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ABSTRACT

Deep learning using large models have achieved great success in a wide range
of domains. However, training these models on billions of parameters is very
challenging in terms of the training speed, memory cost, and communication ef-
ficiency, especially under the privacy-preserving regime with differential privacy
(DP). On the one hand, DP optimization has comparable efficiency to the standard
non-private optimization on a single GPU, but existing DP distributed learning
(such as pipeline parallelism) has suffered from significantly worse efficiency on
multiple GPUs. On the other hand, the Zero Redundancy Optimizer (ZeRO) is a
state-of-the-art solution to the standard distributed learning, exhibiting excellent
training efficiency on large models, but to work compatibly with DP is technically
complicated. In this work, we develop a new systematic solution, DP-ZeRO, (I)
to scale up the trainable DP model size, e.g. to GPT-100B, (II) to obtain the same
computation and communication efficiency as the standard ZeRO, and (III) to en-
able mixed-precision DP training. Our DP-ZeRO, like the standard ZeRO, has the
potential to train models with arbitrary size and is evaluated on the world’s largest
DP models in terms of the number of trainable parameters. 1

1 INTRODUCTION

Recent advances in differentially private (DP) deep learning have witnessed the power of large pre-
trained models, achieving comparable accuracy to state-of-the-art (SOTA) non-private models across
computer vision De et al. (2022); Bu et al. (2022a); Mehta et al. (2022); Xie et al. (2018), natural
language processing Yu et al. (2021a); Li et al. (2021); Bu et al. (2023a), and many other tasks.
Similar to their non-DP counter-parts, it has been observed that larger DP models tend to have
better performance. For example, the DP accuracy increases from 83% using RoBERTa-base (123M
parameters) to 86% using RoBERTa-large (354M parameters) on GLUE datasets Li et al. (2021);
Bu et al. (2023a); Yu et al. (2021a); the DP BLEU score increases from 61 using GPT2-small (124M
parameters) to 64 using GPT2-large (800M parameters) on E2E dataset Li et al. (2021); Bu et al.
(2023a); a similar trend is also observed using ViT (Base/Large/Huge) up to 600M parameters to
achieve state-of-the-art DP accuracy on ImageNet, around 81% at ϵ = 8 Mehta et al. (2022).

Driven by this success and the surge of computational power, it is high time to enable DP deep
learning at the same scale of the standard non-DP one, e.g., GPT3-175B (Brown et al., 2020) and
LLaMA-63B (Touvron et al., 2023a;b). Specifically, such a DP training system must have high
speed and memory efficiency, low communication cost, and the compatibility with general model
architectures.

For small to moderately large models (e.g. with less than a billion parameters) that fit within the
memory of a single GPU, a range of DP algorithms are feasible, producing the same result at differ-
ent efficiency. Examples include TensorFlow-privacy Subramani et al. (2021), Opacus Yousefpour
et al. (2021); Bu et al. (2022b), ghost clipping (GhostClip) Goodfellow (2015); Li et al. (2021);
Bu et al. (2022a), and Book-Keeping (BK) Bu et al. (2023b), among which the BK algorithm has
allowed DP optimization to be almost as efficient as the standard one. To be specific, the time/space
complexity of BK algorithm is 1.08 × /1.05× of the standard optimization on ViT-Large (300M
parameters, 147 layers) and 1.03× /1.01× on GPT2-large (800M parameters, 220 layers).

1Code at https://anonymous.4open.science/r/DP-ZERO-2821 (this is built on fastDP and
no identifiers are related to our work).

1

https://anonymous.4open.science/r/DP-ZERO-2821
https://github.com/awslabs/fast-differential-privacy


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Summary of selected DP distributed learning.
Distributed

solution Parallelism Model
sharding

Standard
version

DP
version Remark

DDP Data No Li et al. Yousefpour et al. (2021) unable to fit large model and DP is memory costly
DDP Data No Frostig et al. (2018) De et al. (2022) unable to fit large model and DP is slow

GPipe Pipeline Yes Huang et al. (2019) He et al. (2022) pipeline bubble wastes GPU time
ZeRO Data(&Model) Yes Rajbhandari et al. (2020) Ours speed & memory & communication efficient

To enable the DP distributed learning of these not-too-large models, one can directly use DDP
(distributed data parallelism) (Li et al.), where each mini-batch of data is partitioned to smaller
micro-batches and each GPU computes one micro-batch with a full copy of the DP model. A line
of researches (Yousefpour et al., 2021; De et al., 2022; Kurakin et al., 2022) have reported that
DDP with DP usually either incurs huge memory cost due to caching the per-sample gradients, or
suffers from 2 − 9× slower training speed than non-DP optimization De et al. (2022); Bu et al.
(2021). While the efficiency issues can be addressed through a better DP algorithm, such as BK, the
feasibility issue remains insurmountable because DDP cannot train models that exceed the capacity
of one GPU. Notably, the efficiency of BK algorithm is enhanced by two key techniques: mixed
ghost norm (computing per-sample gradient norms almost for free) and book-keeping trick (only
using one round of full back-propagation, not two rounds as in Li et al. (2021); Bu et al. (2022a)),
which are detailed in Appendix A and will also be leveraged in our DP-ZeRO solution.

As the model size further increases beyond a reasonable bound for one GPU (e.g. 32GB memory,
which roughly translates to 2B model training with Adam), the model must be partitioned in addition
to the data, e.g. using pipeline parallelism and model parallelism, so that each GPU only holds
a partial shard of the model (see Figure 2). In He et al. (2022), DP is combined with pipeline
parallelism to fine-tune about 0.1% of GPT3-175B. Yet, the pipeline parallelism can be inefficient
due to a non-DP-related issue – the pipeline bubble, where GPUs are idle while waiting for data to
process.

