Under review as a conference paper at ICLR 2026

GENERATIVE MODELING WITH
BAYESIAN SAMPLE INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

We derive a novel generative model from iterative Gaussian posterior inference.
By treating the generated sample as an unknown variable, we can formulate the
sampling process in the language of Bayesian probability. Our model uses a
sequence of prediction and posterior update steps to iteratively narrow down the
unknown sample starting from a broad initial belief. In addition to a rigorous
theoretical analysis, we establish a connection between our model and diffusion
models and show that it includes Bayesian Flow Networks (BFNs) as a special case.
In our experiments, we demonstrate that our model improves sample quality on
ImageNet32 over both BFNs and the closely related Variational Diffusion Models,
while achieving equivalent log-likelihoods on ImageNet32 and CIFARI10.

1 INTRODUCTION

The field of deep learning has produced a multitude of generative models over the years (Harshvardhan
et al., 2020). Variational autoencoders, for example, learn the data distribution by compressing data
into a lower-dimensional representation (Kingma & Welling, 2013). Normalizing flows learn to map
between a prior and the data distribution via invertible transformations, enabling exact likelihood
computation (Rezende & Mohamed, 2015). Generative adversarial networks generate samples by
pitting two models against each other such that one proposes artificial data samples while the other
tries to distinguish real and generated (Goodfellow et al., 2014). Recently, diffusion models (DMs)
have become a cornerstone of generative modeling (Sohl-Dickstein et al., 2015; Ho et al., 2020).
They define a multi-step forward process that gradually adds noise to the data, turning it into pure
noise. Then, a model is trained to reverse this process, enabling the generation of new data samples
by starting from noise and iteratively denoising.

In this work, we take a Bayesian viewpoint of sample generation to propose a new generative model.
Imagine that a sample @ from the data distribution p(x) is fixed but unknown to us; however, we
can receive noisy measurements y; ~ N (x, ;') of it. Then, we can infer the unknown x by
combining the information in these measurements. To be more precise, we start with a broad belief
p(x) = N(x | po, A\g') about x in the form of a Normal distribution with low precision), i.e. high
variance, that encompasses the entire data distribution. Then, we can take a first noisy measurement
v and form a posterior belief p(x | y1) about the sample, which will be a little more precise and a
little more correct. Iterating this process allows us to refine our estimate p(x | y1, ..., yx) to any
desired level of precision.

We transform this inference process into a generative model by introducing a prediction model fy
that estimates « from our current Gaussian belief about it. Since the true « is unknown at generation
time, we substitute it with an estimate & = fg(f;, A;) and sample ;4.1 ~ N (&, a;} ;) instead.
Maximizing an evidence lower bound (ELBO) for the likelihood that this simple process assigns
to the training data, trains fp to reconstruct true « from uncertain belief states (;, A;) about them.
Consequently, the noisy measurements y; of predicted samples & become indistinguishable from
those of real samples «, and our generative process converges toward producing new samples from
the data distribution.

Under review as a conference paper at ICLR 2026

Inferring a new sample from noisy predictions

..... 04
N X Xit1 =N +
— Aipitogy
i =/ = fo(pi, i) y ~ Np(r, ;) Hit1 = =500
1. Current belief Np (12, \;) 2. Predict sample 3. Noisy measurement y 4. Update Np (peiq1, Nig1)

T S.i=i+1

Figure 1. We view generation as the problem of inferring the identity of an unknown sample « from noisy
observations. 1. To begin, our belief about « is so broad as to cover the complete data distribution. 2. We use a
model fg to guess which x likely corresponds to the information we have collected so far. 3. Now, we pretend
that = is the true « and take a noisy measurement y. 4. We form the posterior belief about & to incorporate the
information contained in y. 5. Repeat until we have identified a new sample with sufficient precision A;.

Our key contributions can be summarized as follows.

* We present a new generative model based on iterative posterior inference from noisy predictions.

* We derive an ELBO to enable effective likelihood optimization and show how we can reduce the
variance of the training loss with importance sampling.

* Further, we compare our model in detail to Variational Diffusion Models (VDMs) (Kingma et al.,
2023) and Bayesian Flow Networks (BFNs) (Graves et al., 2023).

* We show that the simple generative process described above includes BFN as a special case,
providing a novel and simplified perspective on them, and analyze the relationship to DMs.

* Finally, we describe our model design and demonstrate empirically that our model surpasses
both VDM and BFN in terms of sample quality on ImageNet32 while achieving equivalent
log-likelihoods.

Notation We parametrize Normal distributions either with a variance o as A'(u, 02T or with
a precision A = 1/5% as Np(u, A\I). Since all Normal distributions in this work are isotropic, we
shorten these to N'(u,0?) and Np(u, A). [n] is the set of integers 1,...,n and R, refers to the
non-negative reals.

2 SAMPLE DISCOVERY THROUGH ITERATIVE MEASUREMENT

Consider a sample & € R" that is unknown to us, but we can access noisy measurements y; ~
Np(z, ;) of it. Then we can infer « from the sequence of measurements y,; through Bayesian
inference. We start with a broad initial belief p(z) ~ Np (o, Ao) and update it with information
contained in y; per the following lemma.

Lemma 2.1 (Posterior Update). Let x,p € R™ and A\ € R such that x is latent and p(x) =
Np(x | p, \) is a prior on x; and y ~ Np(x, o) where a € R Then the posterior is p(x | y) =
Ne(z | ', N) with

N=X+a and p =N [+ ayl. (1)
Proof. See (Murphy, 2012, Section 4.4.1). O
We can now iterate over the noisy measurements and update our belief until p(x | y1,...,yx) ~

Np(px, A) identifies & with sufficient precision. Sufficiency depends on the application but could be
defined, for example in the case of images, such that most of the probability mass for each dimension
of an image @ is contained within a single color intensity bin of width 1/256 for 8-bit color. Note that,
at each step, all information contained in y1, . . ., yi is captured in the current pi.

Under review as a conference paper at ICLR 2026

3 SAMPLE GENERATION WITH POSTERIOR INFERENCE

We turn the procedure in Section 2 into a generative model, which we call Bayesian
Sample Inference (BSI), as follows. We begin with an initial belief (po,\o) about
the sample = which we will generate in the end, with py sampled from a suitable
prior distribution p(pg) and Ao fixed. Obviously, « is unknown a priori, so we can-
not measure it, but we can estimate it from the information we have gathered so far.
Let fo : R" x Ry — R” be a learned model
with parameters @ that estimates which un-
known sample x we have observed so far from
our current belief (u;, \;). We estimate x as
&i—1 = fo(pi—1,Xi—1) and sample a noisy
measurement y; ~ Np(&;_1,;) of &;_; in
place of x with precision «;. Then, we can up-
date our belief with y; and Lemma 2.1 to the
posterior (g, A;). Now, we alternate between
these two steps, i.e. predicting and taking a noisy Yi~ Np(%*lﬁ ;)
measurement followed by updating our current Update belief

belief, until the posterior precision J; is suffi- P(@ | Y1, yi) = Ne(pi; Ai):

Algorithm 1: Sampling with posterior infer-
ence
input Initial precision Ag,
precision schedule «; for i € [£]

output Sample =*

1: Initialize belief (g, Ao) with pg ~ p(po)
cfori=1,2,... kdo
: Ti_1 = fa(ui—l,)\i—l)

PN

cient. Finally, we return &* = fo(pr, \x) as 6 i = i‘iil +o
our generated sample. See Algorithm 1 for a 7: Hi = Ao pion + @iyl
formal description and Fig. 1 for a visual expla- 8: end forA

9: Return * = fo(ptx, Ax)

nation.

Since the posterior precision A; does not depend on the generated sample &;, we can choose the
number of measurement rounds k and precision schedule «; a priori such that A\; will always be
sufficiently large.

We have collected the proofs of all formal statements in this section in Appendix D.

3.1 EVIDENCE LOWER BOUND

By interpreting BSI as a hierarchical latent variable model, we derive an ELBO (Kingma & Welling,
2013), i.e. a lower bound on log p(x) assigned to a data point by our model. The ELBO will then
serve as a natural training target for fg to ensure that true data samples have high likelihood under
our model.

We form our hierarchy out of the sequence of belief means {u; }, giving us

p() p(.uo)'p(ll'l|N0)"‘p(ﬂk‘ﬂk—l))[p(| 1)l 2)

The precisions {\;} are not included as latent variables, because they do not depend on x. With this
hierarchy, we can derive the following ELBO.

Theorem 3.1. Let x € R™ and ag, o; € Ry, i € [k]. Then the log-likelihood of x is lower-bounded
as
logp(x) > —Lr — Ly 3)

by a reconstruction term Lr and a measurement term Lk

k
Lr= E -log Np(z | T, o and Lk, == E [ai T — & 2} n
R q(llk|w1>\k)|: g Np(x | &k, ar)] 2 itt(C) +1]] 13| @
a(mile,Xi)
where

a(pi | =, \i) = p(%) [p(ui | Ho,w,)\i)], &; = fo(pi, i) and N = Mo+ Zaj. (@)
0

Jj=1

The measurement term £ corresponds to the noisy measurement and update loop in Algorithm 1
and Ly to the final computation of the sample Z*. q(u; | @, A;) is the distribution of our belief
(i, A;) about the unknown sample « after i steps if we would have observed the true @ instead of

Under review as a conference paper at ICLR 2026

&1,..., 2. p(p | po, x, \;) is the marginal distribution of possible posterior beliefs (g;, A;) with
posterior precision A; reachable from an initial belief (pto, Ag). Equivalently, p(p; | o, , A;) is the
distribution of beliefs (p;, A;) after updating our initial belief (e, \p) with a single measurement of
a with Lemma 2.1 — marginalized over all possible noisy measurements y at precision @ = A; — Ag.

