

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENERATIVE MODELING WITH BAYESIAN SAMPLE INFERENCE

Anonymous authors

Paper under double-blind review

ABSTRACT

We derive a novel generative model from iterative Gaussian posterior inference. By treating the generated sample as an unknown variable, we can formulate the sampling process in the language of Bayesian probability. Our model uses a sequence of prediction and posterior update steps to iteratively narrow down the unknown sample starting from a broad initial belief. In addition to a rigorous theoretical analysis, we establish a connection between our model and diffusion models and show that it includes Bayesian Flow Networks (BFNs) as a special case. In our experiments, we demonstrate that our model improves sample quality on ImageNet32 over both BFNs and the closely related Variational Diffusion Models, while achieving equivalent log-likelihoods on ImageNet32 and CIFAR10.

1 INTRODUCTION

The field of deep learning has produced a multitude of generative models over the years (Harshvardhan et al., 2020). Variational autoencoders, for example, learn the data distribution by compressing data into a lower-dimensional representation (Kingma & Welling, 2013). Normalizing flows learn to map between a prior and the data distribution via invertible transformations, enabling exact likelihood computation (Rezende & Mohamed, 2015). Generative adversarial networks generate samples by pitting two models against each other such that one proposes artificial data samples while the other tries to distinguish real and generated (Goodfellow et al., 2014). Recently, diffusion models (DMs) have become a cornerstone of generative modeling (Sohl-Dickstein et al., 2015; Ho et al., 2020). They define a multi-step forward process that gradually adds noise to the data, turning it into pure noise. Then, a model is trained to reverse this process, enabling the generation of new data samples by starting from noise and iteratively denoising.

In this work, we take a Bayesian viewpoint of sample generation to propose a new generative model. Imagine that a sample \mathbf{x} from the data distribution $p(\mathbf{x})$ is fixed but unknown to us; however, we can receive noisy measurements $\mathbf{y}_i \sim \mathcal{N}(\mathbf{x}, \alpha_i^{-1})$ of it. Then, we can infer the unknown \mathbf{x} by combining the information in these measurements. To be more precise, we start with a broad belief $p(\mathbf{x}) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_0, \lambda_0^{-1})$ about \mathbf{x} in the form of a Normal distribution with low precision λ , i.e. high variance, that encompasses the entire data distribution. Then, we can take a first noisy measurement \mathbf{y}_1 and form a posterior belief $p(\mathbf{x} | \mathbf{y}_1)$ about the sample, which will be a little more precise and a little more correct. Iterating this process allows us to refine our estimate $p(\mathbf{x} | \mathbf{y}_1, \dots, \mathbf{y}_k)$ to any desired level of precision.

We transform this inference process into a generative model by introducing a prediction model f_{θ} that estimates \mathbf{x} from our current Gaussian belief about it. Since the true \mathbf{x} is unknown at generation time, we substitute it with an estimate $\hat{\mathbf{x}} = f_{\theta}(\boldsymbol{\mu}_i, \lambda_i)$ and sample $\mathbf{y}_{i+1} \sim \mathcal{N}(\hat{\mathbf{x}}, \alpha_{i+1}^{-1})$ instead. Maximizing an evidence lower bound (ELBO) for the likelihood that this simple process assigns to the training data, trains f_{θ} to reconstruct true \mathbf{x} from uncertain belief states $(\boldsymbol{\mu}_i, \lambda_i)$ about them. Consequently, the noisy measurements \mathbf{y}_i of predicted samples $\hat{\mathbf{x}}$ become indistinguishable from those of real samples \mathbf{x} , and our generative process converges toward producing new samples from the data distribution.

Figure 1. We view generation as the problem of inferring the identity of an unknown sample \mathbf{x} from noisy observations. 1. To begin, our belief about \mathbf{x} is so broad as to cover the complete data distribution. 2. We use a model f_θ to guess which \mathbf{x} likely corresponds to the information we have collected so far. 3. Now, we pretend that \mathbf{x} is the true \mathbf{x} and take a noisy measurement \mathbf{y} . 4. We form the posterior belief about \mathbf{x} to incorporate the information contained in \mathbf{y} . 5. Repeat until we have identified a new sample with sufficient precision λ_i .

Our key **contributions** can be summarized as follows.

- We present a new generative model based on iterative posterior inference from noisy predictions.
- We derive an ELBO to enable effective likelihood optimization and show how we can reduce the variance of the training loss with importance sampling.
- Further, we compare our model in detail to Variational Diffusion Models (VDMs) (Kingma et al., 2023) and Bayesian Flow Networks (BFNs) (Graves et al., 2023).
- We show that the simple generative process described above includes BFN as a special case, providing a novel and simplified perspective on them, and analyze the relationship to DMs.
- Finally, we describe our model design and demonstrate empirically that our model surpasses both VDM and BFN in terms of sample quality on ImageNet32 while achieving equivalent log-likelihoods.

Notation We parametrize Normal distributions either with a variance σ^2 as $\mathcal{N}(\mu, \sigma^2 \mathbf{I})$ or with a precision $\lambda = 1/\sigma^2$ as $\mathcal{N}_P(\mu, \lambda \mathbf{I})$. Since all Normal distributions in this work are isotropic, we shorten these to $\mathcal{N}(\mu, \sigma^2)$ and $\mathcal{N}_P(\mu, \lambda)$. $[n]$ is the set of integers $1, \dots, n$ and \mathbb{R}_+ refers to the non-negative reals.

2 SAMPLE DISCOVERY THROUGH ITERATIVE MEASUREMENT

Consider a sample $\mathbf{x} \in \mathbb{R}^n$ that is unknown to us, but we can access noisy measurements $\mathbf{y}_i \sim \mathcal{N}_P(\mathbf{x}, \alpha_i)$ of it. Then we can infer \mathbf{x} from the sequence of measurements \mathbf{y}_i through Bayesian inference. We start with a broad initial belief $p(\mathbf{x}) \sim \mathcal{N}_P(\mathbf{0}, \lambda_0 \mathbf{I})$ and update it with information contained in \mathbf{y}_i per the following lemma.

Lemma 2.1 (Posterior Update). *Let $\mathbf{x}, \mu \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}_+$ such that \mathbf{x} is latent and $p(\mathbf{x}) = \mathcal{N}_P(\mathbf{x} | \mu, \lambda)$ is a prior on \mathbf{x} ; and $\mathbf{y} \sim \mathcal{N}_P(\mathbf{x}, \alpha)$ where $\alpha \in \mathbb{R}_+$. Then the posterior is $p(\mathbf{x} | \mathbf{y}) = \mathcal{N}_P(\mathbf{x} | \mu', \lambda')$ with*

$$\lambda' = \lambda + \alpha \quad \text{and} \quad \mu' = \frac{1}{\lambda'} [\lambda \mu + \alpha \mathbf{y}]. \quad (1)$$

Proof. See (Murphy, 2012, Section 4.4.1). \square

We can now iterate over the noisy measurements and update our belief until $p(\mathbf{x} | \mathbf{y}_1, \dots, \mathbf{y}_k) \sim \mathcal{N}_P(\mu_k, \lambda_k)$ identifies \mathbf{x} with sufficient precision. Sufficiency depends on the application but could be defined, for example in the case of images, such that most of the probability mass for each dimension of an image \mathbf{x} is contained within a single color intensity bin of width $1/256$ for 8-bit color. Note that, at each step, all information contained in $\mathbf{y}_1, \dots, \mathbf{y}_k$ is captured in the current μ_k .

