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ABSTRACT

We derive a novel generative model from iterative Gaussian posterior inference.
By treating the generated sample as an unknown variable, we can formulate the
sampling process in the language of Bayesian probability. Our model uses a
sequence of prediction and posterior update steps to iteratively narrow down the
unknown sample starting from a broad initial belief. In addition to a rigorous
theoretical analysis, we establish a connection between our model and diffusion
models and show that it includes Bayesian Flow Networks (BFNs) as a special case.
In our experiments, we demonstrate that our model improves sample quality on
ImageNet32 over both BFNs and the closely related Variational Diffusion Models,
while achieving equivalent log-likelihoods on ImageNet32 and CIFAR10.

1 INTRODUCTION

The field of deep learning has produced a multitude of generative models over the years (Harshvardhan
et al., 2020). Variational autoencoders, for example, learn the data distribution by compressing data
into a lower-dimensional representation (Kingma & Welling, 2013). Normalizing flows learn to map
between a prior and the data distribution via invertible transformations, enabling exact likelihood
computation (Rezende & Mohamed, 2015). Generative adversarial networks generate samples by
pitting two models against each other such that one proposes artificial data samples while the other
tries to distinguish real and generated (Goodfellow et al., 2014). Recently, diffusion models (DMs)
have become a cornerstone of generative modeling (Sohl-Dickstein et al., 2015; Ho et al., 2020).
They define a multi-step forward process that gradually adds noise to the data, turning it into pure
noise. Then, a model is trained to reverse this process, enabling the generation of new data samples
by starting from noise and iteratively denoising.

In this work, we take a Bayesian viewpoint of sample generation to propose a new generative model.
Imagine that a sample x from the data distribution p(x) is fixed but unknown to us; however, we
can receive noisy measurements yi ∼ N (x, α91

i ) of it. Then, we can infer the unknown x by
combining the information in these measurements. To be more precise, we start with a broad belief
p(x) = N (x | µ0, λ

91
0 ) about x in the form of a Normal distribution with low precision λ, i.e. high

variance, that encompasses the entire data distribution. Then, we can take a first noisy measurement
y1 and form a posterior belief p(x | y1) about the sample, which will be a little more precise and a
little more correct. Iterating this process allows us to refine our estimate p(x | y1, . . . ,yk) to any
desired level of precision.

We transform this inference process into a generative model by introducing a prediction model fθ
that estimates x from our current Gaussian belief about it. Since the true x is unknown at generation
time, we substitute it with an estimate x̂ = fθ(µi, λi) and sample yi+1 ∼ N (x̂, α91

i+1) instead.
Maximizing an evidence lower bound (ELBO) for the likelihood that this simple process assigns
to the training data, trains fθ to reconstruct true x from uncertain belief states (µi, λi) about them.
Consequently, the noisy measurements yi of predicted samples x̂ become indistinguishable from
those of real samples x, and our generative process converges toward producing new samples from
the data distribution.

1
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Inferring a new sample from noisy predictions

1. Current belief NP(µi, λi)

σi

2σ
i

3
σi

σi =
√

1/λi

2. Predict sample x̂

x̂ = fθ(µi, λi)

3. Noisy measurement y

y ∼ NP(x̂, αi)

4. Update NP(µi+1, λi+1)

σi+1

2σi+
13σ

i+
1

λi+1 = λi + αi

µi+1 = λiµi+αiy
λi+1

5. i := i + 1

Figure 1. We view generation as the problem of inferring the identity of an unknown sample x from noisy
observations. 1. To begin, our belief about x is so broad as to cover the complete data distribution. 2. We use a
model fθ to guess which x likely corresponds to the information we have collected so far. 3. Now, we pretend
that x̂ is the true x and take a noisy measurement y. 4. We form the posterior belief about x to incorporate the
information contained in y. 5. Repeat until we have identified a new sample with sufficient precision λi.

Our key contributions can be summarized as follows.

• We present a new generative model based on iterative posterior inference from noisy predictions.
• We derive an ELBO to enable effective likelihood optimization and show how we can reduce the

variance of the training loss with importance sampling.
• Further, we compare our model in detail to Variational Diffusion Models (VDMs) (Kingma et al.,

2023) and Bayesian Flow Networks (BFNs) (Graves et al., 2023).
• We show that the simple generative process described above includes BFN as a special case,

providing a novel and simplified perspective on them, and analyze the relationship to DMs.
• Finally, we describe our model design and demonstrate empirically that our model surpasses

both VDM and BFN in terms of sample quality on ImageNet32 while achieving equivalent
log-likelihoods.

Notation We parametrize Normal distributions either with a variance σ2 as N (µ, σ2I) or with
a precision λ = 1/σ2 as NP(µ, λI). Since all Normal distributions in this work are isotropic, we
shorten these to N (µ, σ2) and NP(µ, λ). [n] is the set of integers 1, . . . , n and R+ refers to the
non-negative reals.

2 SAMPLE DISCOVERY THROUGH ITERATIVE MEASUREMENT

Consider a sample x ∈ Rn that is unknown to us, but we can access noisy measurements yi ∼
NP(x, αi) of it. Then we can infer x from the sequence of measurements yi through Bayesian
inference. We start with a broad initial belief p(x) ∼ NP(µ0, λ0) and update it with information
contained in yi per the following lemma.

Lemma 2.1 (Posterior Update). Let x,µ ∈ Rn and λ ∈ R+ such that x is latent and p(x) =
NP(x | µ, λ) is a prior on x; and y ∼ NP(x, α) where α ∈ R+. Then the posterior is p(x | y) =
NP(x | µ′, λ′) with

λ′ = λ+ α and µ′ = 1/λ′ [λµ+ αy] . (1)

Proof. See (Murphy, 2012, Section 4.4.1).

We can now iterate over the noisy measurements and update our belief until p(x | y1, . . . ,yk) ∼
NP(µk, λk) identifies x with sufficient precision. Sufficiency depends on the application but could be
defined, for example in the case of images, such that most of the probability mass for each dimension
of an image x is contained within a single color intensity bin of width 1/256 for 8-bit color. Note that,
at each step, all information contained in y1, . . . ,yk is captured in the current µk.

2
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3 SAMPLE GENERATION WITH POSTERIOR INFERENCE

We turn the procedure in Section 2 into a generative model, which we call Bayesian
Sample Inference (BSI), as follows. We begin with an initial belief (µ0, λ0) about
the sample x which we will generate in the end, with µ0 sampled from a suitable
prior distribution p(µ0) and λ0 fixed. Obviously, x is unknown a priori, so we can-
not measure it, but we can estimate it from the information we have gathered so far.

Algorithm 1: Sampling with posterior infer-
ence
input Initial precision λ0,

precision schedule αi for i ∈ [k]
output Sample x̂∗

1: Initialize belief (µ0, λ0) with µ0 ∼ p(µ0)
2: for i = 1, 2, . . . , k do
3: x̂i−1 = fθ(µi−1, λi−1)
4: yi ∼ NP(x̂i−1, αi)
5: Update belief

p(x | y1, . . . ,yi) = NP(µi, λi):
6: λi = λi−1 + αi

7: µi = 1/λi[λi−1µi−1 + αiyi]
8: end for
9: Return x̂∗ = fθ(µk, λk)

Let fθ : Rn × R+ → Rn be a learned model
with parameters θ that estimates which un-
known sample x we have observed so far from
our current belief (µi, λi). We estimate x as
x̂i−1 = fθ(µi−1, λi−1) and sample a noisy
measurement yi ∼ NP(x̂i−1, αi) of x̂i−1 in
place of x with precision αi. Then, we can up-
date our belief with yi and Lemma 2.1 to the
posterior (µi, λi). Now, we alternate between
these two steps, i.e. predicting and taking a noisy
measurement followed by updating our current
belief, until the posterior precision λi is suffi-
cient. Finally, we return x̂∗ = fθ(µk, λk) as
our generated sample. See Algorithm 1 for a
formal description and Fig. 1 for a visual expla-
nation.

Since the posterior precision λi does not depend on the generated sample x̂i, we can choose the
number of measurement rounds k and precision schedule αi a priori such that λk will always be
sufficiently large.

We have collected the proofs of all formal statements in this section in Appendix D.

3.1 EVIDENCE LOWER BOUND

By interpreting BSI as a hierarchical latent variable model, we derive an ELBO (Kingma & Welling,
2013), i.e. a lower bound on log p(x) assigned to a data point by our model. The ELBO will then
serve as a natural training target for fθ to ensure that true data samples have high likelihood under
our model.

We form our hierarchy out of the sequence of belief means {µi}, giving us

p(x) = E
p(µ0)·p(µ1|µ0)···p(µk|µk−1))

[p(x | µk)]. (2)

The precisions {λi} are not included as latent variables, because they do not depend on x. With this
hierarchy, we can derive the following ELBO.
Theorem 3.1. Let x ∈ Rn and αR, αi ∈ R+, i ∈ [k]. Then the log-likelihood of x is lower-bounded
as

log p(x) ≥ −LR − Lk
M (3)

by a reconstruction term LR and a measurement term Lk
M,

LR = E
q(µk|x,λk)

[
9logNP(x | x̂k, αR)

]
and Lk

M =
k

2
E

i∼U(0,k−1)
q(µi|x,λi)

[
αi+1∥x− x̂i∥22

]
(4)

where

q(µi | x, λi) = E
p(µ0)

[
p(µi | µ0,x, λi)

]
, x̂i = fθ(µi, λi) and λi = λ0 +

i∑
j=1

αj . (5)

The measurement term Lk
M corresponds to the noisy measurement and update loop in Algorithm 1

and LR to the final computation of the sample x̂∗. q(µi | x, λi) is the distribution of our belief
(µi, λi) about the unknown sample x after i steps if we would have observed the true x instead of

3
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x̂1, . . . , x̂i. p(µi | µ0,x, λi) is the marginal distribution of possible posterior beliefs (µi, λi) with
posterior precision λi reachable from an initial belief (µ0, λ0). Equivalently, p(µi | µ0,x, λi) is the
distribution of beliefs (µi, λi) after updating our initial belief (µ0, λ0) with a single measurement of
x with Lemma 2.1 – marginalized over all possible noisy measurements y at precision α = λi − λ0.

