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Abstract

Optimal Transport (OT, also known as the Wasserstein distance) is a popular metric
for comparing probability distributions and has been successfully used in many
machine-learning applications. In the semi-discrete 2-Wasserstein problem, we
wish to compute the cheapest way to transport all the mass from a continuous
distribution µ to a discrete distribution ν in Rd for d ≥ 1, where the cost of
transporting unit mass between points a and b is d(a, b) = ∥a− b∥2. When both
distributions are discrete, a simple combinatorial framework has been used to
find the exact solution (see e.g. [Orlin, STOC 1988]). In this paper, we propose
a combinatorial framework for the semi-discrete OT, which can be viewed as
an extension of the combinatorial framework for the discrete OT but requires
several new ideas. We present a new algorithm that given µ and ν in R2 and
a parameter ε > 0, computes an ε-additive approximate semi-discrete transport
plan in O(n4 log n log 1

ε ) time (in the worst case), where n is the support-size
of the discrete distribution ν and we assume that the mass of µ inside a triangle
can be computed in O(1) time. Our algorithm is significantly faster than the
known algorithms, and unlike many numerical algorithms, it does not make any
assumptions on the smoothness of µ. As an application of our algorithm, we
describe a data structure to store a large discrete distribution µ (with support
size N ) using O(N) space so that, given a query discrete distribution ν (with
support size k), an ε-additive approximate transport plan can be computed in
O(k3

√
N log 1

ε ) time in 2 dimensions. Our algorithm and data structure extend to
higher dimensions as well as to p-Wasserstein problem for any p ≥ 1.

1 Introduction

Optimal Transport (OT) is a powerful metric for comparing probability distributions and is used
in many machine-learning applications. The semi-discrete optimal transport problem asks for the
cheapest transport plan to transport mass from (a possibly continuous) distribution µ that is stored
compactly (say, using a deep neural network) to a discrete distribution ν. In recent years, the semi-
discrete OT has been used in data mining [31], image processing [28, 29, 33, 40], computational
biology [53], variational inference [7], blue noise generation [21, 51], optics [46], solving PDEs [30,
34], and generative models [8, 9, 19].

More formally, a semi-discrete transport plan τ between a continuous probability distribution µ
defined over a compact support A ⊂ Rd and a discrete distribution ν with a support set B of n points
in Rd is a distribution over A×B whose marginals are dominated by µ and ν, i.e., τ : A×B → R≥0 is
a transport plan between µ and ν where

∑
b∈B τ(a, b) ≤ µ(a) for all a ⊆ A and

∫
A
τ(a, b) da ≤ ν(b)

for all b ∈ B. A transport plan τ is complete if τ transports all mass of µ to ν. For any fixed p ≥ 1, in

∗The authors are listed in alphabetical order.
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the semi-discrete p-Wasserstein problem, the goal is to compute a complete transport plan τ between
µ and ν minimizing the cost ¢(τ) :=

∫
A

∑
b∈B ∥a− b∥pτ(a, b) da. An optimal plan is referred to

as a Wp-OT plan1. For any parameter ε > 0, a transport plan τ is called an ε-close Wp-OT plan if
¢(τ) ≤ ¢(τ∗) + ε, where τ∗ is a Wp-OT plan.

An optimal solution for the semi-discrete OT problem can be compactly represented as the weighted
Voronoi diagram (also called the Laguerre diagram) with respect to a weight assignment y(b) on every
point b ∈ B [12]. The choice of weights guarantees that mass at b is equal to the mass of µ inside the
Voronoi cell (also called the Laguerre cell) of b and the optimal transport plan simply transports the
mass at b to the mass inside its Voronoi cell. For 2 dimensions, the weighted Voronoi diagram under
the squared Euclidean distance (also known as the power diagram) can be constructed in O(n log n)
time [24, 57]. For higher dimensions d > 2, the construction time would be O(n⌈(d+1)/2⌉) [11].

The compact and connected nature of the semi-discrete optimal transport plans makes them attractive
for many ML applications; for instance, they can help achieve stability in training GANs and avoid
issues such as discontinuities and mode collapse [10, 19, 55], they improve the mapping between
continuous latent spaces and discrete data in Variational Autoencoders (VAEs) [9], and also have
been used in diffusion-based generative models [42]. However, there are no known exact algorithms
for computing semi-discrete optimal transport. Additionally, computing an ε-close transport plan is
known to be #P -Hard with respect to d and log 1/ε, i.e., an algorithm with an execution time that
is polynomial in d and log 1/ε seems unlikely [58]. Due to the intractability of the semi-discrete
optimal transport in high dimensions, researchers have considered taking n samples from the model,
which is a continuous distribution µ, and computing an optimal discrete transport plan between
the empirical distribution µn defined on the n samples and ν [43]. It has been shown that this
empirical p-Wasserstein distance converges to the true semi-discrete p-Wasserstein distance at a rate
of n−1/2p [22, 35, 50]; note that the rate of convergence does not depend on the dimension. However,
the optimal transport plan from samples is not necessarily a good approximation of the semi-discrete
transport plan and may cause biased gradients [14, 19].

For the discrete OT problem, there are several near-optimal scalable exact and approximation
algorithms [1, 4, 5, 20, 25, 26, 36, 39, 52, 54], some of which extend to very high dimensions. For the
semi-discrete OT in low dimensions, despite extensive work, scalable algorithms to find optimal semi-
discrete transport plans remain elusive. There are algorithms to compute an ε-close semi-discrete
transport plan using numerical solvers [12, 15, 17, 21, 37, 38, 41, 48], entropic regularization [6, 16,
32], and multiscale approaches [40, 44]. The execution time of all these algorithms is exponential
in both d and log 1/ε. Furthermore, their convergence relies on a smoothness parameter of µ. For
instance, a notable numerical algorithm by Oliker and Prussner [48] assumes that for a point b ∈ B, a
small change in y(b) will change the mass of µ inside the Voronoi cell of b by a proportionately small
amount [45, Remark 22]. Under this assumption, their algorithm executes poly(n, 1/ε) iterations,
where each iteration requires the computation of a weighted Voronoi diagram which takes nO(d) time.
Their algorithm slows down when µ is non-smooth and does not even converge when µ is a discrete
distribution. Furthermore, these methods approximate the transport cost but the transport plan that
they compute may not be an approximation of the optimal weighted Voronoi diagram.

Recently, Agarwal et al. [5] described a cost-scaling paradigm to compute an ε-close semi-discrete
transport plan. Their algorithm executes log ∆

ε scales, where ∆ is the diameter of A ∪ B. Within
each scale, they create an instance of the discrete OT problem of size O(n5) in R2 (and nO(d) in
Rd). Using any existing strongly polynomial primal-dual discrete OT solver, such as the algorithm
by Orlin [49], their algorithm computes an exact discrete OT plan for each instance and updates the
weights for B. The OT plan computed in the final scale is an ε-close transport plan. They show that
the weight assigned to any point b ∈ B is ε away from the optimal weight assignment. The overall
execution time of this algorithm is O(n9 log ∆

ε ) in R2 and nO(d) log ∆
ε in d-dimensions. Furthermore,

in the limit, the transport plan of their algorithm converges to the optimal weighted Voronoi diagram.
Note that their algorithm does not make any assumptions on µ.

Our Contributions. The following theorem states our main result.
Theorem 1.1. Let µ be a continuous probability distribution defined on a compact set A ⊂ R2, ν a
discrete probability distribution with a support B ⊂ R2 of size n, and ε > 0 a parameter. Suppose

1The p-Wasserstein cost of τ is defined as ¢(τ)1/p, and the p-Wasserstein distance between µ and ν is the
p-Wasserstein cost of a Wp-OT plan.
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there exists an oracle that, given a triangle φ, returns the mass of µ inside φ in Φ time. Then, an
ε-close W2-OT plan between µ and ν can be computed in O(n3(Φ + n log n) log ∆

ε ) time in the
worst-case, where ∆ is the diameter of A ∪B.

Similar to the algorithm by Agarwal et al. [5], our algorithm is also based on a cost-scaling approach
and executes O(log ∆

ε ) scales. However, the algorithm within each scale is different. Agarwal et al.
create a discrete OT instance with n4 vertices and n5 edges and use an exact discrete OT algorithm
to solve this instance. Instead, we extend the combinatorial primal-dual framework of discrete OT
to the continuous space and present an algorithm to find the desired semi-discrete transport plan
in O(n4 log n) time in the worst case. There are several challenges in extending the combinatorial
framework to semi-discrete settings, and overcoming these challenges is one of the main technical
contributions of the paper.

In more detail, in each scale, our algorithm maintains a (partial) transport plan, iteratively computes
a set of augmenting paths, and augments the transport plan along such paths until all of the mass
is transported. In order to assist in finding augmenting paths, we define a residual graph of size
O(n3) in the continuous space. Algorithms for discrete OT maintain dual weights for all points in
A ∪ B. Unlike in the discrete setting where the vertex set is fixed, the vertex set of our residual
graph includes “continuous regions", which evolve over time, and the vertex set of the residual graph
changes. Therefore, we are able to maintain weights only for points in B and not for the regions in A.
Our primal-dual framework (especially the definition of admissibility in Section 2), as well as our
algorithm (in particular Sections 3.2 and 3.4) contain a number of novel ideas, carefully designed
to address various challenges that arise due to the dynamically changing continuous regions of the
residual graph. Like all existing algorithms, our algorithm also requires access to an oracle that,
given a query triangle, returns the mass of µ inside the triangle. We note that Dijkstra’s shortest path
algorithm has been extended to continuous space [47], but we are not aware of any previous work
that extends a combinatorial discrete OT framework to continuous space.

Our algorithm extends to any dimension d ≥ 2 and any p ≥ 1 in a straightforward way. For d > 2,
the algorithm in Theorem 1.1 can be shown to have an execution time of O(nd+1(Φ+n log n) log ∆

ε ).
Note that the runtime of Oliker-Prussner’s algorithm has a factor 1/ε while ours has only log 1/ε.
Unlike their algorithm, ours does not make any assumptions on the smoothness of µ. Furthermore,
similar to Agarwal et al. [5], our transport plan approximates an optimal weighted Voronoi diagram
within a small additive factor.

One consequence of our algorithm is that we can use it to design a data structure that answers
ε-close optimal transport queries efficiently. More precisely, consider a large distribution µ with
support of size N . We can preprocess this distribution into a data structure that can return the total
weight of points inside a query triangle in O(N1−1/d) time [59]. By using Theorem 1.1, we can
report an ε-additive approximate transport plan to any query distribution ν with support of size k in
O(kd+1N1−1/d log ∆

ε ) time. Note that this query time is sub-linear in N . There has been some work
on computing 1-Wasserstein distance approximately in sub-linear time and for answering nearest
neighbor queries under 1-Wasserstein distance [13], but these algorithms have larger error and do not
extend to 2-Wasserstein distance.

Theorem 1.2. Let µ be a discrete probability distribution with a support A ⊂ Rd of size N . The
distribution µ can be preprocessed, in O(N logN) time, into an O(N) size data structure so that for
a discrete probability distribution ν with a support B ⊂ Rd of size k, and a parameter ε > 0, an
ε-close W2-OT plan between µ and ν can be computed in O(kd+1(N1−1/d + k log k) log ∆

ε ) time,
where ∆ is the diameter of A ∪B.

If the points in the supports of µ and ν have integer coordinates and the masses on them are rational
numbers, we can adapt our data structure in Theorem 1.2 to compute an exact Wp-OT plan between
µ and ν in O(kd+1(N1−1/d + k log k) log ∆

ε ) time for any fixed even value of p.

We also note that in 2-dimensions, for k < N1/4, we can use the data structure to compute an exact
discrete OT plan for any distribution ν in O(k3N1/2 log∆) time that is faster than any existing OT
algorithm that takes (Nk)1+o(1) time [3, 18].

For simplicity in presentation, we restrict our presentation to d = 2 and p = 2.
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Figure 1: (left) The δ-expanded Voronoi cell V δ
b of b (green shaded area), (middle) the partitioning

Xδ , and (right) the green region shows the mass of µ that is transported to b, the red points show the
representative points of regions, and the purple segments show the compressed transport plan τ̂ .

2 Combinatorial Framework

In this section, we extend the combinatorial framework used by discrete OT algorithms to the semi-
discrete settings. Let µ be a continuous probability distribution defined over a compact support
A ⊂ R2 and ν be a discrete distribution with a support set B of n points in R2.