Generally speaking, more advanced distributed methods such as Zero Redundancy Optimizer Rajb-
handari et al. (2020) (ZeRO) and mixed-precision training have not be paired with DP due to the
lack of algorithmic advances. In this work, we develop DP-ZeRO, equipping state-of-the-art dis-
tributed learning solution with DP (see comparison in Table 1), without altering the mathematics of
DP optimization. We summarize our contributions as follows2.

1. We propose the zero redundancy distributed learning with differential privacy (DP-ZeRO),
demonstrating the same level of communication efficiency, computation efficiency
(speed and memory), and scalability (to GPT3 level and hundreds of GPUs) as the stan-
dard ZeRO.

2. We enable the mixed-precision training with DP by addressing the issue of loss scaling.
This solution allows us to reduce the memory cost by roughly 50% and allow significantly
faster communication that was previously not enjoyed by DP distributed learning.

3. We enable DP deep learning with more than 1B trainable parameters for the first time. E.g.
we are the first to train the full GPT2-XL, ViT-Gigantic, ViT-10B and GPT-100B with DP.

4. We will open-source our codebase as the first DP distributed learning library, that automat-
ically applies DP-ZeRO for general tasks (e.g. classification and language understanding),
general network architectures (e.g. ResNet, ViT, GPT), and general distributed solutions
(including DeepSpeed and FSDP).

2 PRELIMINARY

2.1 DIFFERENTIAL PRIVACY

DP provides a formal privacy guarantee, making it difficult to extract any information from training
data. The privacy guarantee is characterized by (ϵ, δ)-DP in Definition 2.1, with smaller (ϵ, δ)
representing lower privacy risk.

2We do not report any accuracy results since this is a system design paper, following the norm in the original
ZeRO Rajbhandari et al. (2020) and FSDP Zhao et al.. We verify that DP-ZeRO is implemented correctly by
comparing to single-GPU DP libraries in Appendix E.

2
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Figure 1: Total/trainable parameters of existing DP models (blue) and ours by DP-ZeRO (red).

Definition 2.1 (Dwork et al. (2006)). A randomized algorithm M is (ε, δ)-DP if, for any two neigh-
boring datasets S, S′ that differ by one sample and for any event E, we have P[M(S) ∈ E] ⩽
eεP [M (S′) ∈ E] + δ.

In DP deep learning, the gradients are made private by post-processing through per-sample gradient
clipping and random noising:

private gradient (m-th group): G[m] :=
∑
i

Ci(Rm)g[m],i + σDP∥[R1, · · · , RM ]∥ · N (0, I). (1)

Here the gradient of all trainable parameters is partitioned into M groups, i.e. g[m],i is the i-th
per-sample gradient of the m-th group’s parameters, where m ∈ {1 · · ·M} is the group index. Ci is
the per-sample gradient clipping factor so that ∥Cig[m],i∥ ≤ Rm and Rm is the clipping threshold.
That is, DP optimization is enabled when the standard optimizers such as stochastic gradient descent
(SGD) and Adam (Kingma & Ba, 2014) update the trainable parameters with the private gradient,
instead of the standard gradient

∑
i gi.

Mathematical gradient partition In equation 1, the trainable parameters and their gradients are
mathematically partitioned into M groups, e.g. in all-layer clipping, all parameters form one group
(M = 1) Abadi et al. (2016); in layer-wise clipping McMahan et al. (2018); He et al. (2022),
each layer’s parameters form a group (M = number of layers). Empirical evidence and theoretical
analysis show that different partitions have the same training speed, though a finer partition (e.g.
layer-wise) has lighter memory footprint3.

Per-sample gradient clipping In equation 1, a number of clipping functions Ci = C(∥gi∥;R) are
available. Most works Abadi et al. (2016); Li et al. (2021); Yu et al. (2021a) use the vanilla clipping
Ci = min(R/∥gi∥, 1). Recently, Bu et al. (2023a); Yang et al. (2022) advocate the automatic
clipping Ci = 1/(∥gi∥ + 0.01) which is hyperparameter-free and comparably accurate. Note if
Ci ≡ 1, then the clipped gradient reduces to the standard gradient. The main overhead of DP
optimization is the computation of per-sample gradient norms. On a single GPU, the mixed ghost
clipping Bu et al. (2023b) has reduced the time complexity to < 10% on large models like GPT2.

Privacy accounting In equation 1, adding Gaussian noise to the clipped gradient protects the
privacy that is quantifiable by the privacy accounting theory Abadi et al. (2016); Bu et al. (2020);
Dong et al. (2019); Zhu et al. (2022); Gopi et al. (2021); Koskela et al. (2020). The privacy guarantee
is increasing in the noise level σDP, independent of Rm, learning rate, clipping function and model
architectures, with σDP = 0 leading to ϵ = ∞ (non-private).

3We note that DP optimization under different group-wise clippings can have the same computation and
communication efficiency (under the BK algorithm), with or without ZeRO.

3
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2.2 ZERO REDUNDANCY OPTIMIZER (ZERO)

2.2.1 PARALLEL COMPUTING

Parallel computing is necessary to train large-scale models and is critical to the optimization ef-
ficiency. For models that fit in a single GPU, data parallelism (DataP) can be used to speed
up the training by partition the mini-batch of samples into multiple micro-batches. Then, each
GPU (holding a full copy of parameters) executes the forward and backward propagation of one
micro-batch, from which the parameter gradients are generated and averaged across GPUs to up-
date the trainable parameters. However, for models that do not fit in a single GPU, the model
parameters need to be sharded by alternative solutions such as ZeRO Rajbhandari et al. (2020),
model parallelism (ModelP) and pipeline parallelism (PipeP).

