
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ZERO REDUNDANCY DISTRIBUTED LEARNING
WITH DIFFERENTIAL PRIVACY

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning using large models have achieved great success in a wide range
of domains. However, training these models on billions of parameters is very
challenging in terms of the training speed, memory cost, and communication ef-
ficiency, especially under the privacy-preserving regime with differential privacy
(DP). On the one hand, DP optimization has comparable efficiency to the standard
non-private optimization on a single GPU, but existing DP distributed learning
(such as pipeline parallelism) has suffered from significantly worse efficiency on
multiple GPUs. On the other hand, the Zero Redundancy Optimizer (ZeRO) is a
state-of-the-art solution to the standard distributed learning, exhibiting excellent
training efficiency on large models, but to work compatibly with DP is technically
complicated. In this work, we develop a new systematic solution, DP-ZeRO, (I)
to scale up the trainable DP model size, e.g. to GPT-100B, (II) to obtain the same
computation and communication efficiency as the standard ZeRO, and (III) to en-
able mixed-precision DP training. Our DP-ZeRO, like the standard ZeRO, has the
potential to train models with arbitrary size and is evaluated on the world’s largest
DP models in terms of the number of trainable parameters. 1

1 INTRODUCTION

Recent advances in differentially private (DP) deep learning have witnessed the power of large pre-
trained models, achieving comparable accuracy to state-of-the-art (SOTA) non-private models across
computer vision De et al. (2022); Bu et al. (2022a); Mehta et al. (2022); Xie et al. (2018), natural
language processing Yu et al. (2021a); Li et al. (2021); Bu et al. (2023a), and many other tasks.
Similar to their non-DP counter-parts, it has been observed that larger DP models tend to have
better performance. For example, the DP accuracy increases from 83% using RoBERTa-base (123M
parameters) to 86% using RoBERTa-large (354M parameters) on GLUE datasets Li et al. (2021);
Bu et al. (2023a); Yu et al. (2021a); the DP BLEU score increases from 61 using GPT2-small (124M
parameters) to 64 using GPT2-large (800M parameters) on E2E dataset Li et al. (2021); Bu et al.
(2023a); a similar trend is also observed using ViT (Base/Large/Huge) up to 600M parameters to
achieve state-of-the-art DP accuracy on ImageNet, around 81% at ϵ = 8 Mehta et al. (2022).

Driven by this success and the surge of computational power, it is high time to enable DP deep
learning at the same scale of the standard non-DP one, e.g., GPT3-175B (Brown et al., 2020) and
LLaMA-63B (Touvron et al., 2023a;b). Specifically, such a DP training system must have high
speed and memory efficiency, low communication cost, and the compatibility with general model
architectures.

For small to moderately large models (e.g. with less than a billion parameters) that fit within the
memory of a single GPU, a range of DP algorithms are feasible, producing the same result at differ-
ent efficiency. Examples include TensorFlow-privacy Subramani et al. (2021), Opacus Yousefpour
et al. (2021); Bu et al. (2022b), ghost clipping (GhostClip) Goodfellow (2015); Li et al. (2021);
Bu et al. (2022a), and Book-Keeping (BK) Bu et al. (2023b), among which the BK algorithm has
allowed DP optimization to be almost as efficient as the standard one. To be specific, the time/space
complexity of BK algorithm is 1.08 × /1.05× of the standard optimization on ViT-Large (300M
parameters, 147 layers) and 1.03× /1.01× on GPT2-large (800M parameters, 220 layers).

1Code at https://anonymous.4open.science/r/DP-ZERO-2821 (this is built on fastDP and
no identifiers are related to our work).

1

https://anonymous.4open.science/r/DP-ZERO-2821
https://github.com/awslabs/fast-differential-privacy

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Summary of selected DP distributed learning.
Distributed

solution Parallelism Model
sharding

Standard
version

DP
version Remark

DDP Data No Li et al. Yousefpour et al. (2021) unable to fit large model and DP is memory costly
DDP Data No Frostig et al. (2018) De et al. (2022) unable to fit large model and DP is slow

GPipe Pipeline Yes Huang et al. (2019) He et al. (2022) pipeline bubble wastes GPU time
ZeRO Data(&Model) Yes Rajbhandari et al. (2020) Ours speed & memory & communication efficient

To enable the DP distributed learning of these not-too-large models, one can directly use DDP
(distributed data parallelism) (Li et al.), where each mini-batch of data is partitioned to smaller
micro-batches and each GPU computes one micro-batch with a full copy of the DP model. A line
of researches (Yousefpour et al., 2021; De et al., 2022; Kurakin et al., 2022) have reported that
DDP with DP usually either incurs huge memory cost due to caching the per-sample gradients, or
suffers from 2 − 9× slower training speed than non-DP optimization De et al. (2022); Bu et al.
(2021). While the efficiency issues can be addressed through a better DP algorithm, such as BK, the
feasibility issue remains insurmountable because DDP cannot train models that exceed the capacity
of one GPU. Notably, the efficiency of BK algorithm is enhanced by two key techniques: mixed
ghost norm (computing per-sample gradient norms almost for free) and book-keeping trick (only
using one round of full back-propagation, not two rounds as in Li et al. (2021); Bu et al. (2022a)),
which are detailed in Appendix A and will also be leveraged in our DP-ZeRO solution.

As the model size further increases beyond a reasonable bound for one GPU (e.g. 32GB memory,
which roughly translates to 2B model training with Adam), the model must be partitioned in addition
to the data, e.g. using pipeline parallelism and model parallelism, so that each GPU only holds
a partial shard of the model (see Figure 2). In He et al. (2022), DP is combined with pipeline
parallelism to fine-tune about 0.1% of GPT3-175B. Yet, the pipeline parallelism can be inefficient
due to a non-DP-related issue – the pipeline bubble, where GPUs are idle while waiting for data to
process.

Generally speaking, more advanced distributed methods such as Zero Redundancy Optimizer Rajb-
handari et al. (2020) (ZeRO) and mixed-precision training have not be paired with DP due to the
lack of algorithmic advances. In this work, we develop DP-ZeRO, equipping state-of-the-art dis-
tributed learning solution with DP (see comparison in Table 1), without altering the mathematics of
DP optimization. We summarize our contributions as follows2.

1. We propose the zero redundancy distributed learning with differential privacy (DP-ZeRO),
demonstrating the same level of communication efficiency, computation efficiency
(speed and memory), and scalability (to GPT3 level and hundreds of GPUs) as the stan-
dard ZeRO.

2. We enable the mixed-precision training with DP by addressing the issue of loss scaling.
This solution allows us to reduce the memory cost by roughly 50% and allow significantly
faster communication that was previously not enjoyed by DP distributed learning.

3. We enable DP deep learning with more than 1B trainable parameters for the first time. E.g.
we are the first to train the full GPT2-XL, ViT-Gigantic, ViT-10B and GPT-100B with DP.

4. We will open-source our codebase as the first DP distributed learning library, that automat-
ically applies DP-ZeRO for general tasks (e.g. classification and language understanding),
general network architectures (e.g. ResNet, ViT, GPT), and general distributed solutions
(including DeepSpeed and FSDP).