On closer examination, we see that Lg, measuring how accurately we can reconstruct « at the
end, only depends on the total precision A\ that we accumulated in the first phase of the algorithm.
However, £¥; depends both on the number of rounds & and the precision schedule cv;. We can derive
an ELBO that is independent of k and «; by considering the limit as ¥ — oo and refining the precision

schedule {c;}¥_, into smaller and smaller steps while keeping the total precision ap = Zle o
constant.

Theorem 3.2. Let ar, anm € Ry. For any sequence of precision schedules ay,; for k € N, i € [k]
such that Zle ag,; = an and the sequence of functions [k] — Ry : i — ay; converges uniformly
to 0, we can take the limit of Theorem 3.1 as k — oo to get

. oM

Lr = E “log Np(x | &5y, and L3} = —

" q(liw,AM)[g Nb(@ | &, on)] M2 (o)
a(pxlz,X)

IEEENHERO!

where q(px | ,A) = Epuo) [P(ka | 10,2, X)), Amt = Ao + o and &\ = fo(pr, N).

As long as our model is more accurate in reconstructing from more precise measurements, a
reasonable assumption, Theorem 3.2 is a tighter bound on the log-likelihood than Theorem 3.1. To
see this, we rewrite £3] in terms of the expected squared error at belief precision A

A= E |o—az|3 7
q(pex|a,N)

as

oM
M=— E h(A
= LE O] ®)

for which we have the following result.

Lemma 3.3. If h is strictly decreasing, L3} < ﬁ’g/[Sfor any k and any precision schedule {«; }.

3.2 PRIOR DISTRIBUTION

Let’s consider possible priors of the form p(go) = Np (0, 7o) for our initial belief. Then we have the
following result for the encoding distribution q(gy | @,) in Theorems 3.1 and 3.2.

Lemma 3.4. Let \g,vo € Ry, p(po) = Np(0,70) and X\ > Xg. Then

Ao A2
PN W VRIS /N &

q(pa | =, A) :NP< 9

How should we choose ~,? We start the sampling process with initial precision, i.e. confidence, \g.
If Ay was larger than -y, we would be unreasonably confident in our initial belief, since we know that
o has more uncertainty than \g. From this, we deduce that the reasonable range for g is [Ag, 00].
At the same time, we want to avoid unwarranted assumptions by the prior, so we choose 79 = Ao
for our model, which also gives us a particularly simple form for the encoding distribution.

Corollary 3.5. Let \o € Ry, p(po) ~ Np(0, Xg) and A > Ng. Then

A=A
Al | z,\) :Np< : Om,)\). (10)

3.3 VARIANCE REDUCTION

The squared distance ||z — &3 in £3; will necessarily vary significantly across the range of A with
large values for small A where q(uy | €, \) &~ p(po) and small values for large A when p) ~ x.
We can reduce the variance of Monte Carlo (MC) estimates of L3} for ELBO evaluation or gradient
computation in training with importance sampling with a suitable proposal distribution p(\).

Under review as a conference paper at ICLR 2026

Corollary 3.6. Let p(\) be a probability distribution with support [\g, Am|. Then we have

1 1
Lyi== E — |z -2 2]. 11)
=3 K, |sogle- o (
a(pex|,X)
We can further rewrite L3} as
1 h(/\):l
L=z E |—= 12
M= 2 {pu) (12

with h as defined in Eq. (7). To minimize the variance of MC estimates of L7, we want to bring
h(AN)/p(x) as close to a constant as possible. If it were actually constant, the variance of the MC
estimate would be zero.

Let’s begin by examining h more closely. If we
approximate fg as fo(p, A) = p and assume _
that « is normalized to zero mean and unit vari- input Data sample

Algorithm 2: Estimating the BSI training loss

ance, we get the closed form output Monte Carlo estimate of ﬁﬁ
21 1: Sample t ~ U(0,1),e ~ N(0,1)
E[h(N)] Tg + 1 (13) 2: A =exp ((log Amt — log Ao) - t +log(Ao))

While fo(p,\) = p might seem a crude ap- 3 pr = 020z + /e

proximation at first, it is not too far off for large 4: Return 9
\ where the model just needs to predict a small (log Ayt —log Adg) A - [|& — fo(ka, M 12
correction to its input.

Algorithm 3: Sampling with BSI
input Initial precision Ag,

precision schedule «; for i € [£]
output Sample £*

Eq. (13) suggests that we should choose p(\) o<
A3/x2 + 1/x to minimize the variance of MC
estimates. While evaluating p()\) is simple

enough, we would need to invert its cumula- o .
tive distribution function (CDF) numerically]: Sam_p]e Ell N(0,I),i=0,....k
to sample from it. Instead, we recognize that 2 po = /Y €o

3: fori=1,2,...,kdo

i1 = fo(pi—1,Ni—1)

1/x dominates *3/x* except for the smallest p
5: i = N1 o
6. .

A and choose p(A) o 1/x, i.e. a standard
Log-Uniform(Ag, Ayr) distribution.

. i =
3.4 TRAINING & SAMPLING A (/\iflﬂlifl + i (Ti—1 + v/ 1/%&‘))
7: end for
We train our model with the ELBO from The- 8. Return * = fo (s, Ax)

orem 3.2 by optimizing 2£37/n. We do not
optimize Lr directly as its magnitude is negligible for sufficiently large axr and it is structurally
similar to L3, i.e. both amount to a squared distance. Algorithm 2 shows the resulting algorithm
with our belief prior p(p) and proposal distribution p(\). Similarly, Algorithm 3 implements the
abstract Algorithm 1 with our belief prior.

4 DISCUSSION

We are aware of two generative models that are closely related to BSI, BFN (Graves et al., 2023)
and VDM (Kingma et al., 2023). BFNs are generative models motivated from an information
theory perspective with a sender and a receiver communicating about the sample. As we show in
Appendix A.1, BFNs are a special case of our framework in Section 3 if we translate them to the
probabilistic perspective. They correspond to choosing vy = oo and \g = 1, meaning that sampling
always starts from the deterministic belief (p9, Ag) = (0, 1). In contrast, BSI chooses 7o = Ao, i.e.
the noise in the initial belief corresponds to our confidence in it, and leaves A\ as a hyperparameter,
which we investigate in Section 6. VDM are a type of DM that have shown excellent performance in
likelihood-based modeling. They are similar to BSI insofar as they specify the distribution of latent
variables directly rather than defining a Markovian noising process as classical DMs do.

All three models admit an ELBO of the form
w—w .
—logp(z) < Lrp+—— E [|lz—au[3] (14)

2 w~U(w,@)
Q("pw ‘wvw)

Under review as a conference paper at ICLR 2026

Table 1. Central structures of VDM, BFN and BSI. To improve comparability, we parametrize VDM in terms of
the signal-to-noise ratio (SNR) v. BFN and BSI are parametrized with the belief precision A as introduced in
Section 3. g; ~ N(0, I) is sampling noise.

Model ELBO Encoder q(¢ | ,w) Latent Prior Update Step for Sampling
VVvigr(M4vig) zipi+(vi—vig) (@4) o——&i
VDM q(z|1:,1/):/\/p<,/1_%u:c,1+y) zr ~Np(0,1) z; = : - +\/U‘(1+:; (4 ”ls)
BEN q(/-‘ ‘ z,)‘) :NP((Ail)/Amv)‘Q/()‘*l)) Ho=0 -)\1—1u1—1+0t7‘,(@7‘,—1+\/g51‘,)
BSL a(u|@\) =Ne(Ohed) o~ No(0,) o N

t=00 t=01 t=02 t=03 t=04 t=05 t=06 t=07 t=08 t=09 t=1.0

BSI

BEN

VDM

Figure 2. ELBO encoders q, i.e. training inputs, of BSI, BFN and VDM. ¢ parametrizes the precision levels by
the respective model’s precision schedule with ¢ = 0 being pure noise, ideally, and ¢ = 1 almost equaling the
data. Top half shows the mean of q and bottom half a sample. Mean O is gray because all models rescale the
data to [—1, 1]. BFNs apply little noise overall and reach a deterministic state at t = 0. For VDM, significant
information about the sample is preserved in the structure of the mean at the highest noise level. In contrast, BSI
converges to its latent prior distribution.

for a set of latent variables 1) at precision levels w between w and @. For BSI and BEN, the precision
level w is the belief precision A between Ao and Ay and 1), = py. For VDM, the latent variables 1)
are called z and they parametrize w as the SNR v between e~° and e!3-3.

Despite this shared ELBO form, the models vary significantly. Table 1 lists the encoding distribution
q(® | @, w) for each model, their prior, from which they begin the sampling process, and the update
step that the models iterate during sampling. First, we see that VDM starts sampling from a standard
Normal vector and BFN from the deterministic 0. Only BSI allows sampling from an initial precision
Ao less than 1, which has been shown to improve sample diversity in consistency models (Song &
Dhariwal, 2024). Second, the update step shared between BSI and BFN is significantly simpler than
the VDM update with respect to the precision parameter and does not require evaluation in log-space
for numerical stability as recommended for VDM (Kingma et al., 2023).

For the encoding distribution q(v | @, w), which provides the training inputs when the models
optimize their ELBO, we turn to Fig. 2. First, we note that BFN adds little noise overall due to
their noise variance (A—1)/x? going to 0 for both small and large A. Next, we notice the encoding
distribution q(% | x,w) with the most noise at t = 0. While it agrees exactly with the latent prior
used for sampling for BST and BFN, for VDM it becomes approximately Np(0.08x, 1), which differs
significantly from the standard Normal prior for sampling. In fact, the image motif is still clearly
discernible in the distribution mean for VDM at its maximum noise level. The amount of signal
remaining in the mean for BSI at high noise levels is counteracted by much higher noise variance, e.g.
15.85 at t = 0.1 for BSI compared to 0.96 for VDM.

Diffusion Models If we currently hold the belief (p4’, \'), the distribution over beliefs (g, ' — «)
that are « less precise is

AN
p(p | x) = N(ﬁ_l {Fu’ -)\ow] 7§> (15)

for a certain precision £. This shows that BSI can be written as a DM with a non-Markovian forward
or “noising” process. See Appendix A.2 for a detailed derivation of this connection. There we also

Under review as a conference paper at ICLR 2026

exploit that BFNs are a special case of BSI to derive the forward process for BFN and show that it is
Markov, in contrast to the BSI process.

