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ABSTRACT

In this work, we consider and analyze the sample complexity of model-free
reinforcement learning with a generative model. Particularly, we analyze mirror
descent value iteration (MDVI) by Geist et al. (2019) and Vieillard et al. (2020a),
which uses the Kullback-Leibler divergence and entropy regularization in its
value and policy updates. Our analysis shows that it is nearly minimax-optimal
for finding an ε-optimal policy when ε is sufficiently small. This is the first
theoretical result that demonstrates that a simple model-free algorithm without
variance-reduction can be nearly minimax-optimal under the considered setting.

1 INTRODUCTION

In the generative model setting, the agent has access to a simulator of a Markov decision process
(MDP), to which the agent can query next states of arbitrary state-action pairs (Azar et al., 2013).
The agent seeks a near-optimal policy using as small number of queries as possible.

While the generative model setting is simpler than the online reinforcement learning (RL) setting,
proof techniques developed under this setting often generalize to more complex settings. For exam-
ple, the total-variance technique developed by Azar et al. (2013) and Lattimore & Hutter (2012) is
now an indispensable tool for a sharp analysis of RL algorithms in the online RL setting for tabular
MDP (Azar et al., 2017; Jin et al., 2018) and linear function approximation (Zhou et al., 2021).

In this paper, we consider a model-free approach for the generative model setting with tabular MDP.
Particularly, we analyze mirror descent value iteration (MDVI) by Geist et al. (2019) and Vieillard
et al. (2020a), which uses Kullback-Leibler (KL) divergence and entropy regularization in its value
and policy updates. We prove its near minimax-optimal sample complexity for finding an ε-optimal
policy when ε is sufficiently small. Our result and analysis have the following consequences.

First, we demonstrate the effectiveness of KL and entropy regularization. There are some previous
works that argue the benefit of regularization from a theoretical perspective in value-iteration-like
algorithms (Kozuno et al., 2019; Vieillard et al., 2020a;b) and policy optimization (Mei et al., 2020;
Cen et al., 2021; Lan, 2022). Compared to those works, we show that simply combining value
iteration with regularization achieves the near minimax-optimal sample complexity.

Second, as discussed by Vieillard et al. (2020a), MDVI encompasses various algorithms as special
cases or equivalent forms. While we do not analyze each algorithm, most of them are minimax-
optimal too in the generative model setting with tabular MDP.

Lastly and most importantly, MDVI uses no variance-reduction technique, in contrast to previous
model-free approaches (Sidford et al., 2018; Wainwright, 2019; Khamaru et al., 2021). Conse-
quently, our analysis is straightforward, and it would be easy to extend it to more complex settings,
such as the online RL and linear function approximation. Furthermore, previous approaches need
pessimism to obtain a near-optimal policy, which prevents them from being extended to the online
RL setting, where the optimism plays an important role for an efficient exploration (Azar et al.,
2017; Jin et al., 2018). On the other hand, MDVI is compatible with optimism. Our analysis paves
the way for the combination of online exploration techniques with minimax model-free algorithms.
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2 RELATED WORK

Let γ, H , X , and A denote the discount factor, effective horizon 1
1−γ , and numbers of states and

actions, respectively.

Learning with a generative model In the generative model setting, there are two problem set-
tings: finding (i) an ε-optimal Q-value function with probability at least 1− δ, and (ii) an ε-optimal
policy with probability at least 1 − δ, where δ ∈ (0, 1), and ε > 0. Both problems are known to
have sample complexity lower bounds of Ω(XAH3/ε2) (Azar et al., 2013; Sidford et al., 2018).
Note that even if an ε-optimal Q-value function is obtained, additional data and computation are
necessary to find an ε-optimal policy (Sidford et al., 2018). In this paper, we consider the learning
of an ε-optimal policy.

There exist minimax-optimal model-based algorithms for learning a near-optimal value function
(Azar et al., 2013) and policy (Agarwal et al., 2020; Li et al., 2020). Also, there exist minimax-
optimal model-free algorithms for learning a near-optimal value function (Wainwright, 2019;
Khamaru et al., 2021; Li et al., 2021b) and policy (Sidford et al., 2018). While model-based algo-
rithms are conceptually simple, they have a higher computational complexity than that of model-free
algorithms. The algorithm (MDVI) we analyze in this paper is a model-free algorithm for finding a
near-optimal policy, and has a low computational complexity.

Arguably, Q-learning is one of the simplest model-free algorithms (Watkins & Dayan, 1992; Even-
Dar et al., 2003). Unfortunately, Li et al. (2021a) provide a tight analysis of Q-learning and show that
its sample complexity is Õ(XAH4/ε2) for finding an ε-optimal Q-value function, 1 which is one H
factor away from the lower bound. To remove the extra H factor, some works (Sidford et al., 2018;
Wainwright, 2019; Khamaru et al., 2021) leverage variance reduction techniques. While elegant,
variance reduction techniques lead to multi-epoch algorithms with involved analyses. In contrast,
MDVI requires no variance reduction and is significantly simpler.

MDVI’s underlying idea that enables such simplicity is, while implicit, the averaging of value func-
tion estimates. Li et al. (2021b) shows that averaging Q-functions computed in Q-learning can find
a near-optimal Q-function with a minimax-optimal sample complexity. Azar et al. (2011) also pro-
vides a simple algorithm called Speedy Q-learning (SQL), which performs the averaging of value
function estimates. In fact, as argued in (Vieillard et al., 2020a), SQL is equivalent to a special case
of MDVI with only KL regularization. While previous works on MDVI (Vieillard et al., 2020a)
and an equivalent algorithm called CVI (Kozuno et al., 2019) provide error propagation analyses,
they do not provide sample complexity. 2 This paper proves the first nearly minimax-optimal sam-
ple complexity bound for MDVI-type algorithm. We tighten previous results by (i) using the en-
tropy regularization, which speeds up the convergence rate, (ii) improved error propagation analyses
(Lemmas 1 and 9), and (iii) careful application of the total variance technique (Azar et al., 2013).

In addition to the averaging, Theorem 1 is based on the idea of using a non-stationary policy (Scher-
rer & Lesner, 2012). While the last policy of MDVI is near-optimal when ε is small, a non-stationary
policy constructed from policies outputted by MDVI is near-optimal for a wider range of ε.

Range of Valid ε While there are multiple minimax-optimal algorithms for the generative model
setting, there ranges of valid ε differ. The model-based algorithm by Azar et al. (2013) is nearly
minimax-optimal for ε ≤

√
H/X , which is later improved to

√
H by Agarwal et al. (2020), and to

H by Li et al. (2020). As for model-free approaches, the algorithm by Sidford et al. (2018) is nearly
minimax-optimal for ε ≤ 1. MDVI is nearly minimax-optimal for ε ≤ 1/

√
H (non-stationary policy

case, Theorem 1) and ε ≤ 1/H (last policy case, Theorem 2). Therefore, it has one of the narrowest
range of valid ε (second worst) compared to other algorithms. It is unclear if this is an artifact of our
analysis or the real limitation of MDVI-type algorithm. We leave this topic as a future work.

Regularization in MDPs Sometimes, regularization is added to the reward to encourage explo-
ration in MDPs (Fox et al., 2016; Vamplew et al., 2017). In recent years, Neu et al. (2017); Geist

1Õ hides terms poly-logarithmic in H , X , A, 1/ε, and 1/δ.
2Vieillard et al. (2020a) note SQL’s sample complexity of Õ(XAH4/ε2) for finding a near-optimal policy

as a corollary of their result without proof.
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et al. (2019); Lee et al. (2018); Yang et al. (2019) have provided a unified framework for regularized
MDPs. Specifically, Geist et al. (2019) propose the Regularized Modified Policy Iteration algo-
rithm and Mirror Descent Modified Policy Iteration to solve regularized MDPs. In the meantime,
Vieillard et al. (2020a) provide theoretical guarantees of KL-regularized value iteration in the ap-
proximate setting. Particularly, they show that KL regularization results in the averaging of Q-value
functions and show that the averaging leads to an improved error propagation result. We extend
their improved error propagation result to a KL- and entropy- regularization case. Our results pro-
vide theoretical underpinnings to many regularized RL algorithms in Vieillard et al. (2020a, Table 1)
and a high-performing deep RL algorithm called Munchausen DQN (Vieillard et al., 2020b).

3 PRELIMINARIES

For a set S, we denote its complement as Sc. For a positive integer N , we let [N ] := {1, . . . , N}.
Without loss of generality, every finite set is assumed to be a subset of integers. For a finite set,
say S, the set of probability distributions over S is denoted by ∆(S). For a vector v ∈ RM , its
m-th element is denoted by vm or v(m). 3 We let 1 := (1, . . . , 1)⊤ and 0 := (0, . . . , 0)⊤, whose
dimension will be clear from the context. For a matrix A ∈ RN×M , we denote its n-th row and
m-th value of the n-th row by An and Am

n , respectively. The expectation and variance of a random
variable X are denoted as E[X] and V[X], respectively. The empty sum is defined to be 0, e.g.,∑k

i=j ai = 0 if j > k.

We consider a Markov Decision Process (MDP) defined by (X,A, γ, r, P ), where X is the state
space of size X , A the action space of size A, γ ∈ [0, 1) the discount factor, r ∈ [−1, 1]XA the
reward vector with rx,a denoting the reward when taking an action a at a state x, and P ∈ RXA×X

state transition probability matrix with P y
x,a denoting the state transition probability to a new state y

from a state x when taking an action a. We let H be the (effective) time horizon 1/(1− γ).

Note that (Pv)(x, a) =
∑

y∈X P (y|x, a)v(y) for any v ∈ RX . Any policy π is identified as a matrix
π ∈ RX×XA such that (πq)(x) :=

∑
a∈A π(a|x)q (x, a) for any q ∈ RXA. For convenience, we

adopt a shorthand notation, Pπ := Pπ. With these notations, the Bellman operator Tπ for a policy
π is defined as an operator such that Tπq := r+γPπq. The Q-value function qπ for a policy π is its
unique fixed point. The state-value function vπ is defined as πqπ . An optimal policy π∗ is a policy
such that v∗ := vπ∗ ≥ vπ for any policy π, where the inequality is point-wise.