On closer examination, we see that LR, measuring how accurately we can reconstruct x at the
end, only depends on the total precision λk that we accumulated in the first phase of the algorithm.
However, Lk

M depends both on the number of rounds k and the precision schedule αi. We can derive
an ELBO that is independent of k and αi by considering the limit as k → ∞ and refining the precision
schedule {αi}ki=1 into smaller and smaller steps while keeping the total precision αM =

∑k
i=1 αi

constant.

Theorem 3.2. Let αR, αM ∈ R+. For any sequence of precision schedules αk,i for k ∈ N, i ∈ [k]

such that
∑k

i=1 αk,i = αM and the sequence of functions [k] → R+ : i 7→ αk,i converges uniformly
to 0, we can take the limit of Theorem 3.1 as k → ∞ to get

LR = E
q(µλM

|x,λM)

[
9logNP(x | x̂λM

, αR)
]

and L∞
M =

αM

2
E

λ∼U(λ0,λM)
q(µλ|x,λ)

[
∥x− x̂λ∥22

]
(6)

where q(µλ | x, λ) = Ep(µ0)

[
p(µλ | µ0,x, λ)

]
, λM = λ0 + αM and x̂λ = fθ(µλ, λ).

As long as our model is more accurate in reconstructing x from more precise measurements, a
reasonable assumption, Theorem 3.2 is a tighter bound on the log-likelihood than Theorem 3.1. To
see this, we rewrite L∞

M in terms of the expected squared error at belief precision λ

h(λ) = E
q(µλ|x,λ)

∥x− x̂λ∥22 (7)

as
L∞
M =

αM

2
E

λ∼U(λ0,λM)
[h(λ)] (8)

for which we have the following result.

Lemma 3.3. If h is strictly decreasing, L∞
M < Lk

M for any k and any precision schedule {αi}.

3.2 PRIOR DISTRIBUTION

Let’s consider possible priors of the form p(µ0) = NP(0, γ0) for our initial belief. Then we have the
following result for the encoding distribution q(µλ | x, λ) in Theorems 3.1 and 3.2.

Lemma 3.4. Let λ0, γ0 ∈ R+, p(µ0) = NP(0, γ0) and λ ≥ λ0. Then

q(µλ | x, λ) = NP

(
λ− λ0

λ
x,

λ2

λ− λ0 + λ2
0/γ0

)
. (9)

How should we choose γ0? We start the sampling process with initial precision, i.e. confidence, λ0.
If λ0 was larger than γ0, we would be unreasonably confident in our initial belief, since we know that
µ0 has more uncertainty than λ0. From this, we deduce that the reasonable range for γ0 is [λ0,∞].
At the same time, we want to avoid unwarranted assumptions by the prior, so we choose γ0 = λ0

for our model, which also gives us a particularly simple form for the encoding distribution.

Corollary 3.5. Let λ0 ∈ R+, p(µ0) ∼ NP(0, λ0) and λ ≥ λ0. Then

q(µλ | x, λ) = NP

(
λ− λ0

λ
x, λ

)
. (10)

3.3 VARIANCE REDUCTION

The squared distance ∥x− x̂λ∥22 in L∞
M will necessarily vary significantly across the range of λ with

large values for small λ where q(µλ | x, λ) ≈ p(µ0) and small values for large λ when µλ ≈ x.
We can reduce the variance of Monte Carlo (MC) estimates of L∞

M for ELBO evaluation or gradient
computation in training with importance sampling with a suitable proposal distribution p(λ).

4
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Corollary 3.6. Let p(λ) be a probability distribution with support [λ0, λM]. Then we have

L∞
M =

1

2
E

λ∼p(λ)
q(µλ|x,λ)

[
1

p(λ)
∥x− x̂λ∥22

]
. (11)

We can further rewrite L∞
M as

L∞
M =

1

2
E

λ∼p(λ)

[
h(λ)

p(λ)

]
(12)

with h as defined in Eq. (7). To minimize the variance of MC estimates of L∞
M , we want to bring

h(λ)/p(λ) as close to a constant as possible. If it were actually constant, the variance of the MC
estimate would be zero.

Algorithm 2: Estimating the BSI training loss
input Data sample x
output Monte Carlo estimate of L∞

M
1: Sample t ∼ U(0, 1), ε ∼ N (0, I)
2: λ = exp

(
(log λM − log λ0) · t+ log(λ0)

)
3: µλ = (λ−λ0)/λx+

√
1/λ ε

4: Return
(log λM − log λ0)λ · ∥x− fθ(µλ, λ)∥22

Algorithm 3: Sampling with BSI
input Initial precision λ0,

precision schedule αi for i ∈ [k]
output Sample x̂∗

1: Sample εi ∼ N (0, I), i = 0, . . . , k

2: µ0 =
√

1/λ0 ε0
3: for i = 1, 2, . . . , k do
4: x̂i−1 = fθ(µi−1, λi−1)
5: λi = λi−1 + αi

6: µi =

λ91
i

(
λi−1µi−1 + αi

(
x̂i−1 +

√
1/αiεi

))
7: end for
8: Return x̂∗ = fθ(µk, λk)

Let’s begin by examining h more closely. If we
approximate fθ as fθ(µ, λ) = µ and assume
that x is normalized to zero mean and unit vari-
ance, we get the closed form

E
x
[h(λ)] ∝ λ2

0

λ2
+

1

λ
. (13)

While fθ(µ, λ) = µ might seem a crude ap-
proximation at first, it is not too far off for large
λ where the model just needs to predict a small
correction to its input.

Eq. (13) suggests that we should choose p(λ) ∝
λ2
0/λ2 + 1/λ to minimize the variance of MC

estimates. While evaluating p(λ) is simple
enough, we would need to invert its cumula-
tive distribution function (CDF) numerically
to sample from it. Instead, we recognize that
1/λ dominates λ2

0/λ2 except for the smallest
λ and choose p(λ) ∝ 1/λ, i.e. a standard
Log-Uniform(λ0, λM) distribution.

3.4 TRAINING & SAMPLING

We train our model with the ELBO from The-
orem 3.2 by optimizing 2L∞

M/n. We do not
optimize LR directly as its magnitude is negligible for sufficiently large αM and it is structurally
similar to L∞

M , i.e. both amount to a squared distance. Algorithm 2 shows the resulting algorithm
with our belief prior p(µ0) and proposal distribution p(λ). Similarly, Algorithm 3 implements the
abstract Algorithm 1 with our belief prior.

4 DISCUSSION

We are aware of two generative models that are closely related to BSI, BFN (Graves et al., 2023)
and VDM (Kingma et al., 2023). BFNs are generative models motivated from an information
theory perspective with a sender and a receiver communicating about the sample. As we show in
Appendix A.1, BFNs are a special case of our framework in Section 3 if we translate them to the
probabilistic perspective. They correspond to choosing γ0 = ∞ and λ0 = 1, meaning that sampling
always starts from the deterministic belief (µ0, λ0) = (0, 1). In contrast, BSI chooses γ0 = λ0, i.e.
the noise in the initial belief corresponds to our confidence in it, and leaves λ0 as a hyperparameter,
which we investigate in Section 6. VDM are a type of DM that have shown excellent performance in
likelihood-based modeling. They are similar to BSI insofar as they specify the distribution of latent
variables directly rather than defining a Markovian noising process as classical DMs do.

All three models admit an ELBO of the form

− log p(x) ≤ LR +
ω̄ −

¯
ω

2
E

ω∼U(
¯
ω,ω̄)

q(ψω|x,ω)

[
∥x− x̂ω∥22

]
(14)

5
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Table 1. Central structures of VDM, BFN and BSI. To improve comparability, we parametrize VDM in terms of
the signal-to-noise ratio (SNR) ν. BFN and BSI are parametrized with the belief precision λ as introduced in
Section 3. εi ∼ N (0, I) is sampling noise.

Model ELBO Encoder q(ψ | x, ω) Latent Prior Update Step for Sampling

VDM q(z | x, ν) = NP

(√
ν

1+ν x, 1 + ν
)

zT ∼ NP(0, 1) zi =

√
νi+1(1+νi+1) zi+1+(νi−νi+1)

(
x̂i+

√
1

νi−νi+1
εi

)
√

νi(1+νi)

BFN q(µ | x, λ) = NP((λ−1)/λx, λ
2
/(λ−1)) µ0 = 0

µi =
λi−1µi−1+αi

(
x̂i−1+

√
1
αi
εi

)
λi−1+αiBSI q(µ | x, λ) = NP((λ−λ0)/λx, λ) µ0 ∼ NP(0, λ0)

V
D

M

t = 0.0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 t = 1.0

B
FN

B
SI

Figure 2. ELBO encoders q, i.e. training inputs, of BSI, BFN and VDM. t parametrizes the precision levels by
the respective model’s precision schedule with t = 0 being pure noise, ideally, and t = 1 almost equaling the
data. Top half shows the mean of q and bottom half a sample. Mean 0 is gray because all models rescale the
data to [−1, 1]. BFNs apply little noise overall and reach a deterministic state at t = 0. For VDM, significant
information about the sample is preserved in the structure of the mean at the highest noise level. In contrast, BSI
converges to its latent prior distribution.

for a set of latent variables ψ at precision levels ω between
¯
ω and ω̄. For BSI and BFN, the precision

level ω is the belief precision λ between λ0 and λM and ψω = µλ. For VDM, the latent variables ψ
are called z and they parametrize ω as the SNR ν between e−5 and e13.3.