Weighted Voronoi diagram. For any pair of points a, b ∈ R2, let d(a, b) = ∥a − b∥2. Given a
weight function y : B → R≥0 on the points in B, the weighted distance dy(a, b) from a point b ∈ B
to any point a ∈ R2 is defined as dy(a, b) = d(a, b)− y(b). For a point b ∈ B, the Voronoi cell of b
is the locus of all points with b as their weighted nearest neighbor; more formally,

Vory(b) = {a ∈ R2 | dy(a, b) ≤ dy(a, b
′),∀b′ ∈ B}.

The weighted Voronoi diagram VDy(B) of the points B with weights y(·) is the decomposition of
R2 induced by Voronoi cells. There exists a weight function y(·) for B such that µ(Vory(b)) = ν(b)
for every point b ∈ B, and an optimal semi-discrete transport plan transports the mass of ν at each
point b ∈ B to the mass of µ in Vory(b) ∩A [12].

δ-expanded Voronoi cell. Consider a weight function y(·) for the points in B. For any point b ∈ B
and a parameter δ > 0, consider the following weight function yδb .

yδb (b
′) =

{
y(b′) + δ, b′ = b,

y(b′), b′ ̸= b.
(1)

The δ-expanded Voronoi cell of b, denoted by V δ
b , is simply the Voronoi cell of b in the weighted

Voronoi diagram VDyδ
b
(B) of the point set B with weights yδb (·). See Figure 1 (left).

δ-feasibility. Any (possibly partial) transport plan τ between µ and ν along with a weight function
y(·) for the points in B is δ-feasible if

(F1) for any pair (a, b) ∈ A×B with τ(a, b) > 0, the point a lies inside the 2δ-expanded Voronoi
cell V 2δ

b .

For any δ-feasible transport plan τ, y(·), if τ is a complete transport plan between µ and ν, then
τ, y(·) is called a δ-optimal transport plan. Recall that any optimal transport plan transports the mass
at b to its weighted Voronoi cell. In a δ-optimal transport plan, however, the mass of each point b ∈ B
is transported inside a 2δ-expansion of the Voronoi cell of b. This introduces an additive increase of
at most 2δ in the cost of the transport plan.

Lemma 2.1. Any δ-optimal transport plan τ, y(·) between µ and ν is 2δ-close.

See Appendix A for a proof. Next, given a δ-feasible transport plan τ, y(·), we define a residual graph
and an augmenting path. We also introduce the process of augmenting τ along an augmenting path,
which allows us to increase the mass transported by τ .

4



Residual graph. Given a δ-feasible (possibly partial) transport plan τ, y(·), we construct a residual
graph Gδ by first partitioning the support A of µ into regions to form the vertex set of Gδ := G(τ, y, δ)
and then defining a set of directed edges.

Vertex set. For each point b ∈ B, consider the Voronoi cell of b and its δ- and 2δ-expansions V δ
b

and V 2δ
b . Let Xδ denote the arrangement [2] of these 3n cells across all n points of B. See Figure 1

(middle). For each region φ in this arrangement, pick an arbitrary representative point rφ inside φ and
assign it a mass of µrφ := µ(φ), where µ(φ) =

∫
φ
µ(a) da denotes the mass of µ inside φ. Let Aδ

denote the set of representative points of all regions in Xδ . The vertex set of Gδ is the point set Aδ ∪B
along with a source vertex s and a sink vertex t. We refer to any point b ∈ B whose mass is not fully
transported by τ as a free point and define its excess as the amount of mass of b that is not transported
by τ , i.e., ex(b) = ν(b) −

∫
a∈A

τ(a, b) da. Similarly, any point rφ ∈ Aδ is free if τ does not fully
transport the mass into the region φ, and its excess is defined as ex(rφ) = µrφ −

∑
b′∈B τ(φ, b′).

Edge set. For each pair (rφ, b) ∈ Aδ ×B, if τ(φ, b) > 0, we add a backward edge directed from rφ
to b in the residual graph. Furthermore, if rφ ∈ V 2δ

b , we add a forward edge directed from b to rφ in
Gδ . Additionally, we add a forward edge from the source s to every free point b ∈ B and a backward
edge directed from every free vertex rφ to t. This completes the description of the residual graph.

Lemma 2.2. For any δ > 0 and a δ-feasible transport plan τ̂ , y(·), the residual graph Gδ has O(n2)
vertices and O(n3) edges.

While describing our algorithm, it is useful to have the definition of weighted distance for all the
backward edges, including those incident on t. Therefore, we extend the definition of weighted
distance to any edge (rφ, t) as follows. Let bφ denote the weighted nearest neighbor of rφ in B, i.e.,
bφ := minb∈B dy(rφ, b). Define dy(rφ, t) := dy(rφ, bφ) + δ.

Compressing a semi-discrete transport plan. Given a semi-discrete transport plan τ that transports
mass from B to A, we construct a transport plan τ̂ from B to Aδ as follows. For each pair (rφ, b) ∈
Aδ × B, let τ̂(rφ, b) := τ(φ, b), i.e., we assign the entire mass transported from b to φ to the pair
(rφ, b) (Figure 1 (right)). We refer to the transport plan τ̂ as the compressed transport plan.
Lemma 2.3. For any δ-feasible semi-discrete transport plan τ, y(·), the compressed transport plan τ̂
along with weights y(·) is also δ-feasible.

Conversely, consider a transport plan τ̂ , y(·) from B to Aδ . One can compute a semi-discrete transport
plan τ that, given a pair (rφ, b) ∈ Aδ ×B, arbitrarily transports a mass of τ̂(rφ, b) from b to φ.
Lemma 2.4. Any δ-feasible transport plan τ̂ , y(·) from B to Aδ can be converted into a δ-feasible
semi-discrete transport plan τ from B to A.

We say that any compressed transport plan τ̂ is a forest if the edges transporting a positive mass in τ̂
do not create an undirected cycle.

Augmentation. Given the residual graph Gδ for a δ-feasible transport plan τ̂ , y(·), an alternating
path (resp. alternating cycle) is a directed path (resp. directed cycle) in Gδ . Note that, in any directed
path (resp. cycle) in the residual graph, the edges alternate between forward and backward edges.
An augmenting path P = ⟨s, b1, r1, . . . , rk, t = bk+1⟩ is a directed path from the source vertex
s to the sink vertex t in the residual graph. By construction, the vertex b1 and the vertex rk are
free vertices in the residual graph. One can augment τ̂ along P as follows. Define the bottleneck
capacity of the augmenting path P as bc(P ) := min{ex(b1), ex(rk),mini∈[1,k−1] τ̂(ri, bi+1)}. To
augment τ̂ along P , set τ̂(ri, bi) ← τ̂(ri, bi) + bc(P ) for each forward edge (bi, ri) ∈ P and
τ̂(ri, bi+1)← τ̂(ri, bi+1)− bc(P ) for each backward edge (ri, bi+1) ∈ P .
Lemma 2.5. The transport plan obtained after augmenting a δ-feasible transport plan τ̂ , y(·) along
any augmenting path P in the residual graph is δ-feasible.

Consider the following straightforward way to augment a semi-discrete transport plan. Given a
δ-feasible semi-discrete transport plan τ , y(·), we can compute an augmenting path P in the residual
graph and augment the compressed transport plan τ̂ along P . From Lemmas 2.3 and 2.5, τ̂ remains δ-
feasible and from Lemma 2.4, the updated δ-feasible transport plan τ̂ can be converted to a δ-feasible
semi-discrete transport plan as desired. To obtain a complete transport plan, one can iteratively apply
this procedure until there are no augmenting paths in the residual graph; however, this may result in
an unbounded number of iterations. To obtain an efficient algorithm, we iteratively compute a set of
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Figure 2: (left) Three admissible triples (b1, r1, b2), (b1, r2, b2), and (b1, r3, b2), where solid (resp.
dashed) lines show backward (resp. forward) edges, and (right) an admissible augmenting path.

special augmenting paths called the “admissible" augmenting paths and augment the transport plan
along these paths. By doing so, we can reduce the number of iterations to O(n).

Admissibility. Suppose τ̂ , y(·) is a δ-feasible transport plan between µ and ν. For any pair of points
b1, b2 ∈ B and any region φ ∈ Xδ such that τ̂(rφ, b2) > 0, the triple (b1, rφ, b2) is admissible if
dy(rφ, b1) < dy(rφ, b2)

2. See Figure 2 (left). Note that an admissible triple (b1, rφ, b2) forms by a
forward edge followed by a backward edge in the residual graph satisfying dy(rφ, b1) < dy(rφ, b2).
Intuitively, for any admissible triple ⟨b1, rφ, b2⟩, the mass of µ inside rφ is transported from b2 but b1
is nearer to rφ than b2 (with respect to the weighted distances).

We extend the definition of admissibility to augmenting paths and alternating cycles as follows. Any
augmenting path (resp. alternating cycle) P = ⟨b1, r1, b2, . . . , rk, bk+1⟩ is admissible if all triples
(bi, ri, bi+1), i ∈ [1, k], are admissible. In Figure 2(right), b2 transports mass to r1, and b1 is its
weighted nearest neighbor. By augmenting along this admissible path, we increase τ̂(r1, b1) and
reduce τ̂(r1, b2), thereby transporting more mass to r1 from its weighted nearest neighbor.

3 Algorithm

In this section, we present our cost-scaling algorithm that uses the combinatorial framework from
Section 2 to compute an ε-close semi-discrete OT plan. Classical discrete OT algorithms assign
weights to points in A ∪B and use them to identify a large set of augmenting paths. Their efficiency
critically relies on the acyclicity of the “search” graph. In contrast, during the execution of our
algorithm, a change in the weights of B creates a new weighted Voronoi diagram, which in turn
changes Aδ , the discrete representation of A, and thus the vertex set of the residual graph. Since Aδ

may change significantly in each iteration during the execution of our algorithm, we cannot maintain
weights for them. This creates significant challenges as the algorithm searches for augmenting paths
(See Section 3.2 for details). Furthermore, the updated residual graph may have cycles. We introduce
additional steps in our algorithm to eliminate these cycles (See Section 3.4 for details). First, we
present an overview of our algorithm and then present the details.

3.1 Overview

The algorithm runs for O(log ∆
ε ) scales, where ∆ is the diameter of A ∪ B. In each scale δ, our

algorithm maintains a transport plan τ̂δ and a weight y(b) for every point b ∈ B. Initially, set δ = ∆2

and define y(b) = 0 for all b ∈ B. In each scale δ, execute the following steps.

1. Initialization: Set τδ to be an empty transport plan. Compute the residual graph Gδ and the
compressed transport plan τ̂δ with respect to τδ, y(·).

2. Iterations: While τ̂δ is not a complete transport plan:
2Discrete OT algorithms use the weights assigned to A ∪B to define admissible edges. Since Aδ evolves

during the execution of our algorithm, we cannot maintain weights for them, forcing us to define admissibility
on a sequence of two consecutive edges (b1, rφ) and (rφ, b2) rather than per edge.
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(i) Compute a set of admissible augmenting paths in the residual graph Gδ and augment τ̂δ
along these paths using the SEARCHANDAUGMENT procedure described in Section 3.2.
At the end of this step, there are no admissible augmenting paths in the residual graph.

(ii) Adjust the weights of all points of B that are reachable from the source by admissible
paths by δ and recompute the set Aδ, the residual graph Gδ, and the compressed
transport plan τ̂δ using the INCREASEWEIGHTS procedure described in Section 3.3.

(iii) Update the compressed transport plan τ̂δ and the residual graph using the ACYCLIFY
procedure described in Section 3.4, so that the transport plan τ̂δ is a forest and the
residual graph does not have any admissible cycles.

3. Scale Update: Set δ ← δ/2.

After the execution of a scale δ ≤ ε/2, our algorithm terminates by returning a complete semi-discrete
transport plan τδ obtained from the compressed complete transport plan τ̂δ (using Lemma 2.4).

Invariants. As shown in Section 4 below, our algorithm iteratively updates the weights y(·) and the
transport plan τ̂δ while maintaining the following invariants:

(I1) The transport plan τ̂δ, y(·) is δ-feasible, and
(I2) At the start of each iteration, the transport plan τ̂δ is a forest and there are no admissible

cycles in the residual graphs.

Remark. The algorithm by Agarwal et al. [5] creates a discrete instance in each scale of the algorithm
by computing the arrangement of the δ-, 2δ-, . . ., and (4n + 1)δ-expanded Voronoi cells of each
point b ∈ B. Instead of using such a fine partition to create a discrete instance with O(n5) edges, we
work directly with the continuous space, maintain a much smaller residual graph with O(n3) edges,
and use our semi-discrete combinatorial framework to find a transport plan.