4 MIRROR DESCENT VALUE ITERATION AND MAIN RESULTS

For any policies π and µ, let log π and log π
µ be the functions x, a 7→ log π(a|x) and x, a 7→

log π(a|x)
µ(a|x) over X ×A. We analyze (approximate) MDVI whose update is the following (Vieillard

et al., 2020a):
qk+1 = r + γPvk + εk , (1)

where vk := πk

(
qk − τ log

πk

πk−1
− κ log πk

)
,

πk (·|x) = argmax
p∈∆(A)

∑
a∈A

p(a)

(
qk(x, a)− τ log

p(a)

πk−1 (a|x)
− κ log p(a)

)
(2)

for all x ∈ X, and εk : X×A → R is an “error” function, which abstractly represents the deviation
of qk+1 from the update target r + γPvk. In other words, MDVI is value iteration with KL and
entropy regularization.

Let sk := qk + αsk−1 =
∑k−1

j=0 α
jqk−j . The policy (2) can be rewritten as a Boltzmann policy of

sk, i.e., πk(a|x) ∝ exp (βsk(x, a)), where α := τ/(τ + κ), and β := 1/(τ + κ), see Appendix B
for details. Substituting πk−1 and πk in vk with this expression of the policy, we deduce that

vk(x) = β−1 log
∑
a∈A

exp (βsk(x, a))− αβ−1 log
∑
a∈A

exp (βsk−1(x, a)) .

3Unless noted otherwise, all vectors are column vectors.
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Algorithm 1: MDVI(α,K,M)

Input: α ∈ [0, 1), number of iterations K, and number of next-state samples per iteration M .
Let s0 = 0 ∈ RXA and w0 = w−1 = 0 ∈ RX ;
for k from 0 to K − 1 do

Let vk = wk − αwk−1;
for each state-action pair (x, a) ∈ X×A do

Sample (yk,m,x,a)
M
m=1 from the generative model P (·|x, a);

Let qk+1(x, a) = r(x, a) + γM−1
∑M

m=1 vk(yk,m,x,a);
end
Let sk+1 = qk+1 + αsk and wk+1(x) = maxa∈A sk+1(x, a) for each x ∈ X;

end
return (πk)

K
k=0 , where πk is greedy policy with respect to sk;

Thus, letting wk be the function x 7→ β−1 log
∑

a∈A exp (βsk(x, a)) over X, MDVI’s update rules
can be equivalently written as

qk+1 = r + γP (wk − αwk−1) + εk and πk(a|x) ∝ exp (βsk(x, a)) for all (x, a) ∈ X×A .

A sample-approximate version of MDVI shown in Algorithm 1 (MDVI) uses this equivalent form of
MDVI. Furthermore, for simplicity of the analysis, we consider the limit of τ, κ → 0 while keeping
α = τ/(τ + κ) to a constant value (which corresponds to letting β → ∞).
Remark 1. Even if β is finite, MDVI is nearly minimax-optimal as long as β is large enough. Indeed,
β−1 log

∑
a∈A exp(q(x, a)) satisfies (Kozuno et al., 2019, Lemma 7) that

max
a∈A

q(x, a) ≤ β−1 log
∑
a∈A

exp(q(x, a)) ≤ max
a∈A

q(x, a) + β−1 logA .

Thus, while β appears in the proofs of Theorems 1 and 2 if it is finite, it always appear as β−1 logA
multiplied by H-dependent constant. Therefore, MDVI is nearly minimax-optimal as long as β is
large enough.

Why KL Regularization? The weight α used in sk updates monotonically increases as the coef-
ficient of the KL regularization τ increases. As we see later, error terms appear in upper bounds of
∥v∗− vπk∥∞ as (1−α)

∑k
j=1 α

k−jεj . Applying Azuma-Hoeffiding inequality, it is approximately
bounded by H

√
1− α. Therefore, MDVI becomes more robust to sampling error as α increases.

The KL regularization confers this benefit to the algorithm.

Why Entropy Regularization? When there is no entropy regularization (α = 1), the convergence
rate of MDVI becomes 1/K while it is αK for γ ≤ α < 1 (Vieillard et al., 2020a). In the former
case, we need to set K ≈ H2/ε, whereas in the latter case, K ≈ 1/(1− α) suffices. Since we will
set α to either γ or 1 − (1 − γ)2, K ≈ H or H2. Thus, we can use more samples per one value
update (i.e., larger M ). A larger M leads to a smaller value estimation variance (σ(vk) in Lemma 6),
which is important to improve the range of ε. Even when α = 1, MDVI is nearly minimax-optimal
(proof omitted). However, ε must be less than or equal to 1/H2.

Main Theoretical Results The following theorems show the near minimax-optimality of MDVI.
For a sequence of policies (πk)

K
k=0 outputted by MDVI, we let π′

k be the non-stationary policy that
follows πk−t at the t-th time step until t = k, after which π0 is followed. 4 Note that the value
function of such a non-stationary policy is given by vπ

′
k = πkT

πk−1 · · ·Tπ1qπ0 .

Theorem 1. Assume that ε ∈ (0, 1/
√
H]. Then, there exist positive constants c1, c2 ≥ 1 indepen-

dent of H , X , A, ε, and δ such that when MDVI is run with the settings

α = γ ,K =

⌈
3

1− α
log

c1H

ε
+ 2

⌉
, and M =

⌈
c2H

2

ε2
log

16KXA

δ

⌉
,

4The time step index t starts from 0.
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it outputs a sequence of policies (πk)
K
k=0 such that ∥v∗ − vπ

′
K∥∞ ≤ ε with probability at least

1− 3δ/4, using Õ
(
H3XA/ε2

)
samples from the generative model.

Storing all policies requires the memory space of KXA and can be prohibitive in some cases. The
next theorem shows that the last policy outputted by MDVI is near-optimal when ε ≤ 1/H .
Theorem 2. Assume that ε ∈ (0, 1/H]. Then, there exist positive constants c3, c4 ≥ 1 independent
of H , X , A, ε, and δ such that when MDVI is run with the settings

α = 1− (1− γ)2 ,K =

⌈
5

1− α
log

c3H

ε
+ 2

⌉
, and M =

⌈
c4H

ε2
log

16KXA

δ

⌉
,

it outputs a sequence of policies (πk)
K
k=0 such that ∥v∗−vπK∥∞ ≤ ε with probability at least 1−δ,

using Õ
(
H3XA/ε2

)
samples from the generative model.

5 PROOFS OF THE MAIN RESULTS

Before the proof, we introduce some notations. A table of notations is provided in Appendix A.

Notation. □ denotes an indefinite constant that changes throughout the proof and is independent
of H , X , A, ε, and δ. We let Aγ,k :=

∑k−1
j=0 γ

k−jαj and Ak :=
∑k−1

j=0 α
j for any non-negative

integer k with A∞ := 1/(1 − α). Fk,m denotes the σ-algebra generated by random variables
{yj,n,x,a|(j, n, x, a) ∈ [k−2]× [M ]×X×A}∪{yj,n,x,a|(j, n, x, a) ∈ {k−1}× [m−1]×X×A}.
For any k ∈ {0} ∪ [K − 1] and v ∈ RX , Var(v) and P̂kv denote the functions

Var(v) : (x, a) 7→ (Pv2)(x, a)− (Pv)2(x, a) and P̂kv : (x, a) 7→
∑M

m=1 v(yk,m,x,a)/M ,

respectively. We often write
√

Var(v) as σ(v). Furthermore, εk and Ek denote “error” functions

εk : (x, a) 7→ γP̂k−1vk−1(x, a)− γPvk−1(x, a) and Ek : (x, a) 7→
∑k

j=1 α
k−jεj(x, a) ,

respectively. (Note that ε1 = E1 = 0 since v0 = 0.) For a sequence of policies (πk)k∈Z,
we let T i

j := TπiTπi−1 · · ·Tπj+1Tπj for i ≥ j, and T i
j := I otherwise. We also let P i

j :=

PπiPπi−1 · · ·Pπj+1Pπj for i ≥ j, and P i
j := I otherwise. As a special case with πk = π∗ for

all k, we let P i
∗ := (Pπ∗)i. Finally, throughout the proof, ι1 and ι2 denotes log(8KXA/δ) and

log(16KXA/δ), repspectively.

5.1 PROOF OF THEOREM 1 (NEAR-OPTIMALITY OF THE NON-STATIONARY POLICY)

The first step of the proof is the error propagation analysis of MDVI given below. It differs from the
one of Vieillard et al. (2020a) since ours upper-bounds v∗ − vπ

′
k . It is proven in Appendix F.1

Lemma 1. For any k ∈ [K], 0 ≤ v∗ − vπ
′
k ≤ Γk, where

Γk :=
1

A∞

k−1∑
j=0

γj
(
πkP

k−1
k−j − π∗P

j
∗

)
Ek−j + 2H

(
αk +

Aγ,k

A∞

)
1 .

From this result, it can be seen that an upper bound for each Ek is necessary. The following lemma
provides an upper bound, which readily lead to Lemma 3 when combined with Lemma 1. These
lemmas are proven in Appendix F.2.

Lemma 2. Let E1 be the event that ∥Ek∥∞ < 3H
√

A∞ι1/M for all k ∈ [K]. Then, P (Ec
1) ≤ δ/4.

Lemma 3. Assume that ε ∈ (0, 1]. When MDVI is run with the settings α, K, and M in Theorem 1,
under the event E1, its output policies (πk)

K
k=0 satisfy that ∥v∗−vπ

′
k∥∞ ≤ 2(k+H)γk+□ε

√
H/c2

for all k ∈ [K]. Furthermore, ∥v∗ − vπ
′
K∥∞ ≤

√
Hε for some c1, c2 ≥ 1.