ModelP partitions a model vertically, e.g. using 3 GPUs to store the parameters of one layer. As
a consequence, ModelP does not scale efficiently beyond a single node due to fine-grained com-
putation and expensive communication between layers. Implementation-wise, ModelP frameworks
usually require heavy code integration that may not be generalizable in model architectures. In con-
trast, PipeP partitions a model horizontally across layers, e.g. storing 3 layers in each GPU. Each
GPU deals with all micro-batches sequentially, though PipeP can be inefficient due to the pipeline
bubble, which is overcome by ZeRO Rajbhandari et al. (2020). ZeRO is an advanced data parallel
method that eliminates memory redundancies during the training, and improves the training speed
and communication volume proportionally to the number of GPUs. Unlike basic DataP, ZeRO par-
titions a model’s states across GPUs and gather/reduce in a just-in-time manner, thus sustaining the
high efficiency of very large model training. Notice that ZeRO can work compatibly with ModelP
and optionally offload the model states to CPUs Ren et al. (2021); Rajbhandari et al. (2021).

2.2.2 MODEL STATE PARTITION

A major part of the training memory is consumed by the model states4. ZeRO has three stages
(ZeRO1/2/3) that partition these model states by different levels, with lower level being faster but
more memory costly. For instance, in Table 2 of (Rajbhandari et al., 2020), ZeRO1/2/3 at most train
7.6/14.4/128B models on 64 V100 GPUs.

We take an example of mixed-precision Adam optimizer to train a model with Ψmodel parameters,
which maintains a master copy (fp32) of optimizer states. and the half-precision parameters and
gradients.

Optimizer state partition The optimizer states are the (master) parameters, variance and mo-
mentum, each taking 4Ψmodel memory. ZeRO1 only applies the optimizer state partition and updates
the parameters locally, reducing the memory cost of model states from 16Ψmodel for basic DataP to
(4 + 12

Nd
)Ψmodel at each of Nd GPUs.

Figure 2: Mathematical (left two, same GPU allocation, different accuracy) and hardware (right two,
different GPU allocation, same accuracy) gradient partition. Orange and blue are gradient groups
g[1] and g[2] in DP optimization equation 1.

Hardware gradient partition In addition to ZeRO1, during the back-propagation, ZeRO2 (and
ZeRO3) further partitions the 2Ψmodel gradients into different GPUs, reducing the memory cost to
(2 + 14

Nd
)Ψmodel at each GPU. Figure 2 illustrates the difference between the hardware partition and

the mathematical partition in Section 2.1.

4Another important part of memory consumption is the batch-size-related variables such as the activation
tensors, which is instantiated during the forward propagation and independent to DP (which modifies the gra-
dient during the back-propagation).

4
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Parameter partition In addition to ZeRO2, ZeRO3 also partitions the 2Ψmodel fp16 parameters,
further reducing the memory cost to 16

Nd
Ψmodel at each GPU.

2.3 MIXED-PRECISION TRAINING

Mixed-precision training (Micikevicius et al., 2018) performs the forward and backward propagation
on the half precision (fp16 or bf16) parameters, activations, and gradients, while performing the
model update in full precision (fp32). Compared to the full-precision training, it is capable of saving
the memory by ≈ 50% and accelerating the computation by ≈ 20%. We note that fp16 has better
precision but a limited range: its representable numbers are among 10−8 ∼ 105, and vice versa for
bf16. Therefore, loss scaling is necessary when using fp16 to prevent small gradients from being
rounded to zero, thereby preserving the model’s accuracy (see Appendix C for details). In contrast,
bf16 usually does not need loss scaling since it has the same range as fp32. However, bf16 is not as
widely supported as fp16, e.g. only available on NVIDIA Ampere GPUs or above (Nvidia).

3 DIFFERENTIALLY PRIVATE ZERO

3.1 ALGORITHM

Our DP-ZeRO algorithm introduces the per-sample gradient clipping and noising to the standard
ZeRO (Rajbhandari et al., 2020), while maintaining the efficiency. At high level, an iteration of
ZeRO consists of the following steps:(

all-gather → forward → all-gather → backward → reduce
)×L layers

→ update(SGD/Adam/...)

The operations in purple are global and require communication among GPUs, whereas the op-
erations in green are locally computed within each GPU. In particular, DP optimization is only
different from the standard optimization in the back-propagation, which can be decomposed into

backward =(output gradient → clipping factor → parameter gradient → noising)

To give more details, we consider training a neural network of linear layers using Nd GPUs. We
emphasize that the following procedure is sufficiently generic to cover other layer types, such as
convolution, embedding, normalization, and so on, which are all supported by DP-ZeRO. The full
algorithm is depicted in Figure 3, where we denote the j-th micro-batched variables like a

(j)
l , for

1 ≤ j ≤ Nd.

The forward propagation of DP optimization is the same as that of the standard optimization:

sl = alWl + bl,al+1 = ϕl(sl). (2)

At the l-th layer, al ∈ RBTldl is the layer’s input, also known as the activation, sl ∈ RBTlpl is the
layer’s output, Wl ∈ Rdlpl is the weight, bl ∈ Rpl is the bias, and ϕl is any inter-layer operation
such as ReLU, tanh or pooling. We denote B as the physical micro-batch size5 and Tl as the hidden
feature dimension (e.g. sentence length or number of pixels). During the forward propagation, the
activations {al} are computed and stored in the computation graph, and the loss L =

∑
i Li is

derived, where Li is the per-sample losses. During the back-propagation, the output gradient is first
computed based on the previous layer.

∂L

∂sl
=

∂L

∂sl+1

∂sl+1

∂al+1
◦ ∂al+1

∂sl
=

∂L

∂sl+1
Wl+1 ◦ ϕ′

l(sl),

in which ◦ is element-wise multiplication. Specifically, the use of parameter Wl+1 necessitates the
all-gather operation when the model is partitioned into multiple GPUs, which is not needed in single
GPU training. Next, the activation al is used together with ∂L

∂sl
to compute the parameter gradient:

DP gradient:
∂
∑

i CiLi

∂Wl
+ σN (0, I) = a⊤

l diag(C1, · · · , CB)
∂L

∂sl
+ σN (0, I).