3.2 SEARCHANDAUGMENT Procedure

The SEARCHANDAUGMENT procedure executes a partial DFS-style search to identify a set of
admissible augmenting paths and augments the transport plan along these paths. The SEARCHAN-
DAUGMENT procedure is somewhat similar in style to the blocking flow procedure in Dinic’s
max-flow algorithm [23] or the partial-DFS procedure in Gabow-Tarjan’s algorithm [27], both of
which rely on the property that there are no admissible cycles in the residual graph. Unlike these
algorithms, in our case, if we augment along an arbitrary admissible augmenting path, we may create
an admissible cycle. See Figure 3.

We overcome this challenge by carefully calibrating the search algorithm in two ways. First, we
begin our search from the free regions instead of the free points of B. Thus, we reverse the direction
of all the edges of the residual graph and begin our search from the sink t. Second, we explore all
forward edges incident on a region in the increasing order of their weighted distance. This order of
processing edges ensures that no admissible cycles are created and that there are no more admissible
augmenting paths in the residual graph after the SEARCHANDAUGMENT procedure terminates. We
provide the details below.

Let
←−
Gδ be the graph formed by reversing the direction of all the edges of Gδ . We conduct our search

starting from the sink t in the graph
←−
Gδ. Initially, mark all points of B and all backward edges as

unvisited, define U := B as the set of unvisited points of B, and Q = ⟨t = b0⟩ as the search path
that the procedure grows. Execute the following steps until the search path Q becomes empty.

1. If Q = ⟨t = b0, r1, b1, . . . , ri, bi⟩ for some i ≥ 0,

(a) If there is an edge from bi to s in
←−
Gδ (i.e., bi is a free point), then P =

⟨s, bi, ri, . . . , r1, t⟩ is an augmenting path in Gδ. Augment τ̂δ along P and set
Q = ⟨t = b0⟩.

(b) Assume there is not edge from bi to s. If there is an unvisited edge (bi, r) in
←−
Gδ, then

add r = ri+1 to Q. Otherwise, mark bi as visited and remove bi from U and Q.
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Figure 3: (left) An arbitrary admissible augmenting path ⟨s, b1, rφ1 , b2⟩ (blue path), and (right) an
admissible cycle ⟨b1, rφ2

, b3, rφ3
, b4, rφ1

⟩ (red cycle) formed after augmentation.

2. If Q = ⟨t = b0, r1, b1, . . . , bi, ri+1⟩ for some i ≥ 0, let b := argminb′∈U dy(ri+1, b
′)

denote the unvisited point with the minimum weighted distance to ri+1
3.

(a) If (b, ri+1, bi) is admissible, i.e., dy(ri+1, b) < dy(ri+1, bi), then add b as bi+1 to Q.
(b) Otherwise, remove ri+1 from Q and mark the edge (bi, ri+1) as visited.

The algorithm terminates when the search path Q becomes empty, i.e., the procedure marked t as
visited and removed it from Q. The following lemma shows the properties of the SEARCHANDAUG-
MENT procedure.

Lemma 3.1. Suppose invariants (I1) and (I2) hold at the start of the SEARCHANDAUGMENT
procedure. Then, during the execution of the SEARCHANDAUGMENT procedure,

(S1) the transport plan τ̂δ, y(·) remains δ-feasible,
(S2) any point b ∈ B (resp. backward edge (r, b)) marked as visited will not form an admissible

augmenting path during the execution of the procedure, and
(S3) there are no admissible cycles in the residual graph.

3.3 INCREASEWEIGHTS Procedure

The INCREASEWEIGHTS procedure adjusts the weights of B leading to the formation of admissible
augmenting paths. The INCREASEWEIGHTS procedure performs a DFS on the residual graph Gδ
to compute a set K of all vertices of B that are reachable from the source vertex s by admissible
paths. It increases the weights of all points in K by δ (expand their Voronoi cells). Recall that
the set Aδ, and thus Gδ as well as the compressed transport plan τ̂δ depend on the weights of
B. The procedure then recomputes Aδ, Gδ, and τ̂δ from τδ. See Appendix B.2 for complete
details of the INCREASEWEIGHTS procedure. The following lemma states the properties of the
INCREASEWEIGHTS procedure.

Lemma 3.2. Suppose invariant (I1) holds at the start of the INCREASEWEIGHTS procedure. Then,
during the execution of the INCREASEWEIGHTS procedure,

(W1) the transport plan τ̂δ, y(·) remain δ-feasible,
(W2) the weight of each free point b ∈ B increases by δ, and
(W3) the weight of each point b ∈ B with free regions inside V δ

b remains unchanged.

3.4 ACYCLIFY Procedure

The change in the weights of B in the INCREASEWEIGHTS procedure requires us to recompute
the residual graph and the compressed transport plan. This recomputation may potentially create
a cycle in the transport plan or an admissible cycle in Gδ. The ACYCLIFY procedure eliminates
such cycles and ensures that the invariant (I2) holds at the start of the next iteration. Converting the
transport plan into a forest is critical for the efficiency of the SEARCHANDAUGMENT procedure
while eliminating admissible cycles is essential for the correctness of the SEARCHANDAUGMENT
procedure. The procedure executes the following steps. First, use the dynamic tree structure by
Sleator and Tarjan [56] to make the transport plan τ̂δ a forest. Then, execute a partial DFS search from

3To perform this step efficiently, in the construction of the residual graph, for each r ∈ Aδ , we store the list
of all neighbors of r sorted in increasing order of their weighted distance.
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each unvisited point b ∈ B similar to the one described in the SEARCHANDAUGMENT procedure to
detect admissible cycles. Upon finding an admissible cycle, cancel the cycle right away, remove the
vertices of the cycle from the search path, and continue the search. When all vertices are visited, no
admissible cycles are remaining in the residual graph. Since canceling admissible cycles could have
introduced new cycles in the transport plan, repeat the first step to update τ̂δ and make it a forest. See
Appendix B.3 for details. The following lemma shows the properties of the ACYCLIFY procedure.

Lemma 3.3. Suppose invariant (I1) holds at the start of the ACYCLIFY procedure. Then, during the
execution of the ACYCLIFY procedure,

(A1) the transport plan τ̂δ, y(·) remains δ-feasible, and
(A2) the transport plan τ̂δ is a forest and there are no admissible cycles in the residual graph.

This completes the description of our algorithm.

4 Algorithm Analysis

In this section, we first prove the correctness of our algorithm and then analyze its runtime.

Proof of invariants (I1) and (I2). For any scale δ, the initial transport plan τ̂δ is empty. Therefore,
τ̂δ along with the weights y(·) is δ-feasible. By properties (S1), (W1), and (A1), the transport plan
τ̂δ, y(·) remains δ-feasible in each iteration of our algorithm, and therefore, invariant (I1) holds. The
invariant (I2) is a direct consequence of property (A2) in Lemma 3.3.

Proof of Correctness. From Invariant (I1), in each scale δ, our algorithm maintains a δ-feasible
transport plan τ̂δ, y(·) during its execution. The while loop in Step 2 breaks when τ̂δ is a complete
transport plan. Therefore, τ̂δ along with weights y(·) is δ-optimal. From Lemma 2.4, one can convert
τ̂δ into a δ-optimal semi-discrete transport plan τδ . Given that our algorithm terminates when δ ≤ ε/2,
from Lemma 2.1, the transport plan returned by our algorithm is ε-close, as desired.

Efficiency of the algorithm. The SEARCHANDAUGMENT procedure runs a partial DFS on the
residual graph with O(n3) edges. Upon finding an augmenting path P , the procedure augments the
transport plan along P in O(|P |) time. In Lemma C.1, we use invariant (I2) to show that the total
length of all augmenting paths found by the procedure is O(n3). Hence, the running time of the
SEARCHANDAUGMENT procedure is O(n3). The INCREASEWEIGHTS procedure stores a sorted
list of neighbors for each region and executes a DFS procedure in the residual graph, which takes
O(n3 log n) time. After increasing the weight of a subset of points of B, the procedure recomputes
the residual graph Gδ and the transport plan τ̂δ , which can be done in O(n2(Φ + n log n)) time. See
Lemma C.2 in the appendix for details. In the ACYCLIFY procedure, converting a transport plan
into a forest can be done using a dynamic tree data structure [56] in O(n3 log n) time. To eliminate
the admissible cycles, the ACYCLIFY procedure relies on a partial DFS that runs in O(n3) time.
Therefore, the total time by the ACYCLIFY procedure is O(n3 log n) (see Lemma C.3 for details).
Combining the running times of all three procedures, each iteration of step 2 of our algorithm takes
O(n2(Φ + n log n)) time. In the following lemma, we show that in each scale, the total number of
iterations of step 2 of our algorithm is at most O(n).

Lemma 4.1. For each scale δ, the total number of iterations of step 2 of our algorithm is O(n).

Proof Sketch. Let τ2δ, y2δ(·) denote the 2δ-feasible semi-discrete transport plan computed by our
algorithm for scale 2δ, and let τδ, yδ(·) denote a partial semi-discrete transport plan maintained during
the execution of step 2 of our algorithm. Let X2δ (resp. Xδ) denote the partitioning of the set A with
respect to weights y2δ(·) (resp. yδ(·)). Let Y be the arrangement of all 3n cells used to construct
X2δ with all 3n cells used to construct Xδ. Let τ̂2δ (resp. τ̂δ) denote the compressed transport plan
for τ2δ (resp. τδ) using the partitioning Y . It is well-known that one can transform τ̂δ to τ̂2δ by
augmenting τ̂δ along a set of augmenting paths P on Y ×B and rearrange the transported mass along
a set of cycles C on Y ×B. Consider an augmenting path P = ⟨r1, b1, . . . , rk, bk⟩ in P . Since P is
a simple path, it contains each point of B at most once and therefore, it has a length at most 2n− 1.
Additionally, for all i ∈ [1, k], τ̂2δ(ri, bi) > 0 and for each i ∈ [2, k], τ̂δ(ri, bi−1) > 0. For each
edge (ri, bi), since τ̂2δ(ri, bi) > 0, by 2δ-feasibility of τ2δ, y2δ(·) (condition (F1)), the point bi is a
4δ-weighted nearest neighbor of ri with respect to weights y2δ(·). Similarly, for each edge (bi−1, ri),
since τ̂δ(ri, bi−1) > 0, by δ-feasibility of τδ, yδ(·) (condition (F1)), the point bi−1 is a 2δ-weighted
nearest neighbor of ri with respect to weights yδ(·). Since the length of P is at most 2n− 1 and the
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weight of b1 does not change (by property (W3) in Lemma 3.3), we show that for the free point bk in
P , yδ(bk)− y2δ(bk) ≤ 6nδ. Our algorithm increases the weight of bk by δ in each iteration (property
(W2) in Lemma 3.3), and therefore after 6n iterations, the point bk cannot be free, i.e., after O(n)
iterations, all points of B are fully transported in τ̂δ . We provide the full proof in Section C.4.

Using Lemma 4.1, the total time spent in step 2 in each scale of our algorithm is O(n3(Φ+ n log n)).
Since there are O(log ∆

ε ) scales, the overall runtime is O(n3(Φ + n log n) log ∆
ε ), thereby proving

Theorem 1.1.

5 Applications to the Discrete Optimal Transport Problem

In this section, we extend our combinatorial semi-discrete OT algorithm to the discrete OT problem
and design a data structure that preprocesses and stores a large discrete distribution µ and efficiently
computes an ε-close OT plan between µ and any query distribution ν in sub-linear time relative to the
support size of µ. More precisely, given a discrete distribution µ with a (possibly large) support A of
N points in R2, we design a data structure that, given a query discrete distribution ν with a support B
of k points, computes an ε-close transport plan between µ and ν in O(k3(

√
N +k log k) log ∆

ε ) time.
Additionally, we show that if the support points have bounded integer coordinates and the masses are
rational numbers, our data structure can efficiently compute an exact discrete OT plan.

At a high level, our data structure interprets the large discrete distribution µ as a continuous distribution
and uses a simplex range-searching data structure as an oracle to compute the mass of µ inside a query
triangle. In this way, for any query distribution ν, one can execute the steps of our combinatorial
semi-discrete algorithm to compute an ε-close transport plan between µ and ν. More formally, our
data structure preprocesses the distribution µ into a simplex range-searching data structure RS-DS,
which takes O(N) space, can be built in O(N logN) time, and returns the mass of µ inside a query
triangle in Φ = O(

√
N) time [59]. Given a query discrete distribution ν, one can use our algorithm

from Section 3 in conjunction with the RS-DS to compute an ε-close transport plan between µ and ν
in O(k3(

√
N + k log k) log ∆

ε ) time leading to Theorem 1.2.