Despite this shared ELBO form, the models vary significantly. Table 1 lists the encoding distribution
q(ψ | x, ω) for each model, their prior, from which they begin the sampling process, and the update
step that the models iterate during sampling. First, we see that VDM starts sampling from a standard
Normal vector and BFN from the deterministic 0. Only BSI allows sampling from an initial precision
λ0 less than 1, which has been shown to improve sample diversity in consistency models (Song &
Dhariwal, 2024). Second, the update step shared between BSI and BFN is significantly simpler than
the VDM update with respect to the precision parameter and does not require evaluation in log-space
for numerical stability as recommended for VDM (Kingma et al., 2023).

For the encoding distribution q(ψ | x, ω), which provides the training inputs when the models
optimize their ELBO, we turn to Fig. 2. First, we note that BFN adds little noise overall due to
their noise variance (λ−1)/λ2 going to 0 for both small and large λ. Next, we notice the encoding
distribution q(ψ | x,

¯
ω) with the most noise at t = 0. While it agrees exactly with the latent prior

used for sampling for BSI and BFN, for VDM it becomes approximately NP(0.08x, 1), which differs
significantly from the standard Normal prior for sampling. In fact, the image motif is still clearly
discernible in the distribution mean for VDM at its maximum noise level. The amount of signal
remaining in the mean for BSI at high noise levels is counteracted by much higher noise variance, e.g.
15.85 at t = 0.1 for BSI compared to 0.96 for VDM.

Diffusion Models If we currently hold the belief (µ′, λ′), the distribution over beliefs (µ, λ′ − α)
that are α less precise is

p(µ | µ′,x) = N

(
ξ91
[
λλ′

α
µ′ − λ0x

]
, ξ

)
(15)

for a certain precision ξ. This shows that BSI can be written as a DM with a non-Markovian forward
or “noising” process. See Appendix A.2 for a detailed derivation of this connection. There we also

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

exploit that BFNs are a special case of BSI to derive the forward process for BFN and show that it is
Markov, in contrast to the BSI process.

5 MODEL DESIGN

In this section, we introduce a design for the prediction model in BSI. We begin by deriving a
preconditioning structure for fθ, i.e. a type of model structure similar to noise prediction in DMs.
Then, we describe how we bring λ into a suitable range as an input for deep learning. Finally, we
give our choice of the hyperparameters λ0, αM and αR and report the model architectures we used as
the backbone of fθ.

5.1 PRECONDITIONING

It has long been known in the context of DMs that training models to predict x directly from a
noisy input can hinder learning and limit sample quality (Karras et al., 2022; Ho et al., 2020). For
probabilistic modeling, it is especially important that the model prediction stays close to the true
sample if the input is already at a low noise level to achieve high ELBOs. This can be seen, for
example, in Corollary 3.6 where prediction errors for high-precision input beliefs with large λ have
a higher weight. Instead of predicting x, DMs commonly either predict a variation of the noise in
the model input (Ho et al., 2020; Song et al., 2021a) or an adaptive mixture of the noise and the true
sample (Salimans & Ho, 2021). In the end, these approaches amount to adding a skip connection to
the model with specific weights.

For BSI, we derive such a preconditioning structure with the adaptive-mixture approach from Karras
et al. (2022). Let f ′

θ be our neural network. Then we define the preconditioned fθ as
fθ(µ, λ) = cskipµ+ coutf

′
θ(cinµ, λ) (16)

and find the parameters through the conditions proposed by Karras et al. (2022). cin and cout are
chosen such that the input to f ′

θ and its training target have unit variance. cskip is then chosen to
minimize cout, which minimizes the influence of prediction errors and ensures that fθ retains most of
the signal already contained in µ at large precisions λ.

From these conditions, we derive
cskip = (λ−λ0)/κ, cout =

√
1/κ, cin =

√
λ/κ (17)

where κ = 1+ (λ−λ0)
2
/λ in Appendix C. λ is the precision of our current belief about x and the input

to fθ.

5.2 PRECISION ENCODING

The magnitude of λ makes it impractical as a feature for neural networks. However, the CDF F of
p(λ) is a natural way to scale λ from [λ0, λM] to [0, 1] as in DMs and flow matching (FM) (Lipman
et al., 2023). In practice, we use fθ(µ, t) instead of fθ(µ, λ) where

t = F (λ) =
log λ− log λ0

log(λM)− log λ0
. (18)

Compared to linear re-scaling, our method makes it easier for fθ to distinguish belief precisions in
the high-noise regime.

5.3 HYPERPARAMETERS

Apart from fθ, BSI has three hyperparameters, λ0, αM and αR. λ0 should be small enough that
the initial belief covers the whole data distribution. We have found experimentally that λ0 = 10−2

optimizes likelihoods and sample quality at the same time for images rescaled to [−1, 1], see
Section 6.3. This agrees with the finding of Song & Dhariwal (2024) that large initial noise scales
improve sample diversity in consistency models.

αM should be large enough that a noisy measurement at precision αM identifies an x, e.g. for images
almost all probability mass of NP(x, αM) should be contained within a single 8-bit color intensity
bin. We choose αM = 106, which Graves et al. (2023) also picked for BFN. While L∞

M dwarfs LR,
αR = 2αM gives a slight edge in likelihood, empirically, as also observed by Graves et al. (2023).
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5.4 ARCHITECTURE

After the preconditioning and mapping λ to a t ∈ [0, 1], there are two more steps to turn the
inputs µ and t of f ′

θ into effective features for a neural network. Regarding t, we convert it into a
32-dimensional precision embedding with a sinusoidal position encoding (Vaswani et al., 2017).

The Fourier features proposed by Kingma et al. (2023) are an essential component to reach high
likelihoods, because they help the model distinguish fine details at high likelihoods, i.e. for inputs
that are already close to the data distribution. They are basically a sinusoidal embedding of every
dimension of µ. In particular, we extend µ to the vector(

µ sin(2iπµ) cos(2iπµ)
)
∈ R(3+2(nmax−nmin))·n i ∈ nmin, . . . , nmax (19)

before passing it into the neural network. We choose nmin = 6 and nmax = 8, in effect increasing
the dimensionality of the input to the neural network from n to 7n.

For the neural network itself, we use two architectures, U-Nets (Ronneberger et al., 2015) and
Vision Transformers (ViTs) (Dosovitskiy et al., 2020). We use the U-Net configuration proposed by
Kingma et al. (2023) which adapts the widely used configuration from (Ho et al., 2020) for likelihood
estimation. Most notably, the (Kingma et al., 2023) version has no downsampling between layers of
the U-Net, which lets them increase the number of U-Net levels to 32.

ViTs are a more recent architecture inspired by the success of transformers (Vaswani et al., 2017).
They represent images as a set of patches with a 2D position embedding and process them with global
attention, in contrast to convolutional architectures like the U-Net where communication happens
primarily locally. We opt for the Diffusion Transformer (DiT) architecture (Peebles & Xie, 2023)
which has been shown to improve sample quality over variants of the (Ho et al., 2020) U-Net model.

6 EXPERIMENTS

We evaluate BSI on the ImageNet (Deng et al., 2009) and CIFAR10 (Krizhevsky, 2009) datasets
in terms of log-likelihood and sample quality. While BSI as a method is general and not specific
to images, we chose image datasets, because they are established benchmarks in the probabilistic
modeling literature. In our experiments, we compare against BFN (Graves et al., 2023) and VDM
(Kingma et al., 2023). BFNs are a special case of our framework (see Section 3) and provides an
important reference point for the effect of the non-deterministic hyper-prior p(µ0) in BSI. VDMs are
a representative of the diffusion family of models specifically designed for probabilistic modeling
that is structurally similar to BSI as we explained in Section 4.

In Appendix B, we describe how we compute the ELBO, which we derived in Section 3.1 for
continuous x, on discretized images with 8-bit color channels. Appendix E lists hyperparameters and
training details and Appendix F shows some generated samples.

6.1 IMAGENET

Table 2. Log-likelihood in BPD and sample
quality (FID) against the test set on ImageNet.
We compute standard deviations over 3 seeds.

Model BPD ↓ FID ↓
ImageNet32 (2 M train steps)

BFN 3.448 ± 0.005 11.0 ± 0.1
VDM 3.452 ± 0.006 9.9 ± 0.5

BSI 3.448 ± 0.006 8.9 ± 0.1

ImageNet64 (100 k train steps)

BFN 3.270 ± 0.008 50.3 ± 2.5
VDM 3.277 ± 0.004 47.7 ± 0.4

BSI 3.262 ± 0.006 42.2 ± 0.7

For this evaluation, we train a DiT (Peebles & Xie, 2023)
in the BFN, VDM and BSI model, respectively, on the of-
ficial 32×32 and 64×64 versions of ImageNet (Chrabaszcz
et al., 2017). We train each model from three seeds and
evaluate the log-likelihood of the test set in bits per di-
mension (BPD) and the sample quality in terms of Fréchet
inception distance (FID) against the test set. For the log-
likelihood, we evaluate each model’s ELBO with 5 sam-
ples from the respective equivalent of L∞

M and 2 samples
from the respective equivalent of LR. For the sample
quality, we draw 50 000 unconditional samples from each
model with 1024 steps and then compute the FID between
the generated samples and the test set. On the 32×32 res-
olution images, we train the DiT-L-2 configuration for
2 M steps and on the 64×64 resolution data, we train the
DiT-L-4 configuration for 100 k steps.
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Table 2 shows that BSI achieves equivalent likelihoods to VDM and BFN while generating higher-
quality samples in terms of FID. This aligns with the result for consistency models by Song &
Dhariwal (2024) that a larger variance of the initial state – initial belief µ0 for BSI – improves the
sample diversity. Ordering the models by improving FID, we have BFN first with an initial variance
of 0 (µ0 = 0), then VDM with an initial variance of 1 and finally BSI with an initial variance of
λ91
0 = 100. The magnitude of the FID on ImageNet64 aligns with the results reported by Peebles

& Xie (2023) after 100 k training steps. Furthermore, Fig. 3 shows that BSI generates significantly
better samples than the closely related BFN with fewer steps on ImageNet32.

