTrain ∗

Qpid

∑
c=1

β
c
pid (3)

xpid = πpid(Fpid)(xpid−1) (4)

T T
pid =

(1−κpid)(1−βpid)(1− γpid)Size(Fpid(xpid−1))

bandwidth
(5)

T T
0 =

(1− γ0)Size(x0)

bandwidth
(6)

TC
pid =

FLOPspid
pid(xpid−1,πpid)

µpid
(7)

Tpid = ξ
C
pidTC

pid +ξ
T
pidT T

pid (8)

α
c
pid ∈ [0,1],κpid ∈ [0,1], (9)

γpid ∈ [0,1],ξ ∈ R+,FlagTrain ∈ {0,1} (10)

In line 2, Atar is a user-defined model accuracy constraint
and βc

pid denotes the percentage of requests leaving the inter-

nal classifier c in partition pid. In line 3, α
′c
pid is the profiled

mean confidence during inference for the internal classifier
c in partition pid, αc

pid is the confidence threshold for the
internal classifier c in partition pid, and βpid indicates the
percentage of requests leaving partition pid during inference.
Notice that we introduce a flag parameter FlagTrain ∈ {0,1}
to specify whether the formulation is for training or inference.

Notation Definition

πLat
pid(.)

Adapt partition Fpid
to minimize inference latency

αc
pid

Confidence thresholds
for classifier c in partition pid

κpid
Output compression rate

of model knowledge distillation

γpid
Output compression rate

of compression layers(encoder&decoder)

γ0
Source data compression rate

of compression layers(encoder&decoder)

βc
pid

Percentage of request exit
at classifier c in partition pid

βpid Percentage of request exit in partition pid
x0 Source data

Qpid Quantity of classifier in partition pid
Ac

πpid
Observed model accuracy after adaptation

Atar User-defined model target accuracy
T T

pid Estimated transmission time
TC

pid Estimated computation time

FLOPs j
i (.) FLOPs from layer i to layer j inclusive

Table 6: Latency Optimization Formulation Notations

Distilled

Distilled Encoder
Internal Classifier

Decoder

Figure 2: Illustration of latency optimization problem.

When FlagTrain = 1, the formulation optimizes for inference
latency, as it considers the portion of requests that leave the
internal classifiers at earlier partitions. For FlagTrain = 0, the
formulation optimizes the training latency, as it ignores early
exits and ensures that all internal classifiers make predictions
and deep partitions are trained.

In line 4, we define the output of partition pid as
πpid(Fpid)(xpid−1), where the model partition Fpid adapted
with πpid(.) takes xpid−1 as input. Notice that the model adap-
tations include the introduction of internal classifier(s) and
transmission and model compression. To quantify the effect
of those adaptations in training and inference latency, in line 5,
we estimate the transmission delay from the adapted parti-
tion pid to pid +1 based on input size Size(xpid−1), the early
exiting ratio βpid and the two compression ratios (γpid and
κpid), for which we will discuss the specific model adaptation
methods in Sec. 3.1. Then, in line 6, we estimate the trans-
mission time for the source data to the location of the first
NN partition. γ0 is the compression ratio of the source data.

In line 7, FLOPspid
pid(xpid−1,πpid) is the profiled count of

7

Submitted to the Journal of Systems Research (JSys) 2025

Distilled Distilled Noise Generator

Figure 3: Illustration of Privacy optimization problem.

Notation Definition

π
pri
pid(.)

Fine-tune partition Fpid
for better privacy guarantee

τ(.) Noise generator method
λ Output bounding parameter

∆Fpid Sensitivity of partition pid

Table 7: Privacy Optimization Formulation Notations

FLOPs (FLoating-point OPerations) for partition pid, given
input (xpid−1) and adaptation (πpid). The subscript and super-
script of FLOPspid

pid(.) indicates the start and end partitions to
count FLOPs. When we focus on one partition, the subscript
and superscript are the same.

2.2.2 Privacy(Lp)

We study the privacy of source data in the distributed DNN
training and inference application. This section explores
remedies for data leakage when hidden variables are exposed
and vulnerable to model inversion attacks [41, 156, 169].

Regularization [55,89,150,179] methods adapt model train-
ing to resist source data reconstruction. Perturbation [55,112]
methods (τ(.)) inject noises based on partition sensitivity
(∆Fpid), which gauges the range of partition output enforced
by an output bounding parameter λ. We show their applica-
tion in Fig. 3. There are three stages, divided by the dashed
lines. The left and right portions represent model partitions
pid and pid + 1 enhanced by privacy-aware regularization
(πpri

pid). The middle portion represents the added perturbation
τ(∆Fpid). The constrained optimization problem to optimize
π

pri
pid ,∆,λ is formulated below, with notations in Table 7.

LP = min
π

pri
pid ,∆,λ

(wCECE(ŷ,y)−
M

∑
pid=1

wpMSE(F−1
pid (xpid),xpid−1))

(1)

s.t. CE(ŷ,y)≥ T hrCE (2)

xpid = λπ
pri
pid(Fpid)(xpid−1)+ τ(∆Fpid) (3)

∀pid > 1 (4)

The objective optimization function (line 1) balances
source data privacy (MSE(F−1

pid (xpid),xpid−1)), where F−1
pid

Distilled DistilledInternal
Classifier IaaS Infra FaaS Infra

Figure 4: Illustration of cost($) optimization problem.

Notation Definition
Latency Latency bound

TI Observed Mean IaaS Time
TF Observed Mean FaaS Time

T cutid
cold FaaS function cold start time

T cutid
trans Transmission delay from IaaS to FaaS

CI(.) Unit cost of IaaS given VM capacity
CF (.) Unit cost of FaaS given function capacity

µI VM capacity
µF Function capacity

Table 8: Cost($) Optimization Formulation Notations

is the inverse approximation of NN partition Fpid , and Cross-
Entropy (CE) between the prediction ŷ and the ground truth
y subject to the CE threshold (T hrCE in line 2). In line 3,
we specify the forward propagation step for each fine-tuned
NN partition, incorporating output bounding (λ) and noise
(∆(∆Fpid)) to the intermediate data.

2.2.3 Monetary Cost(Lc)

Resource provisioning approaches based on resource cost ($)
for DL training and inference tasks remain underexplored.
Using detailed cost models of different cloud and edge ser-
vices, an MLaaS broker can determine cost-efficient resource
provisioning strategies for different workloads. In particular,
for decomposable ML models, fine-grained resource provi-
sioning and load balancing for submodels are essential to
achieve cost-efficient ML training and inference.

In our formulation, we minimize the costs of provisioning
cloud and edge resources by using Infrastructure-as-a-Service
(IaaS) and Function-as-a-Service (FaaS) platforms at the edge
and cloud. FaaS provisions serverless functions to serve user
workload, which has a finer granularity cost model than IaaS.
FaaS only charges users when the deployed model is used,
which is suitable for low-rate workloads compared to IaaS
resources, for example, a temporary spike in DNN inference
workload [65, 69]. On the other hand, the IaaS platform auto-
matically scales virtual machines (VMs), which have a longer
cold start time needed for hardware and operating system
provisioning compared to FaaS. Due to the coarse granularity
of VM scaling (extra cold start time), a user tends to over-
provision VMs to satisfy a service-level objective (SLO) of

8

Submitted to the Journal of Systems Research (JSys) 2025

a dynamic ML inference workload, which wastes monetary
cost of resources. Nevertheless, when the workload allows the
user to fully utilize the VMs, the monetary cost of using VMs
would be lower than the cost of using serverless functions.
Such workloads are often characterized by a steady high-rate
of data for processing, for example, the steady portion of a
DNN inference workload or ML training tasks [72].

Motivated by recent progress in sparse model design, where
only a subset of neurons are activated during training and in-
ference [59], and the need to partition a large model to fit in
edge devices [75], we model a dependent acyclic graph of sub-
models representing a partitioned sequential NN with internal
classifiers at each partition, as shown in Fig. 4. For inference
tasks, the partition Fpid has βpid percentage of requests that
exit at the internal classifier. And the partition Fpid+1 pro-
cesses the remaining portion of the requests. Notice that the
shallow partitions experience steady high-rate traffic, while
the deep partitions experience low-rate traffic. Thus, consid-
ering a consistent N requests per second, we can use VMs for
the rmax portion of N requests processed by shallow partitions
that can fully utilize the VMs. For all remaining requests, we
use FaaS to avoid under-utilization of any individual VM.

LC = min
cutid,µF ,µI ,α

k
pid

CI(µI)TI

cutid

∑
pid=1

βpid

+CF(µF)TF

M

∑
pid=cutid+1

βpid (1)

s.t. Latency ≥ TI +TF (2)

M

∑
pid=1

Qpid

∑
c=1

β
c
pidAc

πpid
≥ Atar (3)

βpid =

Qpid

∑
c=1

Pr(α
′c
pid > α

c
pid)

= FlagTrain

Qpid

∑
c=1

β
c
pid (4)

TF =
FLOPsM

cutid+1(xcutid)

µF
+T cutid

cold (5)

TI =
FLOPscutid

1 (x0)

µI
+T cutid

trans (6)

cutid ∈ [1,M], α
k
pid ∈ [0,1], (7)

FlagTrain ∈ {0,1}, (8)
µF ∈ {FaaS Capacities}, (9)
µI ∈ {IaaS Capacities} (10)

Focus on Inference Tasks: The optimization above focuses
on consistent rmax DNN inference requests per second that can
fully utilize VMs. It identifies the resource configurations of
using IaaS, FaaS or hybrid offloading of some requests from
IaaS to FaaS so they complete their processing of deep layers.

The optimization adjusts the FaaS configuration (µF), the IaaS
configuration (µI), internal classifier thresholds (αc

pid), and
the model partitioning index (cutid, assuming two partitions
in total), which are constrained by a latency bound in line 2.

CI and CF represent the cost mappings (in $) for differ-
ent resource configurations, based on the average processing
times (TI for IaaS VM’s reservation time and TF for FaaS
execution time) obtained through profiling for each forward
propagation. In line 4, the percentage of forward propagations
exiting at a specific NN partition pid (βpid) is shown based
on confidence thresholds (αc

pid). Lines 5 and 6 define the pro-
filed mean durations for FaaS and IaaS, respectively. For any
given cutid, we calculate the duration by dividing a tunable
capacity (µF or µI) by the required FLOPs (FLOPsM

cutid+1
signifies the number of operations from partition cutid + 1
to M), assuming that forward propagation does not revert to
IaaS after being offloaded to FaaS. This step overestimates
the utilization of each service because requests can exit the
internal classifiers before reaching partition M. To estimate
the expected inference duration, we multiply the empirical
early exit rates (∑M

pid=cutid+1 βpid for TF and ∑
cutid
pid=1 βpid for

TI , respectively, in line 1). Furthermore, we incorporate the
delay for transmitting hidden variables from a VM to a server-
less instance (T cutid

trans) in TI (line 6), because the serverless
function is not yet invoked and would not incur monetary cost
for FaaS (unlike a VM that keeps running). On the other hand,
we also include the short cold start time of serverless function
instances (T cutid

cold) in TF (line 5), as such cold start duration for
a serverless function involves setting up hardware and loading
of the model and would incur monetary cost.2

Next, using the resource configuration for rmax requests
per second, we can optimize a load balancing pipeline for
rmax requests per second to be served by the shallow layers on
fully-utilized VMs. The remaining requests (including those
that need further processing by deep layers) are directed to
FaaS.
Adaptation to Training Tasks: Our monetary cost formu-
lation also applies to ML training setting. Although FaaS is
generally unfavorable for training tasks, we can generalize
TF , µF , CF and rmax as duration, computation capacity, unit
cost of edge resources, and training batch size, respectively.
And we should set FlagTrain = 0, so that βpid = 0.

Previous works have proposed various distributed deep
learning training paradigms that leverage resource-specific
cost models across edge and cloud environments. One exam-
ple is Federated Learning (FL), where multiple nodes train
local models independently and aggregate their outputs. A
more recent variant, Split Federated Learning, enhances FL

2Notice that major FaaS providers would keep the serverless instance
running after a request finishes to minimize this cold start duration [23, 45,
109, 137]. Thus, the cold start duration (T cutid

cold) does not apply to every
request, and thus the formulation overestimates the FaaS cost. Also, the cold
start time of a VM is not shown in the formulation, because this formulation
assumes long-running VMs serving a consistent rmax workload.

9

Submitted to the Journal of Systems Research (JSys) 2025

by offloading portions of each node’s model from the cloud to
the edge, thereby improving privacy and training efficiency.

These paradigms introduce new challenges, concerning
transmission efficiency between the cloud and edge, as well
as privacy preservation given varying depths of the edge NN
partition. For example, placing a deeper NN partition at the
edge enhances data privacy by limiting raw data exposure.
However, this approach may increase processing delays due
to the limited computational resources of edge devices. Addi-
tionally, transmission latency can be affected by the size of
intermediate data outputs, which varies with different parti-
tioning strategies. Addressing these issues requires revisit-
ing the monetary cost models for edge and cloud resources,
balancing factors such as latency, energy consumption, and
privacy requirements.

3 Problem Solutions

In the preceding section, we formulated an optimization prob-
lem for deploying a dependent acyclic graph of submodels,
accounting for latency, source data privacy, and resource cost
($) savings. In this section, we discuss the solutions to these
optimization problems, such as early exits, compression, and
privacy-preserving training and inference techniques. Further-
more, we identify open issues, including latency-sensitive
selection of hidden variables, prediction of privacy level,
and cost-aware dynamic NN partitioning. These techniques
can serve as valuable control mechanisms for ML service
providers, improving Quality of Service (QoS), and increas-
ing revenue.

3.1 Latency
The end-to-end latency of a neural network model comprises
both processing and transmission delays. Building on ear-
lier discussions, existing work dynamically minimizes the
transmission of excessive hidden variables and combines ca-
pable cloud services. This section begins by exploring dy-
namic deep neural network offloading [75, 167]. Then, we
discuss internal classifiers which allow early exit and save
computation for deep layers [37, 81, 85–87]. Furthermore,
we examine transmission data and model compression ap-
proaches [39, 61, 81, 104, 117, 138, 176, 181].