2 PRELIMINARY

2.1 DIFFERENTIAL PRIVACY

DP provides a formal privacy guarantee, making it difficult to extract any information from training
data. The privacy guarantee is characterized by (ϵ, δ)-DP in Definition 2.1, with smaller (ϵ, δ)
representing lower privacy risk.

2We do not report any accuracy results since this is a system design paper, following the norm in the original
ZeRO Rajbhandari et al. (2020) and FSDP Zhao et al.. We verify that DP-ZeRO is implemented correctly by
comparing to single-GPU DP libraries in Appendix E.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

10 1 100 101 102 103 104 105

Total model parameters (million)

10 1

100

101

102

103

104

105

Tr
ai

na
bl

e
pa

ra
m

et
er

s (
m

illi
on

)

GPT3(LoRA)

GPT2-XL(LoRA)

GPT2-large

GPT2-small/RoBERTa-base

GPT2-large(BiTFiT)

RoBERTa-large

RoBERTa-large(LoRA)

RoBERTa-large(BiTFiT)

RoBERTa-base(BiTFiT)

RoBERTa-base(LoRA)

GPT-100B

GPT-7B
GPT-13B

GPT-26B

GPT2-XL

100 101 102 103 104

Total model parameters (million)

10 1

100

101

102

103

104

Tr
ai

na
bl

e
pa

ra
m

et
er

s (
m

illi
on

)

ViT-Large

ViT-Base

ViT-Huge(LP)ViT-Large(LP)ViT-Base(LP)

ViT-Large(BiTFiT)

ViT-Base(BiTFiT)

ResNet18
ResNet50

ResNet152

ResNet152(LP)

ViT-Gigantic

ViT-10B

ViT-22B

Figure 1: Total/trainable parameters of existing DP models (blue) and ours by DP-ZeRO (red).

Definition 2.1 (Dwork et al. (2006)). A randomized algorithm M is (ε, δ)-DP if, for any two neigh-
boring datasets S, S′ that differ by one sample and for any event E, we have P[M(S) ∈ E] ⩽
eεP [M (S′) ∈ E] + δ.

In DP deep learning, the gradients are made private by post-processing through per-sample gradient
clipping and random noising:

private gradient (m-th group): G[m] :=
∑
i

Ci(Rm)g[m],i + σDP∥[R1, · · · , RM]∥ · N (0, I). (1)

Here the gradient of all trainable parameters is partitioned into M groups, i.e. g[m],i is the i-th
per-sample gradient of the m-th group’s parameters, where m ∈ {1 · · ·M} is the group index. Ci is
the per-sample gradient clipping factor so that ∥Cig[m],i∥ ≤ Rm and Rm is the clipping threshold.
That is, DP optimization is enabled when the standard optimizers such as stochastic gradient descent
(SGD) and Adam (Kingma & Ba, 2014) update the trainable parameters with the private gradient,
instead of the standard gradient

∑
i gi.

Mathematical gradient partition In equation 1, the trainable parameters and their gradients are
mathematically partitioned into M groups, e.g. in all-layer clipping, all parameters form one group
(M = 1) Abadi et al. (2016); in layer-wise clipping McMahan et al. (2018); He et al. (2022),
each layer’s parameters form a group (M = number of layers). Empirical evidence and theoretical
analysis show that different partitions have the same training speed, though a finer partition (e.g.
layer-wise) has lighter memory footprint3.

Per-sample gradient clipping In equation 1, a number of clipping functions Ci = C(∥gi∥;R) are
available. Most works Abadi et al. (2016); Li et al. (2021); Yu et al. (2021a) use the vanilla clipping
Ci = min(R/∥gi∥, 1). Recently, Bu et al. (2023a); Yang et al. (2022) advocate the automatic
clipping Ci = 1/(∥gi∥ + 0.01) which is hyperparameter-free and comparably accurate. Note if
Ci ≡ 1, then the clipped gradient reduces to the standard gradient. The main overhead of DP
optimization is the computation of per-sample gradient norms. On a single GPU, the mixed ghost
clipping Bu et al. (2023b) has reduced the time complexity to < 10% on large models like GPT2.

Privacy accounting In equation 1, adding Gaussian noise to the clipped gradient protects the
privacy that is quantifiable by the privacy accounting theory Abadi et al. (2016); Bu et al. (2020);
Dong et al. (2019); Zhu et al. (2022); Gopi et al. (2021); Koskela et al. (2020). The privacy guarantee
is increasing in the noise level σDP, independent of Rm, learning rate, clipping function and model
architectures, with σDP = 0 leading to ϵ = ∞ (non-private).

3We note that DP optimization under different group-wise clippings can have the same computation and
communication efficiency (under the BK algorithm), with or without ZeRO.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 ZERO REDUNDANCY OPTIMIZER (ZERO)

2.2.1 PARALLEL COMPUTING

Parallel computing is necessary to train large-scale models and is critical to the optimization ef-
ficiency. For models that fit in a single GPU, data parallelism (DataP) can be used to speed
up the training by partition the mini-batch of samples into multiple micro-batches. Then, each
GPU (holding a full copy of parameters) executes the forward and backward propagation of one
micro-batch, from which the parameter gradients are generated and averaged across GPUs to up-
date the trainable parameters. However, for models that do not fit in a single GPU, the model
parameters need to be sharded by alternative solutions such as ZeRO Rajbhandari et al. (2020),
model parallelism (ModelP) and pipeline parallelism (PipeP).

ModelP partitions a model vertically, e.g. using 3 GPUs to store the parameters of one layer. As
a consequence, ModelP does not scale efficiently beyond a single node due to fine-grained com-
putation and expensive communication between layers. Implementation-wise, ModelP frameworks
usually require heavy code integration that may not be generalizable in model architectures. In con-
trast, PipeP partitions a model horizontally across layers, e.g. storing 3 layers in each GPU. Each
GPU deals with all micro-batches sequentially, though PipeP can be inefficient due to the pipeline
bubble, which is overcome by ZeRO Rajbhandari et al. (2020). ZeRO is an advanced data parallel
method that eliminates memory redundancies during the training, and improves the training speed
and communication volume proportionally to the number of GPUs. Unlike basic DataP, ZeRO par-
titions a model’s states across GPUs and gather/reduce in a just-in-time manner, thus sustaining the
high efficiency of very large model training. Notice that ZeRO can work compatibly with ModelP
and optionally offload the model states to CPUs Ren et al. (2021); Rajbhandari et al. (2021).

2.2.2 MODEL STATE PARTITION

A major part of the training memory is consumed by the model states4. ZeRO has three stages
(ZeRO1/2/3) that partition these model states by different levels, with lower level being faster but
more memory costly. For instance, in Table 2 of (Rajbhandari et al., 2020), ZeRO1/2/3 at most train
7.6/14.4/128B models on 64 V100 GPUs.

We take an example of mixed-precision Adam optimizer to train a model with Ψmodel parameters,
which maintains a master copy (fp32) of optimizer states. and the half-precision parameters and
gradients.

Optimizer state partition The optimizer states are the (master) parameters, variance and mo-
mentum, each taking 4Ψmodel memory. ZeRO1 only applies the optimizer state partition and updates
the parameters locally, reducing the memory cost of model states from 16Ψmodel for basic DataP to
(4 + 12

Nd
)Ψmodel at each of Nd GPUs.