23 24 25 26 27 28 29 210

Steps k

101

102

FID

BFN
VDM
BSI

Figure 3. BSI’s sample quality con-
verges quickly and to a lower FID
with increasing number of steps.

26 28 210 212 214 216

Steps k

10−3

10−2

10−1

100

Noise floor

Ex
[
LkM − L∞M

]

Figure 4. Lk
M converges to

L∞
M from above as predicted in

Lemma 3.3.

10−2 100 102 104 106

Precision λ

10−1

101

103

105

E x
[h

(λ
) /

p
(λ

)] p(λ) uniform

p(λ) log-uniform

Figure 5. Our proposal distribution
shrinks the range of h(λ)/p(λ), re-
ducing ELBO variance.

ELBO Convergence Fig. 4 shows how the finite step ELBO from Theorem 3.1 converges towards
its infinite step counterpart as k → ∞ on the test set of ImageNet32. For this plot, we sampled
100 precisions λ per image for the Monte Carlo estimates of Lk

M and L∞
M . The convergence trend

continues right to the noise floor where the noise overshadows the signal, marked in the plot by the
standard deviation of the Monte Carlo estimator for the difference between the two terms.

6.2 CIFAR10

Table 3. Test set log-likelihood on CI-
FAR10 of the same U-Net in different
models.

Model Training Steps BPD

VDM 10 M 2.65
BSI 2.64

BFN 5 M 2.66
BSI 2.65

We train the same U-Net architecture as VDM (Kingma et al.,
2023) and BFN (Graves et al., 2023) on CIFAR10. Table 3
shows that BSI achieves equivalent log-likelihoods in terms of
BPD. Due to the significant number of training steps (10 M),
we followed (Kingma et al., 2023; Graves et al., 2023) and
trained only a single model on this dataset.

Variance Reduction Fig. 5 verifies the effect of importance
sampling with a log-uniform distribution that we propose in
Section 3.3. It reduces the range of the h(λ)/p(λ) term in Eq. (12)
by about 4 orders of magnitude on CIFAR10 and therefore the
variance of a Monte Carlo estimate of the ELBO.

6.3 PARAMETER STUDIES

In the following, we evaluate the impact of our modeling and parameter choices.
Unless otherwise stated, we trained each model for 100 k steps on ImageNet32

10−2 100 102 104 106

Precision λ

10−5

10−3

10−1

1− cskip

‖fθ(µ, λ)− µ‖/‖µ‖

Figure 6. As λ increases, x̂ = fθ(µ, λ)
and the belief µ converge.

with a DiT architecture, evaluated the likelihood of the test set
in BPD with the infinite-step ELBO and used 1024 sampling
steps to compute the FID. We will verify the assumptions of
the log-uniform proposal distribution p(λ), compare DiT and
U-Net model architectures, and evaluate the prior precision
λ0 and training on the finite-step ELBO Lk

M.

Proposal Distribution In Section 3.3, we have chosen a log-
uniform proposal distribution p(λ) based on the assumption
that fθ(µ, λ) ≈ µ. Fig. 6 shows that the relative distance be-
tween µ and fθ(µ, λ) falls quickly for λ > 1, when the belief

9
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23 24 25 26 27 28 29 210

Sampling steps k′

0

2
F

ID
k
−

F
ID
∞

23 24 25 26 27 28 29 210

Evaluation steps k′

0.00

0.05

0.10

B
P

D
k
−

B
P

D
∞

k = 26 k = 27 k = 28

Figure 7. FID and likelihood difference between models trained on Lk
M and L∞

M when evaluated for k′ steps.

(µ, λ) contains enough information that the model mostly refines the belief. Our preconditioning
structure fθ(µ, λ) = cskipµ+ coutf

′
θ(cinµ, λ) derived in Section 5.1 ensures that fθ retains existing

information as the precision λ grows.

Table 4. Trained with U-Net architecture.

Model BPD FID

BFN 3.505 ± 0.001 14.2 ± 0.4
VDM 3.527 ± 0.009 15.4 ± 1.5

BSI 3.510 ± 0.009 12.8 ± 0.6

Model Architecture To ensure that the improvements
in sample quality on ImageNet arise from BSI as a method
and not from the architecture of the underlying model,
we have also trained U-Nets on ImageNet32. Table 4
shows that the U-Net exhibits the same characteristics
as the DiT that we trained in Section 6.1, i.e. equivalent
likelihoods between BFN, VDM and BSI with a consistent
improvement in FID. We chose the U-Net parameterization of (Kingma et al., 2023), which is also
listed in Appendix E.

10−3 10−2 10−1 100

Prior precision λ0

3.50

3.52

3.54

B
PD

14

16

18

20

22

FI
D

k = 26 k = 27 k = 210

Figure 8. λ0 balances likelihood and sample quality
for varying sample steps k.

Initial Precision In Fig. 8, we evaluate the im-
pact of the initial precision λ0 on likelihood and
sample quality. While the likelihood of test data im-
proves with falling λ0, i.e. increasing initial noise,
the sample quality depends on the number of sam-
pling steps. For a large number of steps, larger λ0

perform slightly better, but with fewer steps an inter-
mediate λ0 is preferred. With fewer total sampling
steps, decreasing λ0 ensures that the sampling pro-
cess still spends enough steps in the intermediate
noise range, which is responsible for the generation
of large-scale features in the images (Rissanen et al.,
2022).

Training with L∞
M By default, we train by optimizing the measurement loss L∞

M of the infinite-step
ELBO, but in practice the model will only use finitely many steps. Fig. 7 shows that training on
Lk
M does not confer a consistent advantage in sample quality or likelihood. This justifies training by

optimizing L∞
M regardless of the number of steps used later and eliminates k as a hyperparameter.

7 CONCLUSION

We have introduced our generative model BSI through a novel perspective on generative modeling
that frames sample generation as iterative Bayesian inference. We have derived an ELBO for both
finite steps and the infinite step limit and an importance sampling distribution to minimize the training
loss variance. In addition, we have thoroughly discussed how BSI relates to BFN and DMs and shown
that BSI includes BFN as a special case. Our experiments have demonstrated that BSI generates
better samples than both VDM and BFN while achieving equivalent log-likelihoods on established
image datasets. Overall, BSI contributes a Bayesian perspective to the landscape of probabilistic
generative modeling that is theoretically simple and empirically effective.
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SOFTWARE

For our results, we rely on excellent software packages, notably numpy (Harris et al., 2020),
pytorch (Paszke et al., 2019), einops (Rogozhnikov, 2022), matplotlib (Hunter, 2007),
h5py (Collette, 2013), hydra (Yadan, 2019) and jupyter (Granger & Pérez, 2021).
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A HOW BSI RELATES TO . . .

A.1 BAYESIAN FLOW NETWORKS

BFNs are a recent class of generative models for continuous and discrete data motivated from an
information-theoretic perspective (Graves et al., 2023). In it, a sender communicates a latent sample
to a receiver while trying to minimize the transported data volume. The sender compresses the data
with entropy coding, so that minimizing the data volume is equivalent to the receiver maximizing
the log-likelihood of the latent sample based on the information that it has received from the sender
so far. Finally, a sample can be generated when the receiver also assumes the role of the sender and
repeatedly refines its belief.

Our generative approach in Section 3 includes BFN for continuous data as a special case. To see
this, we begin by choosing our belief prior p(µ0) as NP(0, γ0) and letting γ0 → ∞, i.e. the initial
belief mean will always be µ0 = 0. With Lemma 3.4, this gives us

q(µλ | x, λ) = NP

(
λ− λ0

λ
x,

λ2

λ− λ0

)
. (20)

If we now define α = λ− λ0, choose the initial precision λ0 = 1 and write the Normal distribution
in variance format, we see that

q(µλ | x, λ) = N
(

α

1 + α
x,

α

(1 + α)
2

)
, (21)

which equals the BFN flow distribution pF(θ | x; t) (Graves et al., 2023, Equation (76)) if we
parametrize λ (and therefore α) in terms of t ∈ [0, 1] as in Section 5.2.

Since a comprehensive description of BFN would go beyond the scope of this work, we will only
point out the correspondence between terms from Section 3 and their BFN counterparts without
explaining them in detail. For a complete description, we refer the reader to the original work (Graves
et al., 2023).

The current belief (µi, λi) is equivalent to the input distribution pI (Graves et al., 2023, Equation
(43)). Lemma 2.1 is the equivalent of the Bayesian update function h (Graves et al., 2023, Section
4.2). A noisy measurement y ∼ NP(x, α) corresponds to the sender distribution pS (Graves et al.,
2023, Equation (86)), while a noisy measurement y ∼ NP(x̂, α) of the model’s current prediction x̂
of the true sample corresponds to the receiver distribution pR (Graves et al., 2023, Equation (88)).
The output distribution pO and the Bayesian update distribution pU are just intermediate terms to
derive the model and appear neither in the final training nor sampling algorithm.

Fixing the initial belief to µ0 = 0 with infinite precision for BFN recovers the behavior described by
Graves et al. (2023, Figures 3 and 4) and shown in Eq. (21) that the precision (1 + α)

2
/α of the flow /

encoding distribution q(µλ | x, λ) in the ELBO first falls and then rises again as α grows. In contrast,
with our belief prior p(µ0) = NP(0, λ0) of the same precision as the initial belief (µ0, λ0) as we
choose it in Section 3.2, the precision of q(µλ | x, λ) grows linearly in λ (and α) in lockstep with the
precision of the belief (µi, λi). We hypothesize that this makes learning for the model easier, because
the noise level in its input varies linearly instead of non-linearly across noise levels. Furthermore,
in BSI, the first sampling step will already contribute to drawing a random sample, since the initial
input µ0 to fθ is random. In BFN, the initial belief is fixed to 0, which makes the first sampling step
deterministic and equal across all samples.