5The micro-batch size B is the number of samples processed by each GPU, which determines the time
and memory efficiency, but not the performance. The logical batch size that determines the performance is
B ×Nd × gradient accumulation steps.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Algorithm of DP-ZeRO with mixed-precision training.

Note the standard gradient can be viewed as Ci = 1, σ = 0. Here the per-sample gradient norm (or
the clipping factor Ci) can be computed at small cost, as we have discussed in Section 1.

3.2 TIME EFFICIENCY OF DP-ZERO

The time efficiency of DP-ZeRO consists of two parts: the local computation (including forward and
backward propagation) and the global communication (including intra-node and inter-node commu-
nication). Given that the only difference between DP-ZeRO and ZeRO is the back-propagation,
we claim that DP-ZeRO could enjoy high efficiency on-par with the standard ZeRO when (I) DP
back-propagation exhibits a time efficiency comparable to the standard, similar to the single GPU
training, and/or (II) the time efficiency of the parts other than back-propagation is not insignificant.
We give the time of each part of DP-ZeRO in equation 3 to illustrate our claim.

DP-ZeRO speed
standard ZeRO speed

=
standard back-prop + forward prop + communication

DP back-prop + forward prop + communication
(3)

To be explicit, we summarize the time complexity in Table 2 and refer to Appendix B for details.

Table 2: Time complexity (measured by float-point operations) of one iteration in distributed learn-
ing7. We denote Ψtrain to be the number of trainable parameters (Ψtrain = Ψmodel in full parameter
training), and define B, T below equation 2.

forward propagation back-propagation communicationactivation attention output grad param grad DP clipping& noise
complexity 2BTΨmodel O(BT 2) 2BTΨmodel 2BTΨtrain 0.666BTΨtrain O(Ψmodel)

In what follows, we analyze the absolute and relative speed (to standard ZeRO) of DP-ZeRO under
important settings.

7Here 0.666 is figurative and dependent on the DP mechanisms. For example, if we denote d, p as a layer’s
input/output dimensions, then the complexity of BK algorithm Bu et al. (2023b) is 6BTpd + 2BT 2(p + d) ·
I(2T 2 < pd), which is non-linear in T but empirically the overall slowdown could be 0.666/6 ≈ 11%. Notice
that Ψtrain ≪ Ψmodel when most parameters are frozen, as is the case in parameter efficient fine-tuning.

6
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3.2.1 NUMBER OF COMPUTATION DEVICES

When scaling from one GPU (zero communication) to one node (multiple GPUs) and to mul-
tiple nodes, the communication efficiency decreases sub-linearly (↑communication). On a sin-
gle node, multiple GPUs can communicate using the high-speed intra-node connections such as
NVLink/NVSwitch (Foley & Danskin, 2017; Ishii et al., 2018). On multiple nodes, which are nec-
essary for large models, the inter-node connections are 3 ∼ 24× slower than the intra-node connec-
tions (Li et al., 2019; Zhang et al., 2022). In short, DP-ZeRO can be as fast as ZeRO by equation 3
when multiple nodes are employed.

3.2.2 MEMORY-EFFICIENT DISTRIBUTED LEARNING

The communication volume is specific to different distributed algorithms, most of which trade the
communication or speed for memory, in order to feasibly train very large models. For example,
ZeRO3 (but not ZeRO1/2) needs to all-gather the sharded parameters at each iteration, hence suffer-
ing from 50% extra communication volume (↑communication). Another example is the activation
check-pointing (also known as gradient check-pointint Chen et al. (2016)), where a second for-
ward propagation re-computes the expensive activations during back-propagation, though at a 33%
slower speed (↑forward propagation). These techniques improve the relative speed of DP-ZeRO but
worsens the absolute speed.

3.2.3 PARAMETER EFFICIENT FINE-TUNING

Parameter efficient fine-tuning (PEFT), such as LoRA (Hu et al., 2021), Adapter (Houlsby et al.,
2019), and BiTFiT (Zaken et al., 2022), optimizes a small fraction (e.g. Ψtrain = 0.1%Ψmodel)
of model parameters and thus boosts the efficiency of back-propagation and communication (↓DP
back-propagation ↓back-propagation ↓communication). Consequently, (I) the communication vol-
ume of the gradient can be reduced possibly by 1000×; (II) the local computation can accelerate by
50% (Hu et al., 2021; Bu et al., 2022b), which can be seen by treating Ψtrain in Table 2 as almost
zero; (III) the memory cost is saved on the non-trainable layers, which translates to larger batch size
and faster computation. Hence, both relative and absolute speed of DP-ZeRO improve using PEFT.

3.3 MEMORY EFFICIENCY OF DP-ZERO

We claim that DP-ZeRO is as memory efficient as the standard ZeRO, similar to the single GPU
training, when we use (I) the mixed ghost norm trick Bu et al. (2022a; 2023b), instead of GhostClip
(Goodfellow, 2015; Li et al., 2021) or per-sample gradient instantiation (Yousefpour et al., 2021);
(II) the layer-wise clipping style instead of the all-layer clipping, so that the book-keeping (Bu et al.,
2023b) does not store all output gradients; or (III) a large number of GPUs so that the micro-batch
size B (i.e. per-GPU batch size) is small: specially, when B = 1 in the gradient accumulation, the
per-sample gradient is free. We empirically verify our claim in Figures 4 and 7.
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Figure 4: Efficiency on ViT-Gigantic (left, 1.8B), ResNet152 (middle) and GPT2-XL (right, 1.5B).
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3.4 MIXED-PRECISION TRAINING WITH DP
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Figure 5: Accuracy of mixed-
precision training with loss scaling.
ViT-large on CIFAR100.