108 **3 SAMPLE GENERATION WITH POSTERIOR INFERENCE**
109

110 We turn the procedure in Section 2 into a generative model, which we call *Bayesian*
111 *Sample Inference* (BSI), as follows. We begin with an initial belief (μ_0, λ_0) about
112 the sample \mathbf{x} which we will generate in the end, with μ_0 sampled from a suitable
113 prior distribution $p(\mu_0)$ and λ_0 fixed. Obviously, \mathbf{x} is unknown a priori, so we can-
114 not measure it, but we can estimate it from the information we have gathered so far.
115 Let $f_\theta : \mathbb{R}^n \times \mathbb{R}_+ \rightarrow \mathbb{R}^n$ be a learned model
116 with parameters θ that estimates which un-
117 known sample \mathbf{x} we have observed so far from
118 our current belief (μ_i, λ_i) . We estimate \mathbf{x} as
119 $\hat{\mathbf{x}}_{i-1} = f_\theta(\mu_{i-1}, \lambda_{i-1})$ and sample a noisy
120 measurement $\mathbf{y}_i \sim \mathcal{N}_P(\hat{\mathbf{x}}_{i-1}, \alpha_i)$ of $\hat{\mathbf{x}}_{i-1}$ in
121 place of \mathbf{x} with precision α_i . Then, we can up-
122 date our belief with \mathbf{y}_i and Lemma 2.1 to the
123 posterior (μ_i, λ_i) . Now, we alternate between
124 these two steps, i.e. predicting and taking a noisy
125 measurement followed by updating our current
126 belief, until the posterior precision λ_i is suffi-
127 cient. Finally, we return $\hat{\mathbf{x}}^* = f_\theta(\mu_k, \lambda_k)$ as
128 our generated sample. See Algorithm 1 for a
129 formal description and Fig. 1 for a visual expla-
130 nation.
131

132 Since the posterior precision λ_i does not depend on the generated sample $\hat{\mathbf{x}}_i$, we can choose the
133 number of measurement rounds k and precision schedule α_i a priori such that λ_k will always be
134 sufficiently large.
135

136 We have collected the proofs of all formal statements in this section in Appendix D.
137

138 **3.1 EVIDENCE LOWER BOUND**
139

140 By interpreting BSI as a hierarchical latent variable model, we derive an ELBO (Kingma & Welling,
141 2013), i.e. a lower bound on $\log p(\mathbf{x})$ assigned to a data point by our model. The ELBO will then
142 serve as a natural training target for f_θ to ensure that true data samples have high likelihood under
143 our model.
144

145 We form our hierarchy out of the sequence of belief means $\{\mu_i\}$, giving us
146

147
$$p(\mathbf{x}) = \mathbb{E}_{p(\mu_0) \cdot p(\mu_1 | \mu_0) \cdots p(\mu_k | \mu_{k-1})} [p(\mathbf{x} | \mu_k)]. \quad (2)$$

148

149 The precisions $\{\lambda_i\}$ are not included as latent variables, because they do not depend on \mathbf{x} . With this
150 hierarchy, we can derive the following ELBO.
151

152 **Theorem 3.1.** *Let $\mathbf{x} \in \mathbb{R}^n$ and $\alpha_R, \alpha_i \in \mathbb{R}_+, i \in [k]$. Then the log-likelihood of \mathbf{x} is lower-bounded
153 as*

154
$$\log p(\mathbf{x}) \geq -\mathcal{L}_R - \mathcal{L}_M^k \quad (3)$$

155

156 by a reconstruction term \mathcal{L}_R and a measurement term \mathcal{L}_M^k ,
157

158
$$\mathcal{L}_R = \mathbb{E}_{q(\mu_k | \mathbf{x}, \lambda_k)} [-\log \mathcal{N}_P(\mathbf{x} | \hat{\mathbf{x}}_k, \alpha_R)] \quad \text{and} \quad \mathcal{L}_M^k = \frac{k}{2} \mathbb{E}_{i \sim \mathcal{U}(0, k-1)} \left[\alpha_{i+1} \|\mathbf{x} - \hat{\mathbf{x}}_i\|_2^2 \right] \quad (4)$$

159

160 where
161

162
$$q(\mu_i | \mathbf{x}, \lambda_i) = \mathbb{E}_{p(\mu_0)} [p(\mu_i | \mu_0, \mathbf{x}, \lambda_i)], \quad \hat{\mathbf{x}}_i = f_\theta(\mu_i, \lambda_i) \quad \text{and} \quad \lambda_i = \lambda_0 + \sum_{j=1}^i \alpha_j. \quad (5)$$

163

164 The measurement term \mathcal{L}_M^k corresponds to the noisy measurement and update loop in Algorithm 1
165 and \mathcal{L}_R to the final computation of the sample $\hat{\mathbf{x}}^*$. $q(\mu_i | \mathbf{x}, \lambda_i)$ is the distribution of our belief
166 (μ_i, λ_i) about the unknown sample \mathbf{x} after i steps if we would have observed the true \mathbf{x} instead of
167

$\hat{x}_1, \dots, \hat{x}_i$. $p(\mu_i | \mu_0, \mathbf{x}, \lambda_i)$ is the marginal distribution of possible posterior beliefs (μ_i, λ_i) with posterior precision λ_i reachable from an initial belief (μ_0, λ_0) . Equivalently, $p(\mu_i | \mu_0, \mathbf{x}, \lambda_i)$ is the distribution of beliefs (μ_i, λ_i) after updating our initial belief (μ_0, λ_0) with a single measurement of \mathbf{x} with Lemma 2.1 – marginalized over all possible noisy measurements \mathbf{y} at precision $\alpha = \lambda_i - \lambda_0$.

On closer examination, we see that \mathcal{L}_R , measuring how accurately we can reconstruct \mathbf{x} at the end, only depends on the total precision λ_M that we accumulated in the first phase of the algorithm. However, \mathcal{L}_M^k depends both on the number of rounds k and the precision schedule α_i . We can derive an ELBO that is independent of k and α_i by considering the limit as $k \rightarrow \infty$ and refining the precision schedule $\{\alpha_i\}_{i=1}^k$ into smaller and smaller steps while keeping the total precision $\alpha_M = \sum_{i=1}^k \alpha_i$ constant.