5 MODEL DESIGN

In this section, we introduce a design for the prediction model in BSI. We begin by deriving a
preconditioning structure for fg, i.e. a type of model structure similar to noise prediction in DMs.
Then, we describe how we bring A into a suitable range as an input for deep learning. Finally, we
give our choice of the hyperparameters Ay, an and ar and report the model architectures we used as
the backbone of fg.

5.1 PRECONDITIONING

It has long been known in the context of DMs that training models to predict « directly from a
noisy input can hinder learning and limit sample quality (Karras et al., 2022; Ho et al., 2020). For
probabilistic modeling, it is especially important that the model prediction stays close to the true
sample if the input is already at a low noise level to achieve high ELBOs. This can be seen, for
example, in Corollary 3.6 where prediction errors for high-precision input beliefs with large A have
a higher weight. Instead of predicting &, DMs commonly either predict a variation of the noise in
the model input (Ho et al., 2020; Song et al., 2021a) or an adaptive mixture of the noise and the true
sample (Salimans & Ho, 2021). In the end, these approaches amount to adding a skip connection to
the model with specific weights.

For BSI, we derive such a preconditioning structure with the adaptive-mixture approach from Karras
et al. (2022). Let f; be our neural network. Then we define the preconditioned fg as

fo (/1’7 >‘) = CskipM + Coutfé (Cin/‘/a /\) (16)
and find the parameters through the conditions proposed by Karras et al. (2022). ¢, and oyt are
chosen such that the input to fg and its training target have unit variance. cg;p, is then chosen to
minimize ce,¢, which minimizes the influence of prediction errors and ensures that fg retains most of
the signal already contained in g at large precisions .

From these conditions, we derive

Cskip = ()\7)\0)/57 Cout = V/ Yk, Cin= V)\/f”v 17

where k£ = 1+ (A=20)?/x in Appendix C. X is the precision of our current belief about and the input
to fo.

5.2 PRECISION ENCODING

The magnitude of A\ makes it impractical as a feature for neural networks. However, the CDF F of
p(A) is a natural way to scale A from [Ag, Au] to [0, 1] as in DMs and flow matching (FM) (Lipman
et al., 2023). In practice, we use fg(u,t) instead of fg (s,) where
~log A —log Ao

N log()\M) - log Ao '
Compared to linear re-scaling, our method makes it easier for fg to distinguish belief precisions in
the high-noise regime.

t=F(\) (18)

5.3 HYPERPARAMETERS

Apart from fg, BSI has three hyperparameters, \g, ayr and ag. Ag should be small enough that
the initial belief covers the whole data distribution. We have found experimentally that \g = 1072
optimizes likelihoods and sample quality at the same time for images rescaled to [—1, 1], see
Section 6.3. This agrees with the finding of Song & Dhariwal (2024) that large initial noise scales
improve sample diversity in consistency models.

ay should be large enough that a noisy measurement at precision oy identifies an x, e.g. for images
almost all probability mass of NVp(x, apr) should be contained within a single 8-bit color intensity
bin. We choose ayy = 108, which Graves et al. (2023) also picked for BFN. While L3} dwarfs Lg,
ar = 2ay gives a slight edge in likelihood, empirically, as also observed by Graves et al. (2023).

Under review as a conference paper at ICLR 2026

5.4 ARCHITECTURE

After the preconditioning and mapping A to a t € [0, 1], there are two more steps to turn the
inputs p and t of f into effective features for a neural network. Regarding ¢, we convert it into a
32-dimensional precision embedding with a sinusoidal position encoding (Vaswani et al., 2017).

The Fourier features proposed by Kingma et al. (2023) are an essential component to reach high
likelihoods, because they help the model distinguish fine details at high likelihoods, i.e. for inputs
that are already close to the data distribution. They are basically a sinusoidal embedding of every
dimension of p. In particular, we extend g to the vector

(p sin(2i7p) cos(2imp)) € ROFHMmax=rmin))n gy o N (19)

before passing it into the neural network. We choose n,i, = 6 and ny.x = 8, in effect increasing
the dimensionality of the input to the neural network from n to 7n.

For the neural network itself, we use two architectures, U-Nets (Ronneberger et al., 2015) and
Vision Transformers (ViTs) (Dosovitskiy et al., 2020). We use the U-Net configuration proposed by
Kingma et al. (2023) which adapts the widely used configuration from (Ho et al., 2020) for likelihood
estimation. Most notably, the (Kingma et al., 2023) version has no downsampling between layers of
the U-Net, which lets them increase the number of U-Net levels to 32.

ViTs are a more recent architecture inspired by the success of transformers (Vaswani et al., 2017).
They represent images as a set of patches with a 2D position embedding and process them with global
attention, in contrast to convolutional architectures like the U-Net where communication happens
primarily locally. We opt for the Diffusion Transformer (DiT) architecture (Peebles & Xie, 2023)
which has been shown to improve sample quality over variants of the (Ho et al., 2020) U-Net model.

6 EXPERIMENTS

We evaluate BSI on the ImageNet (Deng et al., 2009) and CIFAR10 (Krizhevsky, 2009) datasets
in terms of log-likelihood and sample quality. While BSI as a method is general and not specific
to images, we chose image datasets, because they are established benchmarks in the probabilistic
modeling literature. In our experiments, we compare against BFN (Graves et al., 2023) and VDM
(Kingma et al., 2023). BFNs are a special case of our framework (see Section 3) and provides an
important reference point for the effect of the non-deterministic hyper-prior p(go) in BSI. VDMs are
a representative of the diffusion family of models specifically designed for probabilistic modeling
that is structurally similar to BSI as we explained in Section 4.

In Appendix B, we describe how we compute the ELBO, which we derived in Section 3.1 for
continuous x, on discretized images with 8-bit color channels. Appendix E lists hyperparameters and
training details and Appendix F shows some generated samples.

6.1 IMAGENET

For this evaluation, we train a DiT (Peebles & Xie, 2023) Table 2. Log-likelihood in BPD and sample
in the BFN, VDM and BSI model, respectively, on the of- quality (FID) against the test set on ImageNet.
ficial 32x32 and 64x64 versions of ImageNet (Chrabaszcz ~We compute standard deviations over 3 seeds.
et al., 2017). We train each model from three seeds and
evaluate the log-likelihood of the test set in bits per di- ~ Model BPD | FID |
mensien (BPD) and the samplle quality in terms of Fréchet TmageNet32 (2 M train steps)
inception distance (FID) against the test set. For the log- BFN 3.448+0.005 11.0+0.1
likelihood, we evaluate each model’s ELBO with 5 sam- VDM 3.452+0.006 9.9+0.5

ples from the respective equivalent of L3} and 2 samples BSI 3448+0.006 89+0.1
from the respective equivalent of L. For the sample
quality, we draw 50 000 unconditional samples from each ImageNet64 (100 train steps)

model with 1024 steps and then compute the FID between BFN 3.270+0.008 50.3£2.5
the generated samples and the test set. On the 32x32 res- VDM 3.277+0.004 47.7+0.4
olution images, we train the DiT-L-2 configuration for BSI 3.262+0.006 422+0.7
2 M steps and on the 64x64 resolution data, we train the

DiT-L-4 configuration for 100k steps.

Under review as a conference paper at ICLR 2026

Table 2 shows that BSI achieves equivalent likelihoods to VDM and BFN while generating higher-
quality samples in terms of FID. This aligns with the result for consistency models by Song &
Dhariwal (2024) that a larger variance of the initial state — initial belief py for BSI — improves the
sample diversity. Ordering the models by improving FID, we have BFN first with an initial variance
of 0 (o = 0), then VDM with an initial variance of 1 and finally BSI with an initial variance of
Agt = 100. The magnitude of the FID on ImageNet64 aligns with the results reported by Peebles
& Xie (2023) after 100k training steps. Furthermore, Fig. 3 shows that BSI generates significantly
better samples than the closely related BFN with fewer steps on ImageNet32.

FID

oy fa [ﬁﬁl a Eﬁ] =~ 10° p(A) uniform
10% ¢ BEN 10-11 i 10°
=+ VDM 2)
= BSI 1021 58 10 /\
Noise floor 7\ Bl 107" 1-7p()) log-uniform
O e 10-3 1 . . . : .
23 24 25 26 27 28 29 210 26 28 210 212 214 216 10*2 100 102 104 106
Steps k Steps k Precision A
Figure 3. BSI’s sample quality con- Figure 4. L¥, converges to Figure 5. Our proposal distribution

verges quickly and to a lower FID
with increasing number of steps.

shrinks the range of »(N)/p(x), re-
ducing ELBO variance.

Ly from above as predicted in
Lemma 3.3.

ELBO Convergence Fig. 4 shows how the finite step ELBO from Theorem 3.1 converges towards
its infinite step counterpart as k — oo on the test set of ImageNet32. For this plot, we sampled
100 precisions) per image for the Monte Carlo estimates of £X; and £57. The convergence trend
continues right to the noise floor where the noise overshadows the signal, marked in the plot by the
standard deviation of the Monte Carlo estimator for the difference between the two terms.

6.2 CIFARI10

We train the same U-Net architecture as VDM (Kingma et al., Table 3. Test set log-likelihood on CI-
2023) and BFN (Graves et al., 2023) on CIFAR10. Table 3 FARI10 of the same U-Net in different

shows that BST achieves equivalent log-likelihoods in terms of ~models.

BPD. Due to the significant number of training steps (10 M),

we followed (Kingma et al., 2023; Graves et al., 2023) and Model Training Steps BPD

trained only a single model on this dataset. VDM 265
BSI oM 2.64

Variance Reduction Fig. 5 verifies the effect of importance

sampling with a log-uniform distribution that we propose in ng SM %gg

Section 3.3. It reduces the range of the #(%)/p(x) term in Eq. (12)
by about 4 orders of magnitude on CIFAR10 and therefore the
variance of a Monte Carlo estimate of the ELBO.