Consider the special case where the points in A ∪B have positive integer coordinates bounded by λ,
the mass of µ (resp. ν) on each point a ∈ A (resp. b ∈ B) is a rational number of form xa

T (resp. xb

T )
for positive integers T and xa (resp. xb), and p is an even number. In this case, the p-Wasserstein
cost of any transport plan between µ and ν is an integer multiple of 1

T , and therefore, any 1
2T -close

transport plan between µ and ν would have a minimum cost. Thus, one can compute an exact discrete
OT plan between µ and ν by setting ε = 1

2T in our data structure, which would have a query time of
O(k3(

√
N + k log k) log(λT )), leading to the following corollary.

Corollary 5.1. When the points in the supports of the distributions µ and ν have integer coordinates
bounded by λ and the mass on each point is a rational number of form x

T , our data structure
computes, for any even number p, an optimal solution for the p-Wasserstein problem between µ and
ν in O(k3(

√
N + k log k) log(λT )) time.

6 Conclusion

In this paper, we designed a novel combinatorial framework for the semi-discrete optimal transport
problem and used it to compute an ε-close semi-discrete transport plan. We also used this framework
to design a data structure that stores a discrete distribution µ over a large support of size N and can
compute ε-close OT cost between µ and a query discrete distribution ν in a time that is sub-linear in
N . We conclude with the following question: Can we use our combinatorial framework to compute
an ε-close semi-discrete transport plan between high dimensional distributions in poly(n, d, 1/ε)
time.
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A Missing Proofs of Section 2

In this section, we present the missing proofs and details of our combinatorial framework described
in Section 2.

Lemma 2.1. Any δ-optimal transport plan τ, y(·) between µ and ν is 2δ-close.

Proof. Define the weighted cost of a transport plan τ ′ as ¢y(τ ′) :=
∑

b∈B

∫
A
dy(a, b)τ

′(a, b) da.
For any complete transport plan τ ′,

¢y(τ
′) =

∑
b∈B

∫
A

dy(a, b)τ
′(a, b) da =

∑
b∈B

∫
A

(
d(a, b)− y(b)

)
τ ′(a, b) da = ¢(τ ′)−

∑
b∈B

y(b)ν(b).

(2)
For any point a ∈ A, let ba denote the weighted nearest neighbor of a, i.e., ba := argminb∈B dy(a, b).
By property (F1) in the definition of δ-feasibility,

¢y(τ) =
∑
b∈B

∫
A

dy(a, b)τ(a, b) da ≤
∑
b∈B

∫
A

(
dy(a, ba) + 2δ

)
τ(a, b) da

=
∑
b∈B

∫
A

dy(a, ba)τ(a, b) da+ 2δ. (3)

Let τ∗ denote an optimal transport plan from µ to ν. Then,

¢y(τ
∗) =

∑
b∈B

∫
A

dy(a, b)τ
∗(a, b) da ≥

∑
b∈B

∫
A

dy(a, ba)τ
∗(a, b) da. (4)

Combining Equations (3) and (4) and plugging τ and τ∗ in Equation (2),

¢(τ) = ¢y(τ) +
∑
b∈B

y(b)ν(b) ≤
[∑
b∈B

∫
A

dy(a, ba)τ(a, b) da+ 2δ

]
+

∑
b∈B

y(b)ν(b)

≤ ¢y(τ
∗) + 2δ +

∑
b∈B

y(b)ν(b) = ¢(τ∗) + 2δ.

Therefore, ¢(τ) ≤ ¢(τ∗) + 2δ and τ is 2δ-close.

Residual graph. Next, we show that for any δ > 0 and any δ-feasible transport plan τ̂ , y(·), the
residual graph Gδ has O(n2) vertices and O(n3) edges, leading to Lemma 2.2. To do so, we show
below that the partitioning Xδ consists of O(n2) regions. We then conclude that the number of
vertices of Gδ is O(n2). Furthermore, since the residual graph is a bipartite graph between set B of
size n and set Aδ of size O(n2), the number of edges of Gδ would be at most O(n3).

Recall that the partitioning Xδ is constructed as the arrangement of all Voronoi cells, δ-expansions,
and 2δ-expansions of the Voronoi cells of all points in B. Let V denote the set of vertices of this
arrangement. Since the arrangement is a planar graph, the number of faces (i.e., regions) in Xδ is
O(|V|). Therefore, to show that Xδ has O(n2) regions, we show that the number of vertices of this
arrangement is O(n2).

For each point b ∈ B, let V 0
b (resp. V δ

b , V 2δ
b ) denote the Voronoi cell (resp. δ-expanded Voronoi cell,

2δ-expanded Voronoi cell) of b, and let y0b (resp. yδb , y
2δ
b ) denote the weights of B used to compute

the cell. Note that each Voronoi cell V i
b for each b ∈ B and i ∈ {0, δ, 2δ} has at most n vertices.

Hence, the total number of Voronoi vertices in the arrangement Xδ is O(n2). Next, we count the
number of intersection points of these Voronoi cells. For each pair of points b1, b2 ∈ B, consider the
pair of cells V i

b1
and V j

b2
, for some i, j ∈ {0, δ, 2δ}. We show that V i

b1
and V j

b2
intersect each other in

at most two points.

Define the weighted bisector of two points b and b′ with respect to weights y(·) as the locus of points
that have the same weighted distance to b and b′, i.e., all points x ∈ R2 such that dy(x, b) = dy(x, b

′).
Note that under the squared Euclidean distances, the weighted bisector of two points is a straight
line. Let v denote an intersection point of V i

b1
and V j

b2
, and suppose v lies on the segment of V i

b1

15



Figure 4: For two cells V i
b1

(green cell) and V j
b2

(orange cell), any intersection point v lies on their
weighted bisector.

corresponding to the weighted bisector of b1 and a point b3 ∈ B (See Figure 4). Note that if b3 = b2,
then V i

b1
and V j

b2
share a segment containing v, which means that

dy(v, b1)− i = dyi
b1
(v, b1) = dyi

b1
(v, b2) = dy(v, b2),

and also
dy(v, b2)− j = dyj

b2

(v, b2) = dyj
b2

(v, b1) = dy(v, b1).

Therefore, in this case, i = j = 0, and the two endpoints of the shared segment is counted toward the
number of Voronoi vertices of the arrangement. Hence, we assume b3 ̸= b2. In this case,

dyi
b1
(v, b1) = dyi

b1
(v, b3) = min

b∈B
dyi

b1
(v, b). (5)

By the construction of the weight function yib1(·) in Equation (1), for any point b ∈ B \ {b1, b2},
yib1(b) = yjb2(b) = y(b); thus, using Equation (5),

dyj
b2

(v, b3) = dyi
b1
(v, b3) = min

b∈B\{b1,b2}
dyi

b1
(v, b) = min

b∈B\{b1,b2}
dyj

b2

(v, b). (6)

Using Equation (6), the point v also lies in the segment of V j
b2

that corresponds to the weighted
bisector of b2 and b3 with respect to weights yjb2 . Thus,

dyi
b1
(v, b1) = dyi

b1
(v, b3) = dyj

b2

(v, b3) = dyj
b2

(v, b2).

In other words, the point v satisfies

d(v, b1)− (y(b1) + i) = d(v, b2)− (y(b2) + j),

i.e., the point v lies on the weighted bisector of b1 and b2 (the blue dashed line in Figure 4). Since the
weighted bisector is a straight line, it intersects the convex polygon V i

b1
in at most 2 points; hence, the

two Voronoi cells V i
b1

and V j
b2

intersect each other in at most 2 points. Since the are O(n2) pairs of
such Voronoi cells, each intersecting each other in at most 2 points, the total number of intersection
points is at most O(n2), as claimed.
Lemma 2.2. For any δ > 0 and a δ-feasible transport plan τ̂ , y(·), the residual graph Gδ has O(n2)
vertices and O(n3) edges.

Next, we extend our bounds for the number of vertices and edges of the residual graph in Lemma 2.2
to any dimension d ≥ 3 and show that for any pair of d-dimensional distributions µ and ν and any
δ-feasible transport plan τ̂ , y(·), the residual graph Gδ has O(nd) vertices and O(nd+1) edges. We
prove our bounds by showing that the number of vertices of the arrangement Xδ is O(nd). Using this
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bound, we get that the number of regions in the arrangement is upper-bounded by O(nd); therefore,
|Aδ| = O(nd) and the residual graph has O(nd) vertices. Furthermore, since Gδ is a bipartite graph
between set B with n points and set Aδ with O(nd) points, the number of edges would be bounded
by O(nd+1).

For each point b ∈ B and each i ∈ {0, δ, 2δ}, the Voronoi cell V i
b has O(n⌈d/2⌉) vertices; since 3n

such cells are used in the construction of the arrangement, the total number of Voronoi vertices in
the arrangement is O(n⌈d/2⌉+1). Next, we bound the number of intersection points of these Voronoi
cells. For each d-tuple (V i1

b1
, V i2

b2
, . . . , V id

bd
) of Voronoi cells, for d distinct points b1, . . . , bd and d

values i1, . . . , id ∈ {0, δ, 2δ}, let v denote a point in the intersection of these cells. Similar to our
analysis for 2-dimensional distributions, we show that v lies on the weighted bisector of b1, . . . , bd,
where the weight of each point bj is y(bj) + ij . Since this weighted bisector is a straight line, and
since a straight line intersects a convex polytope in at most 2 points, each d-tuple of Voronoi cells
intersect in at most 2 points, where the number of such d-tuples are O(nd)4. Therefore, we conclude
that the number of intersection points is O(nd), as desired.

Let v be an intersection point of the d Voronoi cells V i1
b1
, V i2

b2
, . . . , and V id

bd
. Suppose v lies on the

(d− 1)-dimensional hyperplane of V i1
b1

that is shared between b1 and a point bd+1 ∈ B. In this case,

d
y
i1
b1

(v, b1) = d
y
i1
b1

(v, bd+1) = min
b∈B

d
y
i1
b1

(v, b). (7)

We claim that for any k ∈ {1, . . . , d}, yikbk(bd+1) = y(bd+1). Consider the following two cases:

• If bd+1 = bj for some j ∈ {2, . . . , d}, then

dy(v, b1)− i1 = d
y
i1
b1

(v, b1) = d
y
i1
b1

(v, bj) = dy(v, bj),

and also
dy(v, bj)− ij = d

y
ij
bj

(v, bj) = d
y
ij
bj

(v, b1) = dy(v, b1).

Therefore, i1 = ij = 0 and for any k ∈ {1, . . . , d}, yikbk(bd+1) = y(bd+1).

• Otherwise, bd+1 /∈ {b1, . . . , bd} and by the construction of yikbk(·), for any k ∈ {1, . . . , d},
yikbk(bd+1) = y(bd+1).

Therefore, from Equation (7),

dy(v, bd+1) = d
y
i1
b1

(v, bd+1) = min
b∈B

d
y
i1
b1

(v, b) = min
b∈B

dy(v, b), (8)

and for any k ∈ {1, . . . , d}, since v lies on a (d − 1)-dimensional hyperplane of V ik
bk

, it has to lie
on the hyperplane of V ik

bk
that is shared between bk and bd+1; therefore, d(v, bd+1) − y(bd+1) =

d(v, bk)− (y(bk) + ik). Thus,

d(v, b1)− (y(b1) + i1) = d(v, b2)− (y(b2) + i2) = . . . = d(v, bd)− (y(bd) + id). (9)

From Equation (9), the point v lies on the weighted bisector of b1, . . . , bd with weights y(b1) +

i1, . . . , y(bd) + id, and the d-tuple (V i1
b1
, V i2

b2
, . . . , V id

bd
) intersect each other in at most 2 points.

Lemma A.1. For any dimension d ≥ 2, a parameter δ > 0, and a δ-feasible transport plan τ̂ , y(·),
the residual graph Gδ has O(nd) vertices and O(nd+1) edges.

Compressing the transport plan. Recall that for any semi-discrete transport plan τ from B to A,
a set of weights y(·), and a parameter δ > 0, the compressed transport plan τ̂ is a discrete transport
plan from B to Aδ. Note that the definition of δ-feasibility (and more precisely, condition (F1)) is
applicable for the discrete OT as well; the discrete transport plan τ̂ along with weights y(·) for B
is δ-feasible if τ̂ transports the mass of each point b ∈ B to points of Aδ within its 2δ-expanded
Voronoi cell. Any complete transport plan τ̂ from B to Aδ that is δ-feasible along with weights y(·)
is called δ-optimal.

