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ABSTRACT

Multi-view subspace clustering targets at clustering data lying in a
union of low-dimensional subspaces. Generally, an n X n affinity
graph is constructed, on which spectral clustering is then performed
to achieve the final clustering. Both graph construction and graph
partitioning of spectral clustering suffer from quadratic or even
cubic time and space complexity, leading to difficulty in clustering
large-scale datasets. Some efforts have recently been made to cap-
ture data distribution in multiple views by selecting key anchor
bases beforehand with k-means or uniform sampling strategy. Nev-
ertheless, few of them pay attention to the algebraic property of the
anchors. How to learn a set of high-quality orthogonal bases in a
unified framework, while maintaining its scalability for very large
datasets, remains a big challenge. In view of this, we propose an Ef-
ficient Orthogonal Multi-view Subspace Clustering (OMSC) model
with almost linear complexity. Specifically, the anchor learning,
graph construction and partition are jointly modeled in a unified
framework. With the mutual enhancement of each other, a more
discriminative and flexible anchor representation and cluster indi-
cator can be jointly obtained. An alternate minimizing strategy is
developed to deal with the optimization problem, which is proved
to have linear time complexity w.r.t. the sample number. Extensive
experiments have been conducted to confirm the superiority of the
proposed OMSC method. The source codes and data are available
at https://github.com/ManshengChen/Code-for-OMSC-master.

CCS CONCEPTS

- Computing methodologies — Machine learning; - Cluster
analysis — Multi-view clustering.
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1 INTRODUCTION

In real-world scenarios, data can be collected from multiple sources
or feature extractors [5, 6, 9, 16—18, 30, 32, 43]. For instance, many
computer vision objects involve instances represented by image and
video. News can be reported by different languages, such as Chinese,
English and Spanish. A person can be described by face, fingerprint,
iris and so on. How to effectively integrate these heterogeneous
information to perform clustering is essential in an unsupervised
learning task, motivating the development of multi-view clustering.
In multi-view clustering, there are two important principles [42, 43],
i.e., the consensus principle, aiming to maximize the agreements
among multiple views, and the complementary principle, meaning
that each view of the data contains some information the other
views do not have.

In the recent few years, considerable efforts have been made
in the field of multi-view clustering to explore the diverse and
complementary information among multiple views [4, 13, 23, 27,
31, 35, 39, 45, 46]. Among them, studies on multi-view subspace
clustering have attracted an increasing amount of attention, whose
goal is to discover the underlying low-dimensional subspaces or
groups. For instance, Cao et al. employed the Hilbert Schmidt Inde-
pendence Criterion (HSIC) as a regularization term to explore the
complementary information between different views [2]. Zhang et
al. attempted to search for such an underlying latent subspace of
multiple views [48]. The work in [5] constructed the global graph
and the clustering indicator matrix based on the learned poten-
tial embedding space in a unified framework. In [24], Luo et al.
simultaneously learned consistency and specificity in subspace rep-
resentation. Extended from low-rank representation segmentation
(LRR) [22], the work in [47] imposed unfolding based low rank on
the tensor, which is stacked by multiple subspace representations
from different views. However, most of the existing works suffer
from the high computational cost (typically quadratic or even cubic
complexity, see section 2 for details), limiting the their efficiency
when dealing with large-scale multi-view data.
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To address this issue, some multi-view clustering methods aim-
ing at large-scale data have been developed, which can be divided
into two main categories, i.e., matrix factorization based meth-
ods [1, 28, 36, 44] and anchor graph based models [15, 20, 21]. For
the matrix factorization based algorithms equivalent to the relaxed
k-means version, they can improve the computational efficiency
due to the unnecessary construction of affinity graph. For instance,
Cai et al. integrated heterogeneous representations of large-scale
data efficiently [1]. In [34], the cluster structure was explored with a
constrained factor matrix. Further, Han et al. regarded the interme-
diate factor matrix as a diagonal matrix in the 3-factor factorization,
reducing the number of matrix multiplication in optimization [12].
The work in [28] simultaneously implemented clustering task on
row and column of the input data. However, due to their direct
factorization of the original data matrix, the efficiency of this kind
of methods significantly decreases when there is large data feature
dimension. The anchor graph based models often can achieve better
performance, since they would adopt the generated anchor bases
and original data to construct the corresponding anchor graph.
For instances, Li et al. constructed a fusion graph for multiple an-
chor graphs by a local manifold fusion technology. In [20], Kang at
al. proposed an anchor graph-based subspace clustering method,
where a smaller graph for each view is studied according to the
constructed anchor bases. Further, the work in [38] explored the
common anchor graph with the guidance of consensus anchor bases
in multi-view data. Likewise, Sun et al. learned anchors graph based
on the underlying data distribution [29].