Unfortunately, Lemma 3 is insufficient to show the minimax optimality of MDVI since it only holds
that ∥v∗ − vπ

′
K∥∞ ≤

√
Hε while P(E1) ≥ 1 − δ. Any other setting of α, β, K, and M does not
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seem to lead to ∥v∗ − vπ
′
K∥∞ ≤ ε. Nonetheless, Lemma 3 turns out to be useful later to obtain a

refined result.

To show the minimax optimality, we need to remove the extra
√
H factor. The standard tools for this

purpose are a Bernstein-type inequality and the total variance (TV) technique (Azar et al., 2013),
which leverages the fact that ∥(I − γPπ)

−1
σ(vπ)∥∞ ≤

√
2H3 for any policy π. In our case, the

TV technique for a non-stationary policy is required due to πkP
k−1
k−j , though.

Recall the definition of εk and note that its standard deviation consists of σ(vk−1). As we use
a Bernstein inequality for martingale because of Ek, we derive an upper bound for the sum of
σ(vj−1)

2 over j ∈ [k] (V in Lemma 19) using the fact that σ(vj−1) ≈ σ(v∗) when vj−1 ≈ v∗. To
this end, the following lemma, proven in Appendix F.3, is useful.
Lemma 4. For any k ∈ [K],

−2γkH1−
k−1∑
j=0

γjπk−1P
k−1
k−j εk−j ≤ v∗ − vk ≤ Γk−1 + 2Hγk1−

k−1∑
j=0

γjπk−1P
k−2
k−1−jεk−j .

Combining this lemma with Lemma 2 and the following one, we can obtain an upper-bound for
σ(vk−1). The proofs of both results are given in Appendix F.4.

Lemma 5. Let E2 be the event that ∥εk∥∞ < 3H
√

ι1/M for all k ∈ [K]. Then, P (Ec
2) ≤ δ/4.

Lemma 6. Conditioned on the event E1 ∩ E2, it holds for any k ∈ [K] that

σ(vk) ≤ 2Hmin

{
1, 2max{α, γ}k−1 +

Aγ,k−1

A∞
+ 6H

√
ι1
M

}
1+ σ(v∗) . (3)

Furthermore, σ(v0) = 0.

Using Lemma 6, we can prove refined bounds for Ek and εk, as in Appendix F.5.
Lemma 7. Let E3 be the event that

|Ek|(x, a) <
4Hι2
3M

+
√
2Vk(x, a)ι2 for all (x, a, k) ∈ X×A× [K] ,

where Vk := 4
∑k

j=1 α
2(k−j)Varj/M with

Varj := Var(v∗) + 4H2

(
4max{α, γ}2j−2

+
A2

γ,j−2

A2
∞

+
36H2ι1

M

)
1

for k ≥ 2 and Var1 := 0. Then, P (Ec
3 |E1 ∩ E2) ≤ δ/4.

Lemma 8. Let E4 be the event that

|εk|(x, a) <
4Hι2
3M

+
√
2Wk(x, a)ι2 for all (x, a, k) ∈ X×A× [K]

where Wk := 4Vark/M . Then, P (Ec
4 |E1 ∩ E2) ≤ δ/4.

With these lemmas, we are ready to prove Theorem 1.

Proof of Theorem 1. We condition the proof by E1∩E2∩E3. As for any events A and B, P(A∩B) =
P((A ∪Bc) ∩B) ≥ 1− P(Ac ∩B)− P(Bc) , and P(Ac ∩B) = P(Ac|B)P(B) ≤ P(Ac|B),

P(E1 ∩ E2 ∩ E3) ≥ 1− P(Ec
3 |E1 ∩ E2)− P((E1 ∩ E2)c)

≥ 1− P(Ec
3 |E1 ∩ E2)− P(Ec

1)− P(Ec
2) .

Therefore, from Lemmas 2, 5, and 7, we conclude that P(E1 ∩ E2 ∩ E3) ≥ 1− 3δ/4 . Accordingly,
any claim proven under E1 ∩ E2 ∩ E3 holds with probability at least 1− 3δ/4.

From Lemma 1, the setting that α = γ, and the monotonicity of stochastic matrices,

v∗ − vπ
′
K ≤ 1

H

K−1∑
k=0

γkπ∗P
k
∗ |EK−k|︸ ︷︷ ︸

♡

+
1

H

K−1∑
k=0

γkπKPK−1
K−k |EK−k|︸ ︷︷ ︸
♣

+2 (H +K) γK1 .
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As the last term is less than □ε/c1 from Lemma 15, it remains to upper-bound ♡ and ♣. We note
that A∞ = H and Aγ,k = kγk under the considered setting of α.

From the settings of α and M ,

2Vkι2 ≤ □Var(v∗)ε2

c2H
+

□ε2

c2

(
kγ2(k−2) +

γ2(k−2)

H2

k∑
j=2

(j − 2)2︸ ︷︷ ︸
≤□k3 from (a)

+
ε2

c2

k∑
j=2

γ2(k−j)

︸ ︷︷ ︸
≤H

)
1 ,

where (a) follows from Lemma 16. From this result and Lemma 11, it follows that

♡ ≤ □ε2

c2
1+

□ε√
c2H

K−1∑
k=0

γkπ∗P
k
∗ σ(v

∗)︸ ︷︷ ︸
≤
√
2H31from Lemma 22

+
□ε
√
c2

(
γK−2

K∑
k=1

(
√
k +

k
√
k

H

)
︸ ︷︷ ︸
≤□(K2.5/H) from (a)

+H
√
Hε
)
1 ,

where (a) follows from Lemma 16 and that H ≤ K. From Lemma 15, K2.5γK−2/H ≤ □ε/c1.
Therefore, using the inequality ε ≤ 1/

√
H ≤ 1, H−1♡ ≤ □

(
c−1
2 + c−0.5

2

)
ε1.

Although an upper bound for ♣ can be similarly derived, a care must be taken when upper-bounding
♢ :=

∑K−1
k=0 γkπKPK−1

K−kσ(v
∗). From Lemma 21, for any k ∈ [K],

σ(v∗) ≤ σ(v∗ − vπ
′
k) + σ(vπ

′
k) ≤ 2(k +H)γk1+□

√
H/c2ε1+ σ(vπ

′
k) ,

where the second inequality follows from Lemmas 3 and 20. Accordingly,

♢ ≤ 2γK
K−1∑
k=0

(k +H)︸ ︷︷ ︸
≤□K2 from (a)

1+□H
√

H/c2ε1+

K−1∑
k=0

γkπKPK−1
K−kσ(v

π′
K−k)︸ ︷︷ ︸

≤
√
2H31 from Lemma 22

≤ □H
√
H ,

where (a) follows from Lemma 16 and that H ≤ K, and the second inequality follows since ε ≤
1/

√
H ≤ 1 and K2γK ≤ □ε/c1 from Lemma 15. Thus, H−1♣ ≤ □(c−1

2 + c−0.5
2 )ε1.

Combining these results, we conclude that there are constants c1 and c2 that satisfy the claim.

5.2 PROOF OF THEOREM 2 (NEAR-OPTIMALITY OF THE LAST POLICY)

We need the following error propagation result. Its proof is given in Appendix G.1.
Lemma 9 (Error Propagation of MDVI). For any k ∈ [K],

0 ≤ v∗ − vπk ≤ 2H

(
αk +

Aγ,k

A∞

)
1+

1

A∞
(N πkπk −N π∗π∗)Ek

+
1

A∞

k∑
j=1

γj
(
N π∗π∗P

k
k+1−j −N πkπkP

k−1
k−j

)
E′

k+1−j ,

where N π :=
∑∞

t=0(γπP )t for any policy π, and E′
k+1−j := εk+1−j − (1− α)Ek−j .

The following lemma is an analogue of Lemma 3. It is proven in Appendix G.2.
Lemma 10. Assume that ε ∈ (0, 1]. When MDVI is run with the settings α, K, and M in Theorem 2,
under the event E1∩E2, its output policies (πk)

K
k=0 satisfy that ∥v∗−vπ

′
k∥∞ ≤ □Hαk+□ε

√
H/c4

and ∥v∗ − vπk∥∞ ≤ □Hαk +□ε
√
H/c4 for all k ∈ [K].

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. We condition the proof by E1 ∩ E2 ∩ E3 ∩ E4. Since for any events A and B,
P(A∩B) = P((A∪Bc)∩B) ≥ 1−P(Ac∩B)−P(Bc), and P(Ac∩B) = P(Ac|B)P(B) ≤ P(Ac|B),

P(E1 ∩ E2 ∩ E3 ∩ E4) ≥ 1− P((E3 ∩ E4)c|E1 ∩ E2)− P((E1 ∩ E2)c)
≥ 1− P(Ec

3 ∪ Ec
4 |E1 ∩ E2)− P(Ec

1)− P(Ec
2)

≥ 1− P(Ec
3 |E1 ∩ E2)− P(Ec

4 |E1 ∩ E2)− P(Ec
1)− P(Ec

2) .
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Therefore, from Lemmas 2, 5, 7, and 8, we conclude that P(E1∩E2∩E3∩E4) ≥ 1−δ . Accordingly,
any claim proven under E1 ∩ E2 ∩ E3 ∩ E4 holds with probability at least 1− δ.

From Lemma 9, the setting that α = 1− (1− γ)2, and the monotonicity of stochastic matrices,

v∗ − vπK ≤ 2H

(
αK +

2Aγ,K

H

)
1+

1

H2
(N πKπK +N π∗π∗) |EK |︸ ︷︷ ︸

:=♡

+
1

H2

K∑
k=1

γk
(
N π∗π∗P

K
K+1−k +N πKπKPK−1

K−k

)(
|εK+1−k|+

1

H2
|EK−k|

)
︸ ︷︷ ︸

:=♣

,

where E0 := 0. The first term can be bounded by □αKH ≤ □ε/c3 from Lemmas 13 and 15. In
the sequel, we derive upper bounds for ♡ and ♣. We note that A∞ = H2 and Aγ,k ≤ αkH .

Next, we derive an upper bound for ♡. From the settings of α(≥ γ) and M ,

2Vkι2 ≤ □HVar(v∗)ε2

c4
+

□Hε2

c4

(
kα2(k−2) +

H3ε2

c4

)
1 .