4Here, the constant is O(nd) hides a factor of 3d.
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Lemma A.2. Any δ-optimal compressed transport plan τ̂ , y(·) from B to Aδ is 2δ-close.

Proof. For any transport plan τ ′ from B to Aδ define ¢y(τ ′) :=
∑

(r,b)∈Aδ×B dy(r, b)τ
′(r, b). Then,

¢y(τ
′) =

∑
(r,b)∈Aδ×B

dy(r, b)τ
′(r, b) =

∑
(r,b)∈Aδ×B

(
d(r, b)− y(b)

)
τ ′(r, b) = ¢(τ ′)−

∑
b∈B

y(b)ν(b).

(10)
For any point r ∈ Aδ , let br denote the weighted nearest neighbor of r, i.e., br := argminb∈B dy(r, b).
By the definition of δ-feasibility, for any pair (r, b) with τ̂(r, b) > 0, we have dy(r, b) ≤ dy(r, br)+2δ.
Therefore,

¢y(τ̂) =
∑

(r,b)∈Aδ×B

dy(r, b)τ̂(r, b) ≤
∑

(r,b)∈Aδ×B

(
dy(r, br) + 2δ

)
τ̂(r, b)

=
∑

(r,b)∈Aδ×B

dy(r, br)τ̂(a, b) + 2δ. (11)

Let τ∗ denote an optimal transport plan from B to Aδ . Then,

¢y(τ
∗) =

∑
(r,b)∈Aδ×B

dy(r, b)τ
∗(r, b) ≥

∑
(r,b)∈Aδ×B

dy(r, br)τ
∗(r, b). (12)

Combining Equations (11) and (12) and plugging τ̂ and τ∗ in Equation (10),

¢(τ̂) = ¢y(τ̂) +
∑
b∈B

y(b)ν(b) ≤
[ ∑
(r,b)∈Aδ×B

dy(r, br)τ̂(r, b) + 2δ

]
+

∑
b∈B

y(b)ν(b)

≤ ¢y(τ
∗) + 2δ +

∑
b∈B

y(b)ν(b) = ¢(τ∗) + 2δ.

Therefore, ¢(τ̂) ≤ ¢(τ∗) + 2δ and τ̂ is 2δ-close.

The following observation, which is straightforward from the construction of the partitioning Xδ,
helps in proving Lemmas 2.3 and 2.4.

Observation A.3. For any region φ ∈ Xδ and any point b ∈ B, the region φ either completely lies
inside V 2δ

b or it is completely outside V 2δ
b .

Lemma 2.3. For any δ-feasible semi-discrete transport plan τ, y(·), the compressed transport plan τ̂
along with weights y(·) is also δ-feasible.

Proof. Consider any point b ∈ B and any region φ ∈ Xδ such that τ(φ, b) > 0, i.e., in the compressed
graph, τ̂(rφ, b) > 0. To prove this lemma, we show that rφ ∈ V 2δ

b . Since τ(φ, b) > 0, there exists
a point a ∈ φ such that τ(a, b) > 0, and by the δ-feasibility of τ, y(·), we have a ∈ V 2δ

b ; therefore,
using Observation A.3, the region φ has to completely lie inside V 2δ

b , and the representative point rφ,
which is a point inside φ also lies inside V 2δ

b . Hence, τ̂ , y(·) is δ-feasible.

Lemma 2.4. Any δ-feasible transport plan τ̂ , y(·) from B to Aδ can be converted into a δ-feasible
semi-discrete transport plan τ from B to A.

Proof. Consider any transport plan τ from B to A such that for any point b ∈ B and any region
φ ∈ Xδ, transports a mass of τ̂(rφ, b) from b to the mass of µ inside the region φ. One such
construction is to assign τ(a, b) =

τ̂(rφ,b)
µ(φ) µ(a) for each point a ∈ φ. We next show that the transport

plan τ is δ-feasible.

Consider any point b ∈ B and any point a ∈ A such that τ(a, b) > 0. We prove this lemma by
showing that a ∈ V 2δ

b . Suppose φ ∈ Xδ is the region containing the point a. Since τ(a, b) > 0, we
should have τ̂(rφ, b) > 0, and by the δ-feasibility of τ̂ , y(·), we have rφ ∈ V 2δ

b . By Observation A.3,
the whole region φ has to lies inside V 2δ

b and therefore, the point a also lies inside V 2δ
b . Hence,

τ, y(·) is δ-feasible.
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Augmentation. In this section, we first show that upon augmenting a transport plan τ̂ along an
augmenting path P , the transport plan remains valid. We then show that upon augmentation, either a
backward edge gets removed from the transport plan or a free point will become fully transported.
We finally prove Lemma 2.5.

For an augmenting path P = ⟨s, b1, r1, . . . , rk, t⟩ from a free point b1 to a free point rk, recall that
the bottleneck capacity of P is defined as

bc(P ) := min{ex(b1), ex(rk), min
i∈[1,k−1]

τ̂(ri, bi+1)},

where ex(b1) (resp. ex(rk)) denotes the excess mass of b1 (resp. rk). To show that the transport plan
after augmentation is a valid one, we show that no point v in Gδ transports more mass than the mass
at v and that each edge transports a non-negative amount of mass.

In the augmentation process, for any i ∈ {1, . . . , k − 1}, we decrease τ̂(ri, bi+1) by bc(P ), where
by definition, bc(P ) ≤ τ̂(ri, bi+1); hence, τ̂(ri, bi+1) ≥ 0 after augmentation. Furthermore, for
any forward edge (bi, ri), i ∈ {1, . . . , k}, we increases τ̂(ri, bi) by bc(P ), and τ̂(ri, bi) remains
non-negative.

For any i ∈ {2, . . . , k}, we increase τ̂(bi, ri) (resp. decrease τ̂(ri−1, bi)) by bc(P ); hence, the total
amount of mass transported from bi remains unchanged. Similarly, for each i ∈ {1, . . . , k − 1}, we
increase τ̂(bi, ri) (resp. decrease τ̂(ri, bi+1)) by bc(P ) and the total amount of mass transported into
ri remains unchanged. For the endpoint b1 (resp. rk), we only increase the amount of mass transported
from b1 (resp. into rk) by bc(P ), where by definition, bc(P ) ≤ ex(b1) (resp. bc(P ) ≤ ex(rk)).
Therefore, the total mass transport from b1 (resp. into rk) after augmentation is at most ν(b) (resp.
µrk ), as desired.

Note that if a backward edge (r, b) ∈ P determines the bottleneck capacity of the augmenting path
P , then τ̂(r, b) = 0 after augmentation and the backward edge is removed from the residual graph.
Otherwise, if the endpoint b1 (reps. rk) determines the bottleneck capacity of P , then b1 (resp. rk)
will be fully transported after augmentation.
Lemma 2.5. The transport plan obtained after augmenting a δ-feasible transport plan τ̂ , y(·) along
any augmenting path P in the residual graph is δ-feasible.

Proof. Let P = ⟨s, b1, r1, . . . , bk, rk, t⟩ denote an augmenting path in the residual graph. When
augmenting the transport plan along P , we increase the mass transportation on forward edges
(bi, ri) for each i ∈ [1, k] and decrease the mass transportation on the backward edges (ri, bi+1) for
each i ∈ [1, k − 1]. Therefore, any pair (r, b) that transports mass after augmentation but was not
transporting mass before augmentation has to be a forward edge of P . Since we only add forward
edges from the point b to the representative points in V 2δ

b ∩Aδ , the edge (r, b) satisfies the δ-feasibility
condition (F1), and τ̂ , y(·) remains feasible after augmentation.

B Missing Details of Section 3

In this section, we provide the missing details of the implementation of the INCREASEWEIGHTS and
ACYCLIFY procedures and also prove the properties of the three procedures.

B.1 Missing Proofs of the SEARCHANDAUGMENT Procedure

Lemma 3.1. Suppose invariants (I1) and (I2) hold at the start of the SEARCHANDAUGMENT
procedure. Then, during the execution of the SEARCHANDAUGMENT procedure,

(S1) the transport plan τ̂δ, y(·) remains δ-feasible,
(S2) any point b ∈ B (resp. backward edge (r, b)) marked as visited will not form an admissible

augmenting path during the execution of the procedure, and
(S3) there are no admissible cycles in the residual graph.

Proof. We prove the properties separately in the following.

Property (S1). By the construction of the search path, any augmenting path computed by the
SEARCHANDAUGMENT procedure is an admissible augmenting path. From Lemma 2.5, augmenting
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Figure 5: (left) An augmenting path found by the SEARCHANDAUGMENT procedure (blue path),
and (right) two admissible triples (highlighted in pink) formed after augmentation.

τ̂δ along an admissible augmenting path does not violate the δ-feasibility condition; hence, the trans-
port plan τ̂δ, y(·) is a δ-feasible transport plan during the execution of the SEARCHANDAUGMENT
procedure and (S1) holds.

Next, we present an overview of a new property of the SEARCHANDAUGMENT procedure, which we
formally state and prove in Lemma B.1 below. Using that, we first prove (S3) and then prove (S2).

In Figure 5 (left), suppose the blue edges show an admissible augmenting path found by the
SEARCHANDAUGMENT procedure, and suppose the green (resp. red) points show the unvisited
(resp. visited) points of B. For the region φ, suppose ⟨b1, b2, . . . , b6⟩ denote the set of neighbors of
rφ in Gδ , sorted in increasing order of their weighted distance to rφ. When the partial DFS procedure
processes rφ, the two weighted nearest neighbors of φ (i.e., b1 and b2) are already marked as visited,
leading the procedure to add b3 to the search path. After augmentation (Figure 5 (right)), for the
newly created backward edge (rφ, b3), the only admissible triples containing (rφ, b3) are (b1, rφ, b3)
and (b2, rφ, b3) (the triples highlighted in pink), where b3 is unvisited and both b1 and b2 are visited.
More formally, as shown in Lemma B.1, for an augmenting path P found by the procedure, assuming
that (S3) holds before augmentation along P , for any newly created admissible triples (b, rφ, b′) after
augmenting the transport plan along P , the point b (resp. b′) is marked as visited (resp. unvisited).

Property (S3). We begin by presenting an overview of our proof. Consider any augmenting path P
found by the SEARCHANDAUGMENT procedure. Assuming that (S3) holds before augmentation
along P , all vertices that are reachable from a visited point b by an admissible path in the procedure
are also visited, since those points were also added to the search path, did not lead to an admissible
augmenting path, marked as visited and removed from the search path. Hence, all points having an
admissible path to the visited points (i.e., all points that are reachable from the visited points in our
backward DFS) are also visited. Therefore, there are no admissible paths from an unvisited point to a
visited point in the residual graph. After augmenting along P , by Lemma B.1, for any newly formed
admissible triple (b, rφ, b

′), the point b (resp. b′) is visited (resp. unvisited), and since there are no
admissible paths from any unvisited point to any visited point, the newly formed admissible triple
(b, rφ, b

′) does not form a cycle of admissible triples. Hence, (S3) holds after augmentation as well.
We provide the details of the proof below.

Let P 1, . . . , P k denote the sequence of augmenting paths computed by the SEARCHANDAUGMENT
procedure, and let τ̂0δ , τ̂

1
δ , . . . , τ̂

k
δ denote the sequence of transport plans computed by the procedure,

i.e., τ̂0δ is the transport plan computed in the previous iteration, and for each i ∈ [1, k], τ̂ iδ is obtained
by augmenting τ̂ i−1

δ along P i. Let Gi denote the residual graph corresponding to τ̂ iδ for each i ∈ [0, k].
Let V i (resp. U i) denote the set of visited (resp. unvisited) points in B when the procedure augments
τ̂ i−1
δ along P i.

Initially, from invariant (I2), there are no cycles of admissible triples in the residual graph, and (S3)
holds for G0. For any i ∈ [1, k], assuming G0, . . . ,Gi−1 satisfies (S3), we show that Gi also satisfies
(S3). Suppose (b, r, b′) is any admissible triple in Gi formed after augmenting τ̂ i−1

δ along P i, i.e.,
the triple (b, r, b′) is admissible in Gi but not in Gi−1. We show that the triple (b, r, b′) does not
participate in any admissible cycles; hence, using property (S3) on Gi−1, there are no admissible
cycles in Gi and property (S3) holds for Gi as well.
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Since (S3) holds for G0, . . . ,Gi−1, for any visited point b ∈ V i−1, the point b has been added to
the search path Q by the SEARCHANDAUGMENT procedure, did not lead to the computation of
an augmenting path, marked as visited and removed from the path. In this case, any point b′′ that

is reachable from b by an admissible path in
←−−
Gi−1 (and therefore, is reachable by our partial DFS

procedure from b) would have also been added to the path, marked as visited and removed from Q,
i.e., any point b′′ ∈ B that has an admissible path to the visited point b in the residual graph Gi−1

is also visited. By this observation, there are no admissible paths from any unvisited point in B to
any visited point in Gi−1. From Lemma B.1, for any newly formed admissible triple (b, r, b′), we
have b ∈ V i−1 and b′ ∈ U i−1. Thus, all admissible triples formed after augmenting τ̂ i−1

δ along P i

are from a visited point to an unvisited point, while there are no admissible paths from any unvisited
point to any visited point; therefore, the newly formed admissible triples do not form any admissible
cycles and (S3) holds for Gi as well.