Briefly, the above anchor based algorithms aim at sampling a few
anchors to encode the original multi-view data, where the anchors
can also be viewed as a set of bases. Despite significant success,
few of them have paid attention to the algebraic property of the
bases. The set of bases (i.e., anchors) expressing data samples can be
constrained to be orthogonal so that each base is independent and
more discriminative from each other, which may further promote
the expression of diverse samples. However, how to learn a set
of high-quality orthogonal bases in a unified framework, while
maintaining its scalability for very large datasets, remains a big
challenge.

Aiming to address the aforementioned problem, in this paper,
we propose a novel method for large-scale multi-view data, called
Efficient Orthogonal Multi-view Subspace Clustering (OMSC), in
which the anchor learning, graph construction and partition are
jointly modeled in a unified framework. The three components
boost each other to jointly promote clustering quality. In particular,
a consensus anchor graph is adaptively learned by the projected
unified anchors from multiple views, correlated with the cross-view
complementary information and discriminative anchor structure.
Further, under the orthogonality constraint of actual bases, a factor
matrix with rigorous clustering interpretation is constrained to be
cluster indicator matrix.

The main contributions of this paper are summarized as follows:

o We propose an efficient multi-view subspace clustering method
called Efficient Orthogonal Multi-view Subspace Clustering
(OMSC) where the flexible unified anchor representation,
consensus graph and final clusterings are jointly explored in
a unified framework.
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e An alternate minimizing strategy is developed to deal with
the optimization problem, by which the proposed method is
proved to have linear time complexity w.r.t. the number of
samples.

Extensive experiments conducted on several big datasets
have demonstrated the superiority of the proposed method
compared with the state-of-the-art methods. Furthermore,
to the best of our knowledge, it is the first time to jointly
consider the orthogonal anchor learning, graph construction
and partition in a unified model for large-scale data.

The rest of this paper is organized as follows. In Section 2, we
provide the main notations and basic preliminaries of Multi-View
Subspace Clustering. The proposed Efficient Orthogonal Multi-view
Subspace Clustering approach is described in Section 3 in which
the optimization algorithm and the time computational analysis as
well as space complexity analysis are provided. In Section 4, the
experimental results on seven datasets are reported. Finally, this
paper is concluded in Section 5.

2 PRELIMINARIES

Notations. Throughout this paper, matrices are represented as
uppercase letters. The i-th row of matrix B is written as B; ., with
its j-th entry being B;;. ||B||lz,: denotes the square of Frobenius norm
of matrix B. The trace of B can be denoted as Tr(B). We denote the
v-th view representation of B as B(®), Particularly, I; represents the
d-th dimension identity matrix, and 1 represents the vector with
all entries being 1.

Multi-View Subspace Clustering. Self-expressive subspace
clustering assumes that each instance can be reconstructed as a
linear combination of the other instances [14]. Mathematically,
by minimizing the reconstruction loss, the corresponding self-
representation matrix Z* can be computed by

miny|[X - A(X)Zllg + 2(2)

1
st.Z eC, W

where y > 0 is the trade-off factor. X € R?*" represents the input
data matrix with its column being a sample vector. A(X) is a learn-
able dictionary matrix, and we usually just set it as A(X) = X. || - [|4
stands for a proper norm, Q(Z) and C are respectively the regular-
ization term and constraint set on Z. Specifically, Z is also named
with affinity graph, and the existing literatures distinguish each
other by adopting different regularization terms Q(Z) or constraint
sets C [2, 11, 40].