In Section 3.2, we have argued that the reasonable range of prior precisions γ0 is [λ0,∞]. BSI and
BFN occupy the two extremes of this range with BSI using the least informed prior γ0 = λ0, i.e.
making the fewest assumptions, and BFN the most informed one γ0 = ∞. Note that these extremes
are the only choices in the reasonable range for which the precision λ2(λ− λ0 + λ2

0/γ0)
91 of the

encoder q in Lemma 3.4 simplifies, i.e. to just λ for BSI and λ2(λ− λ0)
91 for BFN.

In our comparison to DMs in Appendix A.2, we see that BSI and BFN also differ in their associated
noising process. While BSI’s noising process, i.e. how one could go from a more precise measurement
back to a less precise one, does not form a Markov chain, BFN’s does, making BFN more similar to
DMs.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

In Appendix A.2, we exploit that BFN can be represented as a special case of BSI to derive a
Markovian forward process for BFN as DMs.

A.2 DIFFUSION MODELS

DMs are a widely used class of generative models built on the concept of inverting a diffusion process
(Sohl-Dickstein et al., 2015; Ho et al., 2020). Given a sample x, they define a Markov chain of
increasingly noisy versions x1,x2, . . . of x where x0 = x and

p(xi | xi−1) = N (αixi−1, βi) (22)
for some coefficients αi and βi. In training, a model learns to invert this Markov chain, which lets you
finally generate data by sampling from a noise distribution and stepping along the learned, reverse
Markov chain until you reach the data distribution.

While DMs initially achieved prominence in image generation (Dhariwal & Nichol, 2021), they
have since been applied successfully across a variety of domains, such as text-to-image mapping
(Saharia et al., 2022), fluid simulations (Lienen et al., 2024; Saydemir et al., 2024), adversarial attacks
(Kollovieh et al., 2024a), temporal (Lüdke et al., 2023) and general point processes (Lüdke et al.,
2024), molecular dynamics (Lewis et al., 2025), molecular structure generation (Ayadi et al., 2024),
and time series forecasting (Kollovieh et al., 2023; 2024b).

DMs and BSI are remarkably similar at first glance. Both revolve around the concept of iteratively
transforming noise into data samples, though DMs work with Langevin dynamics and BSI uses
posterior inference. For training, both models aim to align a parametric distribution pθ(x

′′ | x′) with
a distribution q(x′′ | x′,x) that describes a less noisy version x′′ of a noisy sample x′ given that the
true sample is x.

However, conceptually, they approach sampling from two different perspectives. DMs start with
the so-called forward process, where signal is iteratively converted into noise forming a Markov
chain of intermediate states as in Eq. (22). Then, they revert this chain to derive the reverse process
that enriches noise with data. In contrast, BSI defines the reverse process directly in the form of
Lemma D.1 and never uses the associated forward process directly.

We can revert BSI’s process to derive its “noising” process. This will let us see what BSI would look
like as a DM and thus understand the relationship between the two. Assume that our current belief is
(µ, λ = λ0 + α) and we want to denoise further based on a sample x and measurement precision α′,
i.e. update our belief to (µ′, λ′ = λ0 + α + α′). The denoising process described by Lemma D.1
tells us that

p(µ′ | µ,x) = NP

(
1/λ′
[
λµ+ α′x

]
, λ

′2
/α′
)
. (23)

To find the noising process, we revert this and get

p(µ | µ′,x) = N

(
ξ91
[
λλ′

α′ µ
′ + λ

(
α

α+ λ2
0/γ0

− 1

)
x

]
, ξ

)
(24)

where ξ = λ2
(
(α+ λ2

0/γ0)
91

+ α′91) and γ0 is the precision of the initial belief prior p(µ0) =
N (0, γ0). Find the proof at the end of this section.

Plugging in γ0 = λ0, we get that the noising process of BSI is

p(µ | µ′,x) = N

(
ξ91
[
λλ′

α′ µ
′ − λ0x

]
, ξ

)
where ξ = λ

(
1 +

λ

α′

)
. (25)

Note that this distributions depends on x since λ0 > 0. Therefore, BSI’s forward process would
not be Markov, i.e. you cannot add more noise to a belief state without knowing the sample x that
the belief state originated from. While DMs with non-Markov forward processes exist (Song et al.,
2021a; Chen et al., 2024), they are uncommon. In conclusion, we see that BSI can be represented as
a DM, though with a rather complex, non-Markovian forward process.

As we have shown in Appendix A.1, BFN are a special case of our generative framework in Section 3
if we choose γ0 = ∞. Curiously, Eq. (24) shows that this is the only prior on µ0 for which the
associated forward process is Markov as the coefficient of x becomes 0. This agrees with Xue et al.
(2024), who have shown that BFN admit a formulation based on stochastic differential equations
(SDEs), like score-based DMs.
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Proof of Eq. (24). We know from Lemma 3.4 that

q(µ | x, λ) = NP

(
λ− λ0

λ
x,

λ2

λ− λ0 + λ2
0/γ0

)
= NP

(
α

λ
x,

λ2

α+ λ2
0/γ0

)
(26)

and from Lemma D.1 that

p(µ′ | µ,x) = NP

(
1/λ′
[
λµ+ α′x

]
, λ

′2
/α′
)
. (27)

Therefore, p(µ,µ′ | x) is a Gaussian linear system and we can use (Murphy, 2012, Equation (4.125))
to see that

p(µ | µ′,x) = NP(ν, ξ) (28)

with

ξ = λ2

(
α+

λ2
0

γ0

)91

+

(
λ

λ′

)2
λ′2

α′ = λ2
(
(α+ λ2

0/γ0)
91
+ α′91

)
(29)

and

ν = ξ91

[
λ

λ′
λ′2

α′

(
µ′ − α′

λ′ x

)
+ λ2(α+ λ2

0/γ0)
91

α/λx

]
(30)

= ξ91

[
λλ′

α′ µ
′ + λ

(
α

α+ λ2
0/γ0

− 1

)
x

]
. (31)

A.3 STOCHASTIC INTERPOLANTS

Stochastic interpolants are a broad class of continuous-time stochastic processes that can interpolate
between any two probability distributions ρ0 and ρ1 (Albergo et al., 2025). They also prescribe how
to learn the interpolants’ dynamics to construct generative models and it is instructive to see how they
relate to BSI. The subclass of spatially linear one-sided interpolants assumes that ρ0 is a standard
Normal distribution and defines the interpolant

xt = α(t)zt + β(t)x1 (32)

where x1 ∼ ρ1 and zt ∼ N (0, I). Given that α and β are smooth, non-negative functions with
α(0) = β(1) = 1 and α(1) = β(0) = 0, xt smoothly interpolates between a standard Normal and
the data distribution ρ1.

For BSI, we can interpret the belief mean µλ for a data sample x

µλ =
1√
λ
z +

λ− λ0

λ
x (33)

as an interpolant that is normally distributed with mean 0 and precision λ0 at λ = λ0 and equals
the data sample x at λ = ∞. We could rewrite this as an interpolant in the above sense on [0, 1]
by parameterizing λ as a strictly increasing function λ(t) : [0, 1] → R+ with λ(0) = λ0 and
limt→1 λ(t) = ∞, e.g. λ(t) = λ0 − log(1 − t), similar to the mapping between score-based
diffusion and stochastic interpolants (Albergo et al., 2025, Section 5.1). But to avoid the scaling
and correction factors, we will consider it an interpolant on [λ0,∞] instead with α(λ) = 1/

√
λ and

β(λ) = (λ− λ0)/λ. We will furthermore write α(λ) and β(λ) as α and β to reduce visual clutter.

(Albergo et al., 2025, Section 4.4) shows that the probability path ρ(λ,µλ) of the interpolant solves
the transport equation ∂λρ+∇ · (bρ) = 0 with the velocity field

b(λ,µ) =
α̇

α
µ+

(
β̇ − α̇

α
β

)
η(λ,µ) (34)

and its score ∇ log ρ(λ,µ) is given by

s(λ,µ) = −µ− βη(λ,µ)

α2
. (35)
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η(λ,µ) = E[x | µλ = µ] is the denoiser, i.e. the expected data sample that led to belief µ at
precision λ. Note that η(λ,µ) is learned with a model η̂, which is equivalent to fθ(µ, λ) in BSI and
fit by minimizing (Albergo et al., 2025, Eq. (4.21))

L(η̂) =
∫ λM

λ0

E
[
1

2
∥η̂(λ,µ)∥22 − µ · η̂(λ,µ)

]
dλ. (36)

L(η̂) is equivalent to L∞
M in Theorem 3.2 up to a constant factor and offset.