3.1.1 Dynamic Partitioning

When dynamically partitioning a neural network, the compu-
tation (FLOPs j

i (.)) and activation size (Size(.)) can be esti-
mated based on the model weights and input size [10, 144].
Thus, delays, especially inference durations (T T

pid and TC
pid)

can be modeled using regression methods, by profiling the
NN model, across the cloud and resource-limited edge envi-
ronments [75,167]. Previous work estimates transmission and
processing delays for various model configurations, factoring

Internal
Classifiers

Figure 5: Internal Classifier Architecture: Each internal clas-
sifier allows requests to exit in the middle of an NN. For
example, βpid of requests exit at NN partition Fpid .

in computation resources and input sizes to devise a deploy-
ment plan for M NN partitions that minimizes latency and
energy consumption [75]. However, feasible solutions may
not always exist for a given model architecture or environ-
ment, for example, when resource availability is constrained.
Next, we explore orthogonal methods to reduce demands on
transmission and processing resources.

3.1.2 Early Exits

Background. Shallower layers of a DNN model extract high-
level features which can be sufficient for accurate request
classification, while deeper layers can focus on certain fine
details, sometimes resulting in misclassification. The issue
of overthinking was diagnosed in the ShallowDeepNet pa-
per [76]. Related research [76, 163, 183] addresses this con-
cern, proposing the reuse of features extracted from various
layers for prediction to improve convergence time and infer-
ence cost via internal classifiers (Fig. 5).

Internal classifiers were first proposed for cost-efficient
DNN inference in BranchyNet [146]. These classifiers share
a structure similar to traditional NN classifier layers, typically
comprising feature reduction (pooling) layers, fully connected
layers, and a softmax activation function. However, internal
classifiers are attached to the hidden layers. To trigger early
exits, one can configure a threshold [76] for the Bayesian
probabilities of class predictions at each classifier [50, 129].

In deep learning (DL) tasks, incorporating early exits and
residual connections at various internal layers of a DL model
allows for better utilization of insights during training and in-
ference. This integration improves prediction accuracy while
minimizing computational waste. Early exits prevent exces-
sive forwarding of requests (hidden variables) to deep layers
for classification. As exemplified in Fig. 5, an internal classi-
fier allows βpid portion of requests to exit the model partition
Fpid , highlighted in blue. Subsequent works have leveraged
this approach to minimize inference delay in distributed infer-
ence applications.
Methods. Recent research [61, 81, 147] models the relation-
ship between the confidence threshold (α) of internal classi-
fiers and the proportion of early exits (β) when formulating

10

Submitted to the Journal of Systems Research (JSys) 2025

delays. As shown in our latency optimization framework,
this allows tuning β through α to meet a specific mean la-
tency target (lines 2 and 3.) However, lowering the confidence
threshold can negatively impact model accuracy, as it allows
requests to exit with reduced output probabilities, potentially
resulting in decreased accuracy.

When accuracy is low, previous studies explore combining
internal classifiers with dynamic layers offloading to the edge
or cloud based on network conditions, as in lines 4, 5, and
7. For example, SPINN [81] empirically demonstrates that
under high and stable WAN bandwidth, more layers can be of-
floaded to cloud nodes. The increased computational capacity
compensates for additional communication delays, reducing
overall latency. In contrast, when network bandwidth is lim-
ited, the approach shifts more layers to resource-limited edge
nodes. Despite an increase in processing time at the edge,
overall latency is optimized by minimizing reliance on WAN
communication.

3.1.3 Input and output compression

Background. When training an ML model, not all available
features are necessary for a classification task. Feature engi-
neering addresses this by combining features or eliminating
unnecessary ones. Apart from traditional statistical or heuris-
tic methods [152], Deep Neural Networks (DNNs), specifi-
cally Auto-Encoder NNs, can facilitate feature selection to
preserve prediction performance [138]. An Auto-Encoder NN
consists of two components: an encoder, which transforms
inputs to a condensed output representation, and a decoder,
responsible for inverting the dimensionality reduction [131].
On the other hand, model compression methods can also re-
duce feature size. These methods will be explored further in
Sec. 3.1.4.
Methods. In our latency optimization (LL), we denote the
cropping and compression of input data with rate γ0 (line 6).
The compression rate of intermediate data achieved through
model compression is denoted as κpid , while the rate achieved
through feature engineering methods such as Auto-Encoder is
represented as γpid . We encapsulate the computation overhead
of Autoencoder NN in the model transformation πpid .

Heuristic-based compression methods, such as JPEG for
image inputs, can help reduce feature dimension. In particular,
certain activation functions, for example relu [20], produce
zero or near-zero outputs, allowing compression from a dense
matrix into a sparse matrix that is storage and transmission
efficient [61]. Moreover, related works [61, 66, 101, 135]
explore the quantization of weights and intermediate data rep-
resentations. Rather than using double precision floats, these
methods consider 8-bit [66] or in the extreme case single-
bit [101] approximations.

Other works explore content-based transmission compres-
sion methods. For example, in an AMBER Alert system, if the
model only requires identifying a car or person in the scene,

the edge device only transmits cropped images focusing on
Region of Interest (ROI) to the cloud for analysis [130]. This
approach minimizes transmission delay, although accuracy
may vary depending on the effectiveness of the cropping tech-
niques. Moreover, some studies suggest that focusing on the
relevant data not only reduces transmission costs, but also
enhances accuracy [117].

Similarly, previous work has applied ML-based dimen-
sionality reduction tools to reduce transmission data and
maintain accuracy. One idea is to introduce a bottleneck be-
tween two neural network partitions using an Auto-Encoder
NN [39, 63, 104, 138, 170, 181]. This Auto-Encoder is trained
by minimizing the Mean Squared Error (MSE) loss between
the input and output data. In this setup, the encoder maps
the intermediate data into a more space-efficient latent space,
effectively reducing the channels, width, and height. The
decoder, which serves as an approximation of an inverted
encoder function, reconstructs the input of the previous parti-
tion using the compressed intermediate data. This approach
enables a compact representation of intermediate data, en-
hancing efficiency without significant loss of accuracy.

To better maintain the accuracy of the model, recent stud-
ies [63, 138, 170] propose optimizing the entire model, en-
compassing both the backbone and the Auto-Encoder NN.
This approach enhances model accuracy by guiding the Auto-
Encoder NN to focus on features essential for predictions.
However, finding an optimal compressed feature space for
both high accuracy and high γpid) remains a challenging task
that requires extensive hyperparameter tuning. To address this,
recent research [62] uses explainable AI techniques, including
Integrated Gradients [145], to construct an intermediate data
space that emphasizes features with the greatest impact on
predictions.

Summary of data compression methods: In our latency opti-
mization framework, we adjust the data compression rates γpid
and κpid to minimize transmission overhead. The introduc-
tion of data compression adds FLOPs in each partition (πpid
in line 4), creating a trade-off among reduced transmission
overhead, increased computation overhead, and potentially
compromised model accuracy. Various data compression
methods are detailed in Table 9, highlighting the practicality
of both Auto-Encoder and quantization techniques as they are
broadly model and data agnostic. However, an Auto-Encoder
offers greater flexibility compared to quantization, which en-
ables fine-tuning the compression model (encoder), inversion
model (decoder), and feature ranking techniques (such as ex-
plainable AI tools) to optimize latency and accuracy based
on the user’s specific use case. While an Auto-Encoder intro-
duces additional computational overhead, a quantized model
and activations also require specialized training tools due
to the discrete space. For example, stochastic gradient de-
scent (SGD) must be adapted to accommodate the discrete
space [66, 114].

11

Submitted to the Journal of Systems Research (JSys) 2025

Pre-Processing
[117]

Heuristic
[61]

Quantization
[61, 66, 101, 135]

AE
[39, 63, 104, 138, 170, 181]

AE(XAI)
[62, 63, 104, 138, 170]

Computation low low low medium medium
Compression medium medium medium low low

Accuracy high high medium medium high
Practicality low low high high medium

Table 9: Comparison of Input and Intermediate Data Compression Methods: The accuracy of the pre-processing method [117]
depends on the ability of the algorithm to accurately identify and crop the features of interest before sending data to the model
(low practicality, high accuracy given good cropping algorithm, low extra computation for cropping input, and overall medium
compression rate for cropping). Heuristic-based compression algorithms, like clustering for zeros, rely on user expertise (low
practicality, high accuracy, low extra computation, and overall medium compression rate depending on the inputs and heuristics
applied). Intermediate data quantization shortens data representation but may impact accuracy (high practicality, medium
accuracy, and medium compression rate compared to other task-oriented methods) and demands an adapted optimization method
for discrete space (low extra computation). The Auto-Encoder (AE) can be applied to various data representations (high
practicality) and can be adapted to different ML tasks by using shallower layers to minimize computation overhead (medium
computation overhead) or designing smaller latent spaces to create a narrow bottleneck that tradeoffs accuracy (medium accuracy
and low compression rate). Naïve input or intermediate data compression can significantly compromise model accuracy if the
features selected for transmission are suboptimal. In contrast, AE approaches leveraging explainable AI (XAI) tools selectively
transmit crucial features for classifications, reducing transmission delay while maintaining high accuracy (overall medium
practicality based on feature selection methods, overall medium computation demand with AE, high model accuracy, and low
compression rate).

3.1.4 Model Compression and Knowledge Distillation

Background. Deep Learning (DL) models can be customized
to meet specific Machine Learning (ML) tasks and computa-
tional constraints. For latency-sensitive applications, simpli-
fying the model can enable faster response times. Such sim-
plification can be achieved through quantization [91], layer
skipping [96], adding, removing, or editing the layer blocks
of a neural network [168], and knowledge distillation [56].

A common tradeoff of reducing model parameters is poten-
tial accuracy degradation. However, such a drawback might
be tolerable given the use case or in certain settings the model
would not suffer a significant accuracy drop, as model simpli-
fication can be considered a form of regularization that mit-
igates overfitting and discourages shortcut learning [43, 67].
Thus, model simplification is considered a versatile approach
applicable across many different ML systems, achieving short
processing times without significant accuracy loss.

For example, in large ML systems, such as large lan-
guage models (LLM), the Mixture of Experts model archi-
tecture [48, 139] decomposes a high-dimensional model into
smaller experts with a router NN selecting a subset of sub-
models for each request, reducing computational demands.
In certain LLM-based chatbot applications, chats generated
by simplified LLMs on user devices can be enhanced by con-
straining the output space or leveraging cached outputs from
full-sized LLMs deployed in the cloud. This allows the fi-
nal chatbot responses to match full-sized LLM quality while
maintaining high throughput on the device [7, 34].

On the other hand, distilled or quantized LLMs can assist
original LLMs in speeding up chat generation. Tradition-

ally, chat generation proceeds sequentially token-by-token,
resulting in low throughput. Instead, a smaller LLM can spec-
ulatively generate the next t tokens, which the original LLM
then verifies and either accepts or rejects them in parallel
based on the speculatively generated context. This specula-
tive decoding approach significantly boosts chatbot through-
put [27, 84, 108].

We first discuss simplifications for standalone ML systems
and then generalize them to the distributed setting.

Quantization or compression of neural network (NN)
weights and activations is a popular technique to reduce com-
putation complexity [91]. Previous work introduces Post-
Training Quantization (PTQ) and Quantization-Aware Train-
ing (QAT). For small models or large models with aggres-
sive quantization, recent studies have shown that using lower
precision during training, for example 8 bits [66] and 1.58
bits [102], for NN weights can achieve accuracy comparable
to higher precision representations. In contrast, for very large
models including LLMs, quantization training introduces sig-
nificant overhead. In AWQ [92], SmoothQuant [164] and
OPTQ [40], researchers adjust the Scale and Zero Point (ori-
gin) for weights in pretrained models with static analysis
of activation and weights. Quantization improves inference
latency and reduces storage requirements for various deep
learning (DL) inference tasks. For model compression, in
EIE [52], the authors introduce a novel representation and ma-
trix multiplication algorithm that omits most common values
in activations, optimizing computation and storage efficiency.

We can also dynamically skip layers or make predictions
before the neural network (NN) model completes its full pass
without modifying the base model. This approach, known

12

Submitted to the Journal of Systems Research (JSys) 2025

as dynamic inference [53, 166], involves training additional
gating networks to determine which layers or channels within
a layer to skip, indicated by 0 (skip) or 1 (use). In DDI [159]
and SkipNet [157], the authors use a Long Short-Term Mem-
ory (LSTM) NN to make skipping decisions.

Methods focusing on weight and layer changes can be sub-
optimal in reducing latency, as they introduce minimal struc-
tural changes to the model. Knowledge Distillation [47, 56]
trains a lightweight high-performance model (Student Model)
using the inputs and outputs (including hidden variables
or logits) of a more complex model (Teacher Model). As
the Teacher Model is often over-parameterized, the Student
Model can attain similar accuracy with reduced computa-
tional complexity. Furthermore, the Teacher Model can also
be further refined with weighted outputs from the Student
Models (soft labels) and ground truth labels in a student-
student knowledge distillation setting [174, 176, 180]. In this
process, the output of the student model serves as a form of
regularization to prevent overfitting.
Methods. In our latency optimization formulation in a dis-
tributed setting (Sec. 2.2.1), we use πpid to represent all
adaptations, including model compression. The function
FLOPs j

i (.) estimates the number of floating point operations
given different partition configurations πpid and partition in-
put size Size(xpid−1). In a dense NN, the FLOP count is
linearly proportional to the number of model weights and the
size of input data, so more layers or larger input sizes lead to
longer processing times. To minimize computation latency,
we can employ model compression or knowledge distillation
methods for each NN partition. As a beneficial byproduct,
model compression can also reduce the size of hidden vari-
ables which improves κpid introduced in Sec. 3.1.3.

Quantization [63,88,114] and neuron skipping [61,83,181]
can be applied to each NN partition. Intuitively, weights
close to zero contribute little to classification and can be
pruned to save processing time without significantly affecting
accuracy. In CLIO [61], a certain percentage of weights,
sorted by distance to zero, is ignored. However, with a higher
compression rate, such approaches suffer from low prediction
performance.