As an extension, more and more attention has been paid on multi-
view subspace clustering. Accordingly, given a multi-view dataset

m

{X(”) € Rdﬂx”} v the objective formulation can be commonly
o=

rewritten as [11, 20]

m
min x©@ _x@ 702 L (7)),
min yzl I I} + 2z "

st. 2@ 0,201 =1,

where Z(?) € R"™%" is nonnegative and 2j=t Zl.<jv) = 1. Due to the
n X n graph construction, the existing algorithms require a lot of
computational time and space storage. After obtaining the affinity
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representation, spectral clustering algorithm would be employed on
it to achieve the final clustering performance, needing extra O (n?k)
complexity. Hence, the scalability of multi-view subspace clustering
methods is dramatically limited especially when the sample number
n is large.

3 THE PROPOSED METHOD

In this section, the motivation and formulation of the proposed
OMSC method are firstly introduced, followed by the detailed op-
timization process. In addition, we conduct an analysis about the
computational time and space usage to demonstrate the time and
space efficiency of OMSC.

3.1 Motivation and Formulation

In general, each data point is represented as a linear combination of
other points by means of the self-representation strategy in multi-
view subspace clustering, where a global relationship can be well
explored. Nevertheless, the higher optimization time and storage
cost associated with the global representation restrict the scala-
bility of multi-view subspace clustering while facing real-world
applications with big data. Additionally, there are a small number
of instances that are sufficient for reconstructing the underlying
subspaces [38], and it is unnecessary and redundant to depict one
point with all instances. Hence, the anchor strategy is utilized to
select a small set of instances as anchor bases or landmarks to
capture the manifold structure. In particular, on the one hand, the
existing multi-view anchor-based subspace methods almost select
anchor bases by randomly (uniformly) sampling from the original
data space, or the clustering centroids obtained by performing k-
means, where the anchor bases are fixed, and the anchor learning
is isolated from the latter graph construction. On the other hand,
few of the existing anchor-based works have paid attention to the
algebraic property of the bases (or anchors). How to learn a set of
high-quality orthogonal bases in a unified framework, while main-
taining its scalability for very large datasets, remains a considerably
challenging issue.

Different from the previous works, the proposed OMSC method
integrates the three parts, i.e., the anchor learning, graph construc-
tion and partition, into a unified framework, where discriminative
anchors are learned automatically not based on sampling and the
flexible affinity graph as well as final partition can be acquired. Ac-
cording to the assumption that multiple views are originated from
one latent representation sharing a consensus underlying data dis-

tribution, the cross-view anchors should be consistent in the latent
m

space. In view of this, the respective projection matrix {P(Z’) } .
are constructed aiming at the consensus anchor guidance, anzt)i_a
common affinity graph integrating complementary information
across views can be adaptively learned from the projected unified
anchors. Mathematically, the optimization goal can be formulated

as

min

m
2)1y () _ p(o) 2
a’P(m’A,SZ 22X - P A2,

v=1

®3)
T
st.al1=1,P® P =, ATaA=1,5>05T1=1,
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where a2 stands for the view coefficients adaptively learned by its
contribution to the consensus affinity graph, and 2 (>1) herein aims
to smoothen the weight coefficient distribution. X (?) € R4X" js
the v-th view of the original data with d, and n being the dimen-
sion of the corresponding view and the size of samples respectively.
P(®) s the v-th view anchor projection matrix, enabling to project
the unified anchor to the corresponding original feature space.
A e REX represents the unified anchor matrix, in which d and [
are respectively the common dimension across different views and
the number of anchors, and S € R!X" is the common affinity ma-
trix whose space complexity reduces to O (I x n) instead of O (n?)
before.

In addition, in order to involve the partition information into
the unified framework, nonnegative and orthogonal matrix fac-
torization [7] is eagerly adopted to directly assign cluster labels
to data without an extra post-processing step to recover cluster
structures from the factor matrix. To be specific, under the orthog-
onality constraint of the actual bases, a factor matrix with rigorous
clustering interpretation is constrained to be cluster indicator ma-
trix. Therefore, we can formulate the overall objective function as
follows

m
. 211w () _ p(0) a2 2
min ag|| X' — PYY AS||% + AllS — GF|| %,
a,P<“),A,S,G,FUZ:; Y f r
T
st.aT1=1,P® p@ =, ATA=1,5>05T1=1, (4)
k
G'G =l Fy e {01}, ) Fij=1Vj=12-,n,
i=1