Figure 2: Mathematical (left two, same GPU allocation, different accuracy) and hardware (right two,
different GPU allocation, same accuracy) gradient partition. Orange and blue are gradient groups
g[1] and g[2] in DP optimization equation 1.

Hardware gradient partition In addition to ZeRO1, during the back-propagation, ZeRO2 (and
ZeRO3) further partitions the 2Ψmodel gradients into different GPUs, reducing the memory cost to
(2 + 14

Nd
)Ψmodel at each GPU. Figure 2 illustrates the difference between the hardware partition and

the mathematical partition in Section 2.1.

4Another important part of memory consumption is the batch-size-related variables such as the activation
tensors, which is instantiated during the forward propagation and independent to DP (which modifies the gra-
dient during the back-propagation).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Parameter partition In addition to ZeRO2, ZeRO3 also partitions the 2Ψmodel fp16 parameters,
further reducing the memory cost to 16

Nd
Ψmodel at each GPU.

2.3 MIXED-PRECISION TRAINING

Mixed-precision training (Micikevicius et al., 2018) performs the forward and backward propagation
on the half precision (fp16 or bf16) parameters, activations, and gradients, while performing the
model update in full precision (fp32). Compared to the full-precision training, it is capable of saving
the memory by ≈ 50% and accelerating the computation by ≈ 20%. We note that fp16 has better
precision but a limited range: its representable numbers are among 10−8 ∼ 105, and vice versa for
bf16. Therefore, loss scaling is necessary when using fp16 to prevent small gradients from being
rounded to zero, thereby preserving the model’s accuracy (see Appendix C for details). In contrast,
bf16 usually does not need loss scaling since it has the same range as fp32. However, bf16 is not as
widely supported as fp16, e.g. only available on NVIDIA Ampere GPUs or above (Nvidia).

3 DIFFERENTIALLY PRIVATE ZERO

3.1 ALGORITHM

Our DP-ZeRO algorithm introduces the per-sample gradient clipping and noising to the standard
ZeRO (Rajbhandari et al., 2020), while maintaining the efficiency. At high level, an iteration of
ZeRO consists of the following steps:(

all-gather → forward → all-gather → backward → reduce
)×L layers

→ update(SGD/Adam/...)

The operations in purple are global and require communication among GPUs, whereas the op-
erations in green are locally computed within each GPU. In particular, DP optimization is only
different from the standard optimization in the back-propagation, which can be decomposed into

backward =(output gradient → clipping factor → parameter gradient → noising)

To give more details, we consider training a neural network of linear layers using Nd GPUs. We
emphasize that the following procedure is sufficiently generic to cover other layer types, such as
convolution, embedding, normalization, and so on, which are all supported by DP-ZeRO. The full
algorithm is depicted in Figure 3, where we denote the j-th micro-batched variables like a

(j)
l , for

1 ≤ j ≤ Nd.

The forward propagation of DP optimization is the same as that of the standard optimization:

sl = alWl + bl,al+1 = ϕl(sl). (2)

At the l-th layer, al ∈ RBTldl is the layer’s input, also known as the activation, sl ∈ RBTlpl is the
layer’s output, Wl ∈ Rdlpl is the weight, bl ∈ Rpl is the bias, and ϕl is any inter-layer operation
such as ReLU, tanh or pooling. We denote B as the physical micro-batch size5 and Tl as the hidden
feature dimension (e.g. sentence length or number of pixels). During the forward propagation, the
activations {al} are computed and stored in the computation graph, and the loss L =

∑
i Li is

derived, where Li is the per-sample losses. During the back-propagation, the output gradient is first
computed based on the previous layer.

∂L

∂sl
=

∂L

∂sl+1

∂sl+1

∂al+1
◦ ∂al+1

∂sl
=

∂L

∂sl+1
Wl+1 ◦ ϕ′

l(sl),

in which ◦ is element-wise multiplication. Specifically, the use of parameter Wl+1 necessitates the
all-gather operation when the model is partitioned into multiple GPUs, which is not needed in single
GPU training. Next, the activation al is used together with ∂L

∂sl
to compute the parameter gradient:

DP gradient:
∂
∑

i CiLi

∂Wl
+ σN (0, I) = a⊤

l diag(C1, · · · , CB)
∂L

∂sl
+ σN (0, I).

5The micro-batch size B is the number of samples processed by each GPU, which determines the time
and memory efficiency, but not the performance. The logical batch size that determines the performance is
B ×Nd × gradient accumulation steps.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Algorithm of DP-ZeRO with mixed-precision training.

Note the standard gradient can be viewed as Ci = 1, σ = 0. Here the per-sample gradient norm (or
the clipping factor Ci) can be computed at small cost, as we have discussed in Section 1.

3.2 TIME EFFICIENCY OF DP-ZERO

The time efficiency of DP-ZeRO consists of two parts: the local computation (including forward and
backward propagation) and the global communication (including intra-node and inter-node commu-
nication). Given that the only difference between DP-ZeRO and ZeRO is the back-propagation,
we claim that DP-ZeRO could enjoy high efficiency on-par with the standard ZeRO when (I) DP
back-propagation exhibits a time efficiency comparable to the standard, similar to the single GPU
training, and/or (II) the time efficiency of the parts other than back-propagation is not insignificant.
We give the time of each part of DP-ZeRO in equation 3 to illustrate our claim.

DP-ZeRO speed
standard ZeRO speed

=
standard back-prop + forward prop + communication

DP back-prop + forward prop + communication
(3)

To be explicit, we summarize the time complexity in Table 2 and refer to Appendix B for details.

Table 2: Time complexity (measured by float-point operations) of one iteration in distributed learn-
ing7. We denote Ψtrain to be the number of trainable parameters (Ψtrain = Ψmodel in full parameter
training), and define B, T below equation 2.

forward propagation back-propagation communicationactivation attention output grad param grad DP clipping& noise
complexity 2BTΨmodel O(BT 2) 2BTΨmodel 2BTΨtrain 0.666BTΨtrain O(Ψmodel)

In what follows, we analyze the absolute and relative speed (to standard ZeRO) of DP-ZeRO under
important settings.

7Here 0.666 is figurative and dependent on the DP mechanisms. For example, if we denote d, p as a layer’s
input/output dimensions, then the complexity of BK algorithm Bu et al. (2023b) is 6BTpd + 2BT 2(p + d) ·
I(2T 2 < pd), which is non-linear in T but empirically the overall slowdown could be 0.666/6 ≈ 11%. Notice
that Ψtrain ≪ Ψmodel when most parameters are frozen, as is the case in parameter efficient fine-tuning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.2.1 NUMBER OF COMPUTATION DEVICES

When scaling from one GPU (zero communication) to one node (multiple GPUs) and to mul-
tiple nodes, the communication efficiency decreases sub-linearly (↑communication). On a sin-
gle node, multiple GPUs can communicate using the high-speed intra-node connections such as
NVLink/NVSwitch (Foley & Danskin, 2017; Ishii et al., 2018). On multiple nodes, which are nec-
essary for large models, the inter-node connections are 3 ∼ 24× slower than the intra-node connec-
tions (Li et al., 2019; Zhang et al., 2022). In short, DP-ZeRO can be as fast as ZeRO by equation 3
when multiple nodes are employed.