We now analyze the intricacy in mixed-precision training with
DP, which is not unique to DP-ZeRO but present in the gen-
eral DP optimization. We emphasize that the per-sample gra-
dient clipping already plays the role of scaling, and hence DP
mixed-precision training must not use loss scaling, as illus-
trated in Table 3. Specifically, in standard mixed-precision
training, there are two steps of scaling: (I) scaling up the
loss Li by 103 ∼ 109 (and consequently the output gradient
∂Li

∂s as well as ∂Li

∂W ) before the back-propagation, to prevent
the underflow where fp16 gradient is too small to be distin-
guished from 0, and (II) scaling down the parameter gradient
∂Li

∂W , by the same factor, after the back-propagation to recover
the correct magnitude of gradient. However, in DP mixed-
precision training, scaling up the loss may cause overflow,
while scaling down the gradient incorrectly over-shrinks the gradient and worsens the performance.
See Figure 5 for a real example. We explain this intricacy step-by-step in Appendix C.

Table 3: Illustration of overflow and underflow issues during mixed-precision training (ghost norm).
loss scale=103 activation al output grad ∂L

∂sl

per-sample grad norm clipping factor param grad param grad
(scaled) vec(ala

⊤
l ) vec( ∂L

∂sl

∂L
∂sl

⊤
) (not scaled down) (if scaled down)

standard w/o scaling 10−3 ∼ 102 10−8 ∼ 101 N/A N/A 1 10−7 ∼ 101 10−7 ∼ 101

standard w/ scaling 10−3 ∼ 102 10−5 ∼ 104 N/A N/A 1 10−4 ∼ 104 10−7 ∼ 101

DP w/o scaling 10−3 ∼ 102 10−8 ∼ 101 102 ∼ 103 10−6 ∼ 100 10−3 ∼ 102 10−7 ∼ 101 10−7 ∼ 101

DP w/ scaling 10−3 ∼ 102 10−5 ∼ 104 102 ∼ 103 100 ∼ 106 10−6 ∼ 10−1 10−7 ∼ 101 10−10 ∼ 10−2

Remark 3.1. DP may be violated due to the floating-point vulnerability at any precision Mironov
(2012), but the issues can be more severe at half-precision. Yet, it remains an open discussion
whether precision-based attacks can non-trivially break the protection of DP in deep learning, since
the model is updated through thousands of iterations which may cover the identifiability of data
information. In fact, Bu et al. (2024); Yu et al. (2021b); Li et al. (2024) have demonstrated that DP
mixed-precision training can empirically preserve the protection against various privacy attacks.

4 EMPIRICAL PERFORMANCE OF DP-ZERO

We evaluate DP-ZeRO on five aspects : model architectures, efficiency, scalability, compatibility
with various distributed learning and DP techniques. We use DP-ZeRO to train ResNet (He et al.,
2016), ViT (Dosovitskiy et al., 2020; Zhai et al., 2022) and GPT (Radford et al., 2019; Brown
et al., 2020), which are workhorses in computer vision and language tasks. We report two accuracy
experiments in Appendix E.4 for ViT and GPT to show that the performance is consistent across
systems and to verify our implementation. We do not aim for higher accuracy with larger models,
because the accuracy depends on many traning hyperparameters like learning rate and number of
epochs that are not relevant to the system designs. In fact, this is the norm of system papers including
the standard non-DP ZeRO Rajbhandari et al. (2020) and FSDP Zhao et al., where the focus is on
the system efficiency.

We measure the time and memory efficiency of DP-ZeRO under settings such as PEFT and multiple
precision formats (fp32 or fp16/bf16). We evaluate the scalability of DP-ZeRO in terms of number
of GPUs and number of model parameters. Our experiments scale from single node (8 GPUs) to
multiple nodes, up to 256 GPUs, and train models up to 100B trainable parameters. Moreover, DP-
ZeRO is compatible with mainstream implementations of ZeRO8 and with different clipping styles,
clipping functions, privacy accountants, and so on. We leave the experimental details in Appendix D.
By default, we use AdamW, mixed-precision training, layer-wise clipping style, B = 4, and A100
GPU with 40GB memory, unless otherwise stated.

8DP-ZeRO is implemented on DeepSpeed (supporting ZeRO1/2/3), FSDP (Zhao et al.) (supporting
ZeRO3), MiCS (Zhang et al., 2022) (supporting ZeRO2/3), and any distributed optimizers supported on these
libraries.
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4.1 GENERALITY OF DP-ZERO

DP-ZeRO is generally applicable to different neural network architectures, clipping styles, and pre-
cision formats. We test DP-ZeRO1 on single node and observe that different clipping styles are
equally fast, but layer-wise clipping is more memory efficient than all-layer clipping. Comparing to
the standard ZeRO, our DP-ZeRO enjoys almost the same speed and memory efficiency, while the
gap will be further closed as we move to more advanced stages of ZeRO.

4.2 LIGHTER TRAINING OF DP-ZERO
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Figure 6: Efficiency of DP-ZeRO with lighter training. Left&Middle: > 2× speedup with lighter
training; ViT-5B, B = 1. Right: DP-ZeRO benefits more than ZeRO from PEFT.
DP-ZeRO can employ low-memory optimizers and train on fewer parameters, therefore vastly reduc-
ing the memory and communication cost. On a single node, we demonstrate that DP-ZeRO actually
benefits (more than standard ZeRO and single-GPU training) from lighter training, following from
our discussion in Section 3.2.

Low-memory optimizers Low-memory optimizers can boost the training efficiency at the cost of
accuracy degradation. For example, SGD requires only 1/3 optimizer states of Adam and signifi-
cantly saves the memory; 1-bit Adam (Tang et al., 2021) and signSGD compress the gradient and
reduce the communication volume up to 32×.