where G € RI*F denotes the centroid matrix, and F € RF*™ jg
the cluster assignment matrix with F;; = 1 if the j-th instance is
assigned to the i-th cluster and 0 otherwise. Throughout this paper,
according to the principle that the number of instances required
for the underlying subspace should not be less than the number of
subspaces, the common dimension is chosen as k, and similarly the
number of anchors is correlated with the number of clusters (I €
{k, 2k, 3k}). It is worth mentioning that the constraint of projection
matrix P(?) avoids A to be pushed arbitrarily, and the common
dimension as well as the orthogonal constraint restrict the unified
anchor representation to be more discriminative. To the best of our
knowledge, different from the existing anchor-based multi-view
subspace clustering algorithms [20, 21, 29, 38], this could be the first
time that the anchor selection, graph construction and partition are
jointly combined into a unified framework aiming at large-scale
data, where three parts boost each other in an interplay manner
to recover multi-view information and achieve better clustering
performance.

3.2 Optimization
In order to solve the optimization problem in Eq. (4), an alternate
minimizing algorithm is designed to optimize each variable while
fixing the others.

P(®)_subproblem: By fixing the other variables, the objective
function w.r.t. P(?) can be rewritten as

m
T
minZaZZ,HX(”) ~-P@as|2, st. PO P@ =1, (5)
P =1
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Since each P(®) is independent from each other in terms of dis-
tinct views, the optimization problem in Eq. (5) can be transformed
into the following model by expanding the Frobenius norm by trace,
ie.,

(T g() ©7Tpo) _
max Tr(P\?" B\?), st.P'Y P\ =1, (6)
P v
where B(®) = X(®)§T AT According to [37], supposing the Singular
Value Decomposition (SVD) result of B(?) is Ug3 BVg , the optimal
solution of P(*) can be easily obtained by calculating UBVBT .
A-subproblem: By fixing the other variables, A can be updated
by solving the following problem
m
. 2 2 T
n’ﬁn;aUHX(v) ~P@AS|2, st ATA=1T,. )

Similar to the optimization of P(?), it is equivalent to solving A

by the following form

Tr(AT0), st. ATA=1;,
max r(A°0), s 1 ®)
T
where C = 377 aZZ,P(”) X@ 8T Hence, the optimal A is equal to
UcVE, where C = UCZCVg.
S-subproblem: By fixing the other variables, the objective func-
tion w.r.t. S can be formulated as

m
msmzag||x<”> - P AS|2 + A|IS - GFI2, (
=1 9)

st.S>0,8T1=1.

To solve the above optimization problem of S, we can rewrite it
as the following Quadratic Programming (QP) problem

1
min =S WS, ; +h'S,j,

2> (10)
st.sh1=1,5>0,

T
where W = 2(X70, ag + A)I and hl = -2 PN X:(;’) pl@a —
ZAF:T].GT, Specifically, optimization can be achieved by tackling the
QP problem for each column of S.
G-subproblem: By fixing the other variables, the optimization
for G can be transformed into the following problem

in||S - GF||%, st. GTG =I.
min I Iz s k (11)

Similar to P(®) and A, the optimization of G can be rewritten as

Tr(GT)), st. GTG =1,
max r(G')), s & (12)

where J = SF T Thus, the optimal solution of G is U]V]T, where

J=Usz;vi
F-subproblem: By fixing the other variables, the objective func-
tion wr.t. F can be formulated as the following minimization prob-

lem )
inA||S — GF||%,
min 2[1S - GFI[%

k (13)
s.t. Fij S {0,1},ZFU =LVj=12---,n
i=1
Since there is one and only one non-zero entry (i.e., 1) in each
column of cluster assignment matrix F, it is difficult to optimize F
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Algorithm 1 Efficient Orthogonal Multi-view Subspace Clustering

m

Input: Multi-view dataset {X(U) € Rdvxn} v trade-off parameter

U=
A > 0 and cluster number k.

i: Initialize P(®) = A=$=0,G=F=1.

2: while not converged do

3. Update P vy by solving the problem in Eq. (6).
4 Update A by solving the problem in Eq. (8).

5. Update S by solving the problem in Eq. (10).

6. Update G by solving the problem in Eq. (12).

7. Update F via the optimal row obtained by Eq. (15).
8:  Update a, by solving the problem in Eq. (17).

9: end while

Output: The final consensus cluster assignment matrix F.

as a whole directly. Fortunately, according to [8], the optimization
problem for each object can be solved independently. Thus, for each
object, we can have
min ”S:,j - GF:,j”Z)
Ej (14)
st.Fje {0, 1}% ||F, ]l = 1.