3.2.2 MEMORY-EFFICIENT DISTRIBUTED LEARNING

The communication volume is specific to different distributed algorithms, most of which trade the
communication or speed for memory, in order to feasibly train very large models. For example,
ZeRO3 (but not ZeRO1/2) needs to all-gather the sharded parameters at each iteration, hence suffer-
ing from 50% extra communication volume (↑communication). Another example is the activation
check-pointing (also known as gradient check-pointint Chen et al. (2016)), where a second for-
ward propagation re-computes the expensive activations during back-propagation, though at a 33%
slower speed (↑forward propagation). These techniques improve the relative speed of DP-ZeRO but
worsens the absolute speed.

3.2.3 PARAMETER EFFICIENT FINE-TUNING

Parameter efficient fine-tuning (PEFT), such as LoRA (Hu et al., 2021), Adapter (Houlsby et al.,
2019), and BiTFiT (Zaken et al., 2022), optimizes a small fraction (e.g. Ψtrain = 0.1%Ψmodel)
of model parameters and thus boosts the efficiency of back-propagation and communication (↓DP
back-propagation ↓back-propagation ↓communication). Consequently, (I) the communication vol-
ume of the gradient can be reduced possibly by 1000×; (II) the local computation can accelerate by
50% (Hu et al., 2021; Bu et al., 2022b), which can be seen by treating Ψtrain in Table 2 as almost
zero; (III) the memory cost is saved on the non-trainable layers, which translates to larger batch size
and faster computation. Hence, both relative and absolute speed of DP-ZeRO improve using PEFT.

3.3 MEMORY EFFICIENCY OF DP-ZERO

We claim that DP-ZeRO is as memory efficient as the standard ZeRO, similar to the single GPU
training, when we use (I) the mixed ghost norm trick Bu et al. (2022a; 2023b), instead of GhostClip
(Goodfellow, 2015; Li et al., 2021) or per-sample gradient instantiation (Yousefpour et al., 2021);
(II) the layer-wise clipping style instead of the all-layer clipping, so that the book-keeping (Bu et al.,
2023b) does not store all output gradients; or (III) a large number of GPUs so that the micro-batch
size B (i.e. per-GPU batch size) is small: specially, when B = 1 in the gradient accumulation, the
per-sample gradient is free. We empirically verify our claim in Figures 4 and 7.

full precision mixed precision
0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

ec
)

83%
85%

full precision mixed precision
0

200

400

600

800

1000

1200

1400

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

ec
)

88%
82%

full precision mixed precision
0

20

40

60

80

100

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

ec
)

86% 86%

full precision mixed precision
0

10

20

30

40

M
em

or
y

/ G
PU

 (G
B)

113%

107%

standard (non-DP)
DP layer-wise
DP all-layer

full precision mixed precision
0

10

20

30

40

M
em

or
y

/ G
PU

 (G
B)

157%

155%

standard (non-DP)
DP layer-wise
DP all-layer

full precision mixed precision
0

10

20

30

40

M
em

or
y

/ G
PU

 (G
B)

115%

105%

standard (non-DP)
DP layer-wise
DP all-layer

Figure 4: Efficiency on ViT-Gigantic (left, 1.8B), ResNet152 (middle) and GPT2-XL (right, 1.5B).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.4 MIXED-PRECISION TRAINING WITH DP

fp32 1 10 100.0 1000.0
loss scaling

0

20

40

60

80

Te
st

 a
cc

ur
ac

y

standard
DP (= 2)

Figure 5: Accuracy of mixed-
precision training with loss scaling.
ViT-large on CIFAR100.

We now analyze the intricacy in mixed-precision training with
DP, which is not unique to DP-ZeRO but present in the gen-
eral DP optimization. We emphasize that the per-sample gra-
dient clipping already plays the role of scaling, and hence DP
mixed-precision training must not use loss scaling, as illus-
trated in Table 3. Specifically, in standard mixed-precision
training, there are two steps of scaling: (I) scaling up the
loss Li by 103 ∼ 109 (and consequently the output gradient
∂Li

∂s as well as ∂Li

∂W) before the back-propagation, to prevent
the underflow where fp16 gradient is too small to be distin-
guished from 0, and (II) scaling down the parameter gradient
∂Li

∂W , by the same factor, after the back-propagation to recover
the correct magnitude of gradient. However, in DP mixed-
precision training, scaling up the loss may cause overflow,
while scaling down the gradient incorrectly over-shrinks the gradient and worsens the performance.
See Figure 5 for a real example. We explain this intricacy step-by-step in Appendix C.

Table 3: Illustration of overflow and underflow issues during mixed-precision training (ghost norm).
loss scale=103 activation al output grad ∂L

∂sl

per-sample grad norm clipping factor param grad param grad
(scaled) vec(ala

⊤
l) vec(∂L

∂sl

∂L
∂sl

⊤
) (not scaled down) (if scaled down)

standard w/o scaling 10−3 ∼ 102 10−8 ∼ 101 N/A N/A 1 10−7 ∼ 101 10−7 ∼ 101

standard w/ scaling 10−3 ∼ 102 10−5 ∼ 104 N/A N/A 1 10−4 ∼ 104 10−7 ∼ 101

DP w/o scaling 10−3 ∼ 102 10−8 ∼ 101 102 ∼ 103 10−6 ∼ 100 10−3 ∼ 102 10−7 ∼ 101 10−7 ∼ 101

DP w/ scaling 10−3 ∼ 102 10−5 ∼ 104 102 ∼ 103 100 ∼ 106 10−6 ∼ 10−1 10−7 ∼ 101 10−10 ∼ 10−2

Remark 3.1. DP may be violated due to the floating-point vulnerability at any precision Mironov
(2012), but the issues can be more severe at half-precision. Yet, it remains an open discussion
whether precision-based attacks can non-trivially break the protection of DP in deep learning, since
the model is updated through thousands of iterations which may cover the identifiability of data
information. In fact, Bu et al. (2024); Yu et al. (2021b); Li et al. (2024) have demonstrated that DP
mixed-precision training can empirically preserve the protection against various privacy attacks.

4 EMPIRICAL PERFORMANCE OF DP-ZERO

We evaluate DP-ZeRO on five aspects : model architectures, efficiency, scalability, compatibility
with various distributed learning and DP techniques. We use DP-ZeRO to train ResNet (He et al.,
2016), ViT (Dosovitskiy et al., 2020; Zhai et al., 2022) and GPT (Radford et al., 2019; Brown
et al., 2020), which are workhorses in computer vision and language tasks. We report two accuracy
experiments in Appendix E.4 for ViT and GPT to show that the performance is consistent across
systems and to verify our implementation. We do not aim for higher accuracy with larger models,
because the accuracy depends on many traning hyperparameters like learning rate and number of
epochs that are not relevant to the system designs. In fact, this is the norm of system papers including
the standard non-DP ZeRO Rajbhandari et al. (2020) and FSDP Zhao et al., where the focus is on
the system efficiency.