Theorem 3.2. *Let $\alpha_R, \alpha_M \in \mathbb{R}_+$. For any sequence of precision schedules $\alpha_{k,i}$ for $k \in \mathbb{N}, i \in [k]$ such that $\sum_{i=1}^k \alpha_{k,i} = \alpha_M$ and the sequence of functions $[k] \rightarrow \mathbb{R}_+ : i \mapsto \alpha_{k,i}$ converges uniformly to 0, we can take the limit of Theorem 3.1 as $k \rightarrow \infty$ to get*

$$\mathcal{L}_R = \mathbb{E}_{q(\mu_{\lambda_M} | \mathbf{x}, \lambda_M)} [-\log \mathcal{N}_P(\mathbf{x} | \hat{\mathbf{x}}_{\lambda_M}, \alpha_R)] \quad \text{and} \quad \mathcal{L}_M^\infty = \frac{\alpha_M}{2} \mathbb{E}_{\substack{\lambda \sim \mathcal{U}(\lambda_0, \lambda_M) \\ q(\mu_\lambda | \mathbf{x}, \lambda)}} [\|\mathbf{x} - \hat{\mathbf{x}}_\lambda\|_2^2] \quad (6)$$

where $q(\mu_\lambda | \mathbf{x}, \lambda) = \mathbb{E}_{p(\mu_0)} [p(\mu_\lambda | \mu_0, \mathbf{x}, \lambda)]$, $\lambda_M = \lambda_0 + \alpha_M$ and $\hat{\mathbf{x}}_\lambda = f_\theta(\mu_\lambda, \lambda)$.

As long as our model is more accurate in reconstructing \mathbf{x} from more precise measurements, a reasonable assumption, Theorem 3.2 is a tighter bound on the log-likelihood than Theorem 3.1. To see this, we rewrite \mathcal{L}_M^∞ in terms of the expected squared error at belief precision λ

$$h(\lambda) = \mathbb{E}_{q(\mu_\lambda | \mathbf{x}, \lambda)} \|\mathbf{x} - \hat{\mathbf{x}}_\lambda\|_2^2 \quad (7)$$

as

$$\mathcal{L}_M^\infty = \frac{\alpha_M}{2} \mathbb{E}_{\lambda \sim \mathcal{U}(\lambda_0, \lambda_M)} [h(\lambda)] \quad (8)$$

for which we have the following result.

Lemma 3.3. *If h is strictly decreasing, $\mathcal{L}_M^\infty < \mathcal{L}_M^k$ for any k and any precision schedule $\{\alpha_i\}$.*

3.2 PRIOR DISTRIBUTION

Let's consider possible priors of the form $p(\mu_0) = \mathcal{N}_P(\mathbf{0}, \gamma_0)$ for our initial belief. Then we have the following result for the encoding distribution $q(\mu_\lambda | \mathbf{x}, \lambda)$ in Theorems 3.1 and 3.2.

Lemma 3.4. *Let $\lambda_0, \gamma_0 \in \mathbb{R}_+$, $p(\mu_0) = \mathcal{N}_P(\mathbf{0}, \gamma_0)$ and $\lambda \geq \lambda_0$. Then*

$$q(\mu_\lambda | \mathbf{x}, \lambda) = \mathcal{N}_P\left(\frac{\lambda - \lambda_0}{\lambda} \mathbf{x}, \frac{\lambda^2}{\lambda - \lambda_0 + \lambda_0^2/\gamma_0}\right). \quad (9)$$

How should we choose γ_0 ? We start the sampling process with initial precision, i.e. confidence, λ_0 . If λ_0 was larger than γ_0 , we would be unreasonably confident in our initial belief, since we know that μ_0 has more uncertainty than λ_0 . From this, we deduce that the reasonable range for γ_0 is $[\lambda_0, \infty]$. At the same time, we want to avoid unwarranted assumptions by the prior, so we choose $\gamma_0 = \lambda_0$ for our model, which also gives us a particularly simple form for the encoding distribution.

Corollary 3.5. *Let $\lambda_0 \in \mathbb{R}_+$, $p(\mu_0) \sim \mathcal{N}_P(\mathbf{0}, \lambda_0)$ and $\lambda \geq \lambda_0$. Then*

$$q(\mu_\lambda | \mathbf{x}, \lambda) = \mathcal{N}_P\left(\frac{\lambda - \lambda_0}{\lambda} \mathbf{x}, \lambda\right). \quad (10)$$

3.3 VARIANCE REDUCTION

The squared distance $\|\mathbf{x} - \hat{\mathbf{x}}_\lambda\|_2^2$ in \mathcal{L}_M^∞ will necessarily vary significantly across the range of λ with large values for small λ where $q(\mu_\lambda | \mathbf{x}, \lambda) \approx p(\mu_0)$ and small values for large λ when $\mu_\lambda \approx \mathbf{x}$. We can reduce the variance of Monte Carlo (MC) estimates of \mathcal{L}_M^∞ for ELBO evaluation or gradient computation in training with importance sampling with a suitable proposal distribution $p(\lambda)$.

216 **Corollary 3.6.** Let $p(\lambda)$ be a probability distribution with support $[\lambda_0, \lambda_M]$. Then we have

$$218 \quad 219 \quad 220 \quad \mathcal{L}_M^\infty = \frac{1}{2} \mathbb{E}_{\substack{\lambda \sim p(\lambda) \\ q(\mu_\lambda | \mathbf{x}, \lambda)}} \left[\frac{1}{p(\lambda)} \|\mathbf{x} - \hat{\mathbf{x}}_\lambda\|_2^2 \right]. \quad (11)$$

221 We can further rewrite \mathcal{L}_M^∞ as

$$222 \quad 223 \quad \mathcal{L}_M^\infty = \frac{1}{2} \mathbb{E}_{\lambda \sim p(\lambda)} \left[\frac{h(\lambda)}{p(\lambda)} \right] \quad (12)$$

224 with h as defined in Eq. (7). To minimize the variance of MC estimates of \mathcal{L}_M^∞ , we want to bring
225 $h(\lambda)/p(\lambda)$ as close to a constant as possible. If it were actually constant, the variance of the MC
226 estimate would be zero.

227 Let's begin by examining h more closely. If we
228 approximate f_θ as $f_\theta(\mu, \lambda) = \mu$ and assume
229 that \mathbf{x} is normalized to zero mean and unit variance,
230 we get the closed form

$$231 \quad 232 \quad \mathbb{E}_{\mathbf{x}}[h(\lambda)] \propto \frac{\lambda_0^2}{\lambda^2} + \frac{1}{\lambda}. \quad (13)$$

233 While $f_\theta(\mu, \lambda) = \mu$ might seem a crude approximation at first, it is not too far off for large
234 λ where the model just needs to predict a small
235 correction to its input.

236 Eq. (13) suggests that we should choose $p(\lambda) \propto$
237 $\lambda_0^2/\lambda^2 + 1/\lambda$ to minimize the variance of MC
238 estimates. While evaluating $p(\lambda)$ is simple
239 enough, we would need to invert its cumulative
240 distribution function (CDF) numerically
241 to sample from it. Instead, we recognize that
242 $1/\lambda$ dominates λ_0^2/λ^2 except for the smallest
243 λ and choose $p(\lambda) \propto 1/\lambda$, i.e. a standard
244 Log-Uniform(λ_0, λ_M) distribution.

245 3.4 TRAINING & SAMPLING

246 We train our model with the ELBO from Theorem 3.2 by optimizing $2\mathcal{L}_M^\infty/n$. We do not
247 optimize \mathcal{L}_R directly as its magnitude is negligible for sufficiently large α_M and it is structurally
248 similar to \mathcal{L}_M^∞ , i.e. both amount to a squared distance. Algorithm 2 shows the resulting algorithm
249 with our belief prior $p(\mu_0)$ and proposal distribution $p(\lambda)$. Similarly, Algorithm 3 implements the
250 abstract Algorithm 1 with our belief prior.