The above optimization problem can be settled by finding one
optimal row i* in F. j such that F;= ; = 1 and 0 for the other entries
in this column. The optimal row can be found by

i* = argmin 1S, ; - G.i1%. (15)
l
In other words, the optimal cluster assignment can be received
by minimizing the distance between the object and the cluster
centroid.
ay-subproblem: By fixing the other variables, it is equivalent
to solving a, by the following optimization form

m
. 2p(0)2 T4 _
rrgnZavR ,sta1=1,

v=1

(16)

where R(?) = Ix @) —p)AS || F. According to Cauchy-Buniakowsky-
Schwarz inequality, we can achieve the optimal solution of &, by
1
R(0)
m 1
(

v=1 R(v)

ay = (17)
Due to the convex property and optimal solution of each sub-
problem, the objective formulation will decrease monotonically in
each iteration until convergence. For clarity, we summarize the
procedure of solving the proposed OMSC model in Algorithm 1.

3.3 Complexity Analysis

Time complexity. The computational burden of OMSC contains
the cost of optimization of each variable. Specifically, the time
cost of updating P(*) is O (dyd?) and O (dydk?) for SVD and ma-
trix multiplication. Likewise, to calculate A, it costs O (dI?) to per-
form SVD on C and O (dlkz) for matrix multiplication. To update
S, the corresponding QP problem costs O (nl3) for all data vec-
tors. Similar to calculate P(®) and A, updating G needs O (Ik?) and
o (lkS) for SVD and matrix multiplication. For updating F, the
time cost needs O (Ink). When updating «a,, it only costs O (1).
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Table 1: Statistics of the seven real-world datasets.

Datasets #0bject #View #Class View dimension
Notting-Hill 550 3 5 2000, 3304, 6750
Caltech101-20 2386 6 20 48, 40, 254, 1984, 512, 928
VGGFace2-50 34027 4 50 944, 576, 512, 640
YTF-10 38654 4 10 944, 576, 512, 640
YTF-20 63896 4 20 944, 576, 512, 640
YTF-50 126054 4 50 944, 576, 512, 640
YTF-100 195537 4 100 944, 576, 512, 640

Table 2: Complexity analysis on compared algorithms and
OMSC. “Max Reported” represents the largest dataset re-
ported in the algorithm.

Method Space Complexity ~ Time Cost Max Reported
AMGL O (vn? + nk) 0 (n?) 12643
SwMC O (n? + nk) O (kn?) 2000
MLAN O (vn? + nk) O (vn?) 3000
PMSC O (20n® + (v+)nk) O (n?) 2386
LMVSC O (vk(n+p)) O (n) 30,000
SMVSC O (mn+ (p+m)k) O (n) 101,499
FPMVS-CAG O (kn+ (p+k)k) O (n) 101,499
OMSC O (n(m+k)+ (p+2m)k) O(n) 195,537

In total, the time complexity of the proposed OMSC method is
O ((pd? + pdk? + dI? + dlk? + nl® + 1k? + Ik3 + Ink)t), where p =
va: 1 dy is the summation of feature dimensions, and ¢t denotes the
number of iterations of these six parts. Since n > I,n > k=d in
our model, the computational complexity of OMSC is nearly linear
to the number of samples O (n).

Space complexity. The major space usages of the proposed
OMSC method are matrices P(?) € R9oXd A ¢ RIXI g ¢ RIXn
G € R¥k and F € RF*"_ Therefore, the major space complexity
of OMSC is O (n(l + k) + (p + 2])k), nearly linear to the number of
samples O (n) as well.

4 EXPERIMENT

In this section, the effectiveness of the proposed OMSC method
is evaluated from the aspects of clustering performance and run-
ning time while comparing with five state-of-the-art multi-view
clustering methods and four large-scale oriented algorithms. The ex-
periments are conducted on seven widely used datasets, including
several large-scale multi-view image datasets. All of the experi-
ments are implemented in Matlab 2021a on a standard Window PC
with an Intel 2.4-GHz CPU and 64-GB RAM (64-bit).