Property (S2). We use the property (S3) to show that (S2) holds. For any point b ∈ B that is marked
as visited, as discussed above, if (S3) holds, all vertices that are reachable from b by an admissible
path in our backward DFS (i.e., all points having an admissible path to b in the residual graph) are
also visited. Since any free point bf ∈ B is unvisited, bf does not have an admissible path to any
visited point b ∈ B and therefore, the visited points do not participate in an admissible augmenting
path. Furthermore, the procedure marks a backward edge (r, b) as visited if, for each admissible triple
(b′, r, b), the point b′ is visited. Since the point b′ cannot be included in an admissible augmenting
path, the visited backward edge (r, b) also does not form an admissible augmenting path.

Lemma B.1. During the execution of the SEARCHANDAUGMENT procedure, suppose P is an
admissible augmenting path found by the procedure, and let G (resp. G′) denote the residual graph
before (resp. after) augmenting the transport plan along P . Let (b, r, b′) denote an admissible triple
in G′ that is not admissible in G. Assuming that (S3) holds prior to augmentation along P , the point
b is marked as visited, and b′ is marked as unvisited.

Proof. Consider any triple (b, r, b′) that is admissible in G′ but not in G. Recall that by the definition
of the admissible triples, (r, b′) is a backward edge in G′ and dy(r, b) > dy(r, b

′). Since the
SEARCHANDAUGMENT procedure does not change the weights y(·), the only case where (b, r, b′)
is not admissible in G is when (r, b′) is not a backward edge in G, i.e., the pair (b′, r) is in P as a
forward edge, and augmenting τ̂δ along P results in transporting mass from b′ to r. On the other
hand, by step 2(a) of the SEARCHANDAUGMENT procedure, a forward edge (b′, r) will be added
to the search path only if b′ is the weighted nearest unvisited neighbor of r; in other words, since
dy(r, b) > dy(r, b

′) and the procedure added b′ to the search path (instead of b), the point b was
marked as visited by the procedure. Therefore, for any newly formed admissible triple (b, r, b′), point
b (resp. b′) is marked as visited (resp. unvisited).

B.2 Missing Details and Proofs of the INCREASEWEIGHTS Procedure

After the execution of the SEARCHANDAUGMENT procedure, no admissible augmenting paths
remain in the residual graph, i.e., there are no admissible paths from the source vertex s to the sink
vertex t. The INCREASEWEIGHTS procedure increases the weights of the subset of points in B that
are reachable from s by admissible paths to expand their Voronoi cells and to create new admissible
triples in the residual graph. For instance, in Figure 6 (left), the path from s to t is not admissible (the
triple (b2, r2, b3) is not admissible, as b3 has a lower weighted distance to r2 than b2). As shown in
Figure 6 (right), the INCREASEWEIGHTS procedure then increases the weight of the points b1 and
b2 (which are reachable from s), leading to the formation of an admissible augmenting path (note
that upon updating the weights, the regions corresponding to r1 and r2 have slightly changed). The
details of the INCREASEWEIGHTS procedure are described below.

For each point r ∈ Aδ, let N (r) ⊆ B denote the set of points b ∈ B with τ̂δ(r, b) > 0, sorted
in decreasing order of their weighted distance to r, i.e., N (r) = {b1, . . . , bk} where dy(r, b1) ≥
dy(r, b2) ≥ . . . dy(r, bk). Mark all points b ∈ B and all forward edges (b, r) as unvisited and set
K = ∅, let U = B denote the set of unvisited points of B, and define Q := ⟨s⟩ as the search path
that the algorithm grows. Execute the following steps until Q becomes empty.
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Figure 6: (left) After the execution of the SEARCHANDAUGMENT procedure, there are no admissible
augmenting paths in Gδ , and (right) by increasing the weights of the points that are reachable from s
by augmenting paths (points b1 and b2), new admissible triples are created (e.g. (b2, r2, b3)), which
might lead to the formation of admissible augmenting paths.

1. If Q = ⟨s⟩, then if there exists an unvisited point b ∈ U such that (s, b) ∈ Gδ , then add b to
Q as b1. Otherwise, remove s from Q.

2. If Q = ⟨s, b1, r1, . . . , bi⟩ for some i ≥ 1,
(a) If there exists an unvisited forward edge (bi, r) in Gδ , add r to Q as ri+1.
(b) Otherwise, mark bi as visited, remove bi from U , add bi to K, and remove bi from Q.

3. If Q = ⟨s, b1, r1, . . . , bi, ri⟩ for some i ≥ 1, let b := argminb′∈U∩N (r) dy(ri, b
′) denote

the unvisited point of b with the minimum weighted distance to r among all points of B that
transport mass to r.
(a) If (bi, ri, b) is admissible, i.e., dy(ri, b) > dy(ri, bi), then add b as bi+1 to Q.
(b) Otherwise, remove ri from Q and mark (bi, ri) as visited.

After the DFS procedure terminates, for each point b ∈ K, set y(b) ← y(b) + δ. This completes
the description of the DFS step. We next describe how to recompute the residual graph and the
compressed transport plan with respect to the updated weights.

Let y(·) (resp. y′(·)) denote the weights of the points in B after (resp. before) the weight updates, let
Xδ (resp. X ′

δ) denote the partitioning of the set A with respect to weights y(·) (resp. y′(·)), and let
Aδ (resp. A′

δ) denote the set of representative points of the regions in Xδ (resp. X ′
δ). Furthermore,

let τ̂ ′δ denote the transport plan maintained by the algorithm for partitioning X ′
δ. To compute the

new transport plan τ̂δ for the point set Aδ, the INCREASEWEIGHTS procedure first computes the
arrangement Y of all 3n cells used to construct X ′

δ with all 3n cells used to construct Xδ, i.e., Y is
the arrangement of Voronoi cell, δ-expanded Voronoi cell, and 2δ-expanded Voronoi cell of each
point b ∈ B both before and after weight updates. See Figure 7. For each region φ ∈ X ′

δ ∪ Xδ, let
C(φ) ⊆ Y denote the set of regions of Y that lie inside φ. For each region ϱ ∈ Y , pick an arbitrary
representative point rϱ inside ϱ. We denote the set of all representative points of the regions in Y by
Y .

The INCREASEWEIGHTS procedure first converts τ̂ ′δ to a transport plan τ̂ over the finer partitioning
Y × B by simply splitting each region φ′ in X ′

δ (and its mass transportation) to fine regions of Y
inside φ′. The procedure then uses τ̂ to construct a transport plan τ̂δ over Aδ × B by merging the
regions of Y (and their mass transportation) to regions of Xδ . The details are provided next.

For each point b ∈ B, each region φ′ ∈ X ′
δ with τ̂ ′δ(rφ′ , b) > 0, and each ϱ′ ∈ C(φ′), set

τ̂(ϱ′, b) = µ(ϱ′)
µ(φ′) τ̂

′
δ(rφ′ , b). This completes the description of the split step and the construction of

τ̂ . Next, the procedure constructs τ̂δ by setting, for each point b ∈ B and each region φ ∈ Xδ,
τ̂δ(rφ, b) :=

∑
ϱ∈C(φ) τ̂(ϱ, b). The transport plan τ̂δ is defined over Aδ ×B.
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Figure 7: (left) The partitioning X ′
δ before updating weights, (middle) the partitioning Xδ after

updating the weights of the points of B that are reachable from s by admissible paths (the blue cross
points), and (right) the combined partitioning Y .

Finally, for each region φ ∈ Xδ , our algorithm stores a listN (rφ) of all points b ∈ B with rφ ∈ V 2δ
b ,

sorted in increasing order of their weights distance to rφ, i.e., N (rφ) = ⟨b1, . . . , bk⟩, rφ ∈ V 2
bi
δ for

each i ∈ [1, k], and dy(rφ, bi) ≤ dy(rφ, bj) for each 1 ≤ i < j ≤ k. This completes the description
of the INCREASEWEIGHTS procedure.
Lemma 3.2. Suppose invariant (I1) holds at the start of the INCREASEWEIGHTS procedure. Then,
during the execution of the INCREASEWEIGHTS procedure,

(W1) the transport plan τ̂δ, y(·) remain δ-feasible,
(W2) the weight of each free point b ∈ B increases by δ, and
(W3) the weight of each point b ∈ B with free regions inside V δ

b remains unchanged.

Proof. Let y(·) (resp. y′(·)) denote the weights of the points after (resp. before) the execution of the
INCREASEWEIGHTS procedure, and let Xδ (resp. X ′

δ) be the partitioning with respect to weights y(·)
(resp. y′(·)). For any point a ∈ A, let φa (resp. φ′

a) be the region in Xδ (resp. X ′
δ) that contains a,

and let ba (resp. b′a) denote the weighted nearest neighbor of a in B with respect to weights y(·) (resp.
y′(·)). For any pair of points (a, b) ∈ A×B with τ ′δ(a, b) > 0, by the δ-feasibility of τ ′δ, y

′(·), we
have dy′(a, b)− 2δ ≤ dy′(a, b′a). To prove property (W1), we show that dy(a, b)− 2δ ≤ dy(a, ba).

Recall that the INCREASEWEIGHTS procedure finds the subset K ⊂ B of points that have admissible
paths from the source vertex s of the residual graph and increases the weights of all points in K by δ.
Consider the following cases:

• If b ∈ K is among the points whose weights are increased by the procedure, then

dy(a, b) = dy′(a, b)− δ ≤ dy′(a, b′a) + δ ≤ dy′(a, ba) + δ ≤ dy(a, ba) + 2δ,

where the second inequality holds from δ-feasibility of τ ′δ, y
′(·), the third inequality holds

since ba is the weighted nearest neighbor of a with respect to y′(·), and the last inequality
holds since y(ba) ≤ y′(ba) + δ. Consequently, dy(a, b)− 2δ ≤ dy(a, ba).

• Otherwise, b /∈ K and dy(a, b) = dy′(a, b).

– If ba ∈ K, then dy′(rφa , b) ≤ dy′(rφa
, ba) (since otherwise, the triple (ba, rφa , b)

would have been an admissible triple and ba ∈ K would have resulted in b ∈ K). In
this case, since the weighted nearest neighbor of a and rφa

are the same,

dy′(rφa
, b′a) ≤ dy′(rφa

, b) ≤ dy′(rφa
, ba) ≤ dy′(rφa

, b′a) + δ,

where the last inequality holds since increasing the weight of b′a by δ made it the
weighted nearest neighbor of a. Therefore, the region φa and consequently, the point a
lie inside V δ

b and V δ
ba

. Thus,

dy(a, b) = dy′(a, b) ≤ dy′(a, ba) + δ = dy(a, ba) + 2δ.

– Otherwise, if ba is also not in K, then dy(a, ba) = dy′(a, ba) and,

dy(a, b)− 2δ = dy′(a, b)− 2δ ≤ dy′(a, ba) = dy(a, ba).
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Figure 8: An example of a cycle in a transport plan that is created while increasing weights: (left) a
transport plan that is a forest, (middle) the new Voronoi diagram and partitioning (red dashed lines)
after increasing the weight of b1, b2, and b3, and (right) a cycle formed in the new residual graph.

As a result, the transport plan τδ along with the updated weights y(·) is δ-feasible and property (W1)
holds.

Note that each free point bf ∈ B has an edge from the source vertex s; therefore, bf ∈ K and
the INCREASEWEIGHTS increases the weight of bf by δ, proving (W2). Furthermore, for each
point b ∈ B with a free region φ ∈ V δ

b , since we defined dy(rφ, t) = minb′∈B dy(rφ, b
′), the triple

(b, rφ, t) is admissible. Therefore, the SEARCHANDAUGMENT procedure should have added rφ and
b to the search path, not found an admissible augmenting path, and marked b (resp. (r, t)) as visited.
Therefore, there are no admissible paths from the source to b, or equivalently b /∈ K, and the weight
of b remains unchanged, leading to (W3).