With the velocity field and score, we can write down the forward SDE corresponding to the probability
path ρ as (Albergo et al., 2025, Corollary 18)

dµλ = bF(λ,µλ) dλ+
√
2ε(λ) dWλ (37)

where Wλ is Brownian motion, ε(λ) : R → R+ is any noise level specification and

bF(λ,µ) = b(λ,µ) + ε(λ)s(λ,µ)

=

(
α̇

α
− ε

α2

)
µ+

(
ε

α2
− α̇

α
+

β̇

β

)
βη(λ,µ)

(38)

is the forward drift. If we plug in α and β, we get

dµλ =

[
−
(

1

2λ
+ ελ

)
µλ +

(
ελ+

1

2λ
+

λ0

λ(λ− λ0)

)
λ− λ0

λ
η(λ,µλ)

]
dλ+

√
2ε dWλ. (39)

Since this holds for any non-negative ε, we can choose ε = 1
2λ2 to simplify the equation to

dµλ =
1

λ

[
η(λ,µλ)− µλ

]
dλ+

1

λ
dWλ. (40)

We can now sample from the learned stochastic interpolant by integrating Eq. (40) from λ0 to λM

(Albergo et al., 2025, Algorithm 5). Let’s say we are at precision λ with state µλ and want to move
ahead by a step of length α. With the Euler-Maruyama method suggested by (Albergo et al., 2025),
the integration step becomes

µλ+α = µλ + α · 1
λ

[
η̂(λ,µλ)− µλ

]
+

√
α

λ
ε

=
λ− α

λ
µλ +

α

λ
η̂(λ,µλ) +

√
α

λ
ε

(41)

where ε ∼ N (0, I). This is almost the same as the BSI sampling step

µi =
λi−1µi−1 + αi

(
x̂i−1 +

√
1
αi
εi
)

λi−1 + αi

=
λi − αi

λi
µi−1 +

αi

λi
x̂i−1 +

√
αi

λi
εi

(42)

in Algorithm 3. The subtle difference is that Eq. (41) uses the current λ to compute µλ+α whereas
Eq. (42) uses the next λi = λi−1 + αi for µi. This difference reflects that BSI employs an exact
Bayesian update rather than a first-order Euler-Maruyama approximation.

In summary, we can write BSI as a spatially linear one-sided stochastic interpolant, though two
important differences remain. First, while the sampling steps Eqs. (41) and (42) are equivalent in the
continuous limit of α → 0, they differ in practice due to their derivation from an SDE discretization
and posterior inference, respectively. Second, stochastic interpolants require the interpolation’s
endpoints to equal the noise and data distribution exactly, which corresponds to λ = ∞ in the
above formulation. In contrast, BSI only infers the sample x up to a maximum precision of λM, e.g.
precisely enough to identify the exact color in an image with 8-bit color channels.
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B ELBO IN BITS PER DIMENSION

A common metric in probabilistic modeling is the negative log-likelihood of unseen data. The
benefits of this metric are that it is theoretically motivated by the probabilistic framework and it can
be computed across domains regardless of data modality. If the negative log-likelihood is small, the
generative model assigns high likelihood to the unseen data and can thus be regarded as a good model
(though likelihood and sample quality are not necessarily the same thing (Theis et al., 2016)). For
models that come with an ELBO like BSI, we can use it to upper bound the negative log-likelihood
to compare against other ELBO-based or exact-likelihood models.

The negative log-likelihood is usually reported in bits per pixel, per color channel or, in general, per
dimension. This unit comes from the fact that an entropy coder could use the model to encode samples
x ∈ Sd from a finite symbol alphabet S from the data distribution asymptotically in −log2 pθ(x)/d
bits per dimension (Duda et al., 2015). Note that the underlying space S must be discrete. If it were
continuous, pθ(x) would be a density and the theory would predict that we could compress x into a
negative number of bits.

The discreteness requirement is a natural fit for many domains. While, for example, images are
usually treated as tensors with continuous color values, the colors are actually stored as discrete
values in the range [0, 28 − 1] for 8-bit images. Similarly, audio data is a sequence of discrete values
in, for example, a 16-bit range.

Let’s say that S is the set of integers {0, . . . , r − 1}. Then we can compute an upper bound on the
bits needed to encode x ∈ Sd by

− log2 p(x) ≤ log(2)(L′
R + L∞

M ) (43)

as per Theorems 3.1 and 3.2. The multiplication by log(2) converts the logarithms in L′
R and L∞

M to
base 2. L′

R is the same as LR but with a discretized Normal likelihood to account for the discrete
nature of x, i.e.

L′
R = E

q(µλM
|x,λM)

[
9logN ′

P(x | x̂λM , αR)
]

(44)

where
N ′

P(xj | x̂λM
, αR) = Φ(rj | x̂λM

, αR)− Φ(lj | x̂λM
, αR). (45)

Φ(rj | x̂λM
, αR) is the CDF of N (x̂λM

, αR) and lj and rj are the boundaries of the discretization
interval containing xj , i.e.

lj =


−∞ if xj <

1
2

r − 3
2 if xj ≥ r − 3

2

⌊xj − 1
2⌋+

1
2 otherwise

and rj =


∞ if xj ≥ r − 3

2
1
2 if xj <

1
2

⌊xj +
1
2⌋ −

1
2 otherwise.

(46)

L∞
M is usually not discretized during ELBO computation as the latent variables only enter as a

mean squared error instead of a log-likelihood. In a practical implementation, the latent variable
distributions would need to be discretized as well, decreasing the ELBO slightly (Kingma et al., 2023;
Townsend et al., 2019). If x is discretized to a different set of discrete symbols, e.g. numbers between
−1 and 1 instead of the integers S, the boundaries of the discretization intervals and bin widths in the
discretized Normal distribution have to be adapted accordingly.

C PRECONDITIONING DERIVATION

We will assume in this section that the data is normalized such that E[x] = 0 and Var[x] = I .

Assume that we have a current belief (µ, λ). We derive the parameters cskip, cout and cin of the
preconditioned model

fθ(µ, λ) = cskipµ+ coutf
′
θ(cinµ, λ) (47)

analogously to Karras et al. (2022). However, while we proceed in the same way, the resulting
parameters for BSI differ from Karras et al. (2022) because BSI is not included in the family of DMs
that Karras et al. (2022) consider, see Appendix A.2.

First, we require that Varx[cinµ] = I for all λ. We know from Corollary 3.5 that

q(µ | x, λ) = NP

(
(λ−λ0)/λx, λ

)
. (48)
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Therefore, p(x,µ) is a Gaussian linear system and (Murphy, 2012, Equation (4.126)) tells us that the
variance of the marginal distribution of µ is

Varx[µ] =

(
λ91 +

(λ− λ0)
2

λ2

)
I. (49)

By plugging this into our requirement

Varx[cinµ] = c2in Varx[µ] = I, (50)

we get immediately that

cin =

(
λ91 +

(λ− λ0)
2

λ2

)91/2
=

(
1 +

(λ− λ0)
2

λ︸ ︷︷ ︸
=:κ

)91/2
λ

1/2 =
√

λ/κ. (51)

Next, we want to have the actual prediction target of f ′
θ during training to have unit variance, too. In

training, we optimize the ELBO from Theorem 3.2, which comes down to minimizing∥∥x− fθ(µ, λ)
∥∥2
2

(52)

up to constant factors only depending on λ. If we plug in Eq. (47) and isolate f ′
θ, this distance

becomes ∥∥x− cskipµ− coutf
′
θ(cinµ, λ)

∥∥2
2
= c2out

∥∥f ′
θ(cinµ, λ)− c91out(x− cskipµ)

∥∥2
2
. (53)

From this, we identify c91out(x − cskipµ) as the actual training target for f ′
θ. For the rest of this

derivation, we denote use the shorthand α = λ− λ0 for the measurement precision accumulated in
our belief (µ, λ). After Corollary 3.5, we can write µ as α/λx + z where z ∼ NP(0, λ) and find
that the variance of the training target is

Varx,z[c
91
out(x− cskipµ)] = c92out Varx,z

[
x− cskip

(
α

λ
x+ z

)]
= c92out Varx,z

[(
1− cskip

α

λ

)
x− cskipz

]
= c92out

[(
1− cskip

α

λ

)2

+ c2skipλ
91

]
I

(54)

If we now require the effective training target to have unit variance, we see that

c2out =

(
1− cskip

α

λ

)2

+ c2skipλ
91 =

[
1 +

α2

λ

]
1

λ
c2skip − 2

α

λ
cskip + 1. (55)

Following Karras et al. (2022), we now choose cskip to minimize the impact of errors in the output
of f ′

θ by minimizing the magnitude of cout. c2out is a polynomial in cskip with positive leading
coefficient, so we can find the minimizer as the root of

1

2

dc2out
dcskip

=

[
1 +

α2

λ

]
1

λ
cskip − α

λ
, (56)

which is at

cskip =

[
1 +

α2

λ

]91
α = κ91α =

α

κ
. (57)

Finally, we can plug cskip into Eq. (55) to get

c2out = κκ92 a
2

λ
− 2

α

λ
κ91α+ 1 = κ91

(
a2

λ
− 2

α2

λ
+

[
1 +

α2

λ

])
= κ91 (58)

and consequently cout = κ91/2 =
√

1/κ.
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D PROOFS

D.1 PROOF OF THEOREM 3.1

We will begin with some auxiliary insights. First, we consider the marginal distribution of the updated
belief (µ′, λ′). This means that our current belief about a sample x is (µ, λ) and now we want to
know the distribution of µ′ after updating µ with Lemma 2.1 marginalized over all possible noisy
measurements y with precision α. Note that λ′ is deterministic as it neither depends on x nor y.
Lemma D.1 (Update Marginal). Let x,µ ∈ Rn and λ, α ∈ R+. Then the distribution of the posterior
belief mean µ′ marginalized over all measurements y made with precision α is

p(µ′ | µ,x, α) = E
y∼NP(x,αI)

[
p(µ′ | µ,x, α,y)

]
= NP

(
1/λ′
[
λµ+ αx

]
, λ

′2
/α
)
. (59)

Proof. The noisy measurement is a Normal random variable y ∼ NP(x, α) and the mean of our
posterior belief (µ′, λ′) after observing y is the deterministic linear transformation

µ′ = 1/λ′ [λµ+ αy] (60)

of this random variable. The statement follows immediately by the linear transformation property of
the Normal distribution.