4.1 Datasets and Compared Methods

Seven datasets are employed in the evaluation: Notting-Hill, Calte-
ch101-20, VGGFace2-50, YTF-10 (YouTube Faces), YTF-20, YTF-
50 and YTF-100. Specifically, the Notting-Hill dataset is extracted
from the movie “Notting-Hill” [3, 41]. Caltech101-20 is an object
image dataset [10]. VGGFace2-50" is a face image dataset. YTF-10,
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Figure 1: Comparison results on the last five large-scale
datasets in terms of running time in seconds.

YTF-20, YTF-50 and YTF-100 are different subsets of face videos
obtained from YouTube?. More detailed descriptions of datasets are
introduced in Table 1.

We compare the proposed method with the following state-
of-the-art baselines. Parameter-free Auto-weighted Multiple
Graph Learning (AMGL) [26] attempts to learn the optimal weights
for each graph and achieve optimal performance. Self-weighted
Multiview Clustering with Multiple Graphs (SWMC) [27] re-
covers a Laplacian rank constrained graph. Multi-View Learn-
ing With Adaptive Neighbors (MLAN) [25] simultaneously
achieves clustering and local manifold by considering the adap-
tive neighborhood. Partition Level Multiview Subspace Clus-
tering (PMSC) [19] is a unified multi-view subspace clustering
model. Large-scale Multi-view Subspace Clustering in Linear
Time (LMVSC) [20] is a large-scale multi-view subspace clustering
where a smaller graph for each view is studied. Scalable Multi-
view Subspace Clustering with Unified Anchors (SMVSC) [29]
considers the graph construction based on actual latent data distri-
bution. Fast Parameter-Free Multi-View Subspace Clustering
With Consensus Anchor Guidance (FPMVS-CAG) [38] learns
the subspace representation under consensus anchor guidance. In
comparison, the major space complexity and time cost of the com-
pared methods are summarized in Table 2.

4.2 Experimental Setup

For a fair comparison, experiments are conducted twenty times for
each method including OMSC as well as the compared algorithms,
and the average performance as well as the standard deviation (std.
dev.) are reported. Meanwhile, for most of the methods, k-means
algorithm is needed to achieve the final clustering performances,
and thus it is run ten times to eliminate the random initialization
in each experiment. For our method, the trade-off parameter A is
tuned from {0.0001, 0.001, 0.01, 0.1, 1, 10}. For the baselines, the best
parameters are tuned as suggested by the corresponding papers.
The clustering performance is comprehensively evaluated by
four widely used metrics, i.e., accuracy (ACC), normalized mutual
information (NMI), purity and Fscore. For all the above evaluation
metrics, higher values indicate better clustering performances [33].

https://www.robots.ox.ac.uk/~vgg/data/vgg_face2/.
https://www.cs.taw.ac.il/~wolf/ytfaces/.
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Table 3: Comparison results: the mean and standard deviations achieved by different clustering methods on all the corresponding
datasets. The best scores are highlighted in bold. N/A indicates that the compared method suffers out-of-memory error.