To maintain accuracy in cases of significant compression
for resource-constrained edge partition NNs, Lee et al. [83]
suggest the use of a deep decoder NN at the cloud node. The
deep decoder with high inversion approximation capabilities
compensates for the aggressively compressed NN partition,
helping to preserve the model’s accuracy.

Instead of compressing a base model, training a lightweight
model replacement can effectively scale model size down to fit
the capacity constraints. With limited edge capacity, applying
knowledge distillation to partitions could save processing
time with minimal loss in accuracy [104].
Summary of model compression methods: In our latency
optimization framework (Sec. 2.2.1), πpid represents model
adaptations including both model compression and distilla-

tion, which reduce model complexity yielding a placement
with minimal processing time. This section reviewed the ap-
plication of quantization, knowledge distillation, and weight
pruning, each with strengths and weaknesses. While these
methods are orthogonal and should be evaluated together to
optimize model complexity and placement, they vary in terms
of practicality and computational overhead. Table 10 presents
a summary and comparison of these model compression tech-
niques.

Among these techniques, knowledge distillation is the most
configurable, offering various student model designs and dis-
tillation approaches to achieve high model accuracy. Thus,
it is considered the most practical, but with the highest com-
putation overhead. In contrast, quantization is less config-
urable, so we position it at medium practicality but with the
lowest computation overhead. The effectiveness of weight-
pruning depends largely on the underlying data distribution.
For example, pruning weights close to zero is a well-explored
method to maintain accuracy while reducing computational
complexity. However, mask-based pruning methods may re-
quire training specific to each source data distribution [33],
leading to medium practicality but low computation overhead
for each mask.

3.1.5 Open Issue: Dynamic Feature Extraction Tuning

In sequential DNN models, each layer extracts different fea-
tures and feeds the hidden variables to the subsequent lay-
ers. Previous works have explored combining knowledge
extracted at different layers. Residual NNs [54] propagate
primitive features to the deeper layers. Early exit architec-
tures [146] leverage low-level features for classification. Zero
Time Waste [163] combines features at different levels to
improve classification. Such works enable dynamic DNN of-
floading by incorporating classifiers at partitions of the model.
However, when model partitions are being offloaded to a
user device for low transmission latency, to the cloud for low
processing latency, or to the edge for balanced delays, the
inference or training service should remain active. The addi-
tional workload introduced to the user device, edge or cloud
due to offloading should not degrade service performance.

Understanding the reasons for offloading helps optimize
performance. Offloading partitions to the user device typically
addresses network transmission bottlenecks, while shifting
them to the cloud helps alleviate computational limitations
at the edge. To ensure consistent performance, particularly
for critical tasks identified by the application, we discuss a
potential approach that focuses on the initial partitions at the
edge. The core idea is to ensure that shallow DNN partitions
at the edge achieve high accuracy specifically for these critical
tasks. This prioritization might come at the expense of re-
duced accuracy for non-critical tasks, but allows the system to
rely on efficient, local edge computations for its most impor-
tant functions, preserving their performance and minimizing

13

Submitted to the Journal of Systems Research (JSys) 2025

Quantization [63, 88] KD [104] Weight-Pruning [61, 83, 181]
Computation low high low

Accuracy medium high high
Practicality medium high medium

Table 10: Comparing Model Compression and Knowledge Distillation (KD) Methods: KD preserves essential weights to ensure
high model accuracy, which involves model building and training (high computation). However, it can be applied to models
of any size (high practicality). Quantization reduces the precision of all weights. While it is generally task-agnostic, model
accuracy can degrade (medium accuracy and practicality). The process quantizes the representation and adapts the optimization
method, which is lightweight (low computation). The effectiveness of weight pruning depends on the distribution of weights and
the specific task (medium practicality, high accuracy, and medium weight size). Heuristic-based pruning method also has low
computation complexity.

Fine-Tuning Adapter Store

Edge Cloud

Hit and Run Failure to
Yield

Adapter
Application ...

Internal
Classifier

Figure 6: Dynamic feature extraction tuning: Shallow edge
partitions apply task-specific adapters (e.g., LoRA [58]) to
preserve recall for critical tasks, enabling early exits and avoid-
ing deeper cloud inference during model offloading.

disruptions when deeper partitions are dynamically relocated.
One way to implement this strategy for inference tasks in-

volves adapting the feature extraction process in the shallow
partitions at the edge. By tailoring these shallow partitions to
focus specifically on features relevant to critical tasks, shal-
low internal classifiers integrated at these early partitions can
achieve high confidence predictions for those specific tasks.
This enables critical requests to exit early with low latency
directly from the edge. However, this specialization may lead
to higher false positive or false negative rates for non-critical
task handled by these adapted shallow layers.

Since critical tasks represent a subset of the full task space
addressed by the complete model, we can use the outputs of
a model partition that performs well on these critical tasks to
guide and train the shallow partitions deployed at the edge.
This form of feature adaptation is conceptually similar to
knowledge distillation, particularly self-distillation [176]. To
implement this efficiently, Parameter-Efficient Fine-Tuning
(PEFT) methods, such as LoRA (Low-Rank Adaptation) [58],
can be employed. As illustrated in the system design (Fig. 6),
an offline process can fine-tune and generate lightweight
LoRA adapters tailored for specific subtasks (e.g., different
types of traffic violations) and save them in a Fine-Tuning
Adapter Store. Each compact adapter can be associated with
an embedding fingerprint, allowing for rapid retrieval and

deployment at the edge when needed.
Applying this concept to traffic surveillance, for instance,

involves attaching these lightweight LoRA adapters to the
shallow DNN partitions deployed at the edge. These adapters
enhance the shallow partitions’ ability to accurately classify
specific life-threatening traffic violations during periods of
model partition offloading. Consequently, the system can
maintain high recall for these critical violations by primar-
ily utilizing the computationally inexpensive shallow edge
layers, ensuring timely detection even when deeper network
segments are being offloaded.

3.2 Privacy
Distributed DL systems processing sensitive personal data
raise data leakage concerns. Private data should be inacces-
sible outside the customer’s infrastructure or protected from
reconstruction during transmission over wide area networks
(WAN). As described in Section 2.1.2, an adversary could
reconstruct the intermediate data transmitted between DNN
partitions [150] using an Auto-Encoder Neural Network. To
protect against this vulnerability for model training and in-
ference, previous research adds Perturbation to intermediate
data [55, 112] or incorporates a Regularization step during
training [55, 89, 150, 179]. Such methods preserve only essen-
tial features for ML tasks and remove sensitive information.

3.2.1 Perturbation

Background. Differential privacy (DP) has been used to
improve privacy in statistical databases by adding noise to
query outputs proportional to the sensitivity of the query [36,
175]. Consider a query f : D → R on a dataset D with samples
x,x

′ ∈ D. The global sensitivity ∆ f of this query is defined
as:

∆ f = max
x,x′

∥ f (x)− f (x
′
)∥ (1)

Users can set the Privacy Budget ε. Then, noise can be drawn
from a Laplace distribution, X ∼ Laplace(∆ f

ε
), to achieve the

desired level of privacy based on various privacy definitions.

14

Submitted to the Journal of Systems Research (JSys) 2025

More specifically, the probability density function (PDF) is

p(x) = 1
2b e

−∥x∥
b , where b = ∆ f

ε
. The value of ε can be de-

termined by a grid search against the attack model. With a
smaller ε, we spread the PDF and introduce more diverse
noise to the output, so less information is preserved.

In practice, finding the global sensitivity ∆ f is challenging
as it requires testing all inputs. Instead, previous work bounds
the sensitivity in model partition output [18, 175].

x′pid =
xpid

max(1, ∥xpid∥
C)

(1)

where C is the clipping threshold. In this way, ∥x′pid∥ < C.
Notice that clipping modifies the hidden variables which leads
to accuracy degradation. To optimize C, the common practice
is to set the median of xpid based on the training dataset [18].

Previous studies apply this practical DP implementation in
DP-SGD [18, 173] during training to mitigate the risk of re-
constructing training datasets from trained models. They add
Gaussian noise to gradients, reducing the model’s sensitivity
to individual training samples. As a result, the distribution of
prediction confidences for training dataset samples is similar
to other samples, preventing over-concentration on the true
label. It complicates membership inference attacks, in which
adversaries deduce whether a sample was part of the training
data based on prediction logits [42].

In edge inference and training settings, recent work sug-
gests injecting noise to hidden variables that obscure sensitive
information, for example, race, age, or gender, transmitted
over the Internet [55, 112].
Methods. In our privacy optimization formulation
(Sec. 2.2.2), in line 3, an MLaaS system can inject noise
to intermediate data (τ(∆ f)) based on its sensitivity ∆ f . With
differential privacy, recent studies [55, 103, 112, 175] have
developed fitted noise layers that either sample noise from a
distribution or nullify specific entries. This approach is highly
flexible, allowing users to choose different noise layers to
append to the final layer on the edge device when the source
data distribution changes. The noise injected during training
and inference complicates the inversion approximation used
by the attacker. Meanwhile, the model retains its capacity to
extract relevant information for accurate predictions.

3.2.2 Regularization

Background. We can also solve the privacy of the source
data as an optimization problem. One approach is to incorpo-
rate source data privacy as a secondary objective by adding
a regularization term to the loss function. Thus, we encour-
age the model to preserve only the features that contribute
to prediction. On the other hand, deep edge neural networks
(NNs) with non-invertible hidden variables, such as rectangu-
lar matrices, are harder to approximate an inversion matrix.
Therefore, we can optimize the placement of NN partitions to
maximize the privacy level of the source data.

Methods. In our privacy optimization formulation
(Sec. 2.2.2), we incorporate the privacy loss, exemplified
as MSE(F−1

pid (xpid),xpid−1) into the loss function in line 1.
The mean square error gauges differences between the re-
constructed and original source data. Then, we can tune the
privacy level of model inference by specifying hyperparame-
ters wCE and wp for training [89,150,179] and model partition
placements [55, 179].

There are ways to incorporate privacy objectives into model
training. For example, we can include a distance correlation
loss function, comparing intermediate data and source data
in addition to the Cross-Entropy loss [150]. Alternatively,
additional training epochs can be dedicated to optimizing
the privacy objective [179]. For more task-specific solutions,
ResSFL [89] introduces a privacy loss function that compares
the source data and the reconstructed data derived from in-
termediate data using a decoder following the threat model
in model inversion attacks. Thus, by designing decoders
with different capacity, the model can defend against different
model inversion attacks.

3.2.3 Open Issue: Privacy and Accuracy Estimation

By profiling the model partition running time, the size of hid-
den variables and gradients, and the available bandwidth,
we can fit a regression model to estimate the processing
and transmission delays of different offloading plans for DL
models [75]. However, the relationship between privacy-
preserving training approaches and their resulting privacy
guarantees and impact on model accuracy is often poorly
understood before training. As shown in our privacy for-
mulation (Sec. 2.2.2, line 1), the results of CE(ŷ,y) and
(F−1

pid (xpid),xpid−1) given different combinations of hyper-

parameters {π
pri
pid ,∆,λ} only become apparent after the model

training converges.
This leads to two major challenges. First, hyperparam-

eter tuning becomes extremely time-consuming, requiring
numerous full training cycles. Second, the tuning process
itself is vulnerable to privacy breaches, as exchanging hid-
den variables and gradients between partitions during tuning
can expose data before effective privacy configurations are
identified and implemented. Although some heuristics might
offer limited guidance (e.g., higher compression generally
correlating with lower cross-entropy), systematically narrow-
ing the search space for optimal privacy hyperparameters in
distributed training remains an underexplored and critical
research area.

Some related work attempts to mitigate privacy risks during
training by employing transfer learning [89]. This strategy
involves first training a privacy-aware DNN model with a
publicly available image classification dataset, where data
leakage is not a concern. Then, this pre-trained model is
fine-tuned using the private dataset via transfer learning. The
intention is to provide a privacy-aware starting point, poten-

15

Submitted to the Journal of Systems Research (JSys) 2025

tially reducing data leakage risks during the initial epochs of
training on the sensitive data. However, this approach faces
limitations, particularly when adapting from a relatively sim-
ple pre-training task (e.g., CIFAR-10) to a significantly more
complex target task (e.g., CIFAR-100). In such scenarios,
effective transfer learning may be infeasible, necessitating
extensive fine-tuning or even complete model retraining on
the private data to achieve acceptable accuracy. Consequently,
again each training trial during the lengthy hyperparameter
tuning phase becomes vulnerable to privacy leaks and con-
sumes significant computational resources. Thus, efficiently
and securely tuning hyperparameters for privacy-aware train-
ing remains a largely unresolved issue.

3.3 Cost($)

Deep learning tasks require substantial resources due to their
high computation and memory demands. For example, the re-
cent deep transformer models encounter memory bottlenecks
when loading and saving attention layers [44]. Previous work
discusses splitting model states [122], kernel fusion tech-
niques [29], and sparse attention mechanism [172] to reduce
GPU memory demands and transmission between CPU and
GPU memory.

Previous works emphasize low-level DL task scheduling.
Instead, this survey focuses on the higher level aspects of
resource provisioning. Organizations developing intelligent
applications using an MLaaS system often face budget con-
straints when provisioning resources from cloud providers.
For instance, the daily running cost for ChatGPT can reach up
to $700,000 [9]. Furthermore, cloud services have different
cost models that factor in billing granularity, scaling speed,
availabilities, etc. A cost-efficient MLaaS system should
strategically choose, configure, and load balance the cloud
resources to optimize expenses while meeting performance
demands.

3.3.1 Methods

To bridge this gap and promote ML systems with low mone-
tary cost of cloud resource usage, various organizations pro-
vide services to construct intelligent applications on diverse
infrastructures, with an emphasis on minimizing costs. For
example, Redhat OpenShift AI [8] provides a container-based
Machine Learning as a Service for on-demand model serving.