Fewer trainable parameters In the fine-tuning phase, as we analyzed in Section 3.2.3, PEFT
improves both the local computation and the communication volume. Hence, DP-ZeRO allows
PEFT on ViT and GPT to be ≈ 2× faster than full fine-tuning, whereas the single GPU acceleration
is ≤ 1.5×.

Remark 4.1. We leverage DP-ZeRO3 with SGD to train ViT-10B (full parameters) and ViT-22B
(PEFT; 1M trainable parameters) on one node. See Appendix D for configurations.

4.3 THREE STAGES OF DP-ZERO

DP-ZeRO supports all stages of ZeRO under different implementations including DeepSpeed (de-
fault) and FSDP.

In Figure 7, the efficiency of DP-ZeRO catches up with the standard ZeRO when we move up the
stages. For instance of ViT-Gigantic, the throughput increases from 83% by DP-ZeRO1 to 95-97%
by DP-ZeRO3. Following equation 3, we can attribute the relatively fast training of DP-ZeRO to
the increase cost of communication, especially in DP-ZeRO3. Additionally, we observe that the
throughput of DP-ZeRO1/2 improves to over 95% on 4 nodes, as predicted by Section 3.2.1. Notice
that we save DP-ZeRO3 of GPT to Section 4.4 on super-large scale.

4.4 SCALABILITY OF DP-ZERO

We evaluate the scalability of DP-ZeRO3 in terms of large sequence length (2048), large model size
(7 ∼ 100B), and large number of GPUs (up to 256). We use A100 with 80GB memory, as well as
the activation check-pointing and ModelP.

In Figure 8 (left), we observe that for a fixed model with 26B trainable parameters, DP-ZeRO is
super-linearly scalable to the number of GPUs, achieving > 95% speed of the standard ZeRO. Here
super-linearity is a property of ZeRO (see Figure 3 in Rajbhandari et al. (2020)) which allows more
GPUs to shard the model states (and reduce the per-GPU memory cost) more aggressively, and to
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Figure 7: Efficiency of DP-ZeRO on ViT-Gigantic and GPT2-XL under different implementations.

train faster since the micro-batch size is larger. Furthermore, in Figure 8 (right), for a fixed number
of GPUs, DP-ZeRO is linearly scalable to the model size, achieving the same speed and scalability
as the standard ZeRO. In short, DP-ZeRO is almost equal to ZeRO in terms of training efficiency in
super-large scale.
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Figure 8: Scalability of DP-ZeRO3 on 26B model (left) and 256 GPUs (right). The colored lines
match the left y-axis. The grey bars match the right y-axis. max B means we use the maximum
micro-batch in each GPU and fixed B means B = 2.

Remark 4.2. In comparison to DP-ZeRO, DataP (DP or standard) at most fits 5B models (Rajb-
handari et al., 2020) in 80GB memory, regardless of the number of GPUs. We cannot compare to
DP-PipeP in He et al. (2022) because the codebase and experiment details (e.g. number of trainable
parameters and sequence length) are not publicly available. Nevertheless, since DP-ZeRO resem-
bles the efficiency of standard ZeRO, the usefulness of DP-ZeRO can be demonstrated by comparing
ZeRO to PipeP.

5 DISCUSSION

In this work, we develope DP-ZeRO that enables the optimization of models up to 100B trainable
parameters, thus allowing DP distributed learning to be as efficient and scalable as the standard one,
for as few as 2 and as many as hundreds of GPUs. We believe this is a significant milestone to pave
the path towards DP foundation models, especially for its open-source nature (link to be released).

We emphasize that, since DP only modifies the back-propagation, our DP-ZeRO is orthogonal to
any large-scale training techniques that are not tied to back-propagation: for example, activation
check-pointing, CPU offloading, weight/activation quantization (Dettmers et al., 2023; Xiao et al.,
2023), and tensor parallelism (Narayanan et al., 2021) in 3D parallelism (e.g. Megatron).
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A THE BOOK-KEEPING (BK) ALGORITHM

A.1 EFFICIENT COMPUTATION OF PER-SAMPLE GRADIENT NORMS

The mixed ghost norm Bu et al. (2022a) is the state-of-the-art technique to compute the per-sample
gradient norm of the weight, almost for free. It hybridizes two basic techniques – the per-sample
gradient instantiation and the ghost norm – to compute the Frobenius norm of weight gradient,∥∥∥∥a⊤

l,i

∂L

∂sl,i

∥∥∥∥2 per-sample grad
==== ∥ ∂Li

∂Wl
∥2Fro

ghost norm
==== vec

(
∂L

∂sl,i

∂L

∂sl,i

⊤
)

· vec(al,ia
⊤
l,i) (4)

where ”vec” flattens the tensor to an one-dimensional vector. In words, Equation (4) gives two
equations that are equivalent mathematically, but significantly different in efficiency:

• ∥X∥2Fro =
∥∥A⊤B

∥∥2 firstly computes A⊤B and then its norm.

• ∥X∥2Fro = vec
(
AA⊤) · vec(BB⊤) firstly computes AA⊤, BB⊤ ∈ RTT and then their dot

product.
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In summary, the mixed ghost norm always applies the cheaper of two techniques at each layer of a
neural network.

Finally, we note that the per-sample gradient norm of the bias is computed differently. This is
because

∂Li

∂bl
= 1⊤ ∂L

∂sl,i
is not actually a product of tensors like X = A⊤B. In fact, the multiplication with 1 turns out to
be a summation along the first dimension, and it suffices to use per-sample gradient instantiation for
the bias.

A.2 BOOK-KEEPING THE OUTPUT GRADIENT

The BK algorithm uses two rounds of back-propagation (though each round only takes half the com-
plexity, hence the total complexity of DP back-propagation matches the non-DP back-propagation).
Therefore, output gradients ∂L

∂sl,i
are kept to avoid repeated computation. Notice that the output

gradient are relatively cheap to book-keep (see Figure 4 and Figure 5 in Bu et al. (2023b)).