Datasets Metric AMGL SwMC MLAN PMSC LMVSC SMVSC FPMVS-CAG OMSC
ACC  0.4931.10.0891 0.8400.0.0000 0.7127+0.0000 0.8664.£0.0020 0.7927+0.0000 0.9145+0.0000 0.7054+0.0000 | 0.9164.0.0000
Notting-Hill NMI 0.3492.0.1011 0.83000.0000 0.7935+0.0000 0.7354+0.0048 0.7311+0.0000 0.8276+0.0000 0.7178+0.0000 | 0.8354-0.0000
Purity  0.5042.40.0869 0.8600+0.0000 0.8455+0.0000 0.8664+0.0020 0.8945+0.0000 0.9145+0.0000 0.8272+0.0000 | 0.9164+0.0000
Fscore 0.4721.0.0640 0.8785+0.0000 0.7461+0.0000 0.7925+0.0028 0.7837+0.0000 0.8746+0.0000 0.7029+0.0000 | 0-8797-+0.0000
ACC  0.5043.0.0272 0.515940.0000 0.5996+0.0003 0.5981.+0.0489 0.4304-0.0000 0.6165+0.0000 0.6638..0.0000 | 0.6635-10.0000
Caltech101-20 NMI  0.5248.0.0398 0.4287.0.0000 0.6388+0.0003 0.5244+0.0868 0.5553+0.0000 0.5891+0.0000 0.6387+0.0000 | 0.6403.0.0000
Purity  0.6685+0.0257 0.6429+0.0000 0.7914+0.0003 0.6480+0.0439 0.7125+0.0000 0.7015+0.0000 0.7460+0.0000 | 0.74600.0000
Fscore 0.4123.¢.0172 0.352040.0000 0.5264.10.0003 0.5474+0.0398 0.3414.0.0000 0.6656-0.0000 0.6917+0.0000 | 0.6940.0 0000
ACC N/A N/A N/A N/A 0.1113+0.0000 0.1127+0.0000 0.1098+0.0000 | 0.11509.0000
VGGFace2-50 NMI N/A N/A N/A N/A 0.133240.0000 0.1366+0.0000 0.1365+0.0000 | 0.1464+9.0000
Purity N/A N/A N/A N/A 0.14014+0.0000 0.1157+0.0000 0.114210.0000 | 0.-123319.0000
Fscore N/A N/A N/A N/A 0.0524+0.0000 0.0604+0.0000 0.0597+0.0000 | 0.0595+0.0000
ACC N/A N/A N/A N/A 0.7566+0.0000 0.7389+0.0000 0.-7325+0.0000 | 0.78204+9.0000
YTF-10 NMI N/A N/A N/A N/A 0.7670+0.0000 0.7980+0.0000 0.7740+0.0000 | 0.82750.0000
Purity N/A N/A N/A N/A 0.8125+0.0000 0.772640.0000 0.7621+0.0000 | 0.8298.0.0000
Fscore N/A N/A N/A N/A 0.7001+0.0000 0.6982+0.0000 0.6959+0.0000 | 0.7456+0.0000
ACC N/A N/A N/A N/A 0.7092+0.0000 0.712510.0000 0.6948+0.0000 | 0.7446-0.0000
YTF-20 NMI N/A N/A N/A N/A 0.77514+0.0000 0.7913+0.0000 0.7790+0.0000 | 0.8170+0.0000
Purity N/A N/A N/A N/A 0.7614+£0.0000 0.7700+0.0000 0-7259+0.0000 | 0-7731+0.0000
Fscore N/A N/A N/A N/A 0.6268+0.0000 0.6518.+0.0000 0.6261+0.0000 | 0.6835.0.0000
ACC N/A N/A N/A N/A 0.6825+0.0000 0.6681+0.0000 0.6851+0.0000 | 0.715219.0000
YTE-50 NMI N/A N/A N/A N/A 0.8098+0.0000 0.8258.+0.0000 0.8364+0.0000 | 0.8527+0.0000
Purity N/A N/A N/A N/A 0.7688+0.0000 0.6926+0.0000 0.7140+0.0000 | 0.7657+0.0000
Fscore N/A N/A N/A N/A 0.5794+£0.0000 0.6157+0.0000 0.6381+0.0000 | 0.67580.0000
ACC N/A N/A N/A N/A 0.6006+0.0000 0.5906+0.0000 0.5293+0.0000 | 0.6651+9.0000
YTF-100 NMI N/A N/A N/A N/A 0.7804+£0.0000 0.7991+0.0000 0-7532+0.0000 | 0-8337+0.0000
Purity N/A N/A N/A N/A 0.6827+0.0000 0.610310.0000 0.544640.0000 | 0.7141+9.0000
Fscore N/A N/A N/A N/A 0.51714+0.0000 0.5035+0.0000 0.3541+0.0000 | 0.584640.0000

Since each evaluation measure penalizes or favours specific prop-
erty in the clustering results, a more comprehensive evaluation can
be obtained by reporting the final clustering results via the four
diverse metrics.

4.3 Comparison Results

4.3.1 Clustering Performance. The detailed clustering results in
terms of ACC, NMI, Purity and Fscore obtained by multiple multi-
view clustering methods on seven benchmark datasets are reported
in Table 3, and the mean as well as the standard deviation (std. dev.)
are reported over 20 runs. In the table, we highlight the best perfor-
mance for distinct datasets in terms of each measure in boldface.
Note that N/A indicates that the method suffers out-of-memory
error on the corresponding dataset on our device, and therefore no
result is reported.