Previous research has examined the dynamic scheduling of
neural network and model partitions across edge and cloud
resources [61, 81, 97, 119, 182], as well as specific cloud ser-
vices, such as Function as a Service (FaaS) [69], to balance
processing and transmission demands while minimizing ex-
penses. However, detailed cost analyses using real-world
cloud resources for low-cost ($) ML serving and training re-
main limited. Many studies model resource expenses on the
edge and in the cloud using generic unit costs [97, 119, 182].

However, the specific provisioning factors for each edge and
cloud resources, including container cold starts and billing
time granularity, are critical to minimizing real-world cloud
usage costs.

3.3.2 Open Issue: Monetary Cost Optimized Resource
Provisioning for ML Inference

The unique cost models of cloud services influence ML re-
source provisioning decisions. In LIBRA [124], they iden-
tify a Cost Indifference Point showing high steady-rate traf-
fic is best served by reserved VMs and low-rate traffic can
be handled by FaaS for cost-efficiency. Serverless (FaaS)
platforms provide fine-grained resource provisioning with
response times measured in milliseconds, making them ideal
for dynamic or transient workloads and for minimizing idle re-
source costs [49]. In contrast, reserved VMs, although slower
to respond to QoS targets, offer a lower cost per request for
sustained workloads that fully utilize the VMs [137].

To build a ML system with low monetary cost of resource
usage, studies of ML model designs and cloud services pro-
visioning systems have introduced new research problems,
including cloud versus edge routing based on input embed-
dings [32, 136], ensemble model serving [59, 77, 120, 178],
etc. We also speculate that a fine-grained resource provision-
ing approach for individual NN partitions can save resource
monetary cost for partitioned NN with internal classifiers.

When offloading a DNN, the NN partitions comprise a
Directed Acyclic Graph (DAG), where partitions extract fea-
tures and pass them to subsequent layers. In partitioned neural
networks with internal classifiers, requests can leave early at
shallow layers, resulting in reduced workloads for deeper
layers. Relying only on Virtual Machines (VMs) could lead
to idle resources, as all VM instances must meet the latency
requirements for every request. To optimize monetary cost,
a high-granularity resource provisioning approach, such as
FaaS, can be employed for deeper layers, scaling resources
dynamically based on workload demands. As our initial eval-
uation shows, for a consistent workload with rmax requests per
second and a partitioned NN with internal classifiers allow-
ing most requests to exit in the middle of the NN, switching
from only using a large VM (c6i.xlarge) to Hybrid Offloading
hidden variables from a small VM (c6i.large) to a serverless
instance (8845 MB) saves from 5% to 50% of monetary cost.
These savings were achieved across evaluations with different
Service Level Objectives (SLOs), assuming the conserva-
tive worst-case scenario where all requests traverse the entire
network. In general, a more relaxed SLO allows running
more partitions on the small VM and reserving the serverless
instance mainly for infrequently used deep partitions, poten-
tially increasing savings. Conversely, under very strict SLOs,
finding a practical Hybrid Offloading or FaaS configuration
may be difficult, an area we plan to investigate further in
future work.

16

Submitted to the Journal of Systems Research (JSys) 2025

4 Conclusion

In this survey, we develop a systematic evaluation of state-
of-the-art model offloading methods and model adaptations.
Previous work focused on offloading full models between
the resource-constrained edge and the core cloud, or the user
devices and the edge servers. However, given the popularity
of IoT and mobile computing devices, DL services with parti-
tioned NN models at the edge have gained more attention due
to privacy concerns and low latency requirements. Since the
MLaaS broker model preferred by smaller organizations is
based on cloud services [19,22,161], there is a huge potential
for future edge-cloud-fused MLaaS systems to better serve
the growing demands of edge intelligence applications.

We have discussed common issues for edge intelligence
applications, including transmission delay, processing delay,
and privacy guarantees. Then we further studied the corre-
sponding solutions as control knobs for an MLaaS broker to
maintain QoS in resource-constrained edge or client devices.

We also suggest future directions to reduce resource cost ($)
and dynamically adapt offloading decisions based on network
conditions and source data distribution. In general, there are
many open issues and ongoing research in edge intelligence.
We believe that this survey serves as a starting point for future
advancements in this area.

References

[1] Amazon ECS. https://aws.amazon.com/ecs/.
Access Date: 2022-11-04.

[2] Amazon Lambda. https://aws.amazon.com/
lambda/. Access Date: 2022-11-04.

[3] Amazon Lambda Edge. https://aws.amazon.com/
lambda/edge/. Access Date: 2022-11-04.

[4] AWS IoT Greengrass. https://aws.amazon.com/
greengrass/. Access Date: 2022-11-04.

[5] AWS Local Zones. https://aws.amazon.
com/about-aws/global-infrastructure/
localzones/. Access Date: 2022-11-04.

[6] AWS Wavelength. https://aws.amazon.com/
wavelength/. Access Date: 2022-11-04.

[7] Guidance. https://github.com/guidance-ai/
guidance. Access Date: 2024-08-28.

[8] Red Hat OpenShift AI Accelerates Genera-
tive AI Adoption Across the Hybrid Cloud.
https://www.redhat.com/en/about/press-
releases/red-hat-openshift-ai-accelerates-
generative-ai-adoption-across-hybrid-
cloud. Access Date: 2023-12-14.

[9] The Inference Cost Of Search Disruption
– Large Language Model Cost Analysis.
https://www.semianalysis.com/p/the-
inference-cost-of-search-disruption. Access
Date: 2023-12-14.

[10] How to Measure FLOP/s for Neural Networks
Empirically? https://www.lesswrong.com/
posts/jJApGWG95495pYM7C/how-to-measure-
flop-s-for-neural-networks-empirically,
2021. Access Date: 2023-12-16.

[11] Xiph.org Video Test Media [derf’s collection]. https:
//media.xiph.org/video/derf/, 2021. Access
Date: 2023-12-16.

[12] Amazon Rekognition. https://docs.aws.amazon.
com/rekognition/index.html, 2022. Access Date:
2022-11-04.

[13] Amazon SageMaker. https://aws.amazon.com/
sagemaker/, 2022. Access Date: 2022-11-04.

[14] Amazon SageMaker Edge. https://aws.amazon.
com/sagemaker/edge/, 2022. Access Date: 2022-
11-04.

[15] Amazon SageMaker NEO. https://aws.amazon.
com/sagemaker/neo/, 2022. Access Date: 2022-11-
04.

[16] Bring Insights and Data Closer to Customers with Edge
Computing. Technical report, Redhat, February 2022.
URL: https://www.redhat.com/rhdc/managed-
files/cl-bring-insight-data-customer-
edge-computing-whitepaper-f30856pr-202202-
en.pdf.

[17] Intro to Autoencoders. https://www.tensorflow.
org/tutorials/generative/autoencoder, 2022.
Access Date: 2022-11-04.

[18] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep Learning with Differential Privacy. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’16, page
308–318, New York, NY, USA, 2016. Association
for Computing Machinery. https://doi.org/10.
1145/2976749.2978318.

[19] Adobe. Commerce Cloud Infrastrcture Overview,
2023. URL: https://experienceleague.
adobe.com/en/docs/commerce-operations/
implementation-playbook/infrastructure/
cloud/overview.

17

https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/edge/
https://aws.amazon.com/lambda/edge/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/wavelength/
https://aws.amazon.com/wavelength/
https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://www.redhat.com/en/about/press-releases/red-hat-openshift-ai-accelerates-generative-ai-adoption-across-hybrid-cloud
https://www.redhat.com/en/about/press-releases/red-hat-openshift-ai-accelerates-generative-ai-adoption-across-hybrid-cloud
https://www.redhat.com/en/about/press-releases/red-hat-openshift-ai-accelerates-generative-ai-adoption-across-hybrid-cloud
https://www.redhat.com/en/about/press-releases/red-hat-openshift-ai-accelerates-generative-ai-adoption-across-hybrid-cloud
https://www.semianalysis.com/p/the-inference-cost-of-search-disruption
https://www.semianalysis.com/p/the-inference-cost-of-search-disruption
https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
https://media.xiph.org/video/derf/
https://media.xiph.org/video/derf/
https://docs.aws.amazon.com/rekognition/index.html
https://docs.aws.amazon.com/rekognition/index.html
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/edge/
https://aws.amazon.com/sagemaker/edge/
https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/sagemaker/neo/
https://www.redhat.com/rhdc/managed-files/cl-bring-insight-data-customer-edge-computing-whitepaper-f30856pr-202202-en.pdf
https://www.redhat.com/rhdc/managed-files/cl-bring-insight-data-customer-edge-computing-whitepaper-f30856pr-202202-en.pdf
https://www.redhat.com/rhdc/managed-files/cl-bring-insight-data-customer-edge-computing-whitepaper-f30856pr-202202-en.pdf
https://www.redhat.com/rhdc/managed-files/cl-bring-insight-data-customer-edge-computing-whitepaper-f30856pr-202202-en.pdf
https://www.tensorflow.org/tutorials/generative/autoencoder
https://www.tensorflow.org/tutorials/generative/autoencoder
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://experienceleague.adobe.com/en/docs/commerce-operations/implementation-playbook/infrastructure/cloud/overview
https://experienceleague.adobe.com/en/docs/commerce-operations/implementation-playbook/infrastructure/cloud/overview
https://experienceleague.adobe.com/en/docs/commerce-operations/implementation-playbook/infrastructure/cloud/overview
https://experienceleague.adobe.com/en/docs/commerce-operations/implementation-playbook/infrastructure/cloud/overview

Submitted to the Journal of Systems Research (JSys) 2025

[20] Abien Fred Agarap. Deep Learning using Rectified
Linear Units (ReLU), 2019. arXiv:1803.08375.

[21] Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and
Ramesh Govindan. CarMap: Fast 3D Feature Map
Updates for Automobiles. In Proceedings of the
17th Usenix Conference on Networked Systems De-
sign and Implementation, NSDI’20, page 1063–1082,
USA, 2020. USENIX Association.

[22] Amazon. AWS and Adobe, 2024. URL: https:
//aws.amazon.com/partners/adobe/.

[23] Amazon Web Services. Lambda Run-
time Environment: Cold Start Latency.
https://docs.aws.amazon.com/lambda/latest/
dg/lambda-runtime-environment.html#cold-
start-latency, 2025. Accessed: 2025-05-01.

[24] Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen,
Srikanth V. Krishnamurthy, and Amit K. Roy-
Chowdhury. Frugal Following: Power Thrifty Ob-
ject Detection and Tracking for Mobile Augmented
Reality. In Proceedings of the 17th Conference on
Embedded Networked Sensor Systems, SenSys ’19,
page 96–109, New York, NY, USA, 2019. Associ-
ation for Computing Machinery. https://doi.org/
10.1145/3356250.3360044.

[25] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. YOLOv4: Optimal Speed and Accu-
racy of Object Detection, 2020. arXiv:2004.10934.

[26] Zhuoqing Chang, Shubo Liu, Xingxing Xiong, Zhao-
hui Cai, and Guoqing Tu. A Survey of Recent Ad-
vances in Edge-Computing-Powered Artificial Intel-
ligence of Things. IEEE Internet of Things Journal,
8(18):13849–13875, 2021. https://doi.org/10.
1109/JIOT.2021.3088875.

[27] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper.
Accelerating Large Language Model Decoding with
Speculative Sampling, 2023. URL: https://arxiv.
org/abs/2302.01318, arXiv:2302.01318.

[28] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E.
Culler, and Randy H. Katz. MARVEL: Enabling
Mobile Augmented Reality with Low Energy and Low
Latency. In Proceedings of the 16th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’18,
page 292–304, New York, NY, USA, 2018. Associa-
tion for Computing Machinery. https://doi.org/
10.1145/3274783.3274834.

[29] Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and
Christopher Re. FlashAttention: Fast and Memory-
Efficient Exact Attention with IO-Awareness. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Infor-
mation Processing Systems, 2022. URL: https:
//openreview.net/forum?id=H4DqfPSibmx.

[30] Shuiguang Deng, Hailiang Zhao, Binbin Huang,
Cheng Zhang, Feiyi Chen, Yinuo Deng, Jianwei Yin,
Schahram Dustdar, and Albert Y Zomaya. Cloud-
Native Computing: A Survey From the Perspective of
Services. Proceedings of the IEEE, 2024.

[31] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. QLoRA: Efficient Finetun-
ing of Quantized LLMs. In Thirty-seventh Con-
ference on Neural Information Processing Systems,
2023. URL: https://openreview.net/forum?id=
OUIFPHEgJU.

[32] Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim,
Subhabrata Mukherjee, Victor Rühle, Laks V. S. Lak-
shmanan, and Ahmed Hassan Awadallah. Hybrid
LLM: Cost-Efficient and Quality-Aware Query Rout-
ing. In The Twelfth International Conference on
Learning Representations, 2024. URL: https:
//openreview.net/forum?id=02f3mUtqnM.

[33] S. Ding, L. Zhang, M. Pan, and X. Yuan. PA-
TROL: Privacy-Oriented Pruning for Collaborative
Inference Against Model Inversion Attacks. In 2024
IEEE/CVF Winter Conference on Applications of Com-
puter Vision (WACV), pages 4704–4713, Los Alami-
tos, CA, USA, jan 2024. IEEE Computer Soci-
ety. URL: https://doi.ieeecomputersociety.
org/10.1109/WACV57701.2024.00465, https://
doi.org/10.1109/WACV57701.2024.00465.

[34] Yucheng Ding, Chaoyue Niu, Fan Wu, Shaojie
Tang, Chengfei Lyu, and Guihai Chen. Enhanc-
ing On-Device LLM Inference with Historical
Cloud-Based LLM Interactions. In Proceedings
of the 30th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD ’24, page
597–608, New York, NY, USA, 2024. Association
for Computing Machinery. URL: https://doi-org.
ezproxy.bu.edu/10.1145/3637528.3671679,
https://doi.org/10.1145/3637528.3671679.

[35] Sijing Duan, Dan Wang, Ju Ren, Feng Lyu, Ye Zhang,
Huaqing Wu, and Xuemin Shen. Distributed Ar-
tificial Intelligence Empowered by End-Edge-Cloud
Computing: A Survey. IEEE Communications Sur-
veys & Tutorials, 25(1):591–624, 2023. https:
//doi.org/10.1109/COMST.2022.3218527.