251 4 DISCUSSION

252 We are aware of two generative models that are closely related to BSI, BFN (Graves et al., 2023)
253 and VDM (Kingma et al., 2023). BFNs are generative models motivated from an information
254 theory perspective with a sender and a receiver communicating about the sample. As we show in
255 Appendix A.1, BFNs are a special case of our framework in Section 3 if we translate them to the
256 probabilistic perspective. They correspond to choosing $\gamma_0 = \infty$ and $\lambda_0 = 1$, meaning that sampling
257 always starts from the deterministic belief $(\mu_0, \lambda_0) = (\mathbf{0}, 1)$. In contrast, BSI chooses $\gamma_0 = \lambda_0$, i.e.
258 the noise in the initial belief corresponds to our confidence in it, and leaves λ_0 as a hyperparameter,
259 which we investigate in Section 6. VDM are a type of DM that have shown excellent performance in
260 likelihood-based modeling. They are similar to BSI insofar as they specify the distribution of latent
261 variables directly rather than defining a Markovian noising process as classical DMs do.

262 All three models admit an ELBO of the form

$$263 \quad 264 \quad -\log p(\mathbf{x}) \leq \mathcal{L}_R + \frac{\bar{\omega} - \omega}{2} \mathbb{E}_{\substack{\omega \sim \mathcal{U}(\omega, \bar{\omega}) \\ q(\psi_\omega | \mathbf{x}, \omega)}} [\|\mathbf{x} - \hat{\mathbf{x}}_\omega\|_2^2] \quad (14)$$

270 *Table 1.* Central structures of VDM, BFN and BSI. To improve comparability, we parametrize VDM in terms of
 271 the signal-to-noise ratio (SNR) ν . BFN and BSI are parametrized with the belief precision λ as introduced in
 272 Section 3. $\varepsilon_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ is sampling noise.

Model	ELBO Encoder $q(\psi \mathbf{x}, \omega)$	Latent Prior	Update Step for Sampling
VDM	$q(\mathbf{z} \mathbf{x}, \nu) = \mathcal{N}_P\left(\sqrt{\frac{\nu}{1+\nu}} \mathbf{x}, 1 + \nu\right)$	$\mathbf{z}_T \sim \mathcal{N}_P(\mathbf{0}, 1)$	$\mathbf{z}_i = \frac{\sqrt{\nu_{i+1}(1+\nu_{i+1})} \mathbf{z}_{i+1} + (\nu_i - \nu_{i+1})(\hat{\mathbf{x}}_i + \sqrt{\frac{1}{\nu_i - \nu_{i+1}}} \varepsilon_i)}{\sqrt{\nu_i(1+\nu_i)}}$
BFN	$q(\boldsymbol{\mu} \mathbf{x}, \lambda) = \mathcal{N}_P\left(\frac{(\lambda-1)/\lambda \mathbf{x}, \lambda^2/(\lambda-1)}{\lambda}\right)$	$\boldsymbol{\mu}_0 = \mathbf{0}$	
BSI	$q(\boldsymbol{\mu} \mathbf{x}, \lambda) = \mathcal{N}_P\left(\frac{(\lambda-\lambda_0)/\lambda \mathbf{x}, \lambda}{\lambda}\right)$	$\boldsymbol{\mu}_0 \sim \mathcal{N}_P(\mathbf{0}, \lambda_0)$	$\boldsymbol{\mu}_i = \frac{\lambda_{i-1} \boldsymbol{\mu}_{i-1} + \alpha_i (\hat{\mathbf{x}}_{i-1} + \sqrt{\frac{1}{\alpha_i}} \varepsilon_i)}{\lambda_{i-1} + \alpha_i}$

290 *Figure 2.* ELBO encoders q , i.e. training inputs, of BSI, BFN and VDM. t parametrizes the precision levels by
 291 the respective model’s precision schedule with $t = 0$ being pure noise, ideally, and $t = 1$ almost equaling the
 292 data. Top half shows the mean of q and bottom half a sample. Mean $\mathbf{0}$ is gray because all models rescale the
 293 data to $[-1, 1]$. BFNs apply little noise overall and reach a deterministic state at $t = 0$. For VDM, significant
 294 information about the sample is preserved in the structure of the mean at the highest noise level. In contrast, BSI
 295 converges to its latent prior distribution.

296
 297 for a set of latent variables ψ at precision levels ω between $\underline{\omega}$ and $\bar{\omega}$. For BSI and BFN, the precision
 298 level ω is the belief precision λ between λ_0 and λ_M and $\psi_\omega = \boldsymbol{\mu}_\lambda$. For VDM, the latent variables ψ
 299 are called \mathbf{z} and they parametrize ω as the SNR ν between e^{-5} and $e^{13.3}$.

300 Despite this shared ELBO form, the models vary significantly. Table 1 lists the encoding distribution
 301 $q(\psi | \mathbf{x}, \omega)$ for each model, their prior, from which they begin the sampling process, and the update
 302 step that the models iterate during sampling. First, we see that VDM starts sampling from a standard
 303 Normal vector and BFN from the deterministic $\mathbf{0}$. Only BSI allows sampling from an initial precision
 304 λ_0 less than 1, which has been shown to improve sample diversity in consistency models (Song &
 305 Dhariwal, 2024). Second, the update step shared between BSI and BFN is significantly simpler than
 306 the VDM update with respect to the precision parameter and does not require **evaluation** in log-space
 307 for numerical stability as recommended for VDM (Kingma et al., 2023).

308 For the encoding distribution $q(\psi | \mathbf{x}, \omega)$, which provides the training inputs when the models
 309 optimize their ELBO, we turn to Fig. 2. First, we note that BFN adds little noise overall due to
 310 their noise variance $(\lambda-1)/\lambda^2$ going to 0 for both small and large λ . Next, we notice the encoding
 311 distribution $q(\psi | \mathbf{x}, \omega)$ with the most noise at $t = 0$. While it agrees exactly with the latent prior
 312 used for sampling for BSI and BFN, for VDM it becomes approximately $\mathcal{N}_P(0.08\mathbf{x}, 1)$, which differs
 313 significantly from the standard Normal prior for sampling. In fact, the image motif is still clearly
 314 discernible in the distribution mean for VDM at its maximum noise level. The amount of signal
 315 remaining in the mean for BSI at high noise levels is counteracted by much higher noise variance, e.g.
 316 15.85 at $t = 0.1$ for BSI compared to 0.96 for VDM.