From this result and Lemma 11, it follows that

♡
H2

≤ □ε2

c4H
+

□ε

H
√
c4H

(N πKπK +N π∗π∗)σ(v
∗) +

□ε
√
c4

(√
K/HαK−2︸ ︷︷ ︸

≤ε/c3 from (a)

+ Hε/
√
c4︸ ︷︷ ︸

≤1/
√
c4 from (b)

)
1 ,

where (a) follows from Lemma 15, and (b) follows by the assumption that ε ≤ 1/H . By Lemma 22,
N π∗π∗σ(v

∗) ≤ □
√
H3. Furthermore, from Lemmas 10 and 20,

N πKπKσ(v∗) ≤ □H2αK︸ ︷︷ ︸
≤□H

√
H from (a)

+□εH
√
H/c4 + N πKπKσ(vπK )︸ ︷︷ ︸

□H
√
H from Lemma 22

≤ □H
√
H1 ,

where (a) follows from Lemma 15, and the last inequality follows since ε ≤ 1. Consequently,
H−2♡ ≤ □

(
1/c4 + 1/

√
c4
)
ε1.

As for an upper bound for ♣, we derive upper bounds for the following two components:

♢ :=
1

H2

K−1∑
k=1

γkN π∗π∗P
K
K+1−k|EK−k| and ♠ :=

K∑
k=1

γkN π∗π∗P
K
K+1−k|εK+1−k| .

Upper bounds for H−2
∑K

k=1 γ
kN πKπKPK−1

K−k |EK−k| and
∑K

k=1 γ
kN πKπKPK−1

K−k |εK+1−k| can
be similarly derived.

From Lemma 2, ♢ ≤ maxk∈[K]∥Ej∥∞1 ≤ □ε
√
H3/c4, and thus, H−2♢ ≤ □ε/

√
c4. On the

other hand, from the assumption that γ ≤ α,

2Wkι2 ≤ □ε2

c4H
Var(v∗) +

□Hε2

c4

(
α2(k−2) +

ε2H

c4

)
1

for k > 1. Using Lemmas 8 and 11 as well as γ ≤ α,

♠ ≤ □εN π∗π∗

K∑
k=1

γkPK
K+1−k

(
ε

c4
1+

σ(v∗)√
c4H

+

√
H

c4

(
αK−k−2 + ε

√
H

c4

)
1

)

≤ □ε

(
H2ε

c4
1+N π∗π∗

K∑
k=1

γkPK
K+1−k

σ(v∗)√
c4H

+

√
H3

c4

(
KαK−2︸ ︷︷ ︸

≤□ε/c3 from (a)

+Hε

√
H

c4

)
1

)

≤ □ε

(
H2ε

c4
1+

√
H3

c4

(
ε

c3
+Hε

√
H

c4

)
1︸ ︷︷ ︸

≤H2/
√
c4 as ε≤1/H

)
+

□ε√
c4H

N π∗π∗

K∑
k=1

γkPK
K+1−kσ(v

∗) .
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Now, it remains to upper-bound
∑K

k=1 γ
kPK

K+1−kσ(v
∗). From Lemma 21,

σ(v∗) ≤ σ(v∗ − vπ
′
k) + σ(vπ

′
k) ≤ □αkH1+□ε

√
H/c41+ σ(vπ

′
k)

for any k ∈ [K], where Lemmas 10 and 20 are used. Consequently,

K∑
k=1

γkPK
K+1−kσ(v

∗) ≤ □
K∑

k=1

γkPK
K+1−k

(
HαK+1−k1+ ε

√
H/c41+ σ(vπ

′
K+1−k)

)
≤ □

(
HKαK+1︸ ︷︷ ︸

≤ε/c3

1+ ε
√
H3/c41+

K∑
k=1

γkPK
K+1−kσ(v

π′
K+1−k)︸ ︷︷ ︸

≤□
√
H31

)
,

where the second inequality follows since γ ≤ α. Consequently, H−2♠ ≤ □ε/
√
c4.

Combining these inequalities, we deduce that v∗ − vπK ≤ □ε
(
c−1
3 + c−0.5

4

)
1.

6 CONCLUSION

In this work, we considered and analyzed the sample complexity of a model-free algorithm called
MDVI (Geist et al., 2019; Vieillard et al., 2020a) under the generative model setting. We showed
that it is nearly minimax-optimal for finding an ε-optimal policy despite its simplicity compared to
previous model-free algorithms (Sidford et al., 2018; Wainwright, 2019; Khamaru et al., 2021). We
believe that our results are significant for the following three reasons.

First, we demonstrate the effectiveness of KL and entropy regularization. Second, as discussed by
Vieillard et al. (2020a), MDVI encompasses various algorithms as special cases or equivalent forms,
and our results provide theoretical guarantees for most of them at once. Third, MDVI uses no
variance-reduction technique, which leads to multi-epoch algorithms and involved analyses (Sidford
et al., 2018; Wainwright, 2019; Khamaru et al., 2021). As such, our analysis is straightforward, and
it would be easy to extend it to more complex settings.

A disadvantage of MDVI is that its range of valid ε is limited compared to previous algorithms
(Sidford et al., 2018; Agarwal et al., 2020; Li et al., 2020). While it is unclear if this is an artifact
of our analysis or the real limitation of MDVI-type algorithms, our empirical results (Appendix H)
confirm that the sample complexity of a MDVI-type algorithm becomes comparable to Q-learning
when ε is large, implying that the limitation is real. While an adaptive α might solve this issue, we
leave this topic as a future work.
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Mohammad Azar, Rémi Munos, and Hilbert J. Kappen. Minimax PAC bounds on the sample com-
plexity of reinforcement learning with a generative model. Machine Learning, 91(3):325–349,
Jun 2013.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax Regret Bounds for Rein-
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A NOTATIONS

Table 1: Table of Notations
Notation Meaning

A action space of size A
H effective horizon H := 1/(1− γ)
P transition matrix
X state space of size X
r reward vector bounded by 1
γ discount factor in [0, 1)

ε admissible suboptimality
δ admissible failure probability

Ek Ek : (x, a) 7→
∑k

j=1 α
k−jεj(x, a)

εk εk : (x, a) 7→ γP̂k−1vk−1(x, a)− γPvk−1(x, a)

Ak, A∞, Aγ,k

∑k−1
j=0 α

j ,
∑∞

j=0 α
j ,
∑k−1

j=0 α
jγk−j

E1 event of small Ek for all k (not variance-aware)
E2 event of small εk for all k (not variance-aware)
E3 event of small Ek for all k (variance-aware)
E4 event of small εk for all k (variance-aware)
Fk,m σ-algebra in the filtration (cf. Section 5)
K number of value updates
M number of samples per each value update
Pπ Pπ := Pπ
P i
j , P i

∗ P i
j := PπiPπi−1 · · ·Pπj+1Pπj , P i

∗ := (Pπ∗)i

Tπ , T i
j Bellman operator for a policy π, T i

j := TπiTπi−1 · · ·Tπj+1Tπj

Vk an upper bound for Ek’s predictive quadratic variance (cf. Lemma 7)
Wk an upper bound for εk’s predictive quadratic variance (cf. Lemma 8)
sk sk := qk + αsk−1 (cf. MDVI)
vk vk := wk − αwk−1 (cf. MDVI)
wk wk(x) := maxa∈A sk(x, a) (cf. MDVI)
α α := τ/(τ + κ), weight for sk updates (cf. MDVI and Appendix B)
β β := 1/(τ + κ), inverse temperature for πk (cf. Section 4 and Appendix B)
ι1, ι2 ι1 := log(8KXA/δ), ι2 := log(16KXA/δ)
π′
k a non-stationary policy that follows πk, πk−1, . . . sequentially (cf. Section 5)

□ an indefinite constant independent of H , X , A, ε, and δ

B EQUIVALENCE OF MDVI UPDATE RULES

We show the equivalence of MDVI’s updates (1) and (2) to those used in MDVI. We first recall
MDVI’s updates (1) and (2):

qk+1 = r + γPπk

(
qk − τ log

πk

πk−1
− κ log πk

)
+ εk ,

where πk (·|x) = argmax
p∈∆(A)

∑
a∈A

p(a)

(
qk(s, a)− τ log

p(a)

πk−1 (a|x)
− κ log p(a)

)
for all x ∈ X ,

The policy update (2) can be rewritten as follows (e.g., Equation (5) of Kozuno et al. (2019)):

πk(a|x) =
πk−1(a|x)α exp (βqk(x, a))∑
b∈A πk−1(b|x)α exp (βqk(x, b))

,
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where α := τ/(τ +κ), and β := 1/(τ +κ). It can be further rewritten as, defining sk = qk+αsk−1

πk(a|x) =
exp (βsk(x, a))∑
b∈A exp (βsk(x, b))

.

Plugging in this policy expression to vk, we deduce that

vk(x) =
1

β
log
∑
a∈A

exp (βqk(x, a) + α log πk−1(a|x))

=
1

β
log
∑
a∈A

exp (βsk(x, a))−
α

β
log
∑
a∈A

exp (βsk−1(x, a)) .

Kozuno et al. (2019, Appendix B) show that when β → ∞, vk(x) = wk(x)− αwk−1(x) . Further-
more, the Boltzmann policy becomes a greedy policy. Accordingly, the update rules used in MDVI
is a limit case of the original MDVI updates.

C AUXILIARY LEMMAS

In this appendix, we prove some auxiliary lemmas used in the proof.

Lemma 11. For any positive real values a and b,
√
a+ b ≤

√
a+

√
b.

Proof. Indeed, a+ b ≤ a+ 2
√
ab+ b = (

√
a+

√
b)2.

Lemma 12. For any real values (an)Nn=1, (
∑N

n=1 an)
2 ≤ N

∑N
n=1 a

2
n.

Proof. Indeed, from the Cauchy–Schwarz inequality,(
N∑

n=1

an · 1

)2

≤

(
N∑

n=1

1

)(
N∑

n=1

a2n

)
= N

N∑
n=1

a2n ,

which is the desired result.