18

http://arxiv.org/abs/1803.08375
https://aws.amazon.com/partners/adobe/
https://aws.amazon.com/partners/adobe/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html#cold-start-latency
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html#cold-start-latency
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html#cold-start-latency
https://doi.org/10.1145/3356250.3360044
https://doi.org/10.1145/3356250.3360044
http://arxiv.org/abs/2004.10934
https://doi.org/10.1109/JIOT.2021.3088875
https://doi.org/10.1109/JIOT.2021.3088875
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
http://arxiv.org/abs/2302.01318
https://doi.org/10.1145/3274783.3274834
https://doi.org/10.1145/3274783.3274834
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=02f3mUtqnM
https://openreview.net/forum?id=02f3mUtqnM
https://doi.ieeecomputersociety.org/10.1109/WACV57701.2024.00465
https://doi.ieeecomputersociety.org/10.1109/WACV57701.2024.00465
https://doi.org/10.1109/WACV57701.2024.00465
https://doi.org/10.1109/WACV57701.2024.00465
https://doi-org.ezproxy.bu.edu/10.1145/3637528.3671679
https://doi-org.ezproxy.bu.edu/10.1145/3637528.3671679
https://doi.org/10.1145/3637528.3671679
https://doi.org/10.1109/COMST.2022.3218527
https://doi.org/10.1109/COMST.2022.3218527

Submitted to the Journal of Systems Research (JSys) 2025

[36] Cynthia Dwork, Aaron Roth, et al. The algorithmic
foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3–4):211–
407, 2014.

[37] Maryam Ebrahimi, Alexandre da Silva Veith, Moshe
Gabel, and Eyal de Lara. Combining DNN Partitioning
and Early Exit. In Proceedings of the 5th International
Workshop on Edge Systems, Analytics and Networking,
EdgeSys ’22, page 25–30, New York, NY, USA, 2022.
Association for Computing Machinery. https://doi.
org/10.1145/3517206.3526270.

[38] Melike Erol-Kantarci and Sukhmani Sukhmani.
Caching and Computing at the Edge for Mobile Aug-
mented Reality and Virtual Reality (AR/VR) in 5G.
In Yifeng Zhou and Thomas Kunz, editors, Ad Hoc
Networks, pages 169–177, Cham, 2018. Springer In-
ternational Publishing.

[39] Amir Erfan Eshratifar, Amirhossein Esmaili, and Mas-
soud Pedram. BottleNet: A Deep Learning Architec-
ture for Intelligent Mobile Cloud Computing Services.
In 2019 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED), pages 1–6,
2019. https://doi.org/10.1109/ISLPED.2019.
8824955.

[40] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. OPTQ: Accurate Quantization for Gen-
erative Pre-trained Transformers. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL: https://openreview.net/forum?id=
tcbBPnfwxS.

[41] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model Inversion Attacks That Exploit Confidence In-
formation and Basic Countermeasures. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’15, page
1322–1333, New York, NY, USA, 2015. Association
for Computing Machinery. https://doi.org/10.
1145/2810103.2813677.

[42] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model Inversion Attacks That Exploit Confidence In-
formation and Basic Countermeasures. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’15, page
1322–1333, New York, NY, USA, 2015. Association
for Computing Machinery. https://doi.org/10.
1145/2810103.2813677.

[43] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A Wichmann. Shortcut Learning in

Deep Neural Networks. Nature Machine Intelligence,
2(11):665–673, 2020.

[44] Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman
Hooper, Michael W Mahoney, and Kurt Keutzer. AI
and memory wall. IEEE Micro, 2024.

[45] Google Cloud. Cloud Functions Execution Environ-
ment: Instance Lifespan. https://cloud.google.
com/functions/docs/concepts/execution-
environment#instance-lifespan, 2025. Ac-
cessed: 2025-05-01.

[46] Google Workspace Admin Help. Generative ai in
google workspace privacy hub. https://support.
google.com/a/answer/15706919?hl=en, 2024.
Accessed: 2025-04-20.

[47] Jianping Gou, Baosheng Yu, Stephen J Maybank, and
Dacheng Tao. Knowledge Distillation: A Survey.
International Journal of Computer Vision, 129:1789–
1819, 2021.

[48] Sam Gross, Marc’Aurelio Ranzato, and Arthur Szlam.
Hard Mixtures of Experts for Large Scale Weakly Su-
pervised Vision. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 6865–6873, 2017.

[49] Jashwant Raj Gunasekaran, Prashanth Thinakaran,
Mahmut Taylan Kandemir, Bhuvan Urgaonkar, George
Kesidis, and Chita Das. Spock: Exploiting Server-
less Functions for SLO and Cost Aware Resource Pro-
curement in Public Cloud. In 2019 IEEE 12th Inter-
national Conference on Cloud Computing (CLOUD),
pages 199–208, 2019. https://doi.org/10.1109/
CLOUD.2019.00043.

[50] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. On Calibration of Modern Neural Networks. In
International conference on machine learning, pages
1321–1330. PMLR, 2017.

[51] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentiviz-
ing Reasoning Capability in LLMs via Reinforcement
Learning. arXiv preprint arXiv:2501.12948, 2025.

[52] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ar-
davan Pedram, Mark A. Horowitz, and William J.
Dally. EIE: Efficient Inference Engine on Com-
pressed Deep Neural Network. In Proceedings of
the 43rd International Symposium on Computer Archi-
tecture, ISCA ’16, page 243–254. IEEE Press, 2016.
https://doi.org/10.1109/ISCA.2016.30.

19

https://doi.org/10.1145/3517206.3526270
https://doi.org/10.1145/3517206.3526270
https://doi.org/10.1109/ISLPED.2019.8824955
https://doi.org/10.1109/ISLPED.2019.8824955
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://cloud.google.com/functions/docs/concepts/execution-environment#instance-lifespan
https://cloud.google.com/functions/docs/concepts/execution-environment#instance-lifespan
https://cloud.google.com/functions/docs/concepts/execution-environment#instance-lifespan
https://support.google.com/a/answer/15706919?hl=en
https://support.google.com/a/answer/15706919?hl=en
https://doi.org/10.1109/CLOUD.2019.00043
https://doi.org/10.1109/CLOUD.2019.00043
https://doi.org/10.1109/ISCA.2016.30

Submitted to the Journal of Systems Research (JSys) 2025

[53] Yizeng Han, Gao Huang, Shiji Song, Le Yang,
Honghui Wang, and Yulin Wang. Dynamic Neural
Networks: A Survey. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 44(11):7436–
7456, 2022. https://doi.org/10.1109/TPAMI.
2021.3117837.

[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recogni-
tion, 2015. URL: https://arxiv.org/abs/1512.
03385, arXiv:1512.03385.

[55] Zecheng He, Tianwei Zhang, and Ruby B. Lee. At-
tacking and Protecting Data Privacy in Edge–Cloud
Collaborative Inference Systems. IEEE Internet of
Things Journal, 8(12):9706–9716, 2021. https:
//doi.org/10.1109/JIOT.2020.3022358.

[56] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Dis-
tilling the Knowledge in a Neural Network. arXiv
preprint arXiv:1503.02531, 2015.

[57] Andrew Howard, Mark Sandler, Grace Chu, Liang-
Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al.
Searching for MobileNetV3. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 1314–1324, 2019.

[58] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-Rank Adaptation of Large
Language Models, 2021. URL: https://arxiv.
org/abs/2106.09685, arXiv:2106.09685.

[59] Haiyang Huang, Newsha Ardalani, Anna Sun, Liu
Ke, Shruti Bhosale, Hsien-Hsin S. Lee, Carole-Jean
Wu, and Benjamin Lee. Toward Efficient Inference
for Mixture of Experts. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024. URL: https://openreview.net/forum?id=
stXtBqyTWX.

[60] Jim Huang and Philipp Landgraf. Remote Render-
ing for Real-time AR Applications at AWS Edge,
2024. URL: https://aws.amazon.com/blogs/
industries/remote-rendering-for-real-time-
ar-applications-at-aws-edge/.

[61] Jin Huang, Colin Samplawski, Deepak Ganesan, Ben-
jamin Marlin, and Heesung Kwon. CLIO: Enabling
Automatic Compilation of Deep Learning Pipelines
across IoT and Cloud. In Proceedings of the 26th
Annual International Conference on Mobile Comput-
ing and Networking, MobiCom ’20, New York, NY,
USA, 2020. Association for Computing Machinery.
https://doi.org/10.1145/3372224.3419215.

[62] Kai Huang and Wei Gao. Real-Time Neural Network
Inference on Extremely Weak Devices: Agile Offload-
ing with Explainable AI. In Proceedings of the 28th An-
nual International Conference on Mobile Computing
And Networking, MobiCom ’22, page 200–213, New
York, NY, USA, 2022. Association for Computing
Machinery. https://doi.org/10.1145/3495243.
3560551.

[63] Yutao Huang, Yifei Zhu, Xiaoyi Fan, Xiaoqiang
Ma, Fangxin Wang, Jiangchuan Liu, Ziyi Wang, and
Yong Cui. Task Scheduling with Optimized Trans-
mission Time in Collaborative Cloud-Edge Learn-
ing. In 2018 27th International Conference on Com-
puter Communication and Networks (ICCCN), pages 1–
9, 2018. https://doi.org/10.1109/ICCCN.2018.
8487352.

[64] Zhenhua Huang, Shunzhi Yang, MengChu Zhou,
Zheng Gong, Abdullah Abusorrah, Chen Lin, and
Zheng Huang. Making Accurate Object Detection
at the Edge: Review and New Approach. Artificial
Intelligence Review, 55(3):2245–2274, 2022.

[65] Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. Serving Deep Learning Models in a Server-
less Platform . In 2018 IEEE International Conference
on Cloud Engineering (IC2E), pages 257–262, Los
Alamitos, CA, USA, April 2018. IEEE Computer So-
ciety. URL: https://doi.ieeecomputersociety.
org/10.1109/IC2E.2018.00052, https:
//doi.org/10.1109/IC2E.2018.00052.

[66] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong
Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and Training
of Neural Networks for Efficient Integer-Arithmetic-
Only Inference. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
2704–2713, 2018.

[67] Arthur S. Jacobs, Roman Beltiukov, Walter Willinger,
Ronaldo A. Ferreira, Arpit Gupta, and Lisandro Z.
Granville. AI/ML for Network Security: The Em-
peror Has No Clothes. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’22, page 1537–1551, New
York, NY, USA, 2022. Association for Computing
Machinery. https://doi.org/10.1145/3548606.
3560609.

[68] Matthijs Jansen, Auday Al-Dulaimy, Alessandro V
Papadopoulos, Animesh Trivedi, and Alexandru Io-
sup. The SPEC-RG Reference Architecture for the
Compute Continuum. In 2023 IEEE/ACM 23rd In-
ternational Symposium on Cluster, Cloud and Internet
Computing (CCGrid), pages 469–484. IEEE, 2023.

20

https://doi.org/10.1109/TPAMI.2021.3117837
https://doi.org/10.1109/TPAMI.2021.3117837
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/JIOT.2020.3022358
https://doi.org/10.1109/JIOT.2020.3022358
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
https://openreview.net/forum?id=stXtBqyTWX
https://openreview.net/forum?id=stXtBqyTWX
https://aws.amazon.com/blogs/industries/remote-rendering-for-real-time-ar-applications-at-aws-edge/
https://aws.amazon.com/blogs/industries/remote-rendering-for-real-time-ar-applications-at-aws-edge/
https://aws.amazon.com/blogs/industries/remote-rendering-for-real-time-ar-applications-at-aws-edge/
https://doi.org/10.1145/3372224.3419215
https://doi.org/10.1145/3495243.3560551
https://doi.org/10.1145/3495243.3560551
https://doi.org/10.1109/ICCCN.2018.8487352
https://doi.org/10.1109/ICCCN.2018.8487352
https://doi.ieeecomputersociety.org/10.1109/IC2E.2018.00052
https://doi.ieeecomputersociety.org/10.1109/IC2E.2018.00052
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1145/3548606.3560609
https://doi.org/10.1145/3548606.3560609

Submitted to the Journal of Systems Research (JSys) 2025

[69] Jananie Jarachanthan, Li Chen, Fei Xu, and Bo Li.
AMPS-Inf: Automatic Model Partitioning for Server-
less Inference with Cost Efficiency. In 50th Interna-
tional Conference on Parallel Processing, ICPP 2021,
New York, NY, USA, 2021. Association for Com-
puting Machinery. https://doi.org/10.1145/
3472456.3472501.

[70] Joohyung Jeon and Joongheon Kim. Privacy-Sensitive
Parallel Split Learning. In 2020 International Con-
ference on Information Networking (ICOIN), pages 7–
9, 2020. https://doi.org/10.1109/ICOIN48656.
2020.9016486.

[71] Congfeng Jiang, Tiantian Fan, Honghao Gao,
Weisong Shi, Liangkai Liu, Christophe Cérin, and
Jian Wan. Energy Aware Edge Computing: A
Survey. Computer Communications, 151:556–580,
2020. URL: https://www.sciencedirect.
com/science/article/pii/S014036641930831X,
https://doi.org/https://doi.org/10.1016/j.
comcom.2020.01.004.

[72] Jiawei Jiang, Shaoduo Gan, Bo Du, Gustavo Alonso,
Ana Klimovic, Ankit Singla, Wentao Wu, Sheng Wang,
and Ce Zhang. A systematic evaluation of machine
learning on serverless infrastructure. The VLDB
Journal, 33(2):425–449, September 2023. https:
//doi.org/10.1007/s00778-023-00813-0.

[73] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang,
Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang Li,
Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin
Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou,
Yiyao Sheng, Zhuo Jiang, Haohan Xu, Haoran Wei,
Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang
Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin
Jin, and Xin Liu. MegaScale: Scaling Large Language
Model Training to More Than 10,000 GPUs, 2024.
arXiv:2402.15627.