6.3 PARAMETER STUDIES

In the following, we evaluate the impact of our modeling and parameter choices.

Unless otherwise stated, we trained each model for 100k steps on ImageNet32

with a DiT architecture, evaluated the likelihood of the test set

in BPD with the infinite-step ELBO and used 1024 sampling 10"

steps to compute the FID. We will verify the assumptions of s

the log-uniform proposal distribution p(\), compare DiT and *°

U-Net model architectures, and evaluate the prior precision | s — L= caip

Ao and training on the finite-step ELBO L¥;. o G) =l /el G
102 10° 102 10° 10°

Proposal Distribution In Section 3.3, we have chosen a log-
uniform proposal distribution p(\) based on the assumption
that fo (e, A) = p. Fig. 6 shows that the relative distance be-
tween p and fg (s, A) falls quickly for A > 1, when the belief

Precision A

Figure 6. As)\ increases, & = fo(p, \)
and the belief p converge.

Under review as a conference paper at ICLR 2026

20 = k=27 e k=28

>
Il

Foe
——

FID, — FID
(V]
BPD; — BPD&

2‘3 24 2‘5 2‘5 2‘7 2‘8 2‘9 2‘10 2‘3 2‘4 2‘5 2‘6 2‘7 2‘8 2‘9 2‘10
Sampling steps k’ Evaluation steps k’

Figure 7. FID and likelihood difference between models trained on £5; and £33 when evaluated for k' steps.

(p, M) contains enough information that the model mostly refines the belief. Our preconditioning
structure fg(pe, A) = Cskiptt + Cous fg(Cinpt, A) derived in Section 5.1 ensures that fy retains existing
information as the precision A grows.

Model Architecture To ensure that the improvements Table 4. Trained with U-Net architecture.
in sample quality on ImageNet arise from BSI as a method
and not from the architecture of the underlying model, = Model BPD FID
we have also trained U-N§t§ on ImageNet32. Tal?lq 4 BFN 3.505+0001 142404
shows that the U-Net exhibits the same characteristics

. VDM 3.527+0.009 154+1.5
as the DiT that we trained in Section 6.1, i.e. equivalent BSI 3510£0009 12.8+0.6
likelihoods between BFN, VDM and BSI with a consistent ’ . .
improvement in FID. We chose the U-Net parameterization of (Kingma et al., 2023), which is also
listed in Appendix E.

Initial Precision In Fig. 8, we evaluate the im- k=26 k=27 k=2

pact of the initial precision Ay on likelihood and .

sample quality. While the likelihood of test data im- 354

proves with falling)\, i.e. increasing initial noise, ’ T20
. a

the sample quality depends on the number of sam- & 11s

pling steps. For a large number of steps, larger \g 3.52 1

perform slightly better, but with fewer steps an inter- i I | 1 T

mediate)\ is preferred. With fewer total sampling 3.50 1., . ; 14

steps, decreasing A ensures that the sampling pro- 1073 1072 107! 10°

cess still spends enough steps in the intermediate Prior precision Ao

noise range, which is responsible for the generation
of large-scale features in the images (Rissanen et al.,
2022).

Figure 8.)\ balances likelihood and sample quality
for varying sample steps k.

Training with £3; By default, we train by optimizing the measurement loss L3} of the infinite-step
ELBO, but in practice the model will only use finitely many steps. Fig. 7 shows that training on
E{f’/[does not confer a consistent advantage in sample quality or likelihood. This justifies training by
optimizing L] regardless of the number of steps used later and eliminates k as a hyperparameter.

7 CONCLUSION

We have introduced our generative model BSI through a novel perspective on generative modeling
that frames sample generation as iterative Bayesian inference. We have derived an ELBO for both
finite steps and the infinite step limit and an importance sampling distribution to minimize the training
loss variance. In addition, we have thoroughly discussed how BSI relates to BEN and DMs and shown
that BSI includes BFN as a special case. Our experiments have demonstrated that BSI generates
better samples than both VDM and BFN while achieving equivalent log-likelihoods on established
image datasets. Overall, BSI contributes a Bayesian perspective to the landscape of probabilistic
generative modeling that is theoretically simple and empirically effective.

10

Under review as a conference paper at ICLR 2026

SOFTWARE

For our results, we rely on excellent software packages, notably numpy (Harris et al., 2020),
pytorch (Paszke et al., 2019), einops (Rogozhnikov, 2022), matplotlib (Hunter, 2007),
h5py (Collette, 2013), hydra (Yadan, 2019) and jupyter (Granger & Pérez, 2021).

REFERENCES

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic Interpolants: A Unifying
Framework for Flows and Diffusions. Journal of Machine Learning Research, 26, September 2025.
doi: 10.48550/arXiv.2303.08797.

Sirine Ayadi, Leon Hetzel, Johanna Sommer, Fabian J. Theis, and Stephan Giinnemann. Unified
Guidance for Geometry-Conditioned Molecular Generation. In Neural Information Processing
Systems, November 2024.

Zixiang Chen, Huizhuo Yuan, Yonggian Li, Yiwen Kou, Junkai Zhang, and Quanquan Gu. Fast
Sampling via Discrete Non-Markov Diffusion Models with Predetermined Transition Time. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, November 2024.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A Downsampled Variant of ImageNet as an
Alternative to the CIFAR datasets, August 2017.

Andrew Collette. Python and HDF5. O’Reilly, 2013.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-scale Hierarchical
Image Database. In Computer Vision and Pattern Recognition Conference, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion Models Beat GANs on Image Synthesis. In
Neural Information Processing Systems, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
In International Conference on Learning Representations, October 2020.

Jarek Duda, Khalid Tahboub, Neeraj J. Gadgil, and Edward J. Delp. The use of asymmetric numeral
systems as an accurate replacement for Huffman coding. In 2015 Picture Coding Symposium
(PCS), pp. 65-69, May 2015. doi: 10.1109/PCS.2015.7170048.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. In Neural Information
Processing Systems. arXiv, 2014.

Brian E. Granger and Fernando Pérez. Jupyter: Thinking and Storytelling With Code and Data.
Computing in Science & Engineering, 23(2):7-14, March 2021. ISSN 1558-366X. doi: 10.1109/
MCSE.2021.3059263.

Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez. Bayesian Flow
Networks, November 2023.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez
del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357-362, September 2020. doi: 10.1038/s41586-020-2649-2.

GM Harshvardhan, Mahendra Kumar Gourisaria, Manjusha Pandey, and Siddharth Swarup Rautaray.

A comprehensive survey and analysis of generative models in machine learning. Computer Science
Review, 38:100285, November 2020. ISSN 1574-0137. doi: 10.1016/j.cosrev.2020.100285.

11

Under review as a conference paper at ICLR 2026

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Neural
Information Processing Systems, 2020. doi: 10.48550/arXiv.2006.11239.

J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3):
90-95, 2007. doi: 10.1109/MCSE.2007.55.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of Diffusion-
Based Generative Models, October 2022.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, 2013.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational Diffusion Models, April
2023.

Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang,
and Yuyang Wang. Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic
Time Series Forecasting. In Neural Information Processing Systems. arXiv, 2023. doi: 10.48550/
arXiv.2307.11494.

Marcel Kollovieh, Lukas Gosch, Marten Lienen, Yan Scholten, Leo Schwinn, and Stephan Giinne-
mann. Assessing Robustness via Score-Based Adversarial Image Generation. Transactions on
Machine Learning Research, August 2024a. ISSN 2835-8856.

Marcel Kollovieh, Marten Lienen, David Liidke, Leo Schwinn, and Stephan Giinnemann. Flow
Matching with Gaussian Process Priors for Probabilistic Time Series Forecasting. In International
Conference on Learning Representations, October 2024b.

A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images, 2009.

Sarah Lewis, Tim Hempel, José Jiménez-Luna, Michael Gastegger, Yu Xie, Andrew Y. K. Foong,
Victor Garcia Satorras, Osama Abdin, Bastiaan S. Veeling, Iryna Zaporozhets, Yaoyi Chen,
Soojung Yang, Adam E. Foster, Arne Schneuing, Jigyasa Nigam, Federico Barbero, Vincent
Stimper, Andrew Campbell, Jason Yim, Marten Lienen, Yu Shi, Shuxin Zheng, Hannes Schulz,
Usman Munir, Roberto Sordillo, Ryota Tomioka, Cecilia Clementi, and Frank Noé. Scalable
emulation of protein equilibrium ensembles with generative deep learning. Science, 389(6761),
2025. doi: 10.1126/science.adv9817.

Marten Lienen, David Liidke, Jan Hansen-Palmus, and Stephan Giinnemann. From Zero to Turbu-
lence: Generative Modeling for 3D Flow Simulation. In International Conference on Learning
Representations, 2024.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow Matching
for Generative Modeling, February 2023.

David Liidke, Marin Bilos, Oleksandr Shchur, Marten Lienen, and Stephan Giinnemann. Add and
Thin: Diffusion for Temporal Point Processes. In Neural Information Processing Systems, 2023.
doi: 10.48550/arXiv.2311.01139.

David Liidke, Enric Rabasseda Raventds, Marcel Kollovieh, and Stephan Giinnemann. Unlocking
Point Processes through Point Set Diffusion, October 2024.

Kevin P Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models. In Interna-
tional Conference on Machine Learning, 2021. doi: 10.48550/arXiv.2102.09672.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Neural Information Processing Systems, 2019.

William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. In International
Conference on Computer Vision. arXiv, 2023. doi: 10.48550/arXiv.2212.09748.

12

Under review as a conference paper at ICLR 2026

Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows. In
International Conference on Machine Learning, 2015.

Severi Rissanen, Markus Heinonen, and Arno Solin. Generative Modelling with Inverse Heat
Dissipation. In International Conference on Learning Representations, September 2022.