From this, we can see that the update marginal from multiple intermediate measurements is the same
as from a single measurement with the combined precision of the intermediate measurements.
Lemma D.2. Let x,µ,µ′,µ′′ ∈ Rn and λ, α, α′ ∈ R+. µ′ is the posterior belief mean after
a measurement with precision α and µ′′ the posterior belief mean after a second, subsequent
measurement with precision α′. Then we have that the marginal distribution of the second update is

E
p(µ′|µ,x,α)

[p(µ′′ | µ′,x, α′)] = p(µ′′ | µ,x, α+ α′). (61)

Proof. We know from Lemma D.1 that µ′ is a random variable

p(µ′ | µ,x, α) = NP

(
1/λ′
[
λµ+ αx

]︸ ︷︷ ︸
=:ν

, λ
′2
/α︸︷︷︸

=:ξ

)
(62)

and µ′′ is a random variable that depends linearly on µ′

p(µ′′ | µ′,x, α′) = NP

(
1/λ′′

[
λ′µ′ + α′x

]
, λ

′′2
/α′
)
. (63)

As such, they jointly form a Gaussian linear system for which the marginal distribution of µ′′ is
(Murphy, 2012, Equation (4.126))

E
p(µ′|µ,x,α)

[p(µ′′ | µ′,x, α′)] = N
(

1/λ′′
[
λ′ν + α′x

]
,
α′

λ′′2 +
λ′2

λ′′2ξ

)
. (64)

Plugging ν into the mean expression and simplifying yields the marginal mean
1/λ′′

[
λµ+ (α+ α′)x

]
. (65)

Similarly, plugging ξ into the covariance expression and simplifying yields the marginal covariance

α+ α′

λ′′2 . (66)

If we now recall from Lemma 2.1 that

λ′ = λ+ α and λ′′ = λ′ + α′ = λ+ α+ α′, (67)

we can identify Eq. (64) as p(µ′′ | µ,x, α+ α′).

This trivially generalizes to any finite sequence of measurements, which can be collapsed into a single
measurement with the total precision instead.

We will furthermore need to know the KL divergence between the update marginal distributions of
the same belief but based on two different samples x and x′.
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Lemma D.3. Let x,x′,µ ∈ Rn and λ, α ∈ R+. Then

DKL(p(µ
′ | µ,x, α),p(µ′ | µ,x′, α)) = 1/2α∥x− x′∥22. (68)

Proof. Both update marginal distributions – with x and x′ – are Normal distributions of equal
precision ξ := λ′2

α as given by Lemma D.1 and respective means of

ν = 1/λ′
[
λµ+ αx

]
and ν′ = 1/λ′

[
λµ+ αx′]. (69)

As a consequence, the closed form solution for the KL divergence between two equal-covariance
Normal distributions becomes

DKL(p(µ
′ | µ,x, α),p(µ′ | µ,x′, α)) =

1

2
(ν − ν ′)Tξ(ν − ν ′)

=
1

2
(x− x′)Tαλ′91ξλ′91α(x− x′)

=
1

2
(x− x′)Tα(x− x′)

=
1

2
α∥x− x′∥22

(70)

Equipped with these, we can derive the ELBO.

Theorem 3.1. Let x ∈ Rn and αR, αi ∈ R+, i ∈ [k]. Then the log-likelihood of x is lower-bounded
as

log p(x) ≥ −LR − Lk
M (3)

by a reconstruction term LR and a measurement term Lk
M,

LR = E
q(µk|x,λk)

[
9logNP(x | x̂k, αR)

]
and Lk

M =
k

2
E

i∼U(0,k−1)
q(µi|x,λi)

[
αi+1∥x− x̂i∥22

]
(4)

where

q(µi | x, λi) = E
p(µ0)

[
p(µi | µ0,x, λi)

]
, x̂i = fθ(µi, λi) and λi = λ0 +

i∑
j=1

αj . (5)

Proof. For any distribution p(x) and any latent variable z, i.e. any choice of prior p(z), encoding
distribution q(z | x) and likelihood p(x | z), we have the variational lower bound

log p(x) ≥ − E
q(z|x)

[− log p(x | z)]−DKL(q(z | x),p(z)) (71)

on log p(x) (Kingma & Welling, 2013). In particular, we can choose our sequence of beliefs as the
latent variable z = {µ0, . . . ,µk} and define the likelihood of x under this latent variable as

p(x | z) = NP(x | x̂k, αR). (72)

Remember that x̂k = fθ(µk, λk) is the model’s estimate of x.

Since the belief means µ1, . . . ,µk are updated only based on their predecessor after Lemma 2.1,
they form a Markov chain conditional on x and we can write the encoding distribution as

q(z | x) = p(µ0)

k∏
i=1

p(µi | µi−1,x, αi). (73)

Each p(µi | µi−1,x, αi) is the update marginal of µi−1 over all possible noisy measurements of
x with precision αi from Lemma D.1. Our encoding distribution is ignorant about the influence of
x on the initial belief µ0, because there is no closed form for p(µ0 | x). Since we can choose any
encoding, not encoding x in µ0 at all is valid.
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If we now plug Eq. (73) into the first term of Eq. (71), we get

E
q(z|x)

[9log p(x | z)] = E
p(µ0)

E
p(µ1|µ0,x,α1)

. . . E
p(µk|µk−1,x,αk)

[9log p(x | z)]. (74)

The intermediate expectations collapse into a single measurement with the sum of all precisions
ᾱi =

∑i
j=1 αj according to Lemma D.2, because µ1, . . . ,µk−1 do not appear in the inner log-

likelihood, and we are left with

E
q(z|x)

[9log p(x | z)] = E
p(µ0)

E
p(µk|µ0,x,ᾱk)

[9log p(x | z)]. (75)

Since λi = λ0 +
∑i

j=1 αj = λ0 + ᾱi, we can define

p(µk | µ0,x, λ) := p(µk | µ0,x, α = λ− λ0) = p(µk | µ0,x, ᾱk). (76)

If we now define
q(µk | x, λk) := E

p(µ0)

[
p(µk | µ0,x, λk)

]
, (77)

we can rewrite Eq. (75) as

E
q(z|x)

[9log p(x | z)] = E
q(µk|x,λk)

[9log p(x | µk)] (78)

which equals the definition of LR after plugging in Eq. (72).

Next, we investigate the KL-divergence in Eq. (71). We begin by defining the latent prior p(z)
autoregressively as

p(z) = p(µ0)

k∏
i=1

p(µi | µi−1, x̂i−1, αi) (79)

where x̂i−1 = fθ(µi−1, λi−1) is the point estimate of x produced by our model based on the belief
at step i− 1. So the prior for µi is the update marginal in Lemma D.1 if x̂i−1 were the actual sample
x.

Now, we plug Eqs. (73) and (79) into the KL-divergence term from Eq. (71).

DKL(q(z | x),p(z)) = E
q(z|x)

[
log

q(z | x)
p(z)

]
= E

q(z|x)

[
log

p(µ0)

p(µ0)
+

k∑
i=1

log
p(µi | µi−1,x, αi)

p(µi | µi−1, x̂i−1, αi)

]
=

k∑
i=1

E
q(z|x)

[
log

p(µi | µi−1,x, αi)

p(µi | µi−1, x̂i−1, αi)

]
=

k∑
i=1

E
p(µ0)

E
p(µ1|µ0,x,α1)

. . . E
p(µi|µi−1,x,αi)

[
log

p(µi | µi−1,x, αi)

p(µi | µi−1, x̂i−1, αi)

]
=

k∑
i=1

E
q(µi−1|x,λi−1)

[
DKL

(
p(µi | µi−1,x, αi), p(µi | µi−1, x̂i−1, αi)

)]
(80)

The intermediate expectations have collapsed again according to Lemma D.2 in the same way as for
the reconstruction term.

We know the closed form for the inner KL divergences from Lemma D.3, so we can further simplify
the KL-divergence term to

DKL(q(z | x),p(z)) = 1

2

k∑
i=1

E
q(µi−1|x,λi−1)

[
αi∥x− x̂i−1∥22

]
. (81)

Shifting the sum indices by 1 and replacing the sum
∑k−1

i=0 with kEi∼U(0,k−1) yields Lk
M.
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D.2 PROOF OF THEOREM 3.2

Theorem 3.2. Let αR, αM ∈ R+. For any sequence of precision schedules αk,i for k ∈ N, i ∈ [k]

such that
∑k

i=1 αk,i = αM and the sequence of functions [k] → R+ : i 7→ αk,i converges uniformly
to 0, we can take the limit of Theorem 3.1 as k → ∞ to get

LR = E
q(µλM

|x,λM)

[
9logNP(x | x̂λM

, αR)
]

and L∞
M =

αM

2
E

λ∼U(λ0,λM)
q(µλ|x,λ)

[
∥x− x̂λ∥22

]
(6)

where q(µλ | x, λ) = Ep(µ0)

[
p(µλ | µ0,x, λ)

]
, λM = λ0 + αM and x̂λ = fθ(µλ, λ).

Proof. Since LR only depends on
∑

i αk,i but not individual αk,i, the equivalence of the finite and
infinite step LR is immediately apparent.

For Lk
M, we will consider its sum form from Eq. (81).

Lk
M =

1

2

k∑
i=1

E
q(µi−1|x,λi−1)

[
αi∥x− x̂i−1∥22

]
=

1

2

k∑
i=1

αi E
q(µi−1|x,λi−1)

[
∥x− x̂i−1∥22

]
︸ ︷︷ ︸

=:h(λi−1)

(82)

Note that h(λi−1) is a deterministic function of λi−1 and λ0, . . . , λk is a partition of the interval
[λ0, λ0+αm] = [λ0, λM] with interval lengths of αi. It follows that Eq. (82) is a Riemann sum. Since
fθ is a neural network, we can assume that h(λi−1) is continuous almost everywhere. Combined
with the fact that the interval lengths {αi} converge uniformly to 0, it follows that Lk

M converges to
the Riemann integral

lim
k→∞

Lk
M =

1

2

∫ λM

λ0

E
q(µλ|x,λ)

[
∥(x− x̂λ)∥22

]
dλ (83)

as k → ∞. It follows trivially that

lim
k→∞

Lk
M =

αM

2

∫ λM

λ0

1

αM
E

q(µλ|x,λ)

[
∥(x− x̂λ)∥22

]
dλ (84)

=
αM

2
E

λ∼U(λ0,λM)
q(µλ|x,λ)

[
∥(x− x̂λ)∥22

]
= L∞

M . (85)

D.3 PROOF OF LEMMA 3.3

Lemma 3.3. If h is strictly decreasing, L∞
M < Lk

M for any k and any precision schedule {αi}.