[74] Chiraag Juvekar, Vinod Vaikuntanathan, and
Anantha Chandrakasan. GAZELLE: A Low
Latency Framework for Secure Neural Network
Inference. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1651–1669, Balti-
more, MD, August 2018. USENIX Association.
URL: https://www.usenix.org/conference/
usenixsecurity18/presentation/juvekar.

[75] Yiping Kang, Johann Hauswald, Cao Gao, Austin
Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang.
Neurosurgeon: Collaborative Intelligence Between the
Cloud and Mobile Edge. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’17, page 615–629, New York, NY,

USA, 2017. Association for Computing Machinery.
https://doi.org/10.1145/3037697.3037698.

[76] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.
Shallow-Deep Networks: Understanding and Mitigat-
ing Network Overthinking. In ICML, 2019.

[77] Juyong Kim, Yookoon Park, Gunhee Kim, and Sung Ju
Hwang. SplitNet: Learning to Semantically Split
Deep Networks for Parameter Reduction and Model
Parallelization. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 1866–
1874. PMLR, 06–11 Aug 2017. URL: https:
//proceedings.mlr.press/v70/kim17b.html.

[78] Alex Krizhevsky and Geoffrey Hinton. Learn-
ing Multiple Layers of Features from Tiny Im-
ages. Technical Report 0, University of Toronto,
2009. URL: https://www.cs.toronto.edu/
~kriz/learning-features-2009-TR.pdf.

[79] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. ImageNet Classification with Deep Convolutional
Neural Networks. Advances in neural information
processing systems, 25, 2012.

[80] Karthik Kumar and Yung-Hsiang Lu. Cloud Com-
puting for Mobile Users: Can Offloading Computa-
tion Save Energy? Computer, 43(4):51–56, 2010.
https://doi.org/10.1109/MC.2010.98.

[81] Stefanos Laskaridis, Stylianos I. Venieris, Mario
Almeida, Ilias Leontiadis, and Nicholas D. Lane.
SPINN: Synergistic Progressive Inference of Neural
Networks over Device and Cloud. In Proceedings
of the 26th Annual International Conference on Mo-
bile Computing and Networking, MobiCom ’20, New
York, NY, USA, 2020. Association for Computing
Machinery. https://doi.org/10.1145/3372224.
3419194.

[82] Ya Le and Xuan Yang. Tiny ImageNet Visual Recog-
nition Challenge. CS 231N, 7(7):3, 2015.

[83] Joo Chan Lee, Yongwoo Kim, SungTae Moon, and
Jong Hwan Ko. A Splittable DNN-Based Object De-
tector for Edge-Cloud Collaborative Real-Time Video
Inference. In 2021 17th IEEE International Confer-
ence on Advanced Video and Signal Based Surveil-
lance (AVSS), pages 1–8, 2021. https://doi.org/
10.1109/AVSS52988.2021.9663806.

[84] Yaniv Leviathan, Matan Kalman, and Yossi Matias.
Fast Inference from Transformers via Speculative
Decoding. In Andreas Krause, Emma Brunskill,

21

https://doi.org/10.1145/3472456.3472501
https://doi.org/10.1145/3472456.3472501
https://doi.org/10.1109/ICOIN48656.2020.9016486
https://doi.org/10.1109/ICOIN48656.2020.9016486
https://www.sciencedirect.com/science/article/pii/S014036641930831X
https://www.sciencedirect.com/science/article/pii/S014036641930831X
https://doi.org/https://doi.org/10.1016/j.comcom.2020.01.004
https://doi.org/https://doi.org/10.1016/j.comcom.2020.01.004
https://doi.org/10.1007/s00778-023-00813-0
https://doi.org/10.1007/s00778-023-00813-0
http://arxiv.org/abs/2402.15627
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://doi.org/10.1145/3037697.3037698
https://proceedings.mlr.press/v70/kim17b.html
https://proceedings.mlr.press/v70/kim17b.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/MC.2010.98
https://doi.org/10.1145/3372224.3419194
https://doi.org/10.1145/3372224.3419194
https://doi.org/10.1109/AVSS52988.2021.9663806
https://doi.org/10.1109/AVSS52988.2021.9663806

Submitted to the Journal of Systems Research (JSys) 2025

Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett, editors, Proceedings of the
40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pages 19274–19286. PMLR, 23–29 Jul
2023. URL: https://proceedings.mlr.press/
v202/leviathan23a.html.

[85] Chao Li, Hongli Xu, Yang Xu, Zhiyuan Wang, and
Liusheng Huang. DNN Inference Acceleration with
Partitioning and Early Exiting in Edge Computing. In
Wireless Algorithms, Systems, and Applications: 16th
International Conference, WASA 2021, Nanjing, China,
June 25–27, 2021, Proceedings, Part I, page 465–478,
Berlin, Heidelberg, 2021. Springer-Verlag. https:
//doi.org/10.1007/978-3-030-85928-2_37.

[86] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge
AI: On-Demand Accelerating Deep Neural Network
Inference via Edge Computing. IEEE Transactions on
Wireless Communications, 19(1):447–457, 2019.

[87] En Li, Zhi Zhou, and Xu Chen. Edge Intelligence:
On-Demand Deep Learning Model Co-Inference with
Device-Edge Synergy. In Proceedings of the
2018 Workshop on Mobile Edge Communications,
MECOMM’18, page 31–36, New York, NY, USA,
2018. Association for Computing Machinery. https:
//doi.org/10.1145/3229556.3229562.

[88] Guangli Li, Lei Liu, Xueying Wang, Xiao Dong, Peng
Zhao, and Xiaobing Feng. Auto-tuning Neural Net-
work Quantization Framework for Collaborative Infer-
ence Between the Cloud and Edge. In Věra Kůrková,
Yannis Manolopoulos, Barbara Hammer, Lazaros Il-
iadis, and Ilias Maglogiannis, editors, Artificial Neural
Networks and Machine Learning – ICANN 2018, pages
402–411, Cham, 2018. Springer International Publish-
ing.

[89] Jingtao Li, Adnan Siraj Rakin, Xing Chen, Zhezhi He,
Deliang Fan, and Chaitali Chakrabarti. ResSFL: A
Resistance Transfer Framework for Defending Model
Inversion Attack in Split Federated Learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10194–
10202, June 2022.

[90] Shan Li, Weihong Deng, and JunPing Du. Reliable
Crowdsourcing and Deep Locality-Preserving Learn-
ing for Expression Recognition in the Wild. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 2852–2861, 2017.

[91] Tailin Liang, John Glossner, Lei Wang, Shaobo
Shi, and Xiaotong Zhang. Pruning and Quan-
tization for Deep Neural Network Acceleration:

A Survey. Neurocomputing, 461:370–403,
2021. URL: https://www.sciencedirect.
com/science/article/pii/S0925231221010894,
https://doi.org/https://doi.org/10.1016/j.
neucom.2021.07.045.

[92] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. AWQ:
Activation-aware Weight Quantization for LLM Com-
pression and Acceleration, 2024.

[93] Li Lin, Xiaofei Liao, Hai Jin, and Peng Li. Compu-
tation Offloading Toward Edge Computing. Proceed-
ings of the IEEE, 107(8):1584–1607, 2019. https:
//doi.org/10.1109/JPROC.2019.2922285.

[94] Tsung-Yi Lin, Michael Maire, Serge Belongie,
Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Pi-
otr Dollár. Microsoft COCO: Common Objects in
Context, 2015. arXiv:1405.0312.

[95] Fang Liu, Guoming Tang, Youhuizi Li, Zhiping Cai,
Xingzhou Zhang, and Tongqing Zhou. A Survey on
Edge Computing Systems and Tools. Proceedings of
the IEEE, 107(8):1537–1562, 2019. https://doi.
org/10.1109/JPROC.2019.2920341.

[96] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
DARTS: Differentiable Architecture Search. In In-
ternational Conference on Learning Representations,
2019. URL: https://openreview.net/forum?id=
S1eYHoC5FX.

[97] Haolin Liu, Sirui Liu, Saiqin Long, Qingyong Deng,
and Zhetao Li. Joint Optimization of Model Deploy-
ment for Freshness-Sensitive Task Assignment in Edge
Intelligence. In IEEE INFOCOM 2024 - IEEE Confer-
ence on Computer Communications, pages 1751–1760,
2024. https://doi.org/10.1109/INFOCOM52122.
2024.10621314.

[98] Jianchun Liu, Hongli Xu, Yang Xu, Zhenguo
Ma, Zhiyuan Wang, Chen Qian, and He Huang.
Communication-Efficient Asynchronous Federated
Learning in Resource-Constrained Edge Computing.
Comput. Netw., 199(C), apr 2022. https://doi.
org/10.1016/j.comnet.2021.108429.

[99] Juncai Liu, Jessie Hui Wang, Chenghao Rong, Yue-
dong Xu, Tao Yu, and Jilong Wang. FedPA: An Adap-
tively Partial Model Aggregation Strategy in Federated
Learning. Comput. Netw., 199(C), apr 2022. https:
//doi.org/10.1016/j.comnet.2021.108468.

22

https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://doi.org/10.1007/978-3-030-85928-2_37
https://doi.org/10.1007/978-3-030-85928-2_37
https://doi.org/10.1145/3229556.3229562
https://doi.org/10.1145/3229556.3229562
https://www.sciencedirect.com/science/article/pii/S0925231221010894
https://www.sciencedirect.com/science/article/pii/S0925231221010894
https://doi.org/https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.1109/JPROC.2019.2922285
https://doi.org/10.1109/JPROC.2019.2922285
http://arxiv.org/abs/1405.0312
https://doi.org/10.1109/JPROC.2019.2920341
https://doi.org/10.1109/JPROC.2019.2920341
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://doi.org/10.1109/INFOCOM52122.2024.10621314
https://doi.org/10.1109/INFOCOM52122.2024.10621314
https://doi.org/10.1016/j.comnet.2021.108429
https://doi.org/10.1016/j.comnet.2021.108429
https://doi.org/10.1016/j.comnet.2021.108468
https://doi.org/10.1016/j.comnet.2021.108468

Submitted to the Journal of Systems Research (JSys) 2025

[100] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge
Assisted Real-Time Object Detection for Mobile Aug-
mented Reality. In The 25th Annual International
Conference on Mobile Computing and Networking,
MobiCom ’19, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. https://doi.org/
10.1145/3300061.3300116.

[101] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang,
Wei Liu, and Kwang-Ting Cheng. Bi-Real Net: En-
hancing the Performance of 1-bit CNNs With Improved
Representational Capability and Advanced Training Al-
gorithm. In Proceedings of the European conference
on computer vision (ECCV), pages 722–737, 2018.

[102] Shuming Ma, Hongyu Wang, Shaohan Huang, Xingx-
ing Zhang, Ying Hu, Ting Song, Yan Xia, and
Furu Wei. BitNet b1.58 2B4T Technical Re-
port. Technical Report arXiv:2504.12285, arXiv,
Apr 2025. URL: https://arxiv.org/abs/2504.
12285, https://doi.org/10.48550/arXiv.2504.
12285.

[103] Yunlong Mao, Shanhe Yi, Qun Li, Jinghao Feng,
Fengyuan Xu, and Sheng Zhong. Learning from
Differentially Private Neural Activations with Edge
Computing. In 2018 IEEE/ACM Symposium on Edge
Computing (SEC), pages 90–102, 2018. https:
//doi.org/10.1109/SEC.2018.00014.

[104] Yoshitomo Matsubara and Marco Levorato. Neural
Compression and Filtering for Edge-assisted Real-time
Object Detection in Challenged Networks. In 2020
25th International Conference on Pattern Recognition
(ICPR), pages 2272–2279. IEEE, 2021.

[105] Yoshitomo Matsubara, Marco Levorato, and Francesco
Restuccia. Split Computing and Early Exiting for
Deep Learning Applications: Survey and Research
Challenges. ACM Comput. Surv., 55(5), dec 2022.
https://doi.org/10.1145/3527155.

[106] H. Brendan McMahan, Eider Moore, Daniel Ra-
mage, Seth Hampson, and Blaise Agüera y Ar-
cas. Communication-Efficient Learning of Deep
Networks from Decentralized Data. arXiv preprint
arXiv:1602.05629, 2023. arXiv:1602.05629.

[107] Meta. MODEL_CARD, 2024. URL: https:
//github.com/meta-llama/llama-models/blob/
main/models/llama3_1/MODEL_CARD.md.

[108] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang,
Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi,
Chunan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. SpecInfer: Accelerating

Large Language Model Serving with Tree-based
Speculative Inference and Verification. In Proceed-
ings of the 29th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems, Volume 3, ASPLOS ’24, page
932–949, New York, NY, USA, 2024. Association
for Computing Machinery. URL: https://doi-org.
ezproxy.bu.edu/10.1145/3620666.3651335,
https://doi.org/10.1145/3620666.3651335.

[109] Microsoft Learn. Azure Functions Overview: Hosting
Options. https://learn.microsoft.com/en-
us/azure/azure-functions/functions-
overview#hosting-options, 2025. Accessed:
2025-05-01.

[110] Robert B. Miller. Response Time in Man-Computer
Conversational Transactions. In Proceedings of the
December 9-11, 1968, Fall Joint Computer Conference,
Part I, AFIPS ’68 (Fall, part I), page 267–277, New
York, NY, USA, 1968. Association for Computing
Machinery. https://doi.org/10.1145/1476589.
1476628.

[111] Fatemehsadat Mireshghallah, Mohammadkazem
Taram, Ali Jalali, Ahmed Taha Taha Elthakeb, Dean
Tullsen, and Hadi Esmaeilzadeh. Not all features are
equal: Discovering essential features for preserving
prediction privacy. In Proceedings of the Web Confer-
ence 2021, WWW ’21, page 669–680, New York, NY,
USA, 2021. Association for Computing Machinery.
https://doi.org/10.1145/3442381.3449965.