Alex Rogozhnikov. Einops: Clear and Reliable Tensor Manipulations with Einstein-like Notation. In
International Conference on Learning Representations, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical
Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in
Computer Science, pp. 234-241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-
24574-4. doi: 10.1007/978-3-319-24574-4_28.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho, David J.
Fleet, and Mohammad Norouzi. Photorealistic Text-to-Image Diffusion Models with Deep Lan-
guage Understanding. In Neural Information Processing Systems, volume 35, pp. 36479-36494,
2022.

Tim Salimans and Jonathan Ho. Progressive Distillation for Fast Sampling of Diffusion Models. In
International Conference on Learning Representations, October 2021.

Abdullah Saydemir, Marten Lienen, and Stephan Giinnemann. Unfolding Time: Generative Modeling
for Turbulent Flows in 4D. In Al for Science: Scaling in Al for Scientific Discovery Workshop,
ICML, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
Learning using Nonequilibrium Thermodynamics. In International Conference on Machine
Learning, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. In
International Conference on Learning Representations, January 2021a.

Yang Song and Prafulla Dhariwal. Improved Techniques for Training Consistency Models. In
International Conference on Learning Representations, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
International Conference on Learning Representations, 2021b.

Lucas Theis, Aédron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. In International Conference on Learning Representations. arXiv, 2016. doi: 10.48550/
arXiv.1511.01844.

James Townsend, Thomas Bird, Julius Kunze, and David Barber. HiLLoC: Lossless image com-
pression with hierarchical latent variable models. In International Conference on Learning
Representations, September 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. In Neural Information Processing Systems,
2017.

Kaiwen Xue, Yuhao Zhou, Shen Nie, Xu Min, Xiaolu Zhang, Jun Zhou, and Chongxuan Li. Unifying
Bayesian Flow Networks and Diffusion Models through Stochastic Differential Equations. In
Forty-First International Conference on Machine Learning, June 2024.

Omry Yadan. Hydra - A framework for elegantly configuring complex applications. Github, 2019.

13

Under review as a conference paper at ICLR 2026

A How BSI RELATES TO ...

A.1 BAYESIAN FLOW NETWORKS

BFNs are a recent class of generative models for continuous and discrete data motivated from an
information-theoretic perspective (Graves et al., 2023). In it, a sender communicates a latent sample
to a receiver while trying to minimize the transported data volume. The sender compresses the data
with entropy coding, so that minimizing the data volume is equivalent to the receiver maximizing
the log-likelihood of the latent sample based on the information that it has received from the sender
so far. Finally, a sample can be generated when the receiver also assumes the role of the sender and
repeatedly refines its belief.

Our generative approach in Section 3 includes BFN for continuous data as a special case. To see
this, we begin by choosing our belief prior p(po) as Np(0, 7o) and letting o — o0, i.e. the initial
belief mean will always be gy = 0. With Lemma 3.4, this gives us

>_>\0w A2
A A=/

Al [z, A) = Np((20)

If we now define a = A\ —), choose the initial precision Ay = 1 and write the Normal distribution
in variance format, we see that

« (0%
Q(H‘)\|m7)\)_N(1+ama (1_'_&)2)’ (21

which equals the BFN flow distribution pr(€ | x;t) (Graves et al., 2023, Equation (76)) if we
parametrize A (and therefore «) in terms of ¢ € [0, 1] as in Section 5.2.

Since a comprehensive description of BFN would go beyond the scope of this work, we will only
point out the correspondence between terms from Section 3 and their BEN counterparts without
explaining them in detail. For a complete description, we refer the reader to the original work (Graves
et al., 2023).

The current belief (g;, \;) is equivalent to the input distribution p; (Graves et al., 2023, Equation
(43)). Lemma 2.1 is the equivalent of the Bayesian update function h (Graves et al., 2023, Section
4.2). A noisy measurement y ~ Np(x,) corresponds to the sender distribution pg (Graves et al.,
2023, Equation (86)), while a noisy measurement y ~ Np (&, o) of the model’s current prediction &
of the true sample corresponds to the receiver distribution pr (Graves et al., 2023, Equation (88)).
The output distribution po and the Bayesian update distribution py are just intermediate terms to
derive the model and appear neither in the final training nor sampling algorithm.

Fixing the initial belief to po = 0 with infinite precision for BEN recovers the behavior described by
Graves et al. (2023, Figures 3 and 4) and shown in Eq. (21) that the precision (1 -+ «)?/a of the flow /
encoding distribution q(g | @, A) in the ELBO first falls and then rises again as « grows. In contrast,
with our belief prior p(g9) = Np(0, \g) of the same precision as the initial belief (g0, Ag) as we
choose it in Section 3.2, the precision of q(g) | @, A) grows linearly in A (and «) in lockstep with the
precision of the belief (p;, A;). We hypothesize that this makes learning for the model easier, because
the noise level in its input varies linearly instead of non-linearly across noise levels. Furthermore,
in BSI, the first sampling step will already contribute to drawing a random sample, since the initial
input pg to fg is random. In BFN, the initial belief is fixed to 0, which makes the first sampling step
deterministic and equal across all samples.

In Section 3.2, we have argued that the reasonable range of prior precisions g is [Ag, 00]. BSI and
BFN occupy the two extremes of this range with BSI using the least informed prior 79 = Ao, i.e.
making the fewest assumptions, and BFN the most informed one vy = co. Note that these extremes
are the only choices in the reasonable range for which the precision A%(A — Ao + Aﬁ/w)_l of the
encoder q in Lemma 3.4 simplifies, i.e. to just A for BSI and A2(A — A¢)™" for BFN.

In our comparison to DMs in Appendix A.2, we see that BSI and BEN also differ in their associated
noising process. While BSI’s noising process, i.e. how one could go from a more precise measurement

back to a less precise one, does not form a Markov chain, BFN’s does, making BFN more similar to
DMs.

14

Under review as a conference paper at ICLR 2026

In Appendix A.2, we exploit that BFN can be represented as a special case of BSI to derive a
Markovian forward process for BFN as DMs.

A.2 DIFFUSION MODELS

DMs are a widely used class of generative models built on the concept of inverting a diffusion process
(Sohl-Dickstein et al., 2015; Ho et al., 2020). Given a sample x, they define a Markov chain of
increasingly noisy versions 1, o, . .. of where ¢y = x and

p(x; | zi—1) = N(ouzi—1, i) (22)
for some coefficients c; and B;. In training, a model learns to invert this Markov chain, which lets you

finally generate data by sampling from a noise distribution and stepping along the learned, reverse
Markov chain until you reach the data distribution.

While DMs initially achieved prominence in image generation (Dhariwal & Nichol, 2021), they
have since been applied successfully across a variety of domains, such as text-to-image mapping
(Saharia et al., 2022), fluid simulations (Lienen et al., 2024; Saydemir et al., 2024), adversarial attacks
(Kollovieh et al., 2024a), temporal (Liidke et al., 2023) and general point processes (Liidke et al.,
2024), molecular dynamics (Lewis et al., 2025), molecular structure generation (Ayadi et al., 2024),
and time series forecasting (Kollovieh et al., 2023; 2024b).

DMs and BSI are remarkably similar at first glance. Both revolve around the concept of iteratively
transforming noise into data samples, though DMs work with Langevin dynamics and BSI uses
posterior inference. For training, both models aim to align a parametric distribution pg(z” | ') with
a distribution q(x” | @', x) that describes a less noisy version «” of a noisy sample x’ given that the
true sample is x.

However, conceptually, they approach sampling from two different perspectives. DMs start with
the so-called forward process, where signal is iteratively converted into noise forming a Markov
chain of intermediate states as in Eq. (22). Then, they revert this chain to derive the reverse process
that enriches noise with data. In contrast, BSI defines the reverse process directly in the form of
Lemma D.1 and never uses the associated forward process directly.

We can revert BSI’s process to derive its “noising” process. This will let us see what BSI would look
like as a DM and thus understand the relationship between the two. Assume that our current belief is
(p, A = Ao + «) and we want to denoise further based on a sample & and measurement precision o,
i.e. update our belief to (', A = Mg + @ +). The denoising process described by Lemma D.1
tells us that

p(p' | @) = Np (YN [Ap+ o'x], 27 /a’). (23)
To find the noising process, we revert this and get
AN @
/ -1 /
= — AM————-—-1 24
p(p | w's) N<€ [a,u+ <a+A3/70)45) 24)

where £ = A\ ((a+ /\3/70)_1 + o 71) and ~p is the precision of the initial belief prior p(po) =
N(0,0). Find the proof at the end of this section.

Plugging in vy = Ag, we get that the noising process of BSI is
, [N, A
Pl | w@) =N (&1 5w = doz|.& | where €=A(1+2). (25)

Note that this distributions depends on x since A\g > 0. Therefore, BSI’s forward process would
not be Markoyv, i.e. you cannot add more noise to a belief state without knowing the sample « that
the belief state originated from. While DMs with non-Markov forward processes exist (Song et al.,
2021a; Chen et al., 2024), they are uncommon. In conclusion, we see that BSI can be represented as
a DM, though with a rather complex, non-Markovian forward process.

As we have shown in Appendix A.1, BFN are a special case of our generative framework in Section 3
if we choose 9 = oco. Curiously, Eq. (24) shows that this is the only prior on gy for which the
associated forward process is Markov as the coefficient of & becomes 0. This agrees with Xue et al.
(2024), who have shown that BFN admit a formulation based on stochastic differential equations
(SDEs), like score-based DMs.