317 **Diffusion Models** If we currently hold the belief $(\boldsymbol{\mu}', \lambda')$, the distribution over beliefs $(\boldsymbol{\mu}, \lambda' - \alpha)$
 318 that are α less precise is

$$320 \quad p(\boldsymbol{\mu} | \boldsymbol{\mu}', \mathbf{x}) = \mathcal{N}\left(\xi^{-1} \left[\frac{\lambda \lambda'}{\alpha} \boldsymbol{\mu}' - \lambda_0 \mathbf{x} \right], \xi\right) \quad (15)$$

321 for a certain precision ξ . This shows that BSI can be written as a DM with a non-Markovian forward
 322 or “noising” process. See Appendix A.2 for a detailed derivation of this connection. There we also

324 exploit that BFNs are a special case of BSI to derive the forward process for BFN and show that it is
 325 Markov, in contrast to the BSI process.
 326

327 5 MODEL DESIGN 328

329 In this section, we introduce a design for the prediction model in BSI. We begin by deriving a
 330 preconditioning structure for f_θ , i.e. a type of model structure similar to noise prediction in DMs.
 331 Then, we describe how we bring λ into a suitable range as an input for deep learning. Finally, we
 332 give our choice of the hyperparameters λ_0 , α_M and α_R and report the model architectures we used as
 333 the backbone of f_θ .
 334

335 5.1 PRECONDITIONING 336

337 It has long been known in the context of DMs that training models to predict x directly from a
 338 noisy input can hinder learning and limit sample quality (Karras et al., 2022; Ho et al., 2020). For
 339 probabilistic modeling, it is especially important that the model prediction stays close to the true
 340 sample if the input is already at a low noise level to achieve high ELBOs. This can be seen, for
 341 example, in Corollary 3.6 where prediction errors for high-precision input beliefs with large λ have
 342 a higher weight. Instead of predicting x , DMs commonly either predict a variation of the noise in
 343 the model input (Ho et al., 2020; Song et al., 2021a) or an adaptive mixture of the noise and the true
 344 sample (Salimans & Ho, 2021). In the end, these approaches amount to adding a skip connection to
 345 the model with specific weights.
 346

347 For BSI, we derive such a preconditioning structure with the adaptive-mixture approach from Karras
 348 et al. (2022). Let f'_θ be our neural network. Then we define the preconditioned f_θ as

$$348 f_\theta(\mu, \lambda) = c_{\text{skip}}\mu + c_{\text{out}}f'_\theta(c_{\text{in}}\mu, \lambda) \quad (16)$$

349 and find the parameters through the conditions proposed by Karras et al. (2022). c_{in} and c_{out} are
 350 chosen such that the input to f'_θ and its training target have unit variance. c_{skip} is then chosen to
 351 minimize c_{out} , which minimizes the influence of prediction errors and ensures that f_θ retains most of
 352 the signal already contained in μ at large precisions λ .
 353

From these conditions, we derive

$$354 c_{\text{skip}} = (\lambda - \lambda_0)/\kappa, \quad c_{\text{out}} = \sqrt{1/\kappa}, \quad c_{\text{in}} = \sqrt{\lambda/\kappa} \quad (17)$$

355 where $\kappa = 1 + (\lambda - \lambda_0)^2/\lambda$ in Appendix C. λ is the precision of our current belief about x and the input
 356 to f_θ .
 357

358 5.2 PRECISION ENCODING 359

360 The magnitude of λ makes it impractical as a feature for neural networks. However, the CDF F of
 361 $p(\lambda)$ is a natural way to scale λ from $[\lambda_0, \lambda_M]$ to $[0, 1]$ as in DMs and flow matching (FM) (Lipman
 362 et al., 2023). In practice, we use $f_\theta(\mu, t)$ instead of $f_\theta(\mu, \lambda)$ where

$$363 t = F(\lambda) = \frac{\log \lambda - \log \lambda_0}{\log(\lambda_M) - \log \lambda_0}. \quad (18)$$

365 Compared to linear re-scaling, our method makes it easier for f_θ to distinguish belief precisions in
 366 the high-noise regime.
 367

368 5.3 HYPERPARAMETERS 369

370 Apart from f_θ , BSI has three hyperparameters, λ_0 , α_M and α_R . λ_0 should be small enough that
 371 the initial belief covers the whole data distribution. We have found experimentally that $\lambda_0 = 10^{-2}$
 372 optimizes likelihoods and sample quality at the same time for images rescaled to $[-1, 1]$, see
 373 Section 6.3. This agrees with the finding of Song & Dhariwal (2024) that large initial noise scales
 374 improve sample diversity in consistency models.
 375

376 α_M should be large enough that a noisy measurement at precision α_M identifies an x , e.g. for images
 377 almost all probability mass of $\mathcal{N}_P(x, \alpha_M)$ should be contained within a single 8-bit color intensity
 378 bin. We choose $\alpha_M = 10^6$, which Graves et al. (2023) also picked for BFN. While \mathcal{L}_M^∞ dwarfs \mathcal{L}_R ,
 379 $\alpha_R = 2\alpha_M$ gives a slight edge in likelihood, empirically, as also observed by Graves et al. (2023).
 380

378
379

5.4 ARCHITECTURE

380
381
382

After the preconditioning and mapping λ to a $t \in [0, 1]$, there are two more steps to turn the inputs μ and t of f'_θ into effective features for a neural network. Regarding t , we convert it into a 32-dimensional precision embedding with a sinusoidal position encoding (Vaswani et al., 2017).

383
384
385
386

The Fourier features proposed by Kingma et al. (2023) are an essential component to reach high likelihoods, because they help the model distinguish fine details at high likelihoods, i.e. for inputs that are already close to the data distribution. They are basically a sinusoidal embedding of every dimension of μ . In particular, we extend μ to the vector

387
388

$$(\mu \quad \sin(2^i \pi \mu) \quad \cos(2^i \pi \mu)) \in \mathbb{R}^{(3+2(n_{\max}-n_{\min})) \cdot n} \quad i \in n_{\min}, \dots, n_{\max} \quad (19)$$

389
390

before passing it into the neural network. We choose $n_{\min} = 6$ and $n_{\max} = 8$, in effect increasing the dimensionality of the input to the neural network from n to $7n$.

391
392
393
394
395

For the neural network itself, we use two architectures, U-Nets (Ronneberger et al., 2015) and Vision Transformers (ViTs) (Dosovitskiy et al., 2020). We use the U-Net configuration proposed by Kingma et al. (2023) which adapts the widely used configuration from (Ho et al., 2020) for likelihood estimation. Most notably, the (Kingma et al., 2023) version has no downsampling between layers of the U-Net, which lets them increase the number of U-Net levels to 32.

396
397
398
399
400
401

ViTs are a more recent architecture inspired by the success of transformers (Vaswani et al., 2017). They represent images as a set of patches with a 2D position embedding and process them with global attention, in contrast to convolutional architectures like the U-Net where communication happens primarily locally. We opt for the Diffusion Transformer (DiT) architecture (Peebles & Xie, 2023) which has been shown to improve sample quality over variants of the (Ho et al., 2020) U-Net model.

402
403

6 EXPERIMENTS

404
405
406
407
408
409
410
411

We evaluate BSI on the ImageNet (Deng et al., 2009) and CIFAR10 (Krizhevsky, 2009) datasets in terms of log-likelihood and sample quality. While BSI as a method is general and not specific to images, we chose image datasets, because they are established benchmarks in the probabilistic modeling literature. In our experiments, we compare against BFN (Graves et al., 2023) and VDM (Kingma et al., 2023). BFNs are a special case of our framework (see Section 3) and provides an important reference point for the effect of the non-deterministic hyper-prior $p(\mu_0)$ in BSI. VDMs are a representative of the diffusion family of models specifically designed for probabilistic modeling that is structurally similar to BSI as we explained in Section 4.