Lemma 13. For any k ∈ [K],

Aγ,k =

γ
αk − γk

α− γ
if α ̸= γ

kγk otherwise
.

Proof. Indeed, if α ̸= γ

Aγ,k =

k−1∑
j=0

αjγk−j = γk (α/γ)
k − 1

(α/γ)− 1
= γ

αk − γk

α− γ
.

If α = γ, Aγ,k = kγk by definition.

Lemma 14. For any real value x ∈ (0, 1], 1− x ≤ log(1/x).

Proof. Since log(1/x) is convex and differentiable, log(1/x) ≥ log(1/y) − (x − y)/y. Choosing
y = 1, we concludes the proof.

Lemma 15. Suppose α, γ ∈ [0, 1), ε ∈ (0, 1], c ∈ [1,∞), m ∈ N, and n ∈ [0,∞). Let K :=
m

1− α
log

cH

ε
. Then,

KnαK ≤
(

mn

(1− α)e

)n ( ε

cH

)m−1

.
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Proof. Using Lemma 14,

K =
m

1− α
log

cH

ε
≥ logα

( ε

cH

)m
.

Therefore,

KnαK ≤
(

m

1− α
log

cH

ε

)n ( ε

cH

)m
=

mn

(1− α)n

( ε

cH

)m(
log

cH

ε

)n

.

Since x

(
log

1

x

)n

≤
(n
e

)n
for any x ∈ (0, 1] as shown later,

KnαK ≤
(

mn

(1− α)e

)n ( ε

cH

)m−1

.

Now it remains to show f(x) := x

(
log

1

x

)n

≤
(n
e

)n
for x < 1. We have that

f ′(x) = (− log x)n − n(− log x)n−1 =⇒ f ′(x) = 0 at x = e−n.

Therefore, f takes its maximum
(n
e

)n
at e−n when x ∈ (0, 1).

The following lemma is a special case of a well-known inequality that for any increasing function f

K∑
k=1

f(k) ≤
∫ K+1

1

f(x)dx .

Lemma 16. For any K ∈ N and n ∈ [0,∞),
K∑

k=1

kn ≤ 1

n+ 1
(K + 1)n+1.

D TOOLS FROM PROBABILITY THEORY

We extensively use the following two concentration inequalities. The first one is Azuma-Hoeffding
inequality (Azuma, 1967; Hoeffding, 1963; Boucheron et al., 2013), and the second one is Bern-
stein’s inequality (Bernstein, 1946; Boucheron et al., 2013) for a martingale (Lattimore & Szepes-
vari, 2020, Excercises 5.14 (f)). For a real-valued stochastic process (Xn)

N
n=1 adapted to a filtration

(Fn)
N
n=1, we let En[Xn] := E[Xn|Fn−1] for n ≥ 1, and E1[X1] := E[X1].

Lemma 17 (Azuma-Hoeffding Inequality). Consider a real-valued stochastic process (Xn)
N
n=1

adapted to a filtration (Fn)
N
n=1. Assume that Xn ∈ [ln, un] and En[Xn] = 0 almost surely, for all

n. Then,

P

 N∑
n=1

Xn ≥

√√√√ N∑
n=1

(un − ln)2

2
log

1

δ

 ≤ δ

for any δ ∈ (0, 1).

Lemma 18 (Bernstein’s Inequality). Consider a real-valued stochastic process (Xn)
N
n=1 adapted

to a filtration (Fn)
N
n=1. Suppose that Xn ≤ U and En[Xn] = 0 almost surely, for all n. Then,

letting V ′ :=
∑N

n=1 En[X
2
n],

P

(
N∑

n=1

Xn ≥ 2U

3
log

1

δ
+

√
2V log

1

δ
and V ′ ≤ V

)
≤ δ

for any V ∈ [0,∞) and δ ∈ (0, 1).

In our analysis, we use the following corollary of this Bernstein’s inequality.
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Lemma 19 (Conditional Bernstein’s Inequality). Consider the same notations and assumptions
in Lemma 18. Furthermore, let E be an event that implies V ′ ≤ V for some V ∈ [0,∞) with
P(E) ≥ 1− δ′ for some δ′ ∈ (0, 1). Then,

P

(
N∑

n=1

Xn ≥ 2U

3
log

1

δ(1− δ′)
+

√
2V log

1

δ(1− δ′)

∣∣∣∣∣E
)

≤ δ

for any δ ∈ (0, 1).

Proof. Let A and B denote the events of
N∑

n=1

Xn ≥ 2U

3
log

1

δ(1− δ′)
+

√
2V log

1

δ(1− δ′)

and V ′ ≤ V , respectively. Since E ⊂ B, it follows that A∩E ⊂ A∩B, and P(A∩E) ≤ P(A∩B).
Accordingly,

P(A|E) = P(A ∩ E)
P(E)

≤ P(A ∩B)

P(E)
(a)

≤ δ(1− δ′)

P(E)
(b)

≤ δ ,

where (a) follows from Lemma 18, and (b) follows from P(E) ≥ 1− δ′.

Lemma 20 (Popoviciu’s Inequality for Variances). The variance of any random variable bounded
by x is bounded by x2.

E TOTAL VARIANCE TECHNIQUE

The following lemma is due to Azar et al. (2013).
Lemma 21. Suppose two real-valued random variables X,Y whose variances, VX and VY , exist
and are finite. Then,

√
VX ≤

√
V [X − Y ] +

√
VY .

For completeness, we prove Lemma 21.

Proof. Indeed, from Cauchy-Schwartz inequality,

VX = V[X − Y + Y ]

= V[X − Y ] + VY + 2E [(X − Y − E[X − Y ])(Y − EY )]

≤ V[X − Y ] + VY + 2
√
V[X − Y ]VY =

(√
V [X − Y ] +

√
VY
)2

.

This is the desired result.

The following lemma is an extension of Lemma 7 by Azar et al. (2013) and its refined version by
Agarwal et al. (2020).
Lemma 22. Suppose a sequence of deterministic policies (πk)

K
k=0 and let

qπ
′
k :=

{
r + γPvπ

′
k−1 for k ∈ [K]

qπ0 for k = 0
.

Furthermore, let σ2
k and Σ2

k be non-negative functions over X×A defined by

σ2
k(x, a) :=

{
P (vπ

′
k−1)

2
(x, a)− (Pvπ

′
k−1)

2
(x, a) for k ∈ [K]

P (vπ0)
2
(x, a)− (Pvπ0)

2
(x, a) for k = 0

and

Σ2
k(x, a) := Ek

( ∞∑
t=0

γtr(Xt, At)− qπ
′
k(X0, A0)

)2
∣∣∣∣∣∣X0 = x,A0 = a


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for k ∈ {0} ∪ [K], where Ek is the expectation over (Xt, At)
∞
t=0 wherein At ∼ πk−t(·|Xt) until

t = k, and At ∼ π0(·|Xt) thereafter. Then,

k−1∑
j=0

γj+1P k−1
k−j σk−j ≤

√
2H3

for any k ∈ [K].

For its proof, we need the following lemma.
Lemma 23. Suppose a sequence of deterministic policies (πk)

K
k=0 and notations in Lemma 22.

Then, for any k ∈ [K], we have that

Σ2
k = γ2σ2

k + γ2Pπk−1Σ2
k−1 .

Proof. Let Ru
s :=

∑u
t=s γ

t−sr(Xt, At) and Ek [·|x, a] := Ek [·|X0 = x,A0 = a]. We have that

Σ2
k(x, a) = Ek

[(
R∞

0 − qπ
′
k(X0, A0)

)2∣∣∣∣x, a] := Ek

[
(I1 + γI2)

2
∣∣∣x, a] ,

where I1 := r(X0, A0) + γqπ
′
k−1(X1, A1) − qπ

′
k(X0, A0), and I2 := R∞

1 − qπ
′
k−1(X1, A1). With

these notations, we see that

Σ2
k(x, a) = Ek

[
I21 + γ2I22 + 2γI1I2

∣∣x, a]
= Ek

[
I21 + γ2I22 + 2γI1Ek−1 [I2|X1, A1]

∣∣x, a]
= Ek

[
I21
∣∣x, a]+ γ2Ek

[
I22
∣∣x, a]

= Ek

[
I21
∣∣x, a]+ γ2Pπk−1Σ2

k−1(x, a) ,

where the second line follows from the law of total expectation, and the third line follows since
Ek−1 [I2|X1, A1] = 0 due to the Markov property. The first term in the last line is γ2σ2

k(x, a)
because

Ek

[
I21
∣∣x, a] (a)

= γ2Ek

[(
qπ

′
k−1(X1, A1)︸ ︷︷ ︸

v
π′
k−1 (X1) from (b)

−(Pvπ
′
k−1)(X0, A0)

)2∣∣∣∣∣x, a
]

= γ2

(
P
(
vπ

′
k−1

)2)
(x, a) + γ2(Pvπ

′
k−1)2(x, a)− 2(Pvπ

′
k−1)2(x, a)

= γ2

(
P
(
vπ

′
k−1

)2)
(x, a)− γ2(Pvπ

′
k−1)2(x, a) ,

where (a) follows from the definition that qπ
′
k = r+γPvπ

′
k−1 , and (b) follows since the policies are

deterministic. From this argument, it is clear that Σ2
k = γ2σ2

k+γ2Pπk−1Σ2
k−1 , which is the desired

result.

Now, we are ready to prove Lemma 22.

Proof of Lemma 22. Let Hk :=
∑k−1

j=0 γ
j . Using Jensen’s inequality twice,

k−1∑
j=0

γj+1P k−1
k−j σk−j ≤

k−1∑
j=0

γj+1
√
P k−1
k−j σ

2
k−j

≤ γHk

k−1∑
j=0

γj+1

Hk

√
P k−1
k−j σ

2
k−j

≤

√√√√Hk

k−1∑
j=0

γj+2P k−1
k−j σ

2
k−j ≤

√√√√H

k−1∑
j=0

γj+2P k−1
k−j σ

2
k−j .
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From Lemma 23, we have that
k−1∑
j=0

γj+2P k−1
k−j σ

2
k−j

=

k−1∑
j=0

γjP k−1
k−j

(
Σ2

k−j − γ2Pπk−1−jΣ2
k−1−j

)
=

k−1∑
j=0

γjP k−1
k−j

(
Σ2

k−j − γPπk−1−jΣ2
k−1−j + γ(1− γ)Pπk−1−jΣ2

k−1−j

)
=

k−1∑
j=0

γjP k−1
k−j Σ

2
k−j −

k∑
j=1

γjP k−1
k−j Σ

2
k−j + γ(1− γ)

k−1∑
j=0

γjP k−1
k−1−jΣ

2
k−1−j .