15

Under review as a conference paper at ICLR 2026

Proof of Eq. (24). We know from Lemma 3.4 that

)_)\0)\2 Qa)\2
- _ AN 26
alp [z, 2) NP() w’A—Aowﬁ/wO) NP(Aw’aH%/w) 20

and from Lemma D.1 that

p(p' |) = Np (YN [Ap + o'x], 37 /a"). (27)
Therefore, p(p, ' | @) is a Gaussian linear system and we can use (Murphy, 2012, Equation (4.125))
to see that
p(l"' | I'l‘/7x) :NP(V,f) (28)
with) .
A2\ AN\ TN 1 a1
=)2 20) 2 —)2 A2 /
)) et o
and
AN,) 2, -1
V:é- yg M _yw +>\ (O["‘)\U/'YO) Oé//\"-B (30)
AN e
= W AN —— 12|, 31
3 [o/“+ <a+A§/70 x (3D
O

A.3 STOCHASTIC INTERPOLANTS

Stochastic interpolants are a broad class of continuous-time stochastic processes that can interpolate
between any two probability distributions pg and p; (Albergo et al., 2025). They also prescribe how
to learn the interpolants’ dynamics to construct generative models and it is instructive to see how they
relate to BSI. The subclass of spatially linear one-sided interpolants assumes that p is a standard
Normal distribution and defines the interpolant

@y = a(t)z; + (t)@ (32)

where x1 ~ p; and z; ~ N(0,I). Given that o and 3 are smooth, non-negative functions with
a(0) = 5(1) = 1 and (1) = B(0) = 0, x; smoothly interpolates between a standard Normal and
the data distribution p;.

For BSI, we can interpret the belief mean p for a data sample =

u 1 - A—Xo
A==
VA A
as an interpolant that is normally distributed with mean 0 and precision Ao at A = A\ and equals
the data sample « at A = co. We could rewrite this as an interpolant in the above sense on [0, 1]
by parameterizing A as a strictly increasing function A(¢) : [0,1] — Ry with A(0) = Ap and
lim; 1 A(t) = o0, e.g. A(t) = Ao — log(1 — t), similar to the mapping between score-based
diffusion and stochastic interpolants (Albergo et al., 2025, Section 5.1). But to avoid the scaling
and correction factors, we will consider it an interpolant on [\g, oc] instead with a(\) = 1/+v/X and
B(A) = (A= Ao)/A. We will furthermore write a(\) and 5(\) as « and 3 to reduce visual clutter.

(33)

(Albergo et al., 2025, Section 4.4) shows that the probability path p(\, p) of the interpolant solves
the transport equation dyp + V - (bp) = 0 with the velocity field

@ e
b, p)=—p+ (6 - B)n(&u) (34)
(0% (0%
and its score V log p(A, p) is given by
— Bn(),
s\) = —%ﬁ"). (35)

16

Under review as a conference paper at ICLR 2026

n(\, u) = E[x | pn = p] is the denoiser, i.e. the expected data sample that led to belief p at
precision A. Note that n(A,) is learned with a model #, which is equivalent to fg(u, A) in BSI and
fit by minimizing (Albergo et al., 2025, Eq. (4.21))

Am 1
£ = [8 S0l - e ax 66)

L(n) is equivalent to L3¢ in Theorem 3.2 up to a constant factor and offset.

With the velocity field and score, we can write down the forward SDE corresponding to the probability
path p as (Albergo et al., 2025, Corollary 18)

dpy = b (A, pa) A+ 1/2(X) AW (37

where W) is Brownian motion, e(\) : R — R, is any noise level specification and

br(A, p) = b(A, 1) +£(A)s(A,)
& e e & B (38)
= (-)u+ (Z - =)677()\,#)
o o
is the forward drift. If we plug in « and 3, we get

_ 1 Ao A—Xo
du,\—{ <2)\+5/\)ux+(5)\—&—2)\4-)\()_)\0)) h\

Since this holds for any non-negative £, we can choose € = ﬁ to simplify the equation to

e M)} dX + V2e dWy. (39)

1
(1A 12) = pa] dA + AW (40)

> =

dpy =

We can now sample from the learned stochastic interpolant by integrating Eq. (40) from Ag to Aps
(Albergo et al., 2025, Algorithm 5). Let’s say we are at precision \ with state g and want to move
ahead by a step of length o. With the Euler-Maruyama method suggested by (Albergo et al., 2025),
the integration step becomes

1.,
Prta = px + - < [\, pa) — pa]+£

A
(41)
)_
== NA+/\7]()‘NA) \F

>|

where € ~ A(0, I). This is almost the same as the BSI sampling step

Nic1pio1 + o (&1 + 4/ O%Ei)

Aic1 + (42)
Ai — @ Vi

= M- 5 Li— =
N, Pty Tt o

M =

in Algorithm 3. The subtle difference is that Eq. (41) uses the current A to compute), Whereas
Eq. (42) uses the next \; = \;_1 + «a; for p;. This difference reflects that BSI employs an exact
Bayesian update rather than a first-order Euler-Maruyama approximation.

In summary, we can write BSI as a spatially linear one-sided stochastic interpolant, though two
important differences remain. First, while the sampling steps Egs. (41) and (42) are equivalent in the
continuous limit of & — 0, they differ in practice due to their derivation from an SDE discretization
and posterior inference, respectively. Second, stochastic interpolants require the interpolation’s
endpoints to equal the noise and data distribution exactly, which corresponds to A = oo in the
above formulation. In contrast, BSI only infers the sample & up to a maximum precision of Ay, €.g.
precisely enough to identify the exact color in an image with 8-bit color channels.

17

Under review as a conference paper at ICLR 2026

B ELBO IN BITS PER DIMENSION

A common metric in probabilistic modeling is the negative log-likelihood of unseen data. The
benefits of this metric are that it is theoretically motivated by the probabilistic framework and it can
be computed across domains regardless of data modality. If the negative log-likelihood is small, the
generative model assigns high likelihood to the unseen data and can thus be regarded as a good model
(though likelihood and sample quality are not necessarily the same thing (Theis et al., 2016)). For
models that come with an ELBO like BSI, we can use it to upper bound the negative log-likelihood
to compare against other ELBO-based or exact-likelihood models.

The negative log-likelihood is usually reported in bits per pixel, per color channel or, in general, per
dimension. This unit comes from the fact that an entropy coder could use the model to encode samples
x € S? from a finite symbol alphabet S from the data distribution asymptotically in —log, pg(x)/d
bits per dimension (Duda et al., 2015). Note that the underlying space S must be discrete. If it were
continuous, pg(x) would be a density and the theory would predict that we could compress « into a
negative number of bits.

The discreteness requirement is a natural fit for many domains. While, for example, images are
usually treated as tensors with continuous color values, the colors are actually stored as discrete
values in the range [0, 28 — 1] for 8-bit images. Similarly, audio data is a sequence of discrete values
in, for example, a 16-bit range.

Let’s say that S is the set of integers {0, ..., — 1}. Then we can compute an upper bound on the
bits needed to encode = € S? by

—log, p() < log(2)(Ly + L7]) (43)
as per Theorems 3.1 and 3.2. The multiplication by log(2) converts the logarithms in £f; and £} to
base 2. Lf; is the same as Ly but with a discretized Normal likelihood to account for the discrete

nature of x, i.e.
Ly = E [-log Np(z | @ay,or)] (44)

a(pay M)
where
N (@ | @ay, ar) = O(rj | @ay, or) — P | Tay, ar). (45)
D(r; | Txy, or) is the CDF of N(&y,,, ar) and I; and r; are the boundaries of the discretization
interval containing x;, i.e.

—00 ifa:j<% 00 iijzrf%
— 3 : 3 _J1 : 1
lj=qr—35 ifz; >r—35 and 7;,=<3 ifz; <3 (46)
lz; — 1] 4+ 4 otherwise lz;j + 1] — % otherwise.

L3y is usually not discretized during ELBO computation as the latent variables only enter as a
mean squared error instead of a log-likelihood. In a practical implementation, the latent variable
distributions would need to be discretized as well, decreasing the ELBO slightly (Kingma et al., 2023;
Townsend et al., 2019). If x is discretized to a different set of discrete symbols, e.g. numbers between
—1 and 1 instead of the integers S, the boundaries of the discretization intervals and bin widths in the
discretized Normal distribution have to be adapted accordingly.

C PRECONDITIONING DERIVATION

We will assume in this section that the data is normalized such that E[z] = 0 and Var[x] = I.

Assume that we have a current belief (u,). We derive the parameters cskip, Cout and cin of the
preconditioned model

fo (/1'7 >\) = CskipM + Coutfé (Cin“a /\) 47
analogously to Karras et al. (2022). However, while we proceed in the same way, the resulting
parameters for BSI differ from Karras et al. (2022) because BSI is not included in the family of DMs
that Karras et al. (2022) consider, see Appendix A.2.

First, we require that Vary[cin] = I for all A. We know from Corollary 3.5 that
a(p | T, \) = Np(A=20)/az, \). (48)

18

Under review as a conference paper at ICLR 2026

Therefore, p(x, p) is a Gaussian linear system and (Murphy, 2012, Equation (4.126)) tells us that the
variance of the marginal distribution of p is

a4, (A=)
Varg[u] = (/\ Ly (AQO))I (49)
By plugging this into our requirement
Varg[cinpt] = ¢, Varg[u] = T, (50)

we get immediately that

()\ 1y A=)’ AAO)) " <1+(A }AO)Q)/2 Vi /. 51)

—_———

=K

Next, we want to have the actual prediction target of fj during training to have unit variance, too. In
training, we optimize the ELBO from Theorem 3.2, which comes down to minimizing

I~ foie, V)5 (52)

up to constant factors only depending on A. If we plug in Eq. (47) and isolate f, this distance
becomes

Hw — Cskipht — Coutfo (Cinit, /\)Hz = CgutHfé(CinH, A) = el — CskipN)H; (53)

From this, we identify c;l (¢ — coippt) as the actual training target for fj. For the rest of this
derivation, we denote use the shorthand o = A — A for the measurement precision accumulated in
our belief (g,). After Corollary 3.5, we can write p as @/xx + z where z ~ Np(0,) and find
that the variance of the training target is

«Q
V&I‘m,Z[C(;}lt (CB — Cskip,-"/)] Out Varm z |:£C — Cskip <)\ T + z):|
a
= coli Varg - Kl — Cskip A) T — cskipz] (54)

2
«
= c(;lzlt [(1 — cskip)\) + Czkip)\l] I

If we now require the effective training target to have unit variance, we see that
2)’ -1 a’]1
Cour = (1 — CSkiPX + Cbklp)\ L+ INEBY sklp 2 \ Cskip 1 1. (55)

Following Karras et al. (2022), we now choose ¢y, to minimize the impact of errors in the output
of f4 by minimizing the magnitude of cou¢. 2, is a polynomial in cgp with positive leading
coefficient, so we can find the minimizer as the root of

1 dC a2 1 a
= (L R Ge 56
2dcsk1p [JFA}A“‘P) (56)
which is at B
« _ «
Cskip:|:1+>\:| Oé:,‘{,la:;. (57)
Finally, we can plug c.ip into Eq. (55) to get
2 2 2 2
G =T — 23w ot 1=k (CLA_2QA+[1+O;D:”1 (58)

and consequently cou; = £7/% = \/1/k.