412
413
414
415

In Appendix B, we describe how we compute the ELBO, which we derived in Section 3.1 for continuous x , on discretized images with 8-bit color channels. Appendix E lists hyperparameters and training details and Appendix F shows some generated samples.

416
417

6.1 IMAGENET

418
419
420
421
422
423
424
425
426
427
428
429
430
431

For this evaluation, we train a DiT (Peebles & Xie, 2023) in the BFN, VDM and BSI model, respectively, on the official 32×32 and 64×64 versions of ImageNet (Chrabaszcz et al., 2017). We train each model from three seeds and evaluate the log-likelihood of the test set in bits per dimension (BPD) and the sample quality in terms of Fréchet inception distance (FID) against the test set. For the log-likelihood, we evaluate each model’s ELBO with 5 samples from the respective equivalent of \mathcal{L}_M^∞ and 2 samples from the respective equivalent of \mathcal{L}_R . For the sample quality, we draw 50 000 unconditional samples from each model with 1024 steps and then compute the FID between the generated samples and the test set. On the 32×32 resolution images, we train the DiT-L-2 configuration for 2 M steps and on the 64×64 resolution data, we train the DiT-L-4 configuration for 100 k steps.

Table 2. Log-likelihood in BPD and sample quality (FID) against the test set on ImageNet. We compute standard deviations over 3 seeds.

Model	BPD \downarrow	FID \downarrow
ImageNet32 (2 M train steps)		
BFN	3.448 ± 0.005	11.0 ± 0.1
VDM	3.452 ± 0.006	9.9 ± 0.5
BSI	3.448 ± 0.006	8.9 ± 0.1
ImageNet64 (100 k train steps)		
BFN	3.270 ± 0.008	50.3 ± 2.5
VDM	3.277 ± 0.004	47.7 ± 0.4
BSI	3.262 ± 0.006	42.2 ± 0.7

Table 2 shows that BSI achieves equivalent likelihoods to VDM and BFN while generating higher-quality samples in terms of FID. This aligns with the result for consistency models by Song & Dhariwal (2024) that a larger variance of the initial state – initial belief μ_0 for BSI – improves the sample diversity. Ordering the models by improving FID, we have BFN first with an initial variance of 0 ($\mu_0 = 0$), then VDM with an initial variance of 1 and finally BSI with an initial variance of $\lambda_0^{-1} = 100$. The magnitude of the FID on ImageNet64 aligns with the results reported by Peebles & Xie (2023) after 100 k training steps. Furthermore, Fig. 3 shows that BSI generates significantly better samples than the closely related BFN with fewer steps on ImageNet32.

Figure 3. BSI’s sample quality converges quickly and to a lower FID with increasing number of steps.

Figure 4. \mathcal{L}_M^k converges to \mathcal{L}_M^∞ from above as predicted in Lemma 3.3.

Figure 5. Our proposal distribution shrinks the range of $h(\lambda)/p(\lambda)$, reducing ELBO variance.

ELBO Convergence Fig. 4 shows how the finite step ELBO from Theorem 3.1 converges towards its infinite step counterpart as $k \rightarrow \infty$ on the test set of ImageNet32. For this plot, we sampled 100 precisions λ per image for the Monte Carlo estimates of \mathcal{L}_M^k and \mathcal{L}_M^∞ . The convergence trend continues right to the noise floor where the noise overshadows the signal, marked in the plot by the standard deviation of the Monte Carlo estimator for the difference between the two terms.

6.2 CIFAR10

We train the same U-Net architecture as VDM (Kingma et al., 2023) and BFN (Graves et al., 2023) on CIFAR10. Table 3 shows that BSI achieves equivalent log-likelihoods in terms of BPD. Due to the significant number of training steps (10 M), we followed (Kingma et al., 2023; Graves et al., 2023) and trained only a single model on this dataset.

Variance Reduction Fig. 5 verifies the effect of importance sampling with a log-uniform distribution that we propose in Section 3.3. It reduces the range of the $h(\lambda)/p(\lambda)$ term in Eq. (12) by about 4 orders of magnitude on CIFAR10 and therefore the variance of a Monte Carlo estimate of the ELBO.

6.3 PARAMETER STUDIES

In the following, we evaluate the impact of our modeling and parameter choices. Unless otherwise stated, we trained each model for 100 k steps on ImageNet32 with a DiT architecture, evaluated the likelihood of the test set in BPD with the infinite-step ELBO and used 1024 sampling steps to compute the FID. We will verify the assumptions of the log-uniform proposal distribution $p(\lambda)$, compare DiT and U-Net model architectures, and evaluate the prior precision λ_0 and training on the finite-step ELBO \mathcal{L}_M^k .

Proposal Distribution In Section 3.3, we have chosen a log-uniform proposal distribution $p(\lambda)$ based on the assumption that $f_\theta(\mu, \lambda) \approx \mu$. Fig. 6 shows that the relative distance between μ and $f_\theta(\mu, \lambda)$ falls quickly for $\lambda > 1$, when the belief

Table 3. Test set log-likelihood on CIFAR10 of the same U-Net in different models.

Model	Training Steps	BPD
VDM		2.65
BSI	10 M	2.64
BFN		2.66
BSI	5 M	2.65

Figure 6. As λ increases, $\hat{x} = f_\theta(\mu, \lambda)$ and the belief μ converge.

Figure 7. FID and likelihood difference between models trained on \mathcal{L}_M^k and \mathcal{L}_M^∞ when evaluated for k' steps.

(μ, λ) contains enough information that the model mostly refines the belief. Our preconditioning structure $f_\theta(\mu, \lambda) = c_{\text{skip}}\mu + c_{\text{out}}f'_\theta(c_{\text{in}}\mu, \lambda)$ derived in Section 5.1 ensures that f_θ retains existing information as the precision λ grows.

Model Architecture To ensure that the improvements in sample quality on ImageNet arise from BSI as a method and not from the architecture of the underlying model, we have also trained U-Nets on ImageNet32. Table 4 shows that the U-Net exhibits the same characteristics as the DiT that we trained in Section 6.1, i.e. equivalent likelihoods between BFN, VDM and BSI with a consistent improvement in FID. We chose the U-Net parameterization of (Kingma et al., 2023), which is also listed in Appendix E.

Initial Precision In Fig. 8, we evaluate the impact of the initial precision λ_0 on likelihood and sample quality. While the likelihood of test data improves with falling λ_0 , i.e. increasing initial noise, the sample quality depends on the number of sampling steps. For a large number of steps, larger λ_0 perform slightly better, but with fewer steps an intermediate λ_0 is preferred. With fewer total sampling steps, decreasing λ_0 ensures that the sampling process still spends enough steps in the intermediate noise range, which is responsible for the generation of large-scale features in the images (Rissanen et al., 2022).

Training with \mathcal{L}_M^∞ By default, we train by optimizing the measurement loss \mathcal{L}_M^∞ of the infinite-step ELBO, but in practice the model will only use finitely many steps. Fig. 7 shows that training on \mathcal{L}_M^k does not confer a consistent advantage in sample quality or likelihood. This justifies training by optimizing \mathcal{L}_M^∞ regardless of the number of steps used later and eliminates k as a hyperparameter.