The final line is equal to Σ2
k − γkP k−1

0 Σ2
0 + γ(1 − γ)

∑k−1
j=0 γ

jP k−1
k−1−jΣ

2
k−1−j . Finally, from the

monotonicity of stochastic matrices and that 0 ≤ Σ2
j ≤ H21 for any j,

k−1∑
j=0

γj+1P k−1
k−j σk−j ≤

√
2H3 .

This concludes the proof.

F PROOF OF LEMMAS FOR THEOREM 1 (BOUND FOR A NON-STATIONARY
POLICY)

Before starting the proof, we introduce some notations and facts frequently used in the proof.

Frequently Used Facts. We frequently use the following fact, which follows from definitions:
sk = Akr + γPwk−1 + Ek for any k ∈ [K] . (4)

Indeed, sk =
∑k

j=1 α
k−j(r + γP (wj−1 − αwj−2) + εj) = Akr + γPwk−1 + Ek. In addition,

we often mention the “monotonicity” of stochastic matrices: any stochastic matrix ρ satisfies that
ρv ≥ ρu for any vectors v, u such that v ≥ u. Examples of stochastic matrices in the proof are P ,
π, Pπ , and πP . The monotonicity property is so frequently used that we do not always mention it.

F.1 PROOF OF LEMMA 1 (ERROR PROPAGATION ANALYSIS)

Proof. Note that

0 ≤ v∗ − vπ
′
k =

Ak

A∞

(
v∗ − vπ

′
k

)
+ αk

(
v∗ − vπ

′
k

)
≤ Ak

A∞

(
v∗ − vπ

′
k

)
+ 2Hαk1

since v∗ − vπ
′
k ≤ 2H1. Therefore, we need an upper bound for Ak(v

∗ − vπ
′
k). We decompose

Ak(v
∗ − vπ

′
k) to Akv

∗ − wk and wk − Akv
π′
k . Then, we derive upper bounds for each of them

(inequalities (5) and (6), respectively). The desired result is obtained by summing up those bounds.

Upper bound for Akv
∗ − wk. We prove by induction that for any k ∈ [K],

Akv
∗ − wk ≤ HAγ,k1−

k−1∑
j=0

γjπ∗P
j
∗Ek−j . (5)

We have that

Akv
∗ − wk

(a)

≤ π∗(Akq
∗ − sk)

(b)
= π∗ (Akq

∗ −Akr − γPwk−1 − Ek)
(c)
= π∗ (γP (Akv

∗ − wk−1)− Ek)
(d)

≤ π∗
(
γP (Ak−1v

∗ − wk−1) + αk−1γH1− Ek

)
,
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where (a) is due to the greediness of πk, (b) is due to the equation (4), (c) is due to the Bellman
equation for q∗, and (d) is due to the fact that (Ak − Ak−1)v

∗ = αk−1v∗ ≤ αk−1H1. From this
result and the fact that w0 = 0, A1v

∗ −w1 ≤ γH1− π∗E1 . Therefore, the inequality (5) holds for
k = 1. From the step (d) above and induction, it is straightforward to verify that the inequality (5)
holds for other k.

Upper bound for wk −Akv
π′
k . We prove by induction that for any k ∈ [K],

wk −Akv
π′
k ≤ HAγ,k1+

k−1∑
j=0

γjπkP
k−1
k−j Ek−j . (6)

Recalling that vπ
′
k = πkT

k−1
0 qπ0 , we deduce that

wk −Akv
π′
k

(a)
= πk

(
sk −AkT

k−1
0 qπ0

)
(b)
= πk

(
Akr + γPwk−1 −AkT

k−1
1 qπ0 + Ek

)
(c)
= πk

(
γP
(
wk−1 −Akv

π′
k−1

)
+ Ek

)
(d)

≤ πk

(
γP (wk−1 −Ak−1v

π′
k−1) + αk−1γH1+ Ek

)
,

where (a) follows from the definition of wk, (b) is due to the equation (4), (c) follows from the
definition of the Bellman operator, and (d) is due to the fact that (Ak−Ak−1)v

π′
k−1 = αk−1vπ

′
k−1 ≥

−αk−1H1. From this result and the fact that w0 = 0,

w1 −A1v
π′
1 ≤ π1 (γPw0 + γH1+ E1) ≤ γH1+ π1E1 .

Therefore, the inequality (6) holds for k = 1. From the step (d) above and induction, it is straight-
forward to verify that the inequality (6) holds for other k.

F.2 PROOF OF LEMMAS 2 AND 3 (COARSE STATE-VALUE BOUND)

The next lemma is necessary to bound Ek by using the Azuma-Hoeffding inequality (Lemma 17).
Lemma 24. For any k ∈ [K], vk−1 is bounded by H .

Proof. We prove the claim by induction. The claim holds for k = 1 since v0 = 0 by definition.
Assume that vk−1 is bounded by H for some k ≥ 1. Then, from the greediness of the policies πk

and πk−1,

πk−1qk = πk−1(sk − αsk−1) ≤ vk ≤ πk(sk − αsk−1) = πkqk

Since qk = r + γP̂k−1vk−1 is bounded by H due to the induction hypothesis, the claim holds.

Proof of Lemma 2. Consider a fixed k ∈ [K] and (x, a) ∈ X×A. Since

Ek(x, a) =
γ

M

k∑
j=1

αk−j
M∑

m=1

(vj−1(yj−1,m,x,a)− Pvj−1(x, a))︸ ︷︷ ︸
bounded by 2H from Lemma 24

,

Ek(x, a) is a sum of bounded martingale differences with respect to the filtraion (Fj,m)k,Mj=1,m=1.
Therefore, using the Azuma-Hoeffding inequality (Lemma 17),

P

(
|Ek|(x, a) ≥ 3H

√
A∞ι1
M

)
≤ δ

4KXA
,

where the bound in P(·) is simplified by 2
√
2γ ≤ 3 and

∑k
j=1 α

2(k−j) ≤
∑k

j=1 α
k−j = A∞.

Taking the union bound over (x, a, k) ∈ X×A× [K],

P (E1) ≥ 1−
∑

(x,a)∈X×A

K∑
k=1

P

(
|Ek|(x, a) ≥ 3H

√
A∞ι1
M

)
≥ 1− δ

4
,

and thus P (Ec
1) ≤ δ/4, which is the desired result.
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Proof of Lemma 3. We condition the proof by the event E1. This event occurs with probability at
least 1 − δ/4. Note that under the current setting of α, A∞ = H . From Lemma 2 and the settings
of α and M ,

k−1∑
j=0

γj
(
πkP

k−1
k−j − π∗P

j
∗

)
Ek−j ≤ 2

k−1∑
j=0

γj∥Ek−j∥∞ ≤ □H
√
Hε

√
c2

.

Thus, from Lemma 1, v∗ − vπ
′
k ≤ □

√
H/c2ε+ 2(H + k)γk1. Finally, using Lemma 15,

2(H +K)γK ≤ □ε

c1
,

and thus,

∥v∗ − vπ
′
K∥∞ ≤ □ε

√
H

c2
+

□ε

c1
≤ □

(
1

c1
+

1
√
c2

)√
Hε .

Therefore, for some c1 and c2, the claim holds.

F.3 PROOF OF LEMMA 4 (VALUE ESTIMATION ERROR BOUND)

We first prove an intermediate result.
Lemma 25. For any k ∈ [K],

vπ
′
k−1 +

k−1∑
j=0

γjπk−1P
k−2
k−1−jεk−j − γkH1 ≤ vk ≤ vπ

′
k +

k−1∑
j=0

γjπkP
k−1
k−j εk−j + γkH1 .

Proof. From the greediness of πk−1, vk = wk−αwk−1 ≤ πk(sk−αsk−1) = πk(r+γPvk−1+εk).
By induction on k, therefore,

vk ≤
k−1∑
j=0

γjπkP
k−1
k−j (r + εk−j) + γkπkP

k−1
0 v0︸ ︷︷ ︸

=0

=

k−1∑
j=0

γjπkP
k−1
k−j (r + εk−j) ,

Note that

T k−1
0 qπ0 =

k−1∑
j=0

γjP k−1
k−j r + γk P k−1

0 qπ0︸ ︷︷ ︸
≥−H1

=⇒
k−1∑
j=0

γjP k−1
k−j r ≤ T k−1

0 qπ0 + γkH .

Accordingly, vk ≤ πkT
k−1
0 qπ0 +

∑k−1
j=0 γ

jπkP
k−1
k−j εk−j + γkH1 .

Similarly, from the greediness of πk, vk = wk−αwk−1 ≥ πk−1(sk−αsk−1) ≥ πk−1(r+γPvk−1+
εk). By induction on k, therefore,

vk ≥
k−1∑
j=0

γjπk−1P
k−2
k−1−j (r + εk−j) + γk−1πk−1P

k−2
0 Pv0︸ ︷︷ ︸

=0

.

Note that T k−2
0 qπ0 = T k−2

0 (r + γPvπ0), and

T k−2
0 qπ0 =

k−1∑
j=0

γjP k−2
k−1−jr + γk P k−2

0 Pvπ0︸ ︷︷ ︸
≤H1

=⇒
k−1∑
j=0

γjP k−2
k−1−jr ≥ T k−2

0 qπ0 − γkH .

Accordingly, vk ≥ πk−1T
k−2
0 qπ0 +

∑k−1
j=0 γ

jπk−1P
k−2
k−1−jεk−j − γkH1 .