Proof. In the proof of Theorem 3.2, we have established that Lk
M is a Riemannian sum of h, where we

evaluate h on the most-negative edge of each interval. Since h is a non-negative, strictly decreasing
function, the discretization error on the interval [λi−1, λi]

ϵ := αih(λi−1)−
∫ λi

λi−1

h(λ) dλ (86)

is also non-negative. Now consider a refinement of the discretization with λ′ ∈ (λi−1, λi) and the
post-refinement discretization error on that interval

ϵ′ := (λ′−λi−1)h(λi−1)+(λi−λ′)h(λ′)−
∫ λi

λi−1

h(λ) dλ = (λ′−λi−1−αi)h(λi−1)+(λi−λ′)h(λ′)+ϵ.

(87)
Next, we express ϵ′ in terms of ϵ as

ϵ′ = (λ′ − λi−1 − αi)h(λi−1) + (λi − λ′)h(λ′) + ϵ

= (λ′ − λi)h(λi−1) + (λi − λ′)h(λ′) + ϵ

= (λi − λ′)(h(λ′)− h(λi−1)) + ϵ.

(88)
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We know that (λi − λ′) > 0, because λ′ ∈ (λi−1, λi), and (h(λ′) − h(λi−1)) < 0, because h is
strictly decreasing. It follows that ϵ′ < ϵ.

This means that any refinement of the ELBO with more steps reduces the non-negative error between
the Riemannian sum Lk

M and its limit L∞
M . In other words, L∞

M < Lk
M for all k.

D.4 PROOF OF LEMMA 3.4 AND COROLLARY 3.5

The ELBO in Theorems 3.1 and 3.2 has one part that looks like it might not be so straightforward:
the encoding distribution q(µλ | x, λ). Its definition contains a marginalization over the belief prior
p(µ0), which we still need to specify. Let’s see what q(µλ | x, λ) becomes if we choose a zero-mean,
isotropic Normal prior p(µ0).

Lemma 3.4. Let λ0, γ0 ∈ R+, p(µ0) = NP(0, γ0) and λ ≥ λ0. Then

q(µλ | x, λ) = NP

(
λ− λ0

λ
x,

λ2

λ− λ0 + λ2
0/γ0

)
. (9)

Proof. Let p(µλ | µ0,x, λ) be the marginal distribution of µλ after a measurement of precision
α = λ− λ0, i.e.

p(µλ | µ0,x, λ) = p(µλ | µ0,x, α = λ− λ0). (89)

We know from Lemma D.1 that

p(µλ | µ0,x, α = λ− λ0) = NP

(
1/λ
[
λ0µ0 + (λ− λ0)x

]
, λ

2
/(λ−λ0)

)
. (90)

Since p(µ0) is also Gaussian and µλ depends linearly on µ0, they form a Gaussian linear system for
which the marginal distribution of µλ is (Murphy, 2012, Equation (4.126))

q(µλ | x, λ) = E
p(µ0)

[
p(µλ | µ0,x, λ)

]
= N

(
1/λ
[
λ00+ (λ− λ0)x

]
,
λ− λ0

λ2
+

λ2
0

λ2γ0

)
. (91)

By pulling λ−2 out of the covariance and inverting to get a precision, we get the claimed result.

If we now choose γ0 = λ0, we get the simple BSI prior and the result ELBO encoder.

Corollary 3.5. Let λ0 ∈ R+, p(µ0) ∼ NP(0, λ0) and λ ≥ λ0. Then

q(µλ | x, λ) = NP

(
λ− λ0

λ
x, λ

)
. (10)

Proof. If we choose γ0 = λ0 in Lemma 3.4, we get

q(µλ | x, λ) = NP

(
λ− λ0

λ
x,

λ2

λ− λ0 + λ2
0/λ0

)
. (92)

The precision simplifies to

λ2

λ− λ0 + λ2
0/λ0

=
λ2

λ− λ0 + λ0
= λ, (93)

proving the result.

D.5 PROOF OF COROLLARY 3.6

Corollary 3.6. Let p(λ) be a probability distribution with support [λ0, λM]. Then we have

L∞
M =

1

2
E

λ∼p(λ)
q(µλ|x,λ)

[
1

p(λ)
∥x− x̂λ∥22

]
. (11)
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Proof. We know from Eq. (83) that L∞
M is the following Riemann integral.

L∞
M =

1

2

∫ λM

λ0

E
q(µλ|x,λ)

[
∥(x− x̂λ)∥22

]
dλ (94)

Now we can trivially multiply by p(λ)/p(λ) inside the expectation, proving the statement.

L∞
M =

1

2

∫ λM

λ0

E
q(µλ|x,λ)

[
p(λ)

p(λ)
∥(x− x̂λ)∥22

]
dλ (95)

=
1

2

∫ λM

λ0

p(λ) E
q(µλ|x,λ)

[
1

p(λ)
∥(x− x̂λ)∥22

]
dλ (96)

D.6 PROOF OF EQ. (13)

Proof. We know from Corollary 3.5 that we can write µλ = λ−λ0/λx+ 1/
√
λ ε for Gaussian noise

ε ∼ N (0, I) independent of x. Together with the assumption fθ(µ, λ) = µ, we can rewrite h as

h(λ) = E
q(µλ|x,λ)

∥x− x̂λ∥22

= E
ε∼N (0,I)

∥∥∥∥x− λ− λ0

λ
x+

1√
λ
ε

∥∥∥∥2
2

= E
ε∼N (0,I)

∥∥∥∥λ0

λ
x+

1√
λ
ε

∥∥∥∥2
2

= E
ε∼N (0,I)

(
λ0

λ

)2

∥x∥22 +
1

λ
∥ε∥22 − 2

λ0√
λ3
x · ε

(97)

If we now make use of our assumption that E[x] = 0 and Var[x] = I , we can distribute the
expectation across terms and get

E
x
[h(λ)] =

(
λ0

λ

)2

E
x

[
∥x∥22

]
︸ ︷︷ ︸

=n

+
1

λ
E
ε

[
∥ε∥22

]
︸ ︷︷ ︸

=n

−2
λ0√
λ3

E
x,ε

[x · ε]︸ ︷︷ ︸
=0

∝ λ2
0

λ2
+

1

λ
. (98)

E EXPERIMENT DETAILS

We trained each model on 4 H100 GPUs at a batch size of 128 on CIFAR10 and 512 on ImageNet32
and ImageNet64. Training progressed at about 26,300 steps per hour for the U-Net on CIFAR10 and
6,100 steps per hour for the DiT-L-2 backbones on ImageNet32. If we take the different batch sizes
into account, the two model architectures needed about equal amounts of training time. Total training
time for the 10 M step training on CIFAR10 came to about two weeks.

Furthermore, we take an exponential moving average (EMA) of model weights (Song et al., 2021b;
Nichol & Dhariwal, 2021). We provide an overview of the model and training hyperparameters in
Table 5, and show the U-Net and DiT parameters in Tables 6 to 9. On ImageNet32, we train the
models with a cosine learning rate scheduler (with linear warm up from 1 × 10−8) to achieve faster
convergence. Note that we reduced the training steps to 100 k for our parameter studies to make them
computationally feasible.

To reduce the variance of the training loss further, we use low-discrepancy sampling for t in Algo-
rithm 2 as proposed by Kingma et al. (2023). Instead of sampling b independent t for a batch size
of b, we set ti = i−1/b + δ mod 1, i ∈ [b] for a shared δ ∼ U(0, 1) where mod 1 means that we
discard the integer part of the result. The marginal distribution of each ti is U(0, 1), but jointly they
cover the [0, 1] interval more uniformly than independent samples would, smoothing out the loss
across batches.
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Table 5. Model and training parameters of BSI on CIFAR10 and all three models on ImageNet32.

Parameter CIFAR10 ImageNet32 (64)

B
SI

α0 1 × 10−2

αM 1 × 106

αR 2 × 106

O
pt

im
. Learning rate 2 × 10−4 5 × 10−4

LR Scheduler None Cosine ↓ 5 × 10−5

Weight decay 1 × 10−2

Batch size 128 512
Steps 10 M 2 M (100 k)

E
M

A β 0.9999
First update after step 1000

Table 6. U-Net hyperparameters for CIFAR10.

Parameter Value

Hidden dim. 128
Levels 32

Dropout 0.1
Attention heads 1

Convolution padding Zeros

Table 7. DiT hyperparameters for ImageNet32.

Parameter Value

Architecture DiT-L-2
Hidden dim. 1024

Depth 24
Attention heads 16

Dropout 0.05
Patch Size 2

Table 8. U-Net hyperparameters for ImageNet32.

Parameter Value

Hidden dim. 256
Levels 32

Dropout 0.1
Attention heads 1

Convolution padding Zeros

Table 9. DiT hyperparameters for ImageNet64.

Parameter Value

Architecture DiT-L-4
Hidden dim. 1024

Depth 24
Attention heads 16

Dropout 0.05
Patch Size 4
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F GENERATED SAMPLES

Fig. 9 shows generated samples from models trained on ImageNet32 for visual reference.

ImageNet32 BSI BFN VDM

Figure 9. Samples from BSI, BFN and VDM trained on ImageNet32. Generated with 1024 steps. The first two
columns show samples from the dataset for comparison.
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