7 CONCLUSION

We have introduced our generative model BSI through a novel perspective on generative modeling that frames sample generation as iterative Bayesian inference. We have derived an ELBO for both finite steps and the infinite step limit and an importance sampling distribution to minimize the training loss variance. In addition, we have thoroughly discussed how BSI relates to BFN and DMs and shown that BSI includes BFN as a special case. Our experiments have demonstrated that BSI generates better samples than both VDM and BFN while achieving equivalent log-likelihoods on established image datasets. Overall, BSI contributes a Bayesian perspective to the landscape of probabilistic generative modeling that is theoretically simple and empirically effective.

Table 4. Trained with U-Net architecture.

Model	BPD	FID
BFN	3.505 ± 0.001	14.2 ± 0.4
VDM	3.527 ± 0.009	15.4 ± 1.5
BSI	3.510 ± 0.009	12.8 ± 0.6

Figure 8. λ_0 balances likelihood and sample quality for varying sample steps k .

540 SOFTWARE
541

542 For our results, we rely on excellent software packages, notably numpy (Harris et al., 2020),
543 pytorch (Paszke et al., 2019), einops (Rogozhnikov, 2022), matplotlib (Hunter, 2007),
544 h5py (Collette, 2013), hydra (Yadan, 2019) and jupyter (Granger & Pérez, 2021).
545

546 REFERENCES
547

548 Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic Interpolants: A Unifying
549 Framework for Flows and Diffusions. *Journal of Machine Learning Research*, 26, September 2025.
550 doi: 10.48550/arXiv.2303.08797.

551 Sirine Ayadi, Leon Hetzel, Johanna Sommer, Fabian J. Theis, and Stephan Günnemann. Unified
552 Guidance for Geometry-Conditioned Molecular Generation. In *Neural Information Processing
553 Systems*, November 2024.

554 Zixiang Chen, Huizhuo Yuan, Yongqian Li, Yiwen Kou, Junkai Zhang, and Quanquan Gu. Fast
555 Sampling via Discrete Non-Markov Diffusion Models with Predetermined Transition Time. In *The
556 Thirty-eighth Annual Conference on Neural Information Processing Systems*, November 2024.

557 Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A Downsampled Variant of ImageNet as an
558 Alternative to the CIFAR datasets, August 2017.

559 Andrew Collette. *Python and HDF5*. O'Reilly, 2013.

560 J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-scale Hierarchical
561 Image Database. In *Computer Vision and Pattern Recognition Conference*, 2009.

562 Prafulla Dhariwal and Alexander Nichol. Diffusion Models Beat GANs on Image Synthesis. In
563 *Neural Information Processing Systems*, 2021.

564 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
565 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
566 and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
567 In *International Conference on Learning Representations*, October 2020.

568 Jarek Duda, Khalid Tahboub, Neeraj J. Gadgil, and Edward J. Delp. The use of asymmetric numeral
569 systems as an accurate replacement for Huffman coding. In *2015 Picture Coding Symposium
570 (PCS)*, pp. 65–69, May 2015. doi: 10.1109/PCS.2015.7170048.

571 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
572 Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. In *Neural Information
573 Processing Systems*. arXiv, 2014.

574 Brian E. Granger and Fernando Pérez. Jupyter: Thinking and Storytelling With Code and Data.
575 *Computing in Science & Engineering*, 23(2):7–14, March 2021. ISSN 1558-366X. doi: 10.1109/
576 MCSE.2021.3059263.

577 Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez. Bayesian Flow
578 Networks, November 2023.

579 Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
580 Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
581 Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
582 del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
583 Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
584 with NumPy. *Nature*, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.

585 GM Harshvardhan, Mahendra Kumar Gourisaria, Manjusha Pandey, and Siddharth Swarup Rautaray.
586 A comprehensive survey and analysis of generative models in machine learning. *Computer Science
587 Review*, 38:100285, November 2020. ISSN 1574-0137. doi: 10.1016/j.cosrev.2020.100285.

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In *Neural*
 595 *Information Processing Systems*, 2020. doi: 10.48550/arXiv.2006.11239.
 596

597 J. D. Hunter. Matplotlib: A 2D graphics environment. *Computing in Science & Engineering*, 9(3):
 598 90–95, 2007. doi: 10.1109/MCSE.2007.55.

599 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of Diffusion-
 600 Based Generative Models, October 2022.
 601

602 Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, 2013.

603 Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational Diffusion Models, April
 604 2023.

605 Marcel Kolloviev, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang,
 606 and Yuyang Wang. Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic
 607 Time Series Forecasting. In *Neural Information Processing Systems*. arXiv, 2023. doi: 10.48550/
 608 arXiv.2307.11494.

609 Marcel Kolloviev, Lukas Gosch, Marten Lienen, Yan Scholten, Leo Schwinn, and Stephan Günne-
 610 mann. Assessing Robustness via Score-Based Adversarial Image Generation. *Transactions on*
 611 *Machine Learning Research*, August 2024a. ISSN 2835-8856.

612 Marcel Kolloviev, Marten Lienen, David Lüdke, Leo Schwinn, and Stephan Günemann. Flow
 613 Matching with Gaussian Process Priors for Probabilistic Time Series Forecasting. In *International*
 614 *Conference on Learning Representations*, October 2024b.

615 A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images, 2009.

616 Sarah Lewis, Tim Hempel, José Jiménez-Luna, Michael Gastegger, Yu Xie, Andrew Y. K. Foong,
 617 Victor García Satorras, Osama Abdin, Bastiaan S. Veeling, Iryna Zaporozhets, Yaoyi Chen,
 618 Soojung Yang, Adam E. Foster, Arne Schneuing, Jigyasa Nigam, Federico Barbero, Vincent
 619 Stimper, Andrew Campbell, Jason Yim, Marten Lienen, Yu Shi, Shuxin Zheng, Hannes Schulz,
 620 Usman Munir, Roberto Sordillo, Ryota Tomioka, Cecilia Clementi, and Frank Noé. Scalable
 621 emulation of protein equilibrium ensembles with generative deep learning. *Science*, 389(6761),
 622 2025. doi: 10.1126/science.adv9817.

623 Marten Lienen, David Lüdke, Jan Hansen-Palmus, and Stephan Günemann. From Zero to Turbu-
 624 lence: Generative Modeling for 3D Flow Simulation. In *International Conference on Learning*
 625 *Representations*, 2024.

626 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow Matching
 627 for Generative Modeling, February 2023.

628 David Lüdke, Marin Biloš, Oleksandr Shchur, Marten Lienen, and Stephan Günemann. Add and
 629 Thin: Diffusion for Temporal Point Processes. In *Neural Information Processing Systems*, 2023.
 630 doi: 10.48550/arXiv.2311.01139.

631 David Lüdke, Enric Rabasseda Raventós, Marcel Kolloviev, and Stephan Günemann. Unlocking
 632 Point Processes through Point Set Diffusion, October 2024.

633 Kevin P Murphy. *Machine Learning: A Probabilistic Perspective*. MIT Press, 2012.

634 Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models. In *Inter-
 635 national Conference on Machine Learning*, 2021. doi: 10.48550/arXiv.2102.09672.

636 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 637 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
 638 Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
 639 Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning
 640 Library. In *Neural Information Processing Systems*, 2019.

641 William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. In *International*
 642 *Conference on Computer Vision*. arXiv, 2023. doi: 10.48550/arXiv.2212.09748.