19

Under review as a conference paper at ICLR 2026

D PROOFS

D.1 PROOF OF THEOREM 3.1

We will begin with some auxiliary insights. First, we consider the marginal distribution of the updated
belief (w4, \'). This means that our current belief about a sample x is (i, A) and now we want to
know the distribution of ' after updating p with Lemma 2.1 marginalized over all possible noisy
measurements ¢y with precision «. Note that)\’ is deterministic as it neither depends on x nor y.

Lemma D.1 (Update Marginal). Let ¢, u € R" and A\, o € R;.. Then the distribution of the posterior
belief mean p' marginalized over all measurements y made with precision o is

p(p |z, a) = yNNE%m oD (e’ |y, 0, y)] = Np (Yx [Ap+ ax],2/a). (59)

Proof. The noisy measurement is a Normal random variable y ~ Np(x, @) and the mean of our
posterior belief (g, \') after observing y is the deterministic linear transformation

B =1/N A+ ay] (60)

of this random variable. The statement follows immediately by the linear transformation property of
the Normal distribution.

From this, we can see that the update marginal from multiple intermediate measurements is the same
as from a single measurement with the combined precision of the intermediate measurements.

Lemma D.2. Let x,p, i/, p” € R™ and N\, o, o’ € Ry. p' is the posterior belief mean after
a measurement with precision o and p' the posterior belief mean after a second, subsequent
measurement with precision o'. Then we have that the marginal distribution of the second update is

(! |,z a)[p(l"’// | IJ’/?a"aO/)] = p(N” | M, T, =+ O/), (61)

Proof. We know from Lemma D.1 that ' is a random variable

p(p' |,z) = Np(Yx [Ap+azx], /) (62)
7 oy

and p'’ is a random variable that depends linearly on g/
p(p” | ' x,a') = Np (Y [N +o'w], /o). (63)

As such, they jointly form a Gaussian linear system for which the marginal distribution of p” is
(Murphy, 2012, Equation (4.126))

o N?
(" | ' z,a')] = N(l/x' [Ny +dz], 2 + /\,,25) (64)

p(p'|p,x,a)

Plugging v into the mean expression and simplifying yields the marginal mean
Un'[Ap+ (o + o')z]. (65)

Similarly, plugging ¢ into the covariance expression and simplifying yields the marginal covariance

%/20‘/. (66)

If we now recall from Lemma 2.1 that
N=X+a and N =XN+d =XA+a+d, (67)
we can identify Eq. (64) as p(p” | g, ¢, 0 + o). O

This trivially generalizes to any finite sequence of measurements, which can be collapsed into a single
measurement with the total precision instead.

We will furthermore need to know the KL divergence between the update marginal distributions of
the same belief but based on two different samples « and «’.

20

Under review as a conference paper at ICLR 2026

LemmaD.3. Letx,x',u € R" and A\, € R,.. Then

DKL(p(H’/ | /,L,IE,OK),I)([,L/ | u,w’,a)) = 1/20(”(3 - le% (68)

Proof. Both update marginal distributions — with x and x’ — are Normal distributions of equal
2
precision £ = ’\7 as given by Lemma D.1 and respective means of

v=1xAp+ax] and v =1/x[Ap+ ax']. (69)

As a consequence, the closed form solution for the KL divergence between two equal-covariance
Normal distributions becomes

1
Dxr(p(W | g, @, 0),p(0 | &', 0)) = 5 (v = v)TE(w = V)
= %(w — w’)Ta)\'flf)\’fla(a: —')
1 (70)
= i(w —z)Ta(x — ')
1
e
O

Equipped with these, we can derive the ELBO.

Theorem 3.1. Ler x € R" and ar, o; € Ry, i € [k]. Then the log-likelihood of x is lower-bounded
as
logp(x) > —Lr — L1 3)

by a reconstruction term ER and a measurement term E{f/p

k
Lr = -1 7 d k=" & . _ a2 4
R = aclen) [-log Np(| Zx,ar)] an 5 [a sz — ||2} 4)
a(pilz,Aq)
where

[p(l*l’l ‘ Mo, T,)‘2)]7 i:’b = fe(p’ia)"L) and)\i =)\0 + Za7 (5)

a(pi |z, N) = E
p(Ko =

)

Proof. For any distribution p(x) and any latent variable z, i.e. any choice of prior p(z), encoding
distribution q(z |) and likelihood p(| z), we have the variational lower bound

logp(x) > — E_[~logp(x | 2)] - Dxu(a(z | z).p(2)) (71)
on log p(x) (Kingma & Welling, 2013). In particular, we can choose our sequence of beliefs as the
latent variable z = {0, .. ., pt, } and define the likelihood of & under this latent variable as

p(x | 2) = Np(z | &k, aR). (72)
Remember that &y, = fo(r, Ak) is the model’s estimate of x.
Since the belief means p1, .. ., i are updated only based on their predecessor after Lemma 2.1,
they form a Markov chain conditional on and we can write the encoding distribution as
k
a(z [@) = p(po) [[plwi | i1, 2, ci). (73)

i=1

Each p(u; | pi—1, @, ;) is the update marginal of p;_1 over all possible noisy measurements of
a with precision «; from Lemma D.1. Our encoding distribution is ignorant about the influence of
@ on the initial belief g, because there is no closed form for p(pg |). Since we can choose any
encoding, not encoding x in pg at all is valid.

21

Under review as a conference paper at ICLR 2026

If we now plug Eq. (73) into the first term of Eq. (71), we get

[-logp(z | 2)]= E E E [-logp(x | 2)]. (74)
a(z|®) p(ro) p(k1po, @, 1) p(pr|pr—1,2,ak)

The intermediate expectations collapse into a single measurement with the sum of all precisions

a; = 23:1 a; according to Lemma D.2, because pt1,. .., pi—1 do not appear in the inner log-
likelihood, and we are left with
E [-logp(z|z)]= E E [-logp(z | 2)]. (75)
a(z|z) p(o) p(prlmo,x,ax)

Since \; = A\g + 22:1 a; = Ao + @;, we can define

p(n | o, A) = p(pr | po, @, = X = Xo) = p(pr | o, x,). (76)
If we now define
a(pe |2, Ak) = E [p(p | po, 2, M), (77)
p(po)
we can rewrite Eq. (75) as
E [-logp(xz|z)]= E [-logp(z | pk)] (78)
q(z|x) a(per |z, Ax)

which equals the definition of Ly after plugging in Eq. (72).

Next, we investigate the KL-divergence in Eq. (71). We begin by defining the latent prior p(z)
autoregressively as

k
p(2z) = p(ko) HP(M | i1, ®io1,) (79)
i=1

where &; 1 = fo(tti—1,Ai—1) is the point estimate of & produced by our model based on the belief
at step ¢ — 1. So the prior for p; is the update marginal in Lemma D.1 if &;_; were the actual sample
x.

Now, we plug Egs. (73) and (79) into the KL-divergence term from Eq. (71).

Disla(z | 2).p(z) = E_[log qf('z;”)}
/—llz 1, L, 041)
_Q(LE\CE)[Nz|:“z 1, & 17042)}
k

P(Mi | #i—lamaai)
Zq<5w>[log | i1, T }

p(uz ‘ Hi—1,TLi—1, al)
[DKL(p(Hi | i1, @,), p(H; | /J'i—hii—l,ai))}

- Z
(80)

The intermediate expectations have collapsed again according to Lemma D.2 in the same way as for
the reconstruction term.

log

[p(pi | piz1, x, ;)]
p(uo) p H1|P«07w a) op(mlpion,@,ai))

Pl | i1, i1, 0y

Ol(l-h 1|w Xi—1)

We know the closed form for the inner KL divergences from Lemma D.3, so we can further simplify
the KL-divergence term to

k
1
D z|x),pz) == a;lle — x;— 2]. 81)
alielehpE) =52 B fade-dil?
Shifting the sum indices by 1 and replacing the sum Zi:ol with £ E;z4(0,k—1) yields E’lf/[. O

22

Under review as a conference paper at ICLR 2026

D.2 PROOF OF THEOREM 3.2

Theorem 3.2. Let ag, am € Ry. For any sequence of precision schedules oy, ; for k € N, i € [k]

such that E _, Qi = oo and the sequence of functions [k] — Ry : i — ay,; converges uniformly
to 0, we can take the limit of Theorem 3.1 as k — oo to get

7 oo aM ~ 12
Lr = E -log Np(x | &y, o and L = — E T — @ 6
R q(lim’/\M)[g Ne(z | &y, ar)] 5)\N(M(A‘O;);\I\)/l) [l Az ©)
alpal,

where q(px | @, N) = Eq(ue) [P(a | o, 2, A)], Amt = Ao + ant and &5 = fo(pa, A).

Proof. Since Ly only depends on > ; 0 but not individual « ;, the equivalence of the finite and
infinite step Lg is immediately apparent.