[112] Fatemehsadat Mireshghallah, Mohammadkazem
Taram, Prakash Ramrakhyani, Ali Jalali, Dean
Tullsen, and Hadi Esmaeilzadeh. Shredder:
Learning Noise Distributions to Protect Inference
Privacy. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’20, page 3–18, New York, NY, USA,
2020. Association for Computing Machinery.
https://doi.org/10.1145/3373376.3378522.

[113] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram
Srinivasan, Wenting Zheng, and Raluca Ada
Popa. Delphi: A Cryptographic Inference Ser-
vice for Neural Networks. In 29th USENIX
Security Symposium (USENIX Security 20), pages
2505–2522. USENIX Association, August 2020.
URL: https://www.usenix.org/conference/
usenixsecurity20/presentation/mishra.

[114] James O’ Neill. An Overview of Neural Network
Compression. arXiv preprint arXiv:2006.03669,
2020. URL: https://arxiv.org/abs/2006.

23

https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/3300061.3300116
https://arxiv.org/abs/2504.12285
https://arxiv.org/abs/2504.12285
https://doi.org/10.48550/arXiv.2504.12285
https://doi.org/10.48550/arXiv.2504.12285
https://doi.org/10.1109/SEC.2018.00014
https://doi.org/10.1109/SEC.2018.00014
https://doi.org/10.1145/3527155
http://arxiv.org/abs/1602.05629
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://doi-org.ezproxy.bu.edu/10.1145/3620666.3651335
https://doi-org.ezproxy.bu.edu/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview#hosting-options
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview#hosting-options
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview#hosting-options
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/3442381.3449965
https://doi.org/10.1145/3373376.3378522
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://arxiv.org/abs/2006.03669
https://arxiv.org/abs/2006.03669

Submitted to the Journal of Systems Research (JSys) 2025

03669, https://doi.org/10.48550/ARXIV.2006.
03669.

[115] Netflix. Netflix Empowers Remote Artistry with
Low-Latency Workstations Using AWS Local
Zones, 2024. URL: https://aws.amazon.com/
solutions/case-studies/netflix-aws-local-
zones-case-study/.

[116] Lucien K. L. Ng and Sherman S. M. Chow. Sok: Cryp-
tographic neural-network computation. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 497–
514, 2023. https://doi.org/10.1109/SP46215.
2023.10179483.

[117] Samuel S. Ogden, Xiangnan Kong, and Tian Guo.
PieSlicer: Dynamically Improving Response Time for
Cloud-Based CNN Inference. In Proceedings of the
ACM/SPEC International Conference on Performance
Engineering, ICPE ’21, page 249–256, New York, NY,
USA, 2021. Association for Computing Machinery.
https://doi.org/10.1145/3427921.3450256.

[118] OpenAI OpCo, LLC. Privacy policy. https:
//openai.com/policies/row-privacy-policy/,
2024. Published November 2024; Accessed:
2025-04-20.

[119] Kai Peng, Jiangtian Nie, Neeraj Kumar, Chao Cai,
Jiawen Kang, Zehui Xiong, and Yang Zhang. Joint Op-
timization of Service Chain Caching and Task Offload-
ing in Mobile Edge Computing. Appl. Soft Comput.,
103(C), May 2021. https://doi.org/10.1016/j.
asoc.2021.107142.

[120] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. Efficiently Scal-
ing Transformer Inference. Proceedings of Machine
Learning and Systems, 5:606–624, 2023.

[121] Qwen. Speed Benchmark, 2024. URL:
https://qwen.readthedocs.io/en/latest/
benchmark/speed_benchmark.html.

[122] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. ZeRO: Memory Optimizations To-
ward Training Trillion Parameter Models. In Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
SC ’20. IEEE Press, 2020.

[123] Ali Raza, Abraham Matta, Nabeel Akhtar, Vasiliki
Kalavri, and Vatche Isahagian. SoK: Function-as-a-
Service: From An Application Developer’s Perspec-
tive. In Journal of Systems Research - Mar 2021,
2021. URL: https://openreview.net/forum?id=
VdWaMgaTKtX.

[124] Ali Raza, Zongshun Zhang, Nabeel Akhtar, Vatche
Isahagian, and Ibrahim Matta. LIBRA: An Econom-
ical Hybrid Approach for Cloud Applications with
Strict SLAs. In 2021 IEEE International Con-
ference on Cloud Engineering (IC2E), pages 136–
146, 2021. https://doi.org/10.1109/IC2E52221.
2021.00028.

[125] Joseph Redmon and Ali Farhadi. YOLO9000: Better,
Faster, Stronger, 2016. arXiv:1612.08242.

[126] Joseph Redmon and Ali Farhadi. YOLOv3: An Incre-
mental Improvement, 2018. arXiv:1804.02767.

[127] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. Faster R-CNN: Towards Real-Time Object De-
tection with Region Proposal Networks, 2016. arXiv:
1506.01497.

[128] Albert Reuther, Peter Michaleas, Michael Jones, Vi-
jay Gadepally, Siddharth Samsi, and Jeremy Kepner.
AI Accelerator Survey and Trends. In 2021 IEEE
High Performance Extreme Computing Conference
(HPEC), pages 1–9, 2021. https://doi.org/10.
1109/HPEC49654.2021.9622867.

[129] Michael D Richard and Richard P Lippmann. Neu-
ral Network Classifiers Estimate Bayesian a posteri-
ori Probabilities. Neural computation, 3(4):461–483,
1991.

[130] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar,
and Christos Kozyrakis. Llama: A Heterogeneous
Serverless Framework for Auto-Tuning Video Ana-
lytics Pipelines. In Proceedings of the ACM Sympo-
sium on Cloud Computing, SoCC ’21, page 1–17, New
York, NY, USA, 2021. Association for Computing
Machinery. https://doi.org/10.1145/3472883.
3486972.

[131] David E. Rumelhart and James L. McClelland. Par-
allel Distributed Processing: Explorations in the Mi-
crostructure of Cognition: Foundations, pages 318–
362. 1987.

[132] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Jour-
nal of Computer Vision (IJCV), 115(3):211–252, 2015.
https://doi.org/10.1007/s11263-015-0816-y.

[133] Samsung. Samsung To Unveil New Vacuum
Lineup That Redefines Home Cleaning With
Enhanced AI at CES 2024, 2024. URL:
https://news.samsung.com/us/samsung-

24

https://arxiv.org/abs/2006.03669
https://doi.org/10.48550/ARXIV.2006.03669
https://doi.org/10.48550/ARXIV.2006.03669
https://aws.amazon.com/solutions/case-studies/netflix-aws-local-zones-case-study/
https://aws.amazon.com/solutions/case-studies/netflix-aws-local-zones-case-study/
https://aws.amazon.com/solutions/case-studies/netflix-aws-local-zones-case-study/
https://doi.org/10.1109/SP46215.2023.10179483
https://doi.org/10.1109/SP46215.2023.10179483
https://doi.org/10.1145/3427921.3450256
https://openai.com/policies/row-privacy-policy/
https://openai.com/policies/row-privacy-policy/
https://doi.org/10.1016/j.asoc.2021.107142
https://doi.org/10.1016/j.asoc.2021.107142
https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html
https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html
https://openreview.net/forum?id=VdWaMgaTKtX
https://openreview.net/forum?id=VdWaMgaTKtX
https://doi.org/10.1109/IC2E52221.2021.00028
https://doi.org/10.1109/IC2E52221.2021.00028
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1109/HPEC49654.2021.9622867
https://doi.org/10.1109/HPEC49654.2021.9622867
https://doi.org/10.1145/3472883.3486972
https://doi.org/10.1145/3472883.3486972
https://doi.org/10.1007/s11263-015-0816-y
https://news.samsung.com/us/samsung-unveil-new-vacuum-lineup-redefines-home-cleaning-with-enhanced-ai-ces-2024/
https://news.samsung.com/us/samsung-unveil-new-vacuum-lineup-redefines-home-cleaning-with-enhanced-ai-ces-2024/

Submitted to the Journal of Systems Research (JSys) 2025

unveil-new-vacuum-lineup-redefines-home-
cleaning-with-enhanced-ai-ces-2024/.

[134] Mark Sandler, Andrew Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks,
2019. arXiv:1801.04381.

[135] Davide Sanvito, Giuseppe Siracusano, and Roberto
Bifulco. Can the Network Be the AI Accelerator?
In Proceedings of the 2018 Morning Workshop on In-
Network Computing, NetCompute ’18, page 20–25,
New York, NY, USA, 2018. Association for Com-
puting Machinery. https://doi.org/10.1145/
3229591.3229594.

[136] Kathakoli Sengupta, Zhongkai Shagguan, Sandesh
Bharadwaj, Sanjay Arora, Eshed Ohn-Bar, and
Renato Mancuso. UniLCD: Unified Local-
Cloud Decision-Making via Reinforcement Learn-
ing, 2024. URL: https://arxiv.org/abs/2409.
11403, arXiv:2409.11403.

[137] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Ed-
uardo Laureano, Colby Tresness, Mark Russinovich,
and Ricardo Bianchini. Serverless in the Wild:
Characterizing and Optimizing the Serverless Work-
load at a Large Cloud Provider. In 2020
USENIX Annual Technical Conference (USENIX
ATC 20), pages 205–218. USENIX Association,
July 2020. URL: https://www.usenix.org/
conference/atc20/presentation/shahrad.

[138] Jiawei Shao, Yuyi Mao, and Jun Zhang. Learning
Task-Oriented Communication for Edge Inference: An
Information Bottleneck Approach. IEEE Journal on
Selected Areas in Communications, 40(1):197–211,
2021.

[139] Noam Shazeer, *Azalia Mirhoseini, *Krzysztof
Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously Large Neural Networks:
The Sparsely-Gated Mixture-of-Experts Layer. In In-
ternational Conference on Learning Representations,
2017. URL: https://openreview.net/forum?id=
B1ckMDqlg.

[140] Siemens. From City Theory to Smart Tech Reality,
2024. URL: https://www.siemens-advanta.com/
whitepapers/smart-tech-reality.

[141] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-Scale Image Recog-
nition. arXiv preprint arXiv:1409.1556, 2015. arXiv:
1409.1556.

[142] Yushan Siriwardhana, Pawani Porambage, Madhu-
sanka Liyanage, and Mika Ylianttila. A Survey on Mo-
bile Augmented Reality With 5G Mobile Edge Com-
puting: Architectures, Applications, and Technical
Aspects. IEEE Communications Surveys & Tutori-
als, 23(2):1160–1192, 2021. https://doi.org/10.
1109/COMST.2021.3061981.

[143] SKT. SKT and AWS Launch the First 5G
Edge Cloud Service in Korea, 2024. URL:
https://www.sktelecom.com/en/press/press_
detail.do?page.page=1&idx=1494.

[144] Vladislav Sovrasov. ptflops: a FLOPs Count-
ing Tool for Neural Networks in PyTorch Frame-
work. https://github.com/sovrasov/flops-
counter.pytorch, 2023. Access Date: 2023-12-16.

[145] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Ax-
iomatic Attribution for Deep Networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR, 2017.

[146] Surat Teerapittayanon, Bradley McDanel, and H.T.
Kung. BranchyNet: Fast Inference via Early Exit-
ing from Deep Neural Networks. In 2016 23rd Inter-
national Conference on Pattern Recognition (ICPR),
pages 2464–2469, 2016. https://doi.org/10.
1109/ICPR.2016.7900006.

[147] Surat Teerapittayanon, Bradley McDanel, and H.T.
Kung. Distributed Deep Neural Networks Over
the Cloud, the Edge and End Devices. In 2017
IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 328–339, 2017.
https://doi.org/10.1109/ICDCS.2017.226.

[148] Chandra Thapa, Pathum Chamikara Mahawaga
Arachchige, Seyit Camtepe, and Lichao Sun. SplitFed:
When Federated Learning Meets Split Learning. In
Proceedings of the AAAI conference on artificial intel-
ligence, volume 36, pages 8485–8493, 2022.

[149] Joana Tirana, Spyros Lalis, and Dimitris Chatzopoulos.
Estimating the Training Time in Single- and Multi-Hop
Split Federated Learning. In Proceedings of the 8th In-
ternational Workshop on Edge Systems, Analytics and
Networking, EdgeSys ’25, page 37–42, New York, NY,
USA, 2025. Association for Computing Machinery.
https://doi.org/10.1145/3721888.3722096.

[150] Praneeth Vepakomma, Abhishek Singh, Otkrist Gupta,
and Ramesh Raskar. NoPeek: Information leak-
age reduction to share activations in distributed
deep learning. arXiv preprint arXiv:2008.09161,
2020. URL: https://arxiv.org/abs/2008.
09161, https://doi.org/10.48550/ARXIV.2008.
09161.

25

https://news.samsung.com/us/samsung-unveil-new-vacuum-lineup-redefines-home-cleaning-with-enhanced-ai-ces-2024/
https://news.samsung.com/us/samsung-unveil-new-vacuum-lineup-redefines-home-cleaning-with-enhanced-ai-ces-2024/
http://arxiv.org/abs/1801.04381
https://doi.org/10.1145/3229591.3229594
https://doi.org/10.1145/3229591.3229594
https://arxiv.org/abs/2409.11403
https://arxiv.org/abs/2409.11403
http://arxiv.org/abs/2409.11403
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://www.siemens-advanta.com/whitepapers/smart-tech-reality
https://www.siemens-advanta.com/whitepapers/smart-tech-reality
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/COMST.2021.3061981
https://doi.org/10.1109/COMST.2021.3061981
https://www.sktelecom.com/en/press/press_detail.do?page.page=1&idx=1494
https://www.sktelecom.com/en/press/press_detail.do?page.page=1&idx=1494
https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1109/ICDCS.2017.226
https://doi.org/10.1145/3721888.3722096
https://arxiv.org/abs/2008.09161
https://arxiv.org/abs/2008.09161
https://doi.org/10.48550/ARXIV.2008.09161
https://doi.org/10.48550/ARXIV.2008.09161

Submitted to the Journal of Systems Research (JSys) 2025

[151] Sameer Wagh, Shruti Tople, Fabrice Benhamouda,
Eyal Kushilevitz, Prateek Mittal, and Tal Rabin. FAL-
CON: Honest-Majority Maliciously Secure Frame-
work for Private Deep Learning. 2021.