648 Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows. In
 649 *International Conference on Machine Learning*, 2015.
 650

651 Severi Rissanen, Markus Heinonen, and Arno Solin. Generative Modelling with Inverse Heat
 652 Dissipation. In *International Conference on Learning Representations*, September 2022.
 653

654 Alex Rogozhnikov. Einops: Clear and Reliable Tensor Manipulations with Einstein-like Notation. In
 655 *International Conference on Learning Representations*, 2022.
 656

656 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical
 657 Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
 658 Frangi (eds.), *Medical Image Computing and Computer-Assisted Intervention*, Lecture Notes in
 659 Computer Science, pp. 234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-
 660 24574-4. doi: 10.1007/978-3-319-24574-4_28.

661 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Kamyar
 662 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho, David J.
 663 Fleet, and Mohammad Norouzi. Photorealistic Text-to-Image Diffusion Models with Deep Lan-
 664 guage Understanding. In *Neural Information Processing Systems*, volume 35, pp. 36479–36494,
 665 2022.

666 Tim Salimans and Jonathan Ho. Progressive Distillation for Fast Sampling of Diffusion Models. In
 667 *International Conference on Learning Representations*, October 2021.
 668

669 Abdullah Saydemir, Marten Lienen, and Stephan Günnemann. Unfolding Time: Generative Modeling
 670 for Turbulent Flows in 4D. In *AI for Science: Scaling in AI for Scientific Discovery Workshop*,
 671 *ICML*, 2024.

672 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
 673 Learning using Nonequilibrium Thermodynamics. In *International Conference on Machine
 674 Learning*, 2015.

675 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. In
 676 *International Conference on Learning Representations*, January 2021a.
 677

678 Yang Song and Prafulla Dhariwal. Improved Techniques for Training Consistency Models. In
 679 *International Conference on Learning Representations*, 2024.
 680

681 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
 682 Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
 683 *International Conference on Learning Representations*, 2021b.

684 Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
 685 models. In *International Conference on Learning Representations*. arXiv, 2016. doi: 10.48550/
 686 arXiv.1511.01844.

687 James Townsend, Thomas Bird, Julius Kunze, and David Barber. HiLLoC: Lossless image com-
 688 pression with hierarchical latent variable models. In *International Conference on Learning
 689 Representations*, September 2019.
 690

691 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
 692 Kaiser, and Illia Polosukhin. Attention Is All You Need. In *Neural Information Processing Systems*,
 693 2017.

694 Kaiwen Xue, Yuhao Zhou, Shen Nie, Xu Min, Xiaolu Zhang, Jun Zhou, and Chongxuan Li. Unifying
 695 Bayesian Flow Networks and Diffusion Models through Stochastic Differential Equations. In
 696 *Forty-First International Conference on Machine Learning*, June 2024.
 697

698 Omry Yadan. Hydra - A framework for elegantly configuring complex applications. Github, 2019.
 699

700

701

702 A How BSI relates to ...
703704 A.1 BAYESIAN FLOW NETWORKS
705

706 BFNs are a recent class of generative models for continuous and discrete data motivated from an
707 information-theoretic perspective (Graves et al., 2023). In it, a sender communicates a latent sample
708 to a receiver while trying to minimize the transported data volume. The sender compresses the data
709 with entropy coding, so that minimizing the data volume is equivalent to the receiver maximizing
710 the log-likelihood of the latent sample based on the information that it has received from the sender
711 so far. Finally, a sample can be generated when the receiver also assumes the role of the sender and
712 repeatedly refines its belief.

713 *Our generative approach in Section 3 includes BFN for continuous data as a special case.* To see
714 this, we begin by choosing our belief prior $p(\mu_0)$ as $\mathcal{N}_P(\mathbf{0}, \gamma_0)$ and letting $\gamma_0 \rightarrow \infty$, i.e. the initial
715 belief mean will always be $\mu_0 = \mathbf{0}$. With Lemma 3.4, this gives us

$$716 \quad 717 \quad q(\mu_\lambda | \mathbf{x}, \lambda) = \mathcal{N}_P\left(\frac{\lambda - \lambda_0}{\lambda} \mathbf{x}, \frac{\lambda^2}{\lambda - \lambda_0}\right). \quad (20)$$

719 If we now define $\alpha = \lambda - \lambda_0$, choose the initial precision $\lambda_0 = 1$ and write the Normal distribution
720 in variance format, we see that

$$721 \quad 722 \quad q(\mu_\lambda | \mathbf{x}, \lambda) = \mathcal{N}\left(\frac{\alpha}{1 + \alpha} \mathbf{x}, \frac{\alpha}{(1 + \alpha)^2}\right), \quad (21)$$

724 which equals the BFN flow distribution $p_F(\theta | \mathbf{x}; t)$ (Graves et al., 2023, Equation (76)) if we
725 parametrize λ (and therefore α) in terms of $t \in [0, 1]$ as in Section 5.2.

726 Since a comprehensive description of BFN would go beyond the scope of this work, we will only
727 point out the correspondence between terms from Section 3 and their BFN counterparts without
728 explaining them in detail. For a complete description, we refer the reader to the original work (Graves
729 et al., 2023).

731 The current belief (μ_i, λ_i) is equivalent to the input distribution p_I (Graves et al., 2023, Equation
732 (43)). Lemma 2.1 is the equivalent of the Bayesian update function h (Graves et al., 2023, Section
733 4.2). A noisy measurement $\mathbf{y} \sim \mathcal{N}_P(\mathbf{x}, \alpha)$ corresponds to the sender distribution p_S (Graves et al.,
734 2023, Equation (86)), while a noisy measurement $\mathbf{y} \sim \mathcal{N}_P(\hat{\mathbf{x}}, \alpha)$ of the model’s current prediction $\hat{\mathbf{x}}$
735 of the true sample corresponds to the receiver distribution p_R (Graves et al., 2023, Equation (88)).
736 The output distribution p_O and the Bayesian update distribution p_U are just intermediate terms to
737 derive the model and appear neither in the final training nor sampling algorithm.

738 Fixing the initial belief to $\mu_0 = \mathbf{0}$ with infinite precision for BFN recovers the behavior described by
739 Graves et al. (2023, Figures 3 and 4) and shown in Eq. (21) that the precision $(1 + \alpha)^2 / \alpha$ of the flow /
740 encoding distribution $q(\mu_\lambda | \mathbf{x}, \lambda)$ in the ELBO first falls and then rises again as α grows. In contrast,
741 with our belief prior $p(\mu_0) = \mathcal{N}_P(\mathbf{0}, \lambda_0)$ of the same precision as the initial belief (μ_0, λ_0) as we
742 choose it in Section 3.2, the precision of $q(\mu_\lambda | \mathbf{x}, \lambda)$ grows linearly in λ (and α) in lockstep with the
743 precision of the belief (μ_i, λ_i) . We hypothesize that this makes learning for the model easier, because
744 the noise level in its input varies linearly instead of non-linearly across noise levels. Furthermore,
745 in BSI, the first sampling step will already contribute to drawing a random sample, since the initial
746 input μ_0 to f_θ is random. In BFN, the initial belief is fixed to $\mathbf{0}$