Proof of Lemma 4. From Lemma 25 and πkT
πk−1:1qπ0 = vπ

′
k ≤ v∗, we have that

vπ
′
k−1 +

k−1∑
j=0

γjπk−1P
k−2
k−1−jεk−j − 2γkH1 ≤ vk ≤ v∗ +

k−1∑
j=0

γjπkP
k−1
k−j εk−j + 2γkH1 ,
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where we loosened the bound by multiplying γkH by 2. By simple algebra, the lower bound for
v∗ − vk is obtained. On the other hand, from Lemma 1,

vπ
′
k−1 ≥ v∗ − 1

A∞

k−2∑
j=0

γj
(
πk−1P

k−2
k−1−j − π∗P

j
∗

)
Ek−1−j − 2H

(
αk−1 +

Aγ,k−1

A∞

)
1

for any k ∈ {2, . . . ,K}. Therefore, we have that

v∗ − vk ≤ 2H

(
αk−1 + γk +

Aγ,k−1

A∞

)
1

+
1

A∞

k−2∑
j=0

γj
(
πk−1P

k−2
k−1−j − π∗P

j
∗

)
Ek−1−j −

k−1∑
j=0

γjπk−1P
k−2
k−1−jεk−j

for any k ∈ {2, . . . ,K}.

Finally, for k = 1, since v1 = π1q1 = π1r,
−γH1 ≤ π∗ (q

∗ − r) ≤ v∗ − v1 ≤ γπ∗Pv∗ ≤ γH1 .

As Γ1 ≥ 0, the claim holds for k = 1 too.

F.4 PROOF OF LEMMAS 5 AND 6 (VALUE ESTIMATION VARIANCE BOUND)

Proof of Lemma 5. Consider a fixed k ∈ [K] and (x, a) ∈ X×A. Since

εk(x, a) =
γ

M

M∑
m=1

(vk−1(yk−1,m,x,a)− Pvk−1(x, a))︸ ︷︷ ︸
bounded by 2H from Lemma 24

,

εk(x, a) is a sum of martingale differences with respect to the filtraion (Fk,m)Mm=1 and bounded by
2γH/M . Therefore, using the Azuma-Hoeffding inequality (Lemma 17),

P
(
|εk|(x, a) ≥ 3H

√
ι1
M

)
≤ δ

4KXA
,

where the bound in P(·) is simplified by 2
√
2 ≤ 3. Taking the union bound over (x, a, k) ∈

X×A× [K],

P (E2) ≥ 1−
∑

(x,a)∈X×A

K∑
k=1

P
(
|εk|(x, a) ≥ 3H

√
ι1
M

)
≥ 1− δ

4
,

and thus P (Ec
2) ≤ δ/4, which is the desired result.

Next, we prove a uniform bound on v∗ − vk.
Lemma 26. Conditioned on E1 ∩ E2,

∥v∗ − vk∥∞ < 2Hmin

{
1, γk + αk−1 +

Aγ,k−1

A∞
+ 6H

√
ι1
M

}
for all k ∈ [K], where 1/0 := ∞.

Proof. Let ek := γkH +Hmax
j∈[k]

∥εj∥∞. From Lemma 4, v∗ − vk ≥ −2ek1 for any k ∈ [K], and

v∗ − vk ≤ 2H

(
αk−1 +

Aγ,k−1

A∞
+

1

A∞
max

j∈[k−1]
∥Ej∥∞

)
1+ 2ek1

for any k ∈ {2, . . . ,K}. Note that ∥v∗ − vk∥∞ ≤ 2H from Lemma 24 for any k. Combining these
results with Lemmas 2 and 5,

∥v∗ − vk∥∞ < 2Hmin

{
1, γk + αk−1 +

Aγ,k−1

A∞
+ 3H

√
ι1
M

(
1 +

√
1

A∞

)}
≤ 2Hmin

{
1, γk + αk−1 +

Aγ,k−1

A∞
+ 6H

√
ι1
M

}
for all k ∈ [K], where we used the fact that 1 ≤ A∞. This concludes the proof.
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Now, we are ready to prove Lemma 6.

Proof of Lemma 6. Clearly σ(v0) = 0 since v0 = 0. From Lemma 21, σ(vk) ≤ σ (vk − v∗) +
σ(v∗) . Using Popoviciu’s inequality on variances (Lemma 20) together with Lemma 26,

σ (vk − v∗) ≤ 2Hmin

{
1, γk + αk−1 +

Aγ,k−1

A∞
+ 6H

√
ι1
M

}
,

where we used a simple formula, min{a, b}2 = min{a2, b2} for any scalars a, b ≥ 0. Finally,
loosening the bound by replacing γk + αk−1 by 2max{α, γ}k−1, the claim holds.

F.5 PROOF OF LEMMAS 7 AND 8 (ERROR BOUNDS WITH BERNSTEIN’S INEQUALITY)

Proof of Lemma 7. Consider a fixed k ∈ [K] and (x, a) ∈ X×A. Since

Ek(x, a) =
γ

M

k∑
j=1

αk−j
M∑

m=1

(vj−1(yj−1,m,x,a)− Pvj−1(x, a))︸ ︷︷ ︸
bounded by 2H from Lemma 24

,

Ek(x, a) is a sum of bounded martingale differences with respect to the filtraion (Fj,m)k,Mj=1,m=1.
From the facts that v0 = 0, and γ ≤ 1,

V ′ =
γ2

M

k∑
j=1

α2(k−j)Var (vj−1) (x, a) ≤
1

M

k∑
j=2

α2(k−j)Var (vj−1) (x, a)︸ ︷︷ ︸
:=♡

,

Since we are conditioned with the event E1 ∩ E2, the inequality (3) in Lemma 6 holds and implies
that the predictable quadratic variation V ′ satisfies the following inequality:

♡ ≤
k∑

j=2

α2(k−j)

(
σ(v∗)(x, a) + 2Hmin

{
1, 2max{α, γ}j−2

+
Aγ,j−2

A∞
+ 6H

√
ι1
M

})2

≤
k∑

j=2

α2(k−j)

(
σ(v∗)(x, a) + 2H

(
2max{α, γ}j−2

+
Aγ,j−2

A∞
+ 6H

√
ι1
M

))2

≤ 4

k∑
j=2

α2(k−j)

(
Var(v∗)(x, a) + 4H2

(
4max{α, γ}2(j−2)

+
A2

γ,j−2

A2
∞

+
36H2ι1

M

))
,

where the last line follows from Lemma 12. Consequently, V ′ is bounded by

V ′ ≤ 4

M

k∑
j=2

α2(k−j)

(
Var(v∗)(x, a) + 4H2

(
4max{α, γ}2(j−2)

+
A2

γ,j−2

A2
∞

+
36H2ι1

M

))
,

which is equal to Vk(x, a). Using Lemma 19 and taking the union bound over (x, a, k) ∈ X×A×
[K],

P
(
∃(x, a, k) ∈ X×A× [K] s.t. |EK |(x, a) ≥ 4Hι2

3M
+
√
2Vk(x, a)ι2

∣∣∣∣E1 ∩ E2
)

≤ δ

4
.

(Recall that P(E1∩E2) ≥ 1− δ

2
≥ 1

2
, and hence, we need to use ι2.) Thus, P (Ec

3 |E1 ∩ E2) ≤
δ

4
.

Proof of Lemma 8. Consider a fixed k ∈ [K] and (x, a) ∈ X×A. Since

εk(x, a) =
γ

M

M∑
m=1

(vk−1(yk−1,m,x,a)− Pvk−1(x, a))︸ ︷︷ ︸
bounded by 2H from Lemma 24

,
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εk(x, a) is a sum of bounded martingale differences with respect to Fk,m. Since we are conditioned
with the event E1∩E2, the inequality (3) in Lemma 6 holds and implies that the predictable quadratic
variation V ′ can be shown to satisfy the following inequality as in the proof of Lemma 7:

V ′ =
γ2

M
Var (vk−1) (x, a) ≤

4

M
Vark ,

where the last line is equal to Wk(x, a). (Note that v0 = 0.)

Using Lemma 19 and taking the union bound over (x, a, k) ∈ X×A× [K],

P
(
∃(x, a, k) ∈ X×A× [K] s.t. |εk|(x, a) ≥

4Hι2
3M

+
√
2Wk(x, a)ι2

∣∣∣∣E1 ∩ E2
)

≤ δ

4
.

(Recall that P(E1∩E2) ≥ 1− δ

2
≥ 1

2
, and hence, we need to use ι2.) Thus, P (Ec

4 |E1 ∩ E2) ≤
δ

4
.

G PROOF OF LEMMAS FOR THEOREM 2 (BOUND FOR A STATIONARY
POLICY)

We use the same notations as those used in Appendix F.

G.1 PROOF OF LEMMA 9 (ERROR PROPAGATION ANALYSIS)

To prove Lemma 9, we need the following lemma.

Lemma 27. For any k ∈ [K], let ∆k := wk − wk−1. Then, for any k ∈ [K],

πk−1

k−1∑
j=0

γjP k−2
k−1−jE

′
k−j −Aγ,k1 ≤ ∆k ≤ πk

k−1∑
j=0

γjP k−1
k−j E

′
k−j +Aγ,k1 .

Proof. We prove only the upper bound by induction as the proof for a lower bound is similar. We
have that ∆k = πksk − πk−1sk−1 ≤ πk(sk − sk−1), where the inequality follows from the greedi-
ness of πk−1. Let ♡k := sk − sk−1. Since s0 = 0, ♡1 = r+E′

1 ≤ 1+E′
1. From the monotonicity

of π1, the claim holds for k = 1. Assume that for some k − 1 ≥ 1, the claim holds. Then, from the
equation (4), the induction hypothesis, and the monotonicity of P ,

♡k = (Ak −Ak−1) r + γP∆k−1 + E′
k

≤
k−1∑
j=0

γjP k−1
k−j E

′
k−j + (αk−1 + γAγ,k−1)1 =

k−1∑
j=0

γjP k−1
k−j E

′
k−j +Aγ,k1 .

The claimed upper bound follows from the monotonicity of πk.