For LY, we will consider its sum form from Eq. (81).

k
|aille — @51 13] = Z
=1

k

533

E
- q(pi—1l®,Ni—1)

[T | o)

q(m 1|m Xi—1)

::h()\,',_l)

Note that h(\;_1) is a deterministic function of A;_; and Ao, ..., \; is a partition of the interval
[/\07 Ao+ am] = [Ao, Am] with interval lengths of «;. It follows that Eq. (82) is a Riemann sum. Since
fe is a neural network, we can assume that A(\;_1) is continuous almost everywhere Combined
with the fact that the interval lengths {c; } converge uniformly to 0, it follows that £%; converges to
the Riemann integral

li Ek 1 [5 .
o v 83
b 2 »/)\0 a(palz,) {H(/\)Hz} (83)
as k — oo. It follows trivially that
Am
1

hmﬁk:aﬂ/ B [l = 3] ax 84
Foee 2 Xo OM a(palz,N) ”()\)”2 (84)

QM R , N
R - = L 85
2 A~UN0AM) {H(CE CBA)HJ o 85)

a(palz,N)

D.3 PROOF OF LEMMA 3.3

Lemma 3.3. If h is strictly decreasing, L3} < Lk v for any k and any precision schedule {c; }.

Proof. In the proof of Theorem 3.2, we have established that E’K,[is a Riemannian sum of h, where we
evaluate h on the most-negative edge of each interval. Since h is a non-negative, strictly decreasing
function, the discretization error on the interval [A;_1, \;]

Ai

€= aih(M 1) — / h(\) dA (86)
A

i—1

is also non-negative. Now consider a refinement of the discretization with X’ € (A\;_1, A;) and the
post-refinement discretization error on that interval

EI = ()\,>\1_1)h()\1_1)+()\1)\/)h()\/)/)\L h()\) d\ = ()\/7)\1'_170&1‘)}1()\1‘_1)+()\¢7>\/)h<>\/)+6.

e (87)
Next, we express € in terms of € as
€ =N = X1 —a)h(Xi_1) + (N = N)h(N) + ¢
=N = X)h(Ni—)—i—()\l—)\)(" +e (88)
= (A = N)(M(X) = h(Xi-1)) +

23

Under review as a conference paper at ICLR 2026

We know that (A; — A') > 0, because X € (A;—1,;), and (h(X\') — h(X;—1)) < O, because h is
strictly decreasing. It follows that ¢ < .

This means that any refinement of the ELBO with more steps reduces the non-negative error between
the Riemannian sum £%; and its limit £55. In other words, £55 < L%, for all k. O

D.4 PROOF OF LEMMA 3.4 AND COROLLARY 3.5

The ELBO in Theorems 3.1 and 3.2 has one part that looks like it might not be so straightforward:
the encoding distribution q(gey | , \). Its definition contains a marginalization over the belief prior
p(p0), which we still need to specify. Let’s see what q(pe | , A) becomes if we choose a zero-mean,
isotropic Normal prior p(gg).

Lemma 3.4. Lef Ao, vo € R, p(po) = Np(0,70) and A > Xg. Then

)\—)\ow A2
A A= X0+ Ao/)

Alpin | @A) = Np(©)

Proof. Let p(py | po,x, \) be the marginal distribution of p after a measurement of precision
a=\—)\0, ie.

p(pea | o, x, A) = p(p | po, T, a0 = X = Ao). (89)
We know from Lemma D.1 that
p(#A | Mo, T, = A—)\0) = NP (1/>‘ I:AOHO + ()\ -)‘O)x}))\2/()‘7)‘0))' (90)

Since p(p) is also Gaussian and) depends linearly on g, they form a Gaussian linear system for
which the marginal distribution of g is (Murphy, 2012, Equation (4.126))

A—A A2
a(pr |2z, A) = E [p(px | po,z,\)] =N<1/A[)\00 + (A= o)x], g+) o1
p(#0) A A%y

By pulling A~2 out of the covariance and inverting to get a precision, we get the claimed result. []

If we now choose g = Ay, we get the simple BSI prior and the result ELBO encoder.
Corollary 3.5. Let \g € Ry, p(po) ~ Np(0, No) and X > Xo. Then

A—A
a(pa |z,) =Np< 5 Ow,A)- (10)

Proof. 1f we choose vy = Ao in Lemma 3.4, we get

A= o A2
) = A , . 92
alux | . 2) P(A m)\—A0+A§/AO> ©2)
The precision simplifies to
A2 A2
= = 93
Aot % A-Aotr ©3)
proving the result. O
D.5 PROOF OF COROLLARY 3.6
Corollary 3.6. Let p()\) be a probability distribution with support [Ao, Am|. Then we have
1 1
LY== E —— |- 2]. 11
f=3 K, |sogle- o an
a(pale,)

24

Under review as a conference paper at ICLR 2026

Proof. We know from Eq. (83) that L3} is the following Riemann integral.

1 [)
. 2 o dlmalz,N) |:||()\)HQ_ 94)

Now we can trivially multiply by p(A)/p(») inside the expectation, proving the statement.

1 AM p()\)) 2_

a o [pO)1% a 95

. 2 /Ao a(pxlz,N) [p()\) I(mA)”Q_ (95)
= 2 2o p alialzN) p(/\) A2

D.6 PROOF OF EQ. (13)

Proof. We know from Corollary 3.5 that we can write gy = *—>o/x & + 1/v/X & for Gaussian noise
€ ~ N (0, I) independent of x. Together with the assumption fg(t, \) = p, we can rewrite h as

A= E |o— &3
W= E llz-al3
A= Xo 1|
=]E — R
e~N(0,I) ’iL‘ A T+ \/XE 9
Ao 1 2 o7
“enion || 2T TR
M\ 2, Lo o Ao
- E 20 - _9. 20 o
B (32) el o+ el -2 % e
If we now make use of our assumption that E[x] = 0 and Var[z] = I, we can distribute the
expectation across terms and get
Mo\’ 1 Ao o1
EhN] = (5) Ell=ll3] +5E[lel}] 2= E[z-e] < 35 + 5 (98)
x A x A€ V3 x.e A A
~ ~ ~

n n =0

E EXPERIMENT DETAILS

We trained each model on 4 H100 GPUs at a batch size of 128 on CIFAR10 and 512 on ImageNet32
and ImageNet64. Training progressed at about 26,300 steps per hour for the U-Net on CIFAR10 and
6,100 steps per hour for the DiT-L-2 backbones on ImageNet32. If we take the different batch sizes
into account, the two model architectures needed about equal amounts of training time. Total training
time for the 10 M step training on CIFAR10 came to about two weeks.

Furthermore, we take an exponential moving average (EMA) of model weights (Song et al., 2021b;
Nichol & Dhariwal, 2021). We provide an overview of the model and training hyperparameters in
Table 5, and show the U-Net and DiT parameters in Tables 6 to 9. On ImageNet32, we train the
models with a cosine learning rate scheduler (with linear warm up from 1 x 107®) to achieve faster
convergence. Note that we reduced the training steps to 100 k for our parameter studies to make them
computationally feasible.

To reduce the variance of the training loss further, we use low-discrepancy sampling for ¢ in Algo-
rithm 2 as proposed by Kingma et al. (2023). Instead of sampling b independent ¢ for a batch size
of b, we set t; = i=1/b+ ¢ mod 1,4 € [b] for a shared § ~ U(0,1) where mod 1 means that we
discard the integer part of the result. The marginal distribution of each ¢; is (0, 1), but jointly they
cover the [0, 1] interval more uniformly than independent samples would, smoothing out the loss
across batches.

25

Under review as a conference paper at ICLR 2026

Table 5. Model and training parameters of BSI on CIFAR10 and all three models on ImageNet32.

Parameter CIFARIO ImageNet32 (64)
— o) 1x1072
S an 1x10°
aR 2x 109
. Learning rate 2x 107 5% 107
g LR Scheduler None Cosine | 5x 107
& Weight decay 1x 1072
Batch size 128 512
Steps 10M 2M (100k)
< 0.9999
E First update after step 1000

Table 6. U-Net hyperparameters for CIFAR 0. Table 7. DiT hyperparameters for ImageNet32.

Parameter Value Parameter Value
B] Architecture DiT-L-2
Hidden dim. 128 . .
Hidden dim. 1024
Levels 32
Depth 24
Dropout 0.1 .
. Attention heads 16
Attention heads 1
Convolution paddin Zeros Dropout 0.05
pacding Patch Size 2

Table 8. U-Net hyperparameters for ImageNet32. Table 9. DiT hyperparameters for ImageNet64.

Parameter Value Parameter Value
B] Architecture DiT-L-4
Hidden dim. 256 Hidden dim. 1024
Levels 32
Depth 24
Dropout 0.1 .
. Attention heads 16
Attention heads 1
Convolution paddin Zeros Dropout 0.05
pacding Patch Size 4

26

Under review as a conference paper at ICLR 2026

F GENERATED SAMPLES

Fig. 9 shows generated samples from models trained on ImageNet32 for visual reference.

SI

<
S
<

ImageNet32

i

{2

o

AERMNAN NS W
&
A

B -l
BDEEET Nich "
SR SR e W
L I i RPN
AR AT MY
DENE Nic.”

Dol - 3

Figure 9. Samples from BSI, BEN and VDM trained on ImageNet32. Generated with 1024 steps. The first two
columns show samples from the dataset for comparison.

	Introduction
	Sample Discovery through Iterative Measurement
	Sample Generation with Posterior Inference
	Evidence Lower Bound
	Prior Distribution
	Variance Reduction
	Training & Sampling

	Discussion
	Model Design
	Preconditioning
	Precision Encoding
	Hyperparameters
	Architecture

	Experiments
	ImageNet
	CIFAR10
	Parameter Studies

	Conclusion
	Appendix
	How BSI relates to …
	Bayesian Flow Networks
	Diffusion Models
	Stochastic Interpolants

	ELBO in Bits per Dimension
	Preconditioning Derivation
	Proofs
	Proof of 3.1
	Proof of 3.2
	Proof of 3.3
	Proof of 3.4 and 3.5
	Proof of 3.6
	Proof of 13

	Experiment Details
	Generated Samples