We measure the time and memory efficiency of DP-ZeRO under settings such as PEFT and multiple
precision formats (fp32 or fp16/bf16). We evaluate the scalability of DP-ZeRO in terms of number
of GPUs and number of model parameters. Our experiments scale from single node (8 GPUs) to
multiple nodes, up to 256 GPUs, and train models up to 100B trainable parameters. Moreover, DP-
ZeRO is compatible with mainstream implementations of ZeRO8 and with different clipping styles,
clipping functions, privacy accountants, and so on. We leave the experimental details in Appendix D.
By default, we use AdamW, mixed-precision training, layer-wise clipping style, B = 4, and A100
GPU with 40GB memory, unless otherwise stated.

8DP-ZeRO is implemented on DeepSpeed (supporting ZeRO1/2/3), FSDP (Zhao et al.) (supporting
ZeRO3), MiCS (Zhang et al., 2022) (supporting ZeRO2/3), and any distributed optimizers supported on these
libraries.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.1 GENERALITY OF DP-ZERO

DP-ZeRO is generally applicable to different neural network architectures, clipping styles, and pre-
cision formats. We test DP-ZeRO1 on single node and observe that different clipping styles are
equally fast, but layer-wise clipping is more memory efficient than all-layer clipping. Comparing to
the standard ZeRO, our DP-ZeRO enjoys almost the same speed and memory efficiency, while the
gap will be further closed as we move to more advanced stages of ZeRO.

4.2 LIGHTER TRAINING OF DP-ZERO

0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

ec
)

0

5

10

15

20

25

30

35

40

M
em

or
y

/ G
PU

 (G
B)

Adam
SGD
PEFT
SGD+PEFT

ViT-Gigantic GPT2-XL
0

50

100

150

200

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

ec
)

standard(full)
DP(full)
standard(PEFT)
DP(PEFT)

Figure 6: Efficiency of DP-ZeRO with lighter training. Left&Middle: > 2× speedup with lighter
training; ViT-5B, B = 1. Right: DP-ZeRO benefits more than ZeRO from PEFT.
DP-ZeRO can employ low-memory optimizers and train on fewer parameters, therefore vastly reduc-
ing the memory and communication cost. On a single node, we demonstrate that DP-ZeRO actually
benefits (more than standard ZeRO and single-GPU training) from lighter training, following from
our discussion in Section 3.2.

Low-memory optimizers Low-memory optimizers can boost the training efficiency at the cost of
accuracy degradation. For example, SGD requires only 1/3 optimizer states of Adam and signifi-
cantly saves the memory; 1-bit Adam (Tang et al., 2021) and signSGD compress the gradient and
reduce the communication volume up to 32×.

Fewer trainable parameters In the fine-tuning phase, as we analyzed in Section 3.2.3, PEFT
improves both the local computation and the communication volume. Hence, DP-ZeRO allows
PEFT on ViT and GPT to be ≈ 2× faster than full fine-tuning, whereas the single GPU acceleration
is ≤ 1.5×.

Remark 4.1. We leverage DP-ZeRO3 with SGD to train ViT-10B (full parameters) and ViT-22B
(PEFT; 1M trainable parameters) on one node. See Appendix D for configurations.

4.3 THREE STAGES OF DP-ZERO

DP-ZeRO supports all stages of ZeRO under different implementations including DeepSpeed (de-
fault) and FSDP.

In Figure 7, the efficiency of DP-ZeRO catches up with the standard ZeRO when we move up the
stages. For instance of ViT-Gigantic, the throughput increases from 83% by DP-ZeRO1 to 95-97%
by DP-ZeRO3. Following equation 3, we can attribute the relatively fast training of DP-ZeRO to
the increase cost of communication, especially in DP-ZeRO3. Additionally, we observe that the
throughput of DP-ZeRO1/2 improves to over 95% on 4 nodes, as predicted by Section 3.2.1. Notice
that we save DP-ZeRO3 of GPT to Section 4.4 on super-large scale.

4.4 SCALABILITY OF DP-ZERO

We evaluate the scalability of DP-ZeRO3 in terms of large sequence length (2048), large model size
(7 ∼ 100B), and large number of GPUs (up to 256). We use A100 with 80GB memory, as well as
the activation check-pointing and ModelP.

In Figure 8 (left), we observe that for a fixed model with 26B trainable parameters, DP-ZeRO is
super-linearly scalable to the number of GPUs, achieving > 95% speed of the standard ZeRO. Here
super-linearity is a property of ZeRO (see Figure 3 in Rajbhandari et al. (2020)) which allows more
GPUs to shard the model states (and reduce the per-GPU memory cost) more aggressively, and to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ViT-ZeRO1 ViT-ZeRO2 ViT-ZeRO3 ViT-FSDP GPT-ZeRO1 GPT-ZeRO2
0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

ec
)

83% 84%

95% 97%

83% 83%

81%
89%

94% 98%

82% 84%

standard, full prec
DP layer-wise, full prec
standard, mixed prec
DP layer-wise, mixed prec

ViT-ZeRO1 ViT-ZeRO2 ViT-ZeRO3 ViT-FSDP GPT-ZeRO1 GPT-ZeRO2
0

10

20

30

40
M

em
or

y
/ G

PU
 (G

B)

59%

46%
65%

74% 64% 67%

standard, full prec
DP layer-wise, full prec
standard, mixed prec
DP layer-wise, mixed prec

Figure 7: Efficiency of DP-ZeRO on ViT-Gigantic and GPT2-XL under different implementations.

train faster since the micro-batch size is larger. Furthermore, in Figure 8 (right), for a fixed number
of GPUs, DP-ZeRO is linearly scalable to the model size, achieving the same speed and scalability
as the standard ZeRO. In short, DP-ZeRO is almost equal to ZeRO in terms of training efficiency in
super-large scale.

16 32 64 128 256
Number of GPUs

5000

10000

15000

20000

25000

To
ta

l T
Fl

op
s

Linear scalability
non-DP (max B)
DP (max B)
non-DP (fixed B)
DP (fixed B)

0

20

40

60

80

100

120

Pe
r-G

PU
 T

Fl
op

s

non-DP per-GPU
DP per-GPU

7B 13B 26B 100B
Number of model trainable parameters

0

2500

5000

7500

10000

12500

15000

17500

20000

To
ta

l T
Fl

op
s

non-DP (fixed B)
DP (fixed B)

0

2

4

6

8

10

Re
la

tiv
e

sp
ee

d
to

 D
P

10
0B

Linear scalability
non-DP time
DP time

Figure 8: Scalability of DP-ZeRO3 on 26B model (left) and 256 GPUs (right). The colored lines
match the left y-axis. The grey bars match the right y-axis. max B means we use the maximum
micro-batch in each GPU and fixed B means B = 2.

Remark 4.2. In comparison to DP-ZeRO, DataP (DP or standard) at most fits 5B models (Rajb-
handari et al., 2020) in 80GB memory, regardless of the number of GPUs. We cannot compare to
DP-PipeP in He et al. (2022) because the codebase and experiment details (e.g. number of trainable
parameters and sequence length) are not publicly available. Nevertheless, since DP-ZeRO resem-
bles the efficiency of standard ZeRO, the usefulness of DP-ZeRO can be demonstrated by comparing
ZeRO to PipeP.

5 DISCUSSION

In this work, we develope DP-ZeRO that enables the optimization of models up to 100B trainable
parameters, thus allowing DP distributed learning to be as efficient and scalable as the standard one,
for as few as 2 and as many as hundreds of GPUs. We believe this is a significant milestone to pave
the path towards DP foundation models, especially for its open-source nature (link to be released).