B COMPONENT-WISE TIME COMPLEXITY OF DP-ZERO

In this section, we explain the time complexity of each part in Table 2, and demonstrate how the
complexity can be different under different settings.

Forward propagation: The matrix multiplication during forward propagation results in 2BTΨmodel
complexity (see Bu et al. (2022a)). Notice that, if the activation check-pointing is used, essentially
two rounds of forward propagation take place in one iteration. Hence the time complexity doubles
and becomes 4BTΨmodel.

Back-propagation: This contains two sub-processes: the output gradients are computed at all lay-
ers, taking 2BTΨmodel complexity; the parameter gradients are computed only at trainable layers (a
few if doing PEFT), taking 2BTΨtrain complexity. Clearly, in full parameter training, the total is
4BTΨmodel, and in PEFT, about 2BTΨmodel.

Attention: The time complexity of attention is O(BT 2) in Vaswani et al. (2017), where T is the se-
quence length (a.k.a. token length). When T is large, e.g. training with long context like T = 8192,
this cost is prohibitively high. In this regard, a line of researches have proposed linear complexity
attention, including but not limited to Wang et al. (2020); Katharopoulos et al. (2020); Shen et al.
(2021).

Communication: For algorithms that don’t shard the model, such as data parallelism and ZeRO1/2,
the communication is only used to send gradients and optimizer states. Hence the communication
volume is proportional to the number of trainable parameters O(Ψtrain). Otherwise, for algorithms
such as ZeRO3 and tensor parallelism, the communication volume is proportional to the number of
total parameters O(Ψmodel), because the forward propagation needs to gather the parameters from
many GPUs. This makes a big difference in PEFT when Ψtrain ≪ Ψmodel.

C LOSS SCALING IN MIXED-PRECISION TRAINING

We write the per-sample gradient with loss scaling S as
∂CiLi

∂Wl
= Ci

1

S
·
(
a⊤
l,i

(
S · ∂L

∂sl,i

))
This covers the standard gradient (Ci = 1) and DP gradient (e.g. Ci = 1/||gi||, computed by the
mixed ghost norm in Appendix A), in which S enlarges the output gradient to avoid underflow, and
1
S shrinks the parameter gradient to the correct magnitude.

Recall that a standard mixed-precision training (with loss scaling) uses steps 1 → 2 → 3 → 5 → 6
9, or 1 → 3 → 6 without loss scaling.

9See https://docs.nvidia.com/deeplearning/performance/
mixed-precision-training/index.html#lossscaling.
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1. Forward propagation (fp16 weights and activations) and get the loss.

2. Scaling up the loss by a factor S.

3. Backward propagation on the scaled loss (fp16 parameters and their gradients).

4. Per-sample gradient clipping (sensitivity = 1) and noising for DP.

5. Scaling down the parameter gradient by a factor of 1/S.

6. Update the parameters with their gradients.

If we follow the same procedure under the DP regime, say using a hook function to be called
after back-propagation creates the gradients like in Opacus (Yousefpour et al., 2021), Private-
Transformers (Li et al., 2021), FastDP (Bu et al., 2023b), then the per-sample clipping factor is
scaled up S times so as to normalize the gradient. Hence per-sample gradient clipping has already
played the role of scaling down. If we scale down the gradient for a second time, the gradient is
incorrectly over-shrunk. This is the case in Yu et al. (2021a) and in the alternative implementation
of (Li et al., 2021, Appendix T) (see also Figure 5). To be sure, this approach is still DP, but the
performance does not match fp32 DP training correctly, and usually degrades too much to be useful.

One walk-around is to prevent per-sample gradient clipping to scale down the gradients and let step
5 do its job, i.e. 1 → 2 → 3 → 4∗ → 5 → 6. We note that (Li et al., 2021, Appendix T) follows
this path (though no experiment results or codes are available at the time of writing) by modifying
step 4: clipping threshold (sensitivity)= S instead of 1, so that the clipped gradient is S times larger
than the DP f32 training, to be scaled down by step 5. However, this introduces additional design
decisions and does not prevent overflow when using fp16 (due to step 2, see Table 3).

Another walk-around is to delete step 5 and let per-sample gradient clipping do its job, i.e. 1 →
2 → 3 → 4 → 6. However, this approach is harder to implement because in the standard process
step 2 and 5 are simultaneously enabled or disabled. Also we cannot prevent overflow when using
fp16 as we still use step 2.

Therefore, we propose to not use loss scaling (or equivalently we set S = 1 statically for all steps)
during DP mixed-precision training, i.e. 1 → 3 → 4 → 6. Although, by not using step 2, we cannot
prevent underflow when using fp16, this is much less a problem compared to overflow: underflow
(treating small values as 0) makes the training less accurate but does not fail the training like overflow
(treating large values as NAN). Lastly, the underflow issue is perfectly mitigated by bf16, which we
recommend for DP mixed-precision training whenever possible .

steps fp16 issue note reference
standard 136 underflow Micikevicius et al. (2018)
standard 12356 none Micikevicius et al. (2018)

DP 123456 overflow incorrect due to over-shrinking Li et al. (2021)
DP 1234∗56 overflow different clipping threshold Li et al. (2021)
DP 1346 underflow perfect with bf16 ours
DP 12346 overflow hard to implement ours

Table 4: Mixed-precision training with DP or not.

D EXPERIMENT SETTINGS

Datasets: To evaluate the efficiency, it suffices to declare the data’s dimension (e.g. micro-batch
size and feature dimension) without specifying the dataset (though sometimes specifying the dataset
means declaring the dimension, e.g. MNIST usually means 28*28 pixels). This is the norm in
system papers such as Rajbhandari et al. (2020; 2021); Zhao et al.. In this work, vision models are
trained with 224*224 pixels at ImageNet scale; GPT models are trained with sequence length 100,
except in Figure 8 where sequence length is 2048.