Now, we are ready to prove Lemma 9.

Proof of Lemma 9. Note that

0 ≤ v∗ − vπk =
Ak

A∞
(v∗ − vπk) + αk (v∗ − vπk) ≤ Ak

A∞
(v∗ − vπk) + 2Hαk1

since v∗ − vπk ≤ 2H1. Therefore, we need an upper bound for Ak(v
∗ − vπk). We decompose

Ak(v
∗− vπk) to Akv

∗−wk and wk −Akv
πk . Then, we derive upper bounds for each of them. The

desired result is obtained by summing up those bounds.
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Upper bound for Akv
∗ − wk. Note that

Akv
∗ − wk

(a)
= N π∗ (π∗ (Akr + γPwk)− wk)
(b)

≤ N π∗π∗ (Akr + γPwk − sk)
(c)
= N π∗π∗ (γP (wk − wk−1)− Ek)

(d)

≤ N π∗π∗

 k∑
j=1

γjP k
k+1−jE

′
k+1−j − Ek

+HAγ,k1 ,

where (a) is due to the fact that I = N π(I − γπP ) and vπ = N ππr for any policy π, (b) is due to
the greediness of πk, (c) follows from the equation (4), and (d) follows from Lemma 27.

Upper bound for wk −Akv
πk . We have that

wk −Akv
πk

(a)
= N πk (wk − πk (Akr + γPwk))
(b)
= N πkπk (wk −Akr − γPwk)
(c)
= N πkπk (−γP (wk − wk−1) + Ek)

(d)

≤ N πkπk

Ek −
k∑

j=1

γjP k−1
k−j E

′
k+1−j

+HAγ,k1 ,

where (a) is due to the fact that I = N π(I − γπP ) and vπ = N ππr for any policy π, (b) is due to
the definition of wk, (c) follows from the equation (4), and (d) follows from Lemma 27.

G.2 PROOF OF LEMMA 10 (COARSE STATE-VALUE BOUNDS)

Before starting the proof, we note that A∞ = H2 under the current setting.

Proof of Lemma 10. From Lemma 2, ∥Ek∥∞ ≤ 3H
√

A∞ι1/M ≤ 3ε
√
H3/c4 for any k ∈ [K].

On the other hand, from Lemma 5, ∥εk∥∞ ≤ 3H
√
ι1/M ≤ 3ε

√
H/c4 for any k ∈ [K]. Combining

these bounds with Lemma 1,

v∗ − vπ
′
k ≤ □

H
max
j∈[k]

∥Ej∥∞1+□Hαk1 ≤ □

(
ε

√
H

c4
+Hαk

)
1

for any k ∈ [K], where we used the fact that Aγ,k/A∞ ≤ αk/H ≤ αk, which follows from
Lemma 13, is used. Furthermore, combining previous upper bounds for errors with Lemma 9,

v∗ − vπk ≤ 2H

(
αk +

Aγ,k

A∞

)
︸ ︷︷ ︸

≤2αk from (a)

1+
1

A∞
(N πkπk −N π∗π∗)Ek︸ ︷︷ ︸

≤2H∥Ek∥∞1 from (b)

+
1

A∞

k∑
j=1

γj
(
N π∗π∗P

k
k+1−j −N πkπkP

k−1
k−j

)
E′

k+1−j︸ ︷︷ ︸
≤2H(∥εk+1−j∥∞+(1−α)∥Ek−j∥∞)1 from (c)

(d)

≤ 4Hαk1+
2

H
∥Ek∥∞ + 2max

j∈[k]

(
∥εj∥∞ +

1

H2
∥Ej∥∞

)
≤ 4Hαk1+ 6ε

√
H

c4
+

6ε
√
c4

(√
H +

1√
H

)
1 = □

(
ε

√
H

c4
+Hαk

)
1

for any k ∈ [K], where (a) follows as Aγ,k/A∞ ≤ αk/H ≤ αk from Lemma 13, (b) is due to
the monotonicity of stochastic matrices, and −∥Ek∥∞1 ≤ Ek ≤ ∥Ek∥∞1 for any k ∈ [K], (c)
is due to the monotonicity of stochastic matrices, and −(∥εk∥∞ + (1 − α)∥Ek−1∥∞)1 ≤ E′

k ≤
(∥εk∥∞+(1−α)∥Ek−1∥∞)1 for any k ∈ [K], and (d) follows by taking the maximum over j.
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Figure 1: Sample complexities of MDVI with α = 1 and Q-LEARNING (synchronous version of
Q-learning) on Garnets. MDVI is run in the stationary policy setting. Both algorithms use M = 1.
As noted in Section 5, MDVI with α = 1 is also nearly minimax-optimal.

H EMPIRICAL ILLUSTRATION

This section provides empirical illustrations of the main result of this work – minimax optimality of
MDVI. In Appendix H.1 we present our experiements and discussed the results; and in Appendix H.2
we provide the details of the setting.

H.1 EXPERIMENTS

Sample complexity. We compare MDVI to a synchronous version of Q-learning (e.g., Even-Dar
et al. (2003), see also Algorithm 2) in a simple setting on a class of random MDPs called Gar-
nets (Archibald et al., 1995), with γ = 0.9. Figure 1 shows the sample complexity of MDVI as a
function of ε. We run MDVI on 100 random MDPs, and, given ε, we report the number of samples
KM MDVI uses to find ε-optimal policy. We compare this empirical sample complexity with the
one of Q-LEARNING, which has a tight quintic dependency to the horizon (Li et al., 2021a) – com-
pared to the cubic one of MDVI (Theorem 2). Figure 1 shows the difference in sample complexity
between the two methods: especially for low ε, MDVI reaches an ε-optimal policy with much fewer
samples, up to H = 10 times less samples for ε = 10−3.

In Figure 1, we plot the sample complexity of a standard version of Q-LEARNING using w = 1
(i.e performing an exact average of q-values). However, we know (Even-Dar et al., 2003) that we
can reach a better sample complexity by choosing a more appropriate w in (0.5, 1). In Figure 2, we
provide the sample complexity for MDVI, and Q-LEARNING with w = 1 and w = 0.7. The version
with w = 0.7 catches up with MDVI at high errors, but the difference is still quite large at higher
precision. Note that we add additional data points for ε < 10−3. Both versions of Q-LEARNING
do not have sample complexity plotted for these errors, because they did not reach these ε in the
number of iterations we ran them (up to 105 iterations).

Influence of α. We showcase the impact of α when M = 1 in Figure 3. With α = 1, MDVI will
asymptotically converge to π∗. With a α < 1, MDVI will reach an ε-optimal policy, but will not
actually converge to the optimal policy of the MDP (although this ε can be controlled by choosing
a large enough value for α, or a larger value of M ). Indeed, in the latter case, the distance to the
optimal policy depends on a moving average of the errors (by a factor α). The moving average
reduces the variance, but does not bring it zero, contrarily to the exact average implicitly performed
when α = 1. This behaviour is illustrated in Figure 3. We observe there that, with M = 1, one has
to choose a large enough value of α to reach a policy close enough to the optimal one.

25



10 3 10 2 10 1 100

102

103

104

105

Nu
m

be
r o

f s
am

pl
es

Sample complexity as a function of the error
MDVI
QL(w = 1)
QL(w = 0.7)

Figure 2: Number of samples needed to reach a certain error.
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Figure 3: Error of the policy computed by MDVI in function of the number of samples used. Left:
mean, Right: standard deviation; estimated over 1000 MDPs.

Influence of M . Choosing the right M is not that obvious from the theory. We illustrate in Figure 4
the influence it has on the speed of convergence of MDVI. We run MDVI with α = 0.99 (for a setting
where γ = 0.9), and for different values of M . With a fixed α, a larger M allows MDVI to reach
a lower asymptotic error, but slows down the learning in early iterations. M cannot however be
chosen as large as possible: at one point it start to be useless to increase its value. For instance,
moving from M = 5 to M = 10 does not allow for a noticeable lower error, but slows the learning.
We compare this to the setting where α = 1 for completeness.

H.2 DETAILED SETTING

Garnets. We use the Garnets (Archibald et al., 1995) class of random MDPs. A Garnet is char-
acterized by three integer parameters, X , A, and B, that are respectively the number of states, the
number of actions, and the branching factor – the maximum number of accessible new states in each
state. For each (x, a) ∈ X×A, we draw B states (y1, . . . , yB) from X uniformly without replace-
ment. Then, we draw B − 1 numbers uniformly in (0, 1), denoting them sorted as (p1, . . . , pB−1).
We set the transition probability P yk

x,a = pk − pk−1 for each 1 ≤ k ≤ B, with p0 = 0 and pB = 1.
Finally, the reward function, depending only on the states, is drawn uniformly in (−1, 1) for each
state. In our examples, we used X = 8, A = 2, and B = 2. We compute our experiments with
γ = 0.9.

Q-learning. For illustrative purposes, we compare the performance of MDVI to the one of a sam-
pled version of Q-LEARNING, that we know is not minimax-optimal. For completeness, the pseudo-
code for this method is given in Algorithm 2. It shares the time complexity of MDVI, but has a lower
memory complexity, since it does not need to store an additional XA table.
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Figure 4: Error of the policy computed by MDVI in function of the number of samples used, for
different values of M . Left: mean, Right: standard deviation; estimated over 1000 MDPs. For this
value of γ = 0.9, choosing α = 0.99 matches the condition α = 1− (1− γ)2.

Algorithm 2: Q-LEARNING(K,M,w)

Input: number of iterations K, number of samples per iteration M , w ∈ [0.5, 1] a learning rate
parameter.

Let q0 = 0 ∈ RXA;
for k from 0 to K − 1 do

for each state-action pair (x, a) ∈ X×A do
Sample (yk,m,x,a)

M
m=1 from the generative model P (·|x, a);

Let mk+1(x, a) = r(x, a) + γM−1
∑M

m=1 maxa′ qk(yk,m,x,a, a
′);

end
Let ηk = (k + 1)−w;
Let qk+1 = (1− ηk)qk + ηkmk+1;

end
return πK , a greedy policy with respect to qK;
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