We emphasize that, since DP only modifies the back-propagation, our DP-ZeRO is orthogonal to
any large-scale training techniques that are not tied to back-propagation: for example, activation
check-pointing, CPU offloading, weight/activation quantization (Dettmers et al., 2023; Xiao et al.,
2023), and tensor parallelism (Narayanan et al., 2021) in 3D parallelism (e.g. Megatron).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J Su. Deep learning with gaussian differential privacy.
Harvard data science review, 2020(23), 2020.

Zhiqi Bu, Sivakanth Gopi, Janardhan Kulkarni, Yin Tat Lee, Hanwen Shen, and Uthaipon Tan-
tipongpipat. Fast and memory efficient differentially private-sgd via jl projections. Advances in
Neural Information Processing Systems, 34, 2021.

Zhiqi Bu, Jialin Mao, and Shiyun Xu. Scalable and efficient training of large convolutional neu-
ral networks with differential privacy. Advances in Neural Information Processing Systems, 35:
38305–38318, 2022a.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private bias-term only
fine-tuning of foundation models. In Workshop on Trustworthy and Socially Responsible Machine
Learning, NeurIPS 2022, 2022b.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Automatic clipping: Differentially pri-
vate deep learning made easier and stronger. Advances in Neural Information Processing Systems,
2023a.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private optimization on
large model at small cost. In International Conference on Machine Learning, pp. 3192–3218.
PMLR, 2023b.

Zhiqi Bu, Xinwei Zhang, Mingyi Hong, Sheng Zha, and George Karypis. Pre-training differentially
private models with limited public data. arXiv preprint arXiv:2402.18752, 2024.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlock-
ing high-accuracy differentially private image classification through scale. arXiv preprint
arXiv:2204.13650, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. arXiv preprint
arXiv:1905.02383, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Denis Foley and John Danskin. Ultra-performance pascal gpu and nvlink interconnect. IEEE Micro,
37(2):7–17, 2017.

Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning programs via
high-level tracing. Systems for Machine Learning, 4(9), 2018.

Ian Goodfellow. Efficient per-example gradient computations. arXiv preprint arXiv:1510.01799,
2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
Advances in Neural Information Processing Systems, 34, 2021.

Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee, Arturs Backurs,
Nenghai Yu, and Jiang Bian. Exploring the limits of differentially private deep learning with
group-wise clipping. arXiv preprint arXiv:2212.01539, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32,
2019.

Alex Ishii, Denis Foley, E Anderson, B Dally, G Dearth, L Dennison, M Hummel, and J Schafer.
Nvswitch and dgx-2 nvlink-switching chip and scale-up compute server. In Hot Chips, 2018.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Antti Koskela, Joonas Jälkö, and Antti Honkela. Computing tight differential privacy guarantees
using fft. In International Conference on Artificial Intelligence and Statistics, pp. 2560–2569.
PMLR, 2020.

Alexey Kurakin, Steve Chien, Shuang Song, Roxana Geambasu, Andreas Terzis, and Abhradeep
Thakurta. Toward training at imagenet scale with differential privacy. arXiv preprint
arXiv:2201.12328, 2022.

Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast per-example
gradient clipping. Proceedings on Privacy Enhancing Technologies, 2021(1), 2021.

Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R Tallent, and Kevin J
Barker. Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli, nvswitch and gpudirect. IEEE
Transactions on Parallel and Distributed Systems, 31(1):94–110, 2019.

Qinbin Li, Junyuan Hong, Chulin Xie, Jeffrey Tan, Rachel Xin, Junyi Hou, Xavier Yin, Zhun Wang,
Dan Hendrycks, Zhangyang Wang, et al. Llm-pbe: Assessing data privacy in large language
models. Proceedings of the VLDB Endowment, 17(11):3201–3214, 2024.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating
data parallel training. Proceedings of the VLDB Endowment, 13(12).

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. arXiv preprint arXiv:2110.05679, 2021.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. In International Conference on Learning Representations, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Harsh Mehta, Abhradeep Thakurta, Alexey Kurakin, and Ashok Cutkosky. Large scale transfer
learning for differentially private image classification. arXiv preprint arXiv:2205.02973, 2022.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. In International Conference on Learning Representations, 2018.

Ilya Mironov. On significance of the least significant bits for differential privacy. In Proceedings of
the 2012 ACM conference on Computer and communications security, pp. 650–661, 2012.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
jay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on gpu clusters using megatron-lm. In Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–15, 2021.

Nvidia. The most powerful end-to-end ai and hpc data center platform. https://www.nvidia.
com/en-us/data-center/tensor-cores/?ref=blog.paperspace.com.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis, pp.
1–14, 2021.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. {ZeRO-Offload}: Democratizing {Billion-Scale} model
training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 551–564, 2021.

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
Attention with linear complexities. In Proceedings of the IEEE/CVF winter conference on appli-
cations of computer vision, pp. 3531–3539, 2021.

Pranav Subramani, Nicholas Vadivelu, and Gautam Kamath. Enabling fast differentially private
sgd via just-in-time compilation and vectorization. Advances in Neural Information Processing
Systems, 34, 2021.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru
Lian, Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale training
with adam’s convergence speed. In International Conference on Machine Learning, pp. 10118–
10129. PMLR, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

13

https://www.nvidia.com/en-us/data-center/tensor-cores/?ref=blog.paperspace.com
https://www.nvidia.com/en-us/data-center/tensor-cores/?ref=blog.paperspace.com

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
Accurate and efficient post-training quantization for large language models. In Proceedings of the
40th International Conference on Machine Learning, 2023.

Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. Differentially private generative
adversarial network. arXiv preprint arXiv:1802.06739, 2018.

Xiaodong Yang, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Normalized/clipped sgd with per-
turbation for differentially private non-convex optimization. arXiv preprint arXiv:2206.13033,
2022.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, Graham Cormode, and
Ilya Mironov. Opacus: User-friendly differential privacy library in PyTorch. arXiv preprint
arXiv:2109.12298, 2021.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. arXiv preprint arXiv:2110.06500, 2021a.

Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Large scale private learning via low-
rank reparametrization. In International Conference on Machine Learning, pp. 12208–12218.
PMLR, 2021b.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1–9, 2022.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12104–12113, 2022.

Zhen Zhang, Shuai Zheng, Yida Wang, Justin Chiu, George Karypis, Trishul Chilimbi, Mu Li, and
Xin Jin. Mics: near-linear scaling for training gigantic model on public cloud. Proceedings of the
VLDB Endowment, 16(1):37–50, 2022.

Yanli Zhao, Rohan Varma, Chien-Chin Huang, Shen Li, Min Xu, and Alban Desmaison. In-
troducing pytorch fully sharded data parallel (fsdp) api. https://pytorch.org/blog/
introducing-pytorch-fully-sharded-data-parallel-api/.

Yuqing Zhu, Jinshuo Dong, and Yu-Xiang Wang. Optimal accounting of differential privacy via
characteristic function. In International Conference on Artificial Intelligence and Statistics, pp.
4782–4817. PMLR, 2022.