Figure 5 and Table 3: We train ViT-large (300M parameters) and CIFAR100, 5 epochs, learning rate
5e-4, logical batch size 1000.
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Figure 6: To fit as large a model as possible, we set B = 1 and use SGD. We set 48 attention heads,
21 layers, MLP=4*width (also known as embedding dimension), and modify width for all models.
For instance, ViT-10B uses width=768 ∗ 22, ViT-22B uses width=768 ∗ 34.

Figure 8: We train AdamW with layer-wise clipping. DP distributed learning is based on MiCS
(ZeRO3) using bf16 mixed-precision training. Most of GPT configuration is the same as Touvron
et al. (2023a) (Table 2) in terms of embedding dimension, attention heads and number of layers.
However, GPT-100B uses the configuration from Brown et al. (2020) (Table 2.1) but a smaller
width.

E CODEBASE DESIGN

E.1 WITH FORWARD & BACKWARD HOOKS

Hooks10 are important functions to enrich the deep learning optimization. To be specific, there are

1. forward modular hook (nn.register forward hook),

2. backward modular hook (nn.register backward hook),

3. backward tensor hook (tensor.register hook).

DP libraries including Opacus Yousefpour et al. (2021), Private-transformers Li et al. (2021),
Private-Vision Bu et al. (2022a), FastDP Bu et al. (2023b;a), FastGradClip Lee & Kifer (2021)
and so on, use modular hooks to modify the standard optimization. However, ZeRO libraries in-
cluding DeepSpeed and FSDP use tensor hooks. This difference in the types of hooks and many
other differences (e.g. both ZeRO libraries and DP libraries modify the optimizer’s step function)
cause non-trivial problems when combining DP with ZeRO. For example, to keep DP optimization
as efficient as the standard, it is necessary to not waste time on computing the non-private gradient.
However, if we skip such computation, then ZeRO’s tensor hook will not be triggered and the corre-
sponding distributed-learning-related operations cannot carry on. For another example, because DP
and ZeRO add different types of hooks, the number of hooks is larger than either optimization and
they slows down the training: consider an 100-layer network, each layer with weight and bias (2 ten-
sors), then DP-ZeRO in this subsection needs 100 modular hooks and 200 tensor hooks, adding to a
total of 300 hooks. In addition, the Book-Keeping algorithm (in FastDP) in its original form cannot
be implemented together with ZeRO3, because all model states are partitioned including the output
gradients which are meant to be book-kept. To work around this requires rewriting the distributed so-
lution’s communication mechanism, and if successful, still requiring additional communication cost
during the second back-propagation. Similar problems are present for Opacus and FastGradClip,
which instantiates per-sample gradients that will be partitioned in ZeRO2/3 and requires additional
communication cost when gathered to create the privatized gradient.

As a consequence, the hooks are fully supported on DP-ZeRO1 and partially supported on DP-
ZeRO2/3 under the layer-wise clipping.

E.2 WITHOUT HOOKS

Instead of registering hooks on top of the original (non-DP) back-propagation, we can directly mod-
ify the back-propagation following Appendix A: e.g., given the activation and output gradient,

∂CiLi

∂Wl
= a⊤

(l),i

∂L

∂s(l),i

/√√√√vec

(
∂L

∂s(l),i

∂L

∂s(l),i

⊤
)

· vec(a(l),ia
⊤
(l),i)

This approach requires rewriting the back-propagation for each layer type (linear, embedding, con-
volution, normalization, ...) and can be done at different levels (Pytorch, C++, CUDA kernel).

10See https://pytorch.org/tutorials/beginner/former_torchies/nnft_
tutorial.html#forward-and-backward-function-hooks.
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E.3 USER INTERFACE

DP-ZeRO can be enabled by one piece of code: after the model is instantiated,

privacy_engine = PrivacyEngine(model,
batch_size=256, sample_size=50000,
epochs=3, target_epsilon=3)

The codebase is designed not to modify the optimizer, hence DP-ZeRO can work with arbitrary op-
timizer. Because of this design, our DP-ZeRO will not distinguish micro-batches. This is different
from the gradient accumulation in Opacus (version ==0.x) and Private-Vision, where only the last
micro-batch is processed by ”optimizer.step()” but all other micro-batches are processed by ”opti-
mizer.virtual step()”. In other words, the noise σDPN(0, I) is added on the last micro-batch, after
the micro-batches are accumulated. But DP-ZeRO adds the noise on each micro-batch equally. Note
that the noise level per micro-batch is σDP/

√
Nd if a random seed is set across Nd GPUs, or σDP/Nd

otherwise.

E.4 VERIFICATION OF OUR IMPLEMENTATION

DP-ZeRO is implementing the same DP-SGD (hence the same utility) as in Abadi et al. (2016), only
in a much more scalable and distributed manner than libraries like Private Transformers and Opacus.

To be sure, we provide the results on 5 runs of ViT (image classficiation) and GPT2 (text generation),
at ϵ = 8, with standard deviations in the parenthesis. We compare to other libraries (without mixed
precision) and our DP-ZeRO uses mixed precision, in order to validate both (I) the correctness of
DP mixed precision and (II) the correctness of our implementation of DP-ZeRO.

ViT/CIFAR100/accuracy GPT2/E2E/BLEU
Opacus 83.45(0.28) 63.35(0.50)
FastDP 83.46(0.19) 64.01(0.54)

GhostClip 83.51(0.33) 63.71(0.31)
DP-ZeRO1 83.46(0.13) 64.03(0.41)
DP-ZeRO2 83.43(0.09) 63.72(0.47)
DP-ZeRO3 83.48(0.18) 63.92(0.39)
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