According to the table, the proposed OMSC method generally
achieves the best clustering performance on all the testing datasets,
and almost always obtains better results than the other multi-view
clustering methods for large-scale data. For instances, on the YTF-50
dataset, OMCBD significantly outperforms the other three meth-
ods aiming at the larger datasets by achieving improvements of
4.3%, 6.1% and 1.6% in terms of NMI. On the YTF-100 dataset, the
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performance improvements over the other three methods in terms
of NMI are 5.3%, 3.5% and 8.1% respectively.

Meanwhile, compared with the traditional multi-view subspace
clustering methods (AMGL, SwWMC, MLAN, PMSC), the anchor
based subspace methods (LMVSC, SMVSC, FPMVS-CAG and the
proposed OMSC method) are more suitable for large-scale datasets,
and therefore achieve better performance in most cases, demon-
strating the virtue of anchor bipartite graph. Despite of this, the
proposed OMSC method still outperforms the other three anchor
based methods on the whole, which further verifies the necessity of
taking the anchor learning, graph construction and partition jointly
into consideration.

4.3.2  Running Time. Comprehensively, the comparison of running
time in seconds consumed by various anchor based subspace algo-
rithms on the last five large-scale datasets are reported in Figure 1.
To alleviate the gap between the compared methods and OMSC, the
Y-axis is scaled by logarithm in the figure. It can be observed that
the proposed OMSC method achieves a relatively good trade-off
between the clustering performance and computational burden,
ranking the second best on computational time. Although LMVSC
costs less computational time, its clustering performance is gen-
erally worse than OMSC as it constructs multiple view-specific
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Figure 2: Parameter analysis: The performance in terms of ACC and NMI when using different trade-off parameter 1.
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Figure 3: Convergence analysis: the objective value as a function of the iteration step.

graphs based on the fixed anchors from views, which neglects the relatively better performances compared with other state-of-the-art
cross-view complementary information and the underlying cor- multi-view subspace clustering and large-scale oriented methods.
relation between anchor bases and the graph. Hence, large-scale
multi-view data clustering can be settled by the proposed OMSC
method with efficient computation.

Consequently, the above experimental results have well demon- In this subsection, we conduct parameter analysis on the trade-off

strated that the proposed OMSC method is meaningful and achieves parameter A on different benchmark datasets. The influences of the
parameter values in terms of ACC and NMI on all the benchmark

datasets are illustrated in Figure 2. According to Figure 2, we can

4.4 Parameter Analysis
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observe that the clustering performance of OMSC is generally stable
over the corresponding ranges of parameter values on various
datasets. Therefore, the proposed method is relatively robust to the
parameter A. In the meantime, the best results on different datasets
can also be obtained from the figure. For instance, the optimal
performance can be obtained on the YTF-10 dataset when A is 0.01.
Accordingly, the optimal results on the other datasets can also be
acquired from the figure.

4.5 Convergence Analysis

An alternate minimizing algorithm is developed to solve the opti-
mization problem in Eq. (4). Since the objective function in Eq. (4) is
non-increasing with the iterations, the algorithm can be guaranteed
to convergence finally. In this subsection, the objective values on
benchmark datasets are recorded to verify the convergence property
of the proposed method. The objective values on all the benchmark
datasets are illustrated in Figure 3. Obviously, it can be observed
that the corresponding objective value decreases sharply within
the first 10 iterations and then stays steady with more iterations,
implying that the proposed OMSC method is able to converge after
just a few iterations.

5 CONCLUSION

In this paper, we develop a novel unified model termed Efficient
Orthogonal Multi-view Subspace Clustering (OMSC) with almost
linear complexity. To the best of our knowledge, it is the first time
to jointly consider the anchor learning, graph construction and
partition in a unified model for large-scale data. Specifically, the
consensus anchor graph is adaptively learned by the projected
unified anchor bases from multiple views, correlated with the cross-
view complementary information and discriminate anchor struc-
ture. Meanwhile, under the orthogonality constraint of the actual
bases, a factor matrix with rigorous clustering interpretation is
constrained to be cluster indicator matrix so as to directly achieve
the late partition. An alternate minimizing strategy is developed to
deal with the optimization problem, which is proved to have linear
time complexity w.r.t. the sample number. Extensive experiments
conducted on several large-scale datasets have demonstrated the
superiority of the proposed method compared with the state-of-
the-art methods, including multi-view subspace clustering methods
and large-scale oriented methods.
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