A THE BOOK-KEEPING (BK) ALGORITHM

A.1 EFFICIENT COMPUTATION OF PER-SAMPLE GRADIENT NORMS

The mixed ghost norm Bu et al. (2022a) is the state-of-the-art technique to compute the per-sample
gradient norm of the weight, almost for free. It hybridizes two basic techniques – the per-sample
gradient instantiation and the ghost norm – to compute the Frobenius norm of weight gradient,∥∥∥∥a⊤

l,i

∂L

∂sl,i

∥∥∥∥2 per-sample grad
==== ∥ ∂Li

∂Wl
∥2Fro

ghost norm
==== vec

(
∂L

∂sl,i

∂L

∂sl,i

⊤
)

· vec(al,ia
⊤
l,i) (4)

where ”vec” flattens the tensor to an one-dimensional vector. In words, Equation (4) gives two
equations that are equivalent mathematically, but significantly different in efficiency:

• ∥X∥2Fro =
∥∥A⊤B

∥∥2 firstly computes A⊤B and then its norm.

• ∥X∥2Fro = vec
(
AA⊤) · vec(BB⊤) firstly computes AA⊤, BB⊤ ∈ RTT and then their dot

product.

14

https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

In summary, the mixed ghost norm always applies the cheaper of two techniques at each layer of a
neural network.

Finally, we note that the per-sample gradient norm of the bias is computed differently. This is
because

∂Li

∂bl
= 1⊤ ∂L

∂sl,i
is not actually a product of tensors like X = A⊤B. In fact, the multiplication with 1 turns out to
be a summation along the first dimension, and it suffices to use per-sample gradient instantiation for
the bias.

A.2 BOOK-KEEPING THE OUTPUT GRADIENT

The BK algorithm uses two rounds of back-propagation (though each round only takes half the com-
plexity, hence the total complexity of DP back-propagation matches the non-DP back-propagation).
Therefore, output gradients ∂L

∂sl,i
are kept to avoid repeated computation. Notice that the output

gradient are relatively cheap to book-keep (see Figure 4 and Figure 5 in Bu et al. (2023b)).

B COMPONENT-WISE TIME COMPLEXITY OF DP-ZERO

In this section, we explain the time complexity of each part in Table 2, and demonstrate how the
complexity can be different under different settings.

Forward propagation: The matrix multiplication during forward propagation results in 2BTΨmodel
complexity (see Bu et al. (2022a)). Notice that, if the activation check-pointing is used, essentially
two rounds of forward propagation take place in one iteration. Hence the time complexity doubles
and becomes 4BTΨmodel.

Back-propagation: This contains two sub-processes: the output gradients are computed at all lay-
ers, taking 2BTΨmodel complexity; the parameter gradients are computed only at trainable layers (a
few if doing PEFT), taking 2BTΨtrain complexity. Clearly, in full parameter training, the total is
4BTΨmodel, and in PEFT, about 2BTΨmodel.

Attention: The time complexity of attention is O(BT 2) in Vaswani et al. (2017), where T is the se-
quence length (a.k.a. token length). When T is large, e.g. training with long context like T = 8192,
this cost is prohibitively high. In this regard, a line of researches have proposed linear complexity
attention, including but not limited to Wang et al. (2020); Katharopoulos et al. (2020); Shen et al.
(2021).

Communication: For algorithms that don’t shard the model, such as data parallelism and ZeRO1/2,
the communication is only used to send gradients and optimizer states. Hence the communication
volume is proportional to the number of trainable parameters O(Ψtrain). Otherwise, for algorithms
such as ZeRO3 and tensor parallelism, the communication volume is proportional to the number of
total parameters O(Ψmodel), because the forward propagation needs to gather the parameters from
many GPUs. This makes a big difference in PEFT when Ψtrain ≪ Ψmodel.

C LOSS SCALING IN MIXED-PRECISION TRAINING

We write the per-sample gradient with loss scaling S as
∂CiLi

∂Wl
= Ci

1

S
·
(
a⊤
l,i

(
S · ∂L

∂sl,i

))
This covers the standard gradient (Ci = 1) and DP gradient (e.g. Ci = 1/||gi||, computed by the
mixed ghost norm in Appendix A), in which S enlarges the output gradient to avoid underflow, and
1
S shrinks the parameter gradient to the correct magnitude.

Recall that a standard mixed-precision training (with loss scaling) uses steps 1 → 2 → 3 → 5 → 6
9, or 1 → 3 → 6 without loss scaling.

9See https://docs.nvidia.com/deeplearning/performance/
mixed-precision-training/index.html#lossscaling.

15

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#lossscaling
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#lossscaling

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1. Forward propagation (fp16 weights and activations) and get the loss.

2. Scaling up the loss by a factor S.

3. Backward propagation on the scaled loss (fp16 parameters and their gradients).

4. Per-sample gradient clipping (sensitivity = 1) and noising for DP.

5. Scaling down the parameter gradient by a factor of 1/S.

6. Update the parameters with their gradients.

If we follow the same procedure under the DP regime, say using a hook function to be called
after back-propagation creates the gradients like in Opacus (Yousefpour et al., 2021), Private-
Transformers (Li et al., 2021), FastDP (Bu et al., 2023b), then the per-sample clipping factor is
scaled up S times so as to normalize the gradient. Hence per-sample gradient clipping has already
played the role of scaling down. If we scale down the gradient for a second time, the gradient is
incorrectly over-shrunk. This is the case in Yu et al. (2021a) and in the alternative implementation
of (Li et al., 2021, Appendix T) (see also Figure 5). To be sure, this approach is still DP, but the
performance does not match fp32 DP training correctly, and usually degrades too much to be useful.

One walk-around is to prevent per-sample gradient clipping to scale down the gradients and let step
5 do its job, i.e. 1 → 2 → 3 → 4∗ → 5 → 6. We note that (Li et al., 2021, Appendix T) follows
this path (though no experiment results or codes are available at the time of writing) by modifying
step 4: clipping threshold (sensitivity)= S instead of 1, so that the clipped gradient is S times larger
than the DP f32 training, to be scaled down by step 5. However, this introduces additional design
decisions and does not prevent overflow when using fp16 (due to step 2, see Table 3).

Another walk-around is to delete step 5 and let per-sample gradient clipping do its job, i.e. 1 →
2 → 3 → 4 → 6. However, this approach is harder to implement because in the standard process
step 2 and 5 are simultaneously enabled or disabled. Also we cannot prevent overflow when using
fp16 as we still use step 2.

Therefore, we propose to not use loss scaling (or equivalently we set S = 1 statically for all steps)
during DP mixed-precision training, i.e. 1 → 3 → 4 → 6. Although, by not using step 2, we cannot
prevent underflow when using fp16, this is much less a problem compared to overflow: underflow
(treating small values as 0) makes the training less accurate but does not fail the training like overflow
(treating large values as NAN). Lastly, the underflow issue is perfectly mitigated by bf16, which we
recommend for DP mixed-precision training whenever possible .

steps fp16 issue note reference
standard 136 underflow Micikevicius et al. (2018)
standard 12356 none Micikevicius et al. (2018)

DP 123456 overflow incorrect due to over-shrinking Li et al. (2021)
DP 1234∗56 overflow different clipping threshold Li et al. (2021)
DP 1346 underflow perfect with bf16 ours
DP 12346 overflow hard to implement ours

Table 4: Mixed-precision training with DP or not.