B.3 Missing Details of the ACYCLIFY Procedure

The goal of the ACYCLIFY procedure is to ensure that the invariant (I2) holds, i.e., that at the
beginning of each iteration of our algorithm, the transport plan is a forest and there are no admissible
cycles in the residual graph. The procedure runs in three steps: (1) make τ̂δ a forest, as described in
Section B.3.1, (2) cancel any admissible cycles from the residual graph, as described in Section B.3.2,
and (3) acyclify the transport plan again, as described in Section B.3.1. Note that our procedure
acyclifies the transport plan (to make it a forest) twice, in steps (1) and (3). Making the transport plan
a forest in the first step is essential for the efficiency of the second step, and making it a forest in the
third step is essential for invariant (I2), as canceling admissible cycles might introduce cycles in the
transport plan.

B.3.1 Acyclifying the Transport Plan

Similar to the Acyclify procedure introduced in [54, Section 3.3], we use a dynamic tree structure to
make τ̂δ a forest as follows. Let E = ⟨e1, e2, . . . , eu⟩ denote the set of all edges e = (r, b) ∈ Aδ ×B
with τ̂δ(r, b) > 0. For any k ≤ u, let Ek := ⟨e1, e2, . . . , ek⟩. Define F0 := ∅ as an empty forest
and τ̂ ′0(r, b) = 0 for all pairs (r, b) ∈ Aδ × B. Starting from k = 1, for any k ≤ u, the algorithm
computes a forest Fk and a transport plan τ̂ ′k defined over Fk using Fk−1 and τ̂ ′k−1 as follows. If
adding the edge ek to Fk−1 does not create a cycle, then the algorithm simply sets Fk ← Fk−1∪{ek},
τ̂ ′k(ek)← τ̂δ(ek) and τ̂ ′k(e)← τ ′k−1(e) for all edges e ∈ Fk−1. Otherwise, adding ek to Fk−1 results
in the creation of an even-length cycle C. Let c denote the minimum capacity of the edges in C, and
let e∗ denote the edge with the minimum capacity. Consider an ordering of the edges of the cycle
C that starts with e∗, i.e., C = ⟨e∗ = e′1, e

′
2, . . . , e

′
2j⟩. The algorithm increases (resp. reduces) the

mass transported along the edge e′2i (resp. e′2i−1) by c for each i ∈ [1, j]. Finally, the algorithm sets
Fk ← Fk−1∪{ek}\{e∗}. This completes the description of step 1. Using the dynamic tree structure
by Sleator and Tarjan [56], each operation takes O(log n) amortized time, and since |E| = O(n3),
this process takes a total of O(n3 log n) time.
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Figure 9: An example of the formation of admissible cycles due to updating the weights and the
residual graph: (left) a transport plan with no admissible cycles in the corresponding residual graph,
(middle) the new Voronoi diagram and partitioning (red lines) after increasing the weights of b3 and
b2, and (right) an admissible cycle ⟨b1, r1, b2, r2, b3, r3⟩ formed in the new residual graph.

B.3.2 Acyclifying the Admissible Triples

To remove all admissible cycles from the residual graph, we use a partial DFS similar to the one
described in the SEARCHANDAUGMENT procedure. Let

←−
Gδ be the graph formed by reversing the

direction of all the edges of Gδ. The procedure first marks all points of B and all backward edges
as unvisited and defines U := B as the set of unvisited points. While there exists an unvisited point
b ∈ B, the procedure initializes a partial DFS by setting Q = ⟨b = b1⟩ and searches as follows until
Q becomes empty.

1. If Q = ⟨b1, r1, . . . , bi⟩ for some i ≥ 1,

(a) If there are no unvisited backward edges (bi, r) in
←−
Gδ, then mark bi as visited and

remove bi from Q and U .
(b) Otherwise, there exists an unvisited backward edge (bi, rφ). Add rφ to Q as ri+1.

2. If Q = ⟨b1, r1, . . . , bi, ri⟩ for some i ≥ 1, let b := argminb′∈U dy(ri, b
′) be the unvisited

point with the minimum weighted distance to ri.
(a) If (b, ri, bi) is admissible, i.e., dy(ri, b) < dy(ri, bi),

– If b already exists in the path Q as bj , then C = ⟨bj , rj , . . . , bi, ri, bi+1 = b = bj⟩
is an admissible cycle. Cancel the cycle C (as described below) and set Q =
⟨b1, r1, . . . , bj⟩.

– Otherwise, add b as bi+1 to Q.
(b) Otherwise, remove ri from Q and mark the backward edge (ri, bi) as visited.

Given an admissible cycle C = ⟨bj , rj , . . . , bi, ri, bi+1 = bj⟩, the procedure cancels the cycle as
follows. Let bc(C) := mint∈[j,i] τ̂δ(rt, bt) denote the bottleneck capacity of the cycle C. For any
forward edge (bt+1, rt) (resp. backward edge (rt, bt)) in C, set τ̂δ(rt, bt+1)← τ̂δ(rt, bt+1) + bc(C)
(resp. τ̂δ(rt, bt)← τ̂δ(rt, bt)− bc(C)). In this way, at least one of the backward edges of the cycle
C is removed from the residual graph and the cycle has vanished.
Lemma 3.3. Suppose invariant (I1) holds at the start of the ACYCLIFY procedure. Then, during the
execution of the ACYCLIFY procedure,

(A1) the transport plan τ̂δ, y(·) remains δ-feasible, and
(A2) the transport plan τ̂δ is a forest and there are no admissible cycles in the residual graph.

Proof. In the first step of the ACYCLIFY procedure, the algorithm makes the transportation network
to be a DAG. Note that the resulting transportation network is a subset of the transportation network
before the ACYCLIFY procedure, and therefore, for any transporting edge (r, b) ∈ Aδ ×B, the point
b is a 2δ-weighted nearest neighbor of r, i.e., the transport plan obtained after the first step of the
ACYCLIFY procedure is δ-feasible.

Next, we show property (A1) and (A2) for the second step of the procedure. By construction, all
triples on the search path maintained by the procedure are admissible, and therefore, any cycle

25



computed by the second step of ACYCLIFY procedure is admissible. Since all forward edges on the
computed cycles are from points b ∈ B to regions in V 2δ

b , canceling a cycle C does not violate the
δ-feasibility condition (F1); hence, the transport plan τ̂δ, y(·) is a δ-feasible transport plan during the
execution of the second step of the ACYCLIFY procedure and (A1) holds.

To prove property (A2), we show that

(A3) any point b ∈ B (resp. backward edge (r, b)) marked as visited will not form an admissible
cycle during the execution of the procedure, and

(A4) during the execution of the second step of the ACYCLIFY procedure, the subgraph of the
residual graph induced by visited vertices and their neighboring regions does not have any
cycles of admissible triples. Furthermore, there are no admissible paths from an unvisited
point to a visited point.

Assuming property (A3) holds, any point b ∈ B that is marked as visited does not participate in an
admissible cycle. Since the ACYCLIFY procedure stops when all points in B are visited, there are
no admissible cycles in the residual graph. Furthermore, since the transport plan is maintained by a
dynamic tree structure the transport plan is a forest. Therefore, to prove property (A2), we show that
(A3) holds.

Furthermore, the property (A3) is a direct corollary of property (A4), as explained next: For each
visited point b ∈ B, all points b′ ∈ B having admissible paths to b are also visited (note that the
ACYCLIFY procedure searches on the residual graph in the reverse direction of the edges), and if
(A4) holds, there are no admissible cycles solely formed by visited vertices; hence, b does not form
admissible cycles. Furthermore, the procedure marks a backward edge (r, b) as visited if, for each
admissible triple (b′, r, b), the point b′ is visited. Since b′ is not a part of any admissible cycles
(assuming (A4) holds), the triple (b′, r, b) also cannot be a part of an admissible cycle. Therefore, to
prove property (A3), we prove that (A4) holds in the following.

We use an inductive argument to prove (A4). Let C1, . . . , Ck denote the sequence of admissible
cycles found by the procedure, and let τ̂0δ , . . . , τ̂

k
δ denote the sequence of transport plans, where τ̂0δ is

the transport plan maintained by the algorithm at the beginning of the second step of the procedure
and τ̂ iδ is obtained by canceling τ̂ i−1

δ along Ci. The property (A4) trivially holds at the beginning of
the execution of the second step of the ACYCLIFY procedure.

Note that the ACYCLIFY procedure marks a point b ∈ B as visited only if the search from b did not
lead to finding an admissible cycle, i.e., for all pairs (b′, r) ∈ B×Aδ such that (b′, r, b) is admissible,
the point b′ is marked as visited and the backward edge (r, b) is marked as visited. Hence, all points
having an admissible path to the visited points (i.e., all points that are reachable from the visited
points in our backward DFS) are also visited. Therefore, Assuming that property (A4) holds before
marking b as visited, property (A4) holds after marking b as visited as well. Next, we show the same
when we cancel a cycle Ci.

First, note that all points of B that are on the search path are unvisited. Therefore, for any admissible
cycle found by the procedure, the points of B on the cycle are unvisited. Using an identical proof as
in Lemma B.1, one can show that after canceling a cycle, for any newly formed admissible triple
(b, r, b′), the point b is visited and the point b′ is unvisited. In other words, canceling a cycle Ci

only creates additional admissible paths from visited points to unvisited points. Assuming that (A4)
holds before canceling Ci, since no new admissible triples are created from a visited point to another
visited point, the subgraph induced by visited points and their neighboring regions remain free of
admissible cycles after canceling Ci. Furthermore, since no new admissible triples are created from
an unvisited point to a visited point upon canceling Ci, there will be no admissible paths from an
unvisited point to a visited point after cancellation; hence, (A4) remains satisfied.

C Missing Details of Section 4

In this section, we analyze the efficiency of the three procedures SEARCHANDAUGMENT, IN-
CREASEWEIGHTS, and ACYCLIFY.
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C.1 Efficiency of the SEARCHANDAUGMENT Procedure

The SEARCHANDAUGMENT procedure runs a partial DFS on the residual graph to find a set of
admissible augmenting paths. The partial DFS procedure, upon backtracking from a point b ∈ B
(resp. r ∈ Aδ), marks the point b (resp. the backward edge (b′, r) used to reach r) as visited and
does not visit the point b (resp. the backward edge (b′, r)) again in the same execution. Upon finding
an augmenting path P , the procedure augments the transport plan along P in O(|P |) time. Let
⟨P1, . . . , Pk⟩ denote the set of all augmenting paths found by the SEARCHANDAUGMENT procedure.
In 2 dimensions (resp. d dimensions), since the residual graph has O(n3) edges (resp. O(nd+1)),
the running time of the procedure would be O(n3 +

∑k
i=1 |Pi|) (resp. O(nd+1 +

∑k
i=1 |Pi|)). In

Lemma C.1, we show that
∑k

i=1 |Pi| = O(n3) (resp.
∑k

i=1 |Pi| = O(nd+1)). Hence, each execution
of the SEARCHANDAUGMENT procedure takes O(n3) (resp. O(nd+1)) time.

Lemma C.1. The total length of augmenting paths computed during the execution of the SEARCHAN-
DAUGMENT procedure is O(n3) in 2 dimensions and O(nd+1) in d dimensions.

Proof. Let τ̂0δ denote the transport plan maintained by the algorithm at the beginning of execution of
the SEARCHANDAUGMENT procedure. To prove this lemma, we categorize the augmenting paths
found by the procedure based on the source of their bottleneck capacity, namely (1) set Pv consisting
of augmenting paths whose bottleneck capacity is determined based on the residual capacity of its
endpoints, and (2) set Pe consisting of augmenting paths whose bottleneck capacity is determined
based on mass transportation over its backward edges. We first show that |Pv| = O(n2) and then
show the same bound for Pe. Since each augmenting path has a length of at most 2n, we then
conclude that the total length of all augmenting paths is O(n3).

Let P be an augmenting path in Pv. If the bottleneck capacity of P is determined by a free point
b ∈ B (resp. free region r ∈ Aδ), then the mass of b (resp. r) will be fully transported after
augmentation; therefore, since |Aδ ∪ B| = O(n2), we have |Pv| = O(n2). Next, let P be an
augmenting path in Pe; in this case, the backward edge (r, b) determining the bottleneck capacity
of P will be removed from the transport plan after augmentation. Note that by Lemma B.1, for any
newly formed admissible triples (b′, r, b), the point b′ is already marked as visited. By property (S2)
in Lemma 3.1, the point b′ cannot form an admissible augmenting path during the same execution of
the SEARCHANDAUGMENT procedure. Hence, the edge (r, b) determining the bottleneck capacity
of P was a backward edge of the initial transport plan τ̂0δ and augmentation along each path P ∈ Pe

removes one of the transporting edges of the transport plan τ̂0δ . Using invariant (I2), |Pe| = O(n2),
as claimed. Hence, the total number of augmenting paths found by the procedure is O(n2), and since
each augmenting path has a length of at most 2n, their total length is O(n3).