[152] G.K. Wallace. The JPEG Still Picture Compression
Standard. IEEE Transactions on Consumer Electron-
ics, 38(1):xviii–xxxiv, 1992. https://doi.org/10.
1109/30.125072.

[153] Bo Wang, Changhai Wang, Wanwei Huang, Ying Song,
and Xiaoyun Qin. A Survey and Taxonomy on Task
Offloading for Edge-Cloud Computing. IEEE Access,
8:186080–186101, 2020.

[154] Bo Wang, Changhai Wang, Wanwei Huang, Ying Song,
and Xiaoyun Qin. A Survey and Taxonomy on Task
Offloading for Edge-Cloud Computing. IEEE Ac-
cess, 8:186080–186101, 2020. https://doi.org/
10.1109/ACCESS.2020.3029649.

[155] Hao Wang, Zakhary Kaplan, Di Niu, and Baochun
Li. Optimizing Federated Learning on Non-IID Data
with Reinforcement Learning. In IEEE INFOCOM
2020 - IEEE Conference on Computer Communica-
tions, pages 1698–1707, 2020. https://doi.org/
10.1109/INFOCOM41043.2020.9155494.

[156] Kuan-Chieh Wang, YAN FU, Ke Li, Ashish Khisti,
Richard Zemel, and Alireza Makhzani. Varia-
tional Model Inversion Attacks. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages
9706–9719. Curran Associates, Inc., 2021. URL:
https://proceedings.neurips.cc/paper/2021/
file/50a074e6a8da4662ae0a29edde722179-
Paper.pdf.

[157] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E. Gonzalez. SkipNet: Learning Dynamic
Routing in Convolutional Networks. In Proceedings of
the European Conference on Computer Vision (ECCV),
September 2018.

[158] Yingchao Wang, Chen Yang, Shulin Lan, Liehuang
Zhu, and Yan Zhang. End-Edge-Cloud Collabora-
tive Computing for Deep Learning: A Comprehensive
Survey. IEEE Communications Surveys & Tutori-
als, pages 1–1, 2024. https://doi.org/10.1109/
COMST.2024.3393230.

[159] Yue Wang, Jianghao Shen, Ting-Kuei Hu, Pengfei
Xu, Tan Nguyen, Richard G. Baraniuk, Zhangyang
Wang, and Yingyan Lin. Dual Dynamic Infer-
ence: Enabling More Efficient, Adaptive and Con-
trollable Deep Inference. IEEE Journal of Se-
lected Topics in Signal Processing, 2020. URL:

https://par.nsf.gov/biblio/10159763, https:
//doi.org/10.1109/JSTSP.2020.2979669.

[160] Zhiyuan Wang, Hongli Xu, Yang Xu, Zhida Jiang,
and Jianchun Liu. CoopFL: Accelerating Federated
Learning with DNN Partitioning and Offloading in
Heterogeneous Edge Computing. Computer Networks,
220:109490, 2023.

[161] Campbell Webb. Unleashing the Power of Inno-
vation with Public Cloud, 2024. URL: https:
//blog.workday.com/en-us/unleashing-the-
power-innovation-with-public-cloud.html.

[162] Wenqi Wei and Ling Liu. Trustworthy Distributed
AI Systems: Robustness, Privacy, and Governance.
ACM Comput. Surv., February 2024. Just Accepted.
https://doi.org/10.1145/3645102.

[163] Maciej Woł czyk, Bartosz Wójcik, Klaudia Bał azy,
Igor T Podolak, Jacek Tabor, Marek Śmieja, and
Tomasz Trzcinski. Zero Time Waste: Recycling
Predictions in Early Exit Neural Networks. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages
2516–2528. Curran Associates, Inc., 2021. URL:
https://proceedings.neurips.cc/paper/2021/
file/149ef6419512be56a93169cd5e6fa8fd-
Paper.pdf.

[164] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. SmoothQuant: Accu-
rate and Efficient Post-Training Quantization for Large
Language Models. In International Conference on
Machine Learning, pages 38087–38099. PMLR, 2023.

[165] Shuzhao Xie, Yuan Xue, Yifei Zhu, and Zhi Wang.
Cost Effective MLaaS Federation: A Combinato-
rial Reinforcement Learning Approach. In IEEE
INFOCOM 2022 - IEEE Conference on Computer
Communications, page 2078–2087. IEEE Press,
2022. https://doi.org/10.1109/INFOCOM48880.
2022.9796701.

[166] Xiong Xiong, Kan Zheng, Lei Lei, and Lu Hou.
Resource Allocation Based on Deep Reinforcement
Learning in IoT Edge Computing. IEEE Journal
on Selected Areas in Communications, 38(6):1133–
1146, 2020. https://doi.org/10.1109/JSAC.
2020.2986615.

[167] Yuanjia Xu, Heng Wu, Wenbo Zhang, and Yi Hu.
EOP: Efficient Operator Partition for Deep Learning
Inference over Edge Servers. In Proceedings of the
18th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, VEE 2022,

26

https://doi.org/10.1109/30.125072
https://doi.org/10.1109/30.125072
https://doi.org/10.1109/ACCESS.2020.3029649
https://doi.org/10.1109/ACCESS.2020.3029649
https://doi.org/10.1109/INFOCOM41043.2020.9155494
https://doi.org/10.1109/INFOCOM41043.2020.9155494
https://proceedings.neurips.cc/paper/2021/file/50a074e6a8da4662ae0a29edde722179-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/50a074e6a8da4662ae0a29edde722179-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/50a074e6a8da4662ae0a29edde722179-Paper.pdf
https://doi.org/10.1109/COMST.2024.3393230
https://doi.org/10.1109/COMST.2024.3393230
https://par.nsf.gov/biblio/10159763
https://doi.org/10.1109/JSTSP.2020.2979669
https://doi.org/10.1109/JSTSP.2020.2979669
https://blog.workday.com/en-us/unleashing-the-power-innovation-with-public-cloud.html
https://blog.workday.com/en-us/unleashing-the-power-innovation-with-public-cloud.html
https://blog.workday.com/en-us/unleashing-the-power-innovation-with-public-cloud.html
https://doi.org/10.1145/3645102
https://proceedings.neurips.cc/paper/2021/file/149ef6419512be56a93169cd5e6fa8fd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/149ef6419512be56a93169cd5e6fa8fd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/149ef6419512be56a93169cd5e6fa8fd-Paper.pdf
https://doi.org/10.1109/INFOCOM48880.2022.9796701
https://doi.org/10.1109/INFOCOM48880.2022.9796701
https://doi.org/10.1109/JSAC.2020.2986615
https://doi.org/10.1109/JSAC.2020.2986615

Submitted to the Journal of Systems Research (JSys) 2025

page 45–57, New York, NY, USA, 2022. Association
for Computing Machinery. https://doi.org/10.
1145/3516807.3516820.

[168] Zhao Yang, Shengbing Zhang, Ruxu Li, Chuxi Li,
Miao Wang, Danghui Wang, and Meng Zhang. Effi-
cient Resource-Aware Convolutional Neural Architec-
ture Search for Edge Computing with Pareto-Bayesian
Optimization. Sensors, 21(2), 2021. URL: https:
//www.mdpi.com/1424-8220/21/2/444, https://
doi.org/10.3390/s21020444.

[169] Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and Zhenkai
Liang. Neural Network Inversion in Adversarial Set-
ting via Background Knowledge Alignment. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’19,
page 225–240, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. https://doi.org/
10.1145/3319535.3354261.

[170] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi
Wang, Shengzhong Liu, Huajie Shao, and Tarek Ab-
delzaher. Deep Compressive Offloading: Speeding
up Neural Network Inference by Trading Edge Com-
putation for Network Latency. In Proceedings of
the 18th Conference on Embedded Networked Sensor
Systems, SenSys ’20, page 476–488, New York, NY,
USA, 2020. Association for Computing Machinery.
https://doi.org/10.1145/3384419.3430898.

[171] Yuanshun Yao, Zhujun Xiao, Bolun Wang, Bimal
Viswanath, Haitao Zheng, and Ben Y. Zhao. Complex-
ity vs. Performance: Empirical Analysis of Machine
Learning as a Service. In Proceedings of the 2017
Internet Measurement Conference, IMC ’17, page
384–397, New York, NY, USA, 2017. Association
for Computing Machinery. https://doi.org/10.
1145/3131365.3131372.

[172] Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yi-
neng Zhang, Stephanie Wang, Tianqi Chen, Baris
Kasikci, Vinod Grover, Arvind Krishnamurthy, and
Luis Ceze. FlashInfer: Efficient and Customizable At-
tention Engine for LLM Inference Serving. In Proceed-
ings of the 8th Conference on Machine Learning and
Systems (MLSys), Santa Clara, CA, USA, 2025. To ap-
pear. URL: https://arxiv.org/abs/2501.01005,
https://doi.org/10.48550/arXiv.2501.01005.

[173] Ashkan Yousefpour, Igor Shilov, Alexandre Sablay-
rolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj,
Jessica Zhao, Graham Cormode, and Ilya Mironov.
Opacus: User-Friendly Differential Privacy Library in
PyTorch, 2022. arXiv:2109.12298.

[174] Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and
Jiashi Feng. Revisiting Knowledge Distillation via
Label Smoothing Regularization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

[175] Jiale Zhang, Yanchao Zhao, Junyu Wang, and Bing
Chen. FedMEC: Improving Efficiency of Differ-
entially Private Federated Learning via Mobile Edge
Computing. Mobile Networks and Applications,
25(6):2421–2433, Dec 2020. https://doi.org/10.
1007/s11036-020-01586-4.

[176] Linfeng Zhang, Chenglong Bao, and Kaisheng Ma.
Self-Distillation: Towards Efficient and Compact
Neural Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(8):4388–4403,
2022. https://doi.org/10.1109/TPAMI.2021.
3067100.

[177] Zixin Zhang, Fan Qi, and Changsheng Xu. En-
hancing Storage and Computational Efficiency in Fed-
erated Multimodal Learning for Large-Scale Mod-
els. In Ruslan Salakhutdinov, Zico Kolter, Katherine
Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
lett, and Felix Berkenkamp, editors, Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learn-
ing Research, pages 59685–59699. PMLR, 21–27 Jul
2024. URL: https://proceedings.mlr.press/
v235/zhang24az.html.

[178] Zongshun Zhang, Rohan Kumar, Jason Li, Lisa Korver,
Anthony Byrne, Gianluca Stringhini, Ibrahim Matta,
and Ayse Coskun. PraxiPaaS: A Decomposable Ma-
chine Learning System for Efficient Container Package
Discovery. In 12th IEEE International Conference on
Cloud Engineering, 2024.

[179] Zongshun Zhang, Andrea Pinto, Valeria Turina, Flavio
Esposito, and Ibrahim Matta. Privacy and Effi-
ciency of Communications in Federated Split Learn-
ing. IEEE Transactions on Big Data, 9(5):1380–1391,
2023. https://doi.org/10.1109/TBDATA.2023.
3280405.

[180] Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou,
Guoli Wang, Junsong Yuan, and Qian Zhang. Re-
thinking Soft Labels for Knowledge Distillation: A
Bias-Variance Tradeoff Perspective. arXiv preprint
arXiv:2102.00650, 2021.

[181] Hongbo Zhou, Weiwei Zhang, Chengwei Wang, Xin
Ma, and Haoran Yu. BBNet: A Novel Convolutional
Neural Network Structure in Edge-Cloud Collaborative
Inference. Sensors, 2021.

27

https://doi.org/10.1145/3516807.3516820
https://doi.org/10.1145/3516807.3516820
https://www.mdpi.com/1424-8220/21/2/444
https://www.mdpi.com/1424-8220/21/2/444
https://doi.org/10.3390/s21020444
https://doi.org/10.3390/s21020444
https://doi.org/10.1145/3319535.3354261
https://doi.org/10.1145/3319535.3354261
https://doi.org/10.1145/3384419.3430898
https://doi.org/10.1145/3131365.3131372
https://doi.org/10.1145/3131365.3131372
https://arxiv.org/abs/2501.01005
https://doi.org/10.48550/arXiv.2501.01005
http://arxiv.org/abs/2109.12298
https://doi.org/10.1007/s11036-020-01586-4
https://doi.org/10.1007/s11036-020-01586-4
https://doi.org/10.1109/TPAMI.2021.3067100
https://doi.org/10.1109/TPAMI.2021.3067100
https://proceedings.mlr.press/v235/zhang24az.html
https://proceedings.mlr.press/v235/zhang24az.html
https://doi.org/10.1109/TBDATA.2023.3280405
https://doi.org/10.1109/TBDATA.2023.3280405

Submitted to the Journal of Systems Research (JSys) 2025

[182] Huan Zhou, Zhenning Wang, Hantong Zheng, Shibo
He, and Mianxiong Dong. Cost Minimization-
Oriented Computation Offloading and Service Caching
in Mobile Cloud-Edge Computing: An A3C-Based
Approach. IEEE Transactions on Network Science
and Engineering, 10(3):1326–1338, 2023. https:
//doi.org/10.1109/TNSE.2023.3255544.

[183] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. BERT Loses Patience:
Fast and Robust Inference with Early Exit. Advances
in Neural Information Processing Systems, 33:18330–
18341, 2020.

28

https://doi.org/10.1109/TNSE.2023.3255544
https://doi.org/10.1109/TNSE.2023.3255544

	Introduction
	Problem Definition
	DNN Offloading Challenges
	Latency
	Privacy
	Monetary Cost

	Problem Formulation
	Latency(Ll)
	Privacy(Lp)
	Monetary Cost(Lc)

	Problem Solutions
	Latency
	Dynamic Partitioning
	Early Exits
	Input and output compression
	Model Compression and Knowledge Distillation
	Open Issue: Dynamic Feature Extraction Tuning

	Privacy
	Perturbation
	Regularization
	Open Issue: Privacy and Accuracy Estimation

	Cost($)
	Methods
	Open Issue: Monetary Cost Optimized Resource Provisioning for ML Inference

	Conclusion