D EXPERIMENT SETTINGS

Datasets: To evaluate the efficiency, it suffices to declare the data’s dimension (e.g. micro-batch
size and feature dimension) without specifying the dataset (though sometimes specifying the dataset
means declaring the dimension, e.g. MNIST usually means 28*28 pixels). This is the norm in
system papers such as Rajbhandari et al. (2020; 2021); Zhao et al.. In this work, vision models are
trained with 224*224 pixels at ImageNet scale; GPT models are trained with sequence length 100,
except in Figure 8 where sequence length is 2048.

Figure 5 and Table 3: We train ViT-large (300M parameters) and CIFAR100, 5 epochs, learning rate
5e-4, logical batch size 1000.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 6: To fit as large a model as possible, we set B = 1 and use SGD. We set 48 attention heads,
21 layers, MLP=4*width (also known as embedding dimension), and modify width for all models.
For instance, ViT-10B uses width=768 ∗ 22, ViT-22B uses width=768 ∗ 34.

Figure 8: We train AdamW with layer-wise clipping. DP distributed learning is based on MiCS
(ZeRO3) using bf16 mixed-precision training. Most of GPT configuration is the same as Touvron
et al. (2023a) (Table 2) in terms of embedding dimension, attention heads and number of layers.
However, GPT-100B uses the configuration from Brown et al. (2020) (Table 2.1) but a smaller
width.

E CODEBASE DESIGN

E.1 WITH FORWARD & BACKWARD HOOKS

Hooks10 are important functions to enrich the deep learning optimization. To be specific, there are

1. forward modular hook (nn.register forward hook),

2. backward modular hook (nn.register backward hook),

3. backward tensor hook (tensor.register hook).

DP libraries including Opacus Yousefpour et al. (2021), Private-transformers Li et al. (2021),
Private-Vision Bu et al. (2022a), FastDP Bu et al. (2023b;a), FastGradClip Lee & Kifer (2021)
and so on, use modular hooks to modify the standard optimization. However, ZeRO libraries in-
cluding DeepSpeed and FSDP use tensor hooks. This difference in the types of hooks and many
other differences (e.g. both ZeRO libraries and DP libraries modify the optimizer’s step function)
cause non-trivial problems when combining DP with ZeRO. For example, to keep DP optimization
as efficient as the standard, it is necessary to not waste time on computing the non-private gradient.
However, if we skip such computation, then ZeRO’s tensor hook will not be triggered and the corre-
sponding distributed-learning-related operations cannot carry on. For another example, because DP
and ZeRO add different types of hooks, the number of hooks is larger than either optimization and
they slows down the training: consider an 100-layer network, each layer with weight and bias (2 ten-
sors), then DP-ZeRO in this subsection needs 100 modular hooks and 200 tensor hooks, adding to a
total of 300 hooks. In addition, the Book-Keeping algorithm (in FastDP) in its original form cannot
be implemented together with ZeRO3, because all model states are partitioned including the output
gradients which are meant to be book-kept. To work around this requires rewriting the distributed so-
lution’s communication mechanism, and if successful, still requiring additional communication cost
during the second back-propagation. Similar problems are present for Opacus and FastGradClip,
which instantiates per-sample gradients that will be partitioned in ZeRO2/3 and requires additional
communication cost when gathered to create the privatized gradient.

As a consequence, the hooks are fully supported on DP-ZeRO1 and partially supported on DP-
ZeRO2/3 under the layer-wise clipping.

E.2 WITHOUT HOOKS

Instead of registering hooks on top of the original (non-DP) back-propagation, we can directly mod-
ify the back-propagation following Appendix A: e.g., given the activation and output gradient,

∂CiLi

∂Wl
= a⊤

(l),i

∂L

∂s(l),i

/√√√√vec

(
∂L

∂s(l),i

∂L

∂s(l),i

⊤
)

· vec(a(l),ia
⊤
(l),i)

This approach requires rewriting the back-propagation for each layer type (linear, embedding, con-
volution, normalization, ...) and can be done at different levels (Pytorch, C++, CUDA kernel).

10See https://pytorch.org/tutorials/beginner/former_torchies/nnft_
tutorial.html#forward-and-backward-function-hooks.

17

https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html#forward-and-backward-function-hooks
https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html#forward-and-backward-function-hooks

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E.3 USER INTERFACE

DP-ZeRO can be enabled by one piece of code: after the model is instantiated,

privacy_engine = PrivacyEngine(model,
batch_size=256, sample_size=50000,
epochs=3, target_epsilon=3)

The codebase is designed not to modify the optimizer, hence DP-ZeRO can work with arbitrary op-
timizer. Because of this design, our DP-ZeRO will not distinguish micro-batches. This is different
from the gradient accumulation in Opacus (version ==0.x) and Private-Vision, where only the last
micro-batch is processed by ”optimizer.step()” but all other micro-batches are processed by ”opti-
mizer.virtual step()”. In other words, the noise σDPN(0, I) is added on the last micro-batch, after
the micro-batches are accumulated. But DP-ZeRO adds the noise on each micro-batch equally. Note
that the noise level per micro-batch is σDP/

√
Nd if a random seed is set across Nd GPUs, or σDP/Nd

otherwise.

E.4 VERIFICATION OF OUR IMPLEMENTATION

DP-ZeRO is implementing the same DP-SGD (hence the same utility) as in Abadi et al. (2016), only
in a much more scalable and distributed manner than libraries like Private Transformers and Opacus.

To be sure, we provide the results on 5 runs of ViT (image classficiation) and GPT2 (text generation),
at ϵ = 8, with standard deviations in the parenthesis. We compare to other libraries (without mixed
precision) and our DP-ZeRO uses mixed precision, in order to validate both (I) the correctness of
DP mixed precision and (II) the correctness of our implementation of DP-ZeRO.

ViT/CIFAR100/accuracy GPT2/E2E/BLEU
Opacus 83.45(0.28) 63.35(0.50)
FastDP 83.46(0.19) 64.01(0.54)

GhostClip 83.51(0.33) 63.71(0.31)
DP-ZeRO1 83.46(0.13) 64.03(0.41)
DP-ZeRO2 83.43(0.09) 63.72(0.47)
DP-ZeRO3 83.48(0.18) 63.92(0.39)

18

	Introduction
	Preliminary
	Differential privacy
	Zero Redundancy Optimizer (ZeRO)
	Parallel computing
	Model state partition

	Mixed-precision training

	Differentially private ZeRO
	Algorithm
	Time efficiency of DP-ZeRO
	Number of computation devices
	Memory-efficient distributed learning
	Parameter efficient fine-tuning

	Memory efficiency of DP-ZeRO
	Mixed-precision training with DP

	Empirical performance of DP-ZeRO
	Generality of DP-ZeRO
	Lighter training of DP-ZeRO
	Three stages of DP-ZeRO
	Scalability of DP-ZeRO

	Discussion
	The Book-Keeping (BK) algorithm
	Efficient computation of per-sample gradient norms
	Book-keeping the output gradient

	Component-wise time complexity of DP-ZeRO
	Loss scaling in mixed-precision training
	Experiment settings
	Codebase design
	With forward & backward hooks
	Without hooks
	User interface
	Verification of our implementation