Next, we extend our analysis to d dimensional space, for any d ≥ 2. Note that in d dimensions, the
residual graph has O(nd) vertices and O(nd+1) edges. Hence, |Pv| = O(nd). Since the transport
plan τ̂0δ is a forest over the point set Aδ ∪ B, the total number of edges transporting a positive
mass in τ̂0δ would be O(nd); since augmenting the transport plan along each augmenting path in
Pe eliminates one of the edges transporting positive mass in τ̂0δ , |Pe| = O(nd). Finally, since each
augmenting path has a length of at most 2n, the total length of all augmenting paths found by the
SEARCHANDAUGMENT procedure would be O(nd+1).

C.2 Efficiency of the INCREASEWEIGHTS Procedure

In this section, we show that for 2-dimensional (resp. d-dimensional) distributions, the IN-
CREASEWEIGHTS procedure runs in O(n2(Φ + n log n)) (resp. O(nd(Φ + n log n))) time. The
INCREASEWEIGHTS procedure runs a DFS that visits each edge of the residual graph at most once
and has a total running time of O(n3) (resp. O(nd+1)). Furthermore, in the arrangement used to
construct partitioning Y , each point b ∈ B has at most 6 Voronoi cells (three cells that are used in
the construction of Xδ and three that are used in the construction of X ′

δ). Using a similar discussion
as Section A, one can show that the total number of vertices in the arrangement used to construct
Y is O(n2) (resp. O(nd)), and the number of regions in Y is at most O(n2) (resp. O(nd)). The
construction of the transport plan τ̂ can be done in O(n2(Φ + n)) (resp. O(nd(Φ + n))) time since
(1) the mass of all regions in Y can be determined in O(n2Φ) (resp. O(ndΦ)) time (partitioning the
regions in Y into simplices remains an arrangement with O(n2) (resp. O(nd)) vertices and therefore,
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have O(n2) (resp. O(nd)) regions), and (2) the mass transported on each pair (ϱ, b) ∈ Y ×B can be
determined in O(1) time. Converting τ̂ to τ̂δ, as is done in the merge step, also takes O(n3) (resp.
O(nd+1)) time, given that the total complexity of τ̂ is O(n3) (resp. O(nd+1)). Finally, storing a
sorted list of neighbors for each region r ∈ Aδ takes O(n3 log n) (resp. O(nd+1) log n) time in
total. Hence, the execution of the INCREASEWEIGHTS procedure takes O(n2(Φ + n log n)) (resp.
O(nd(Φ + n log n))) time.

Lemma C.2. Each execution of the INCREASEWEIGHTS procedure takes O(n2(Φ + n log n)) time
in 2 dimensions and O(nd(Φ + n log n)) time in d dimensions.

C.3 Efficiency of the ACYCLIFY Procedure

The first step of this procedure uses a dynamic tree structure to acyclify the transport plan τ̂δ.
Using the dynamic tree structure by Sleator and Tarjan [56], since the total number of edges of
the graph is O(n3) in 2 dimensions (resp. O(nd+1) in d dimensions), the running time of this step
would be O(n3 log n) (resp. O(nd+1 log n)). In the second step, the procedure runs a partial DFS
procedure on the residual graph and cancels the admissible cycles. The partial DFS procedure, upon
backtracking from a point b ∈ B (resp. r ∈ Aδ), marks the point b (resp. the backward edge (b′, r)
used to reach r) as visited and does not visit the point b (resp. the edge (b′, r)) again in the same
execution. Furthermore, upon finding an admissible cycle C, it cancels the cycle in O(|C|) time.
Let ⟨C1, . . . , Ck⟩ denote the set of all cycles found in the execution of the ACYCLIFY procedure. In
Lemma C.4, we show that

∑k
i=1 |Ci| = O(n3) in 2 dimensions (resp.

∑k
i=1 |Ci| = O(nd+1) in d

dimensions). Given that the size of the residual graph is at most O(n3) (resp. O(nd+1)), the second
step of the ACYCLIFY procedure takes a total of O(n3 +

∑k
i=1 |Ci|) = O(n3) (resp. O(nd+1)) time,

leading to the following lemma.

Lemma C.3. Each execution of the ACYCLIFY procedure takes O(n3 log n) time in 2 dimensions
and O(nd+1 log n) time in d dimensions.

Lemma C.4. The total length of admissible cycles computed during the execution of the second step
of the ACYCLIFY procedure is O(n3) in 2 dimensions and O(nd+1) time in d dimensions.

Proof. Let τ̂0δ denote the transport plan maintained by the algorithm at the beginning of execution of
the ACYCLIFY procedure. To prove this lemma, we show that the ACYCLIFY procedure finds O(n2)
admissible cycles, where each cycle has a length of at most 2n; hence, the total length of all cycles
found by the procedure would be O(n3).

Let C be an admissible cycle found by the procedure; in this case, the backward edge determining
the bottleneck capacity of C will be removed from the transport plan after cancellation. For any
admissible triple (b, r, b′) formed after canceling C, using an identical argument as in Lemma B.1,
one can show that the edge (r, b′) is a backward edge that was on the cycle C as a forward edge, and
the point b is marked as visited; hence, by Lemma 3.3, the point b does not form an admissible cycle
in the same execution of the ACYCLIFY procedure and therefore, the newly formed backward edge
(r, b′) cannot be included in any admissible cycles. Therefore, each cycle cancellation removes one
of the backward edges of τ̂0δ , which is the transport plan obtained after the first step of the ACYCLIFY
procedure, i.e., the transportation network of τ̂0δ is a forest and the number of its transporting edges is
O(n2). Therefore, the total number of cycles found by the ACYCLIFY procedure is O(n2), and their
total length is O(n3), as claimed.

We next show that the total length of admissible cycles in d dimensions is O(nd+1) in d dimensions,
for any d ≥ 2. Note that in d dimensions, the residual graph has O(nd+1) edges. Since the transport
plan τ̂0δ is a forest over the point set Aδ ∪B, the total number of edges transporting a positive mass in
τ̂0δ would be O(nd); since canceling each admissible cycle eliminates one of the edges transporting
positive mass in τ̂0δ , |C| = O(nd). Since each admissible cycle has a length of at most 2n, the total
length of all admissible cycles found by the INCREASEWEIGHTS procedure would be O(nd+1).

C.4 Number of Iterations

Lemma 4.1. For each scale δ, the total number of iterations of step 2 of our algorithm is O(n).
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Proof. Let τ2δ, y2δ(·) denote the 2δ-feasible transport plan computed by our algorithm for scale
2δ, and let τδ, yδ(·) denote a partial transport plan maintained during the execution of step 2 of
our algorithm. Let X2δ (resp. Xδ) denote the partitioning of the set A with respect to weights
y2δ(·) (resp. yδ(·)). Let Y be the arrangement of all 3n cells used to construct X2δ with all 3n
cells used to construct Xδ, i.e., Y is the arrangement of Voronoi cell, δ-expanded Voronoi cell, and
2δ-expanded Voronoi cell of each point b ∈ B with respect to weights yδ(·) along with the Voronoi
cell, 2δ-expanded Voronoi cell, and 4δ-expanded Voronoi cell of each point b ∈ B with respect to
weights y2δ(·). For each region ϱ ∈ Y , pick an arbitrary representative point rϱ inside ϱ. We denote
the set of all representative points of the regions in Y by Y . Let τ̂2δ (resp. τ̂δ) denote the compressed
transport plan for τ2δ (resp. τδ) using the partitioning Y . Note that the partitioning Y is a refinement
of both partitionings Xδ and X2δ . Define τ ′ := τ̂2δ − τ̂δ .

We construct a bipartite graph G′ over Y ×B, where for any pair (r, b) ∈ Y ×B, there exists an edge
directed from r to b if τ ′(r, b) < 0 and directed from b to r if τ ′(r, b) > 0. Consider any directed
path P = ⟨r1, b1, . . . , rk, bk⟩ from a free region r ∈ Y to a free point b ∈ B (with respect to τ̂δ).
The path P is an augmenting path in the residual graph corresponding to τ̂δ, yδ(·).
Similar to the standard graph algorithms, we define the net-cost of the path P as ϕ(P ) :=∑k

i=1 d(rk, bk) −
∑k−1

i=1 d(rk, bk+1). Let b0 := br1 be the weighted nearest neighbor of r1. Then,
we can rewrite the net-cost of P as

ϕ(P ) = d(r1, b0) +

k∑
i=1

[
d(ri, bi)− d(ri, bi−1)

]
= dyδ

(r1, b0) +

k∑
i=1

[
dyδ

(ri, bi)− dyδ
(ri, bi−1)

]
+ yδ(bk).

Due to δ-feasibility of the transport plan τ̂δ, yδ(·), for all edges (ri, bi−1), i ∈ [1, k], the point bi−1 is
a 2δ-weighted nearest neighbor of ri; hence, dyδ

(ri, bi)− dyδ
(ri, bi−1) ≥ −2δ. Since the length of

P is at most 2n− 1,

ϕ(P ) = dyδ
(r1, b0)+

k∑
i=1

[
dyδ

(ri, bi)−dyδ
(ri, bi−1)

]
+yδ(bk) ≥ dyδ

(r1, b0)+yδ(bk)−2nδ. (13)

Similarly, we can rewrite the net-cost of P using weights y2δ as follows.

ϕ(P ) = dy2δ
(r1, b0) +

k∑
i=1

[
dy2δ

(ri, bi)− dy2δ
(ri, bi−1)

]
+ y2δ(bk).

According to the 2δ-feasibility of τ̂2δ, y2δ(·), for all edges (ri, bi), i ∈ [1, k], the point bi is a 4δ-
weighted nearest neighbor of ri (with respect to weights y2δ(·)); hence, dy2δ

(ri, bi)−dy2δ
(ri, bi−1) ≤

4δ. Since the length of P is at most 2n− 1,

ϕ(P ) = dy2δ
(r1, b0)+

k∑
i=1

[
dy2δ

(ri, bi)−dy2δ
(ri, bi−1)

]
+y2δ(bk) ≤ dy2δ

(r1, b0)+y2δ(bk)+4nδ.

(14)
By property (W3) in Lemma 3.3, during the execution of step 2 of our algorithm, the weights of the
points in B with free regions in their δ-expansion remain unchanged; therefore, since b0 contains
free regions inside its δ-expanded Voronoi cell, y2δ(b0) = yδ(b0) and dy2δ

(r1, b0) = dyδ
(r1, b0).

Combining with Equations (13) and (14),

yδ(bk)− 2nδ ≤ ϕ(P )− dyδ
(r1, b0) = ϕ(P )− dy2δ

(r1, b0) ≤ y2δ(bk) + 4nδ.

Equivalently,
yδ(bk)− y2δ(bk) ≤ 6nδ.

By property (W2) in Lemma 3.3, our algorithm increases the weight of the point bk by δ in each
iteration while its mass is not fully transported by τ̂δ; therefore, the point bk cannot remain free after
6n iterations, i.e., after O(n) iterations, there cannot be any remaining free points in B and the step 2
of our algorithm terminates after O(n) iterations.

29



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper presents a new combinatorial framework for the semi-discrete OT
problem. It is used to design an algorithm for computing a ε-close semi-discrete transport
plan, as well as a data structure for the discrete OT problem. Our main results are stated in
Theorems 1.1 and 1.2 in the introduction and are summarized in the abstract.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our semi-discrete OT algorithm relies on the existence of an oracle that
computes the mass of µ inside a triangle, which is common in existing algorithms for the
semi-discrete optimal transport problem. We clearly state this assumption in the abstract
and Theorem 1.1.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theorems and lemmas contain the full set of assumptions, and their proofs
are either provided in the main text or the appendix.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper does not include experiments.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This paper does not include experiments.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include experiments.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [NA]
Justification: This paper does not include experiments.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There are no data or human subjects involved in the research process of
this paper and there are no known societal impacts and potentially harmful consequences
associated with the research conducted in this paper.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: None of the categories described by the NeurIPS Code of Ethics, namely,
safety, security, discrimination, surveillance, deception and harassment, environment, human
rights, and bias and fairness is impacted by the research conducted in this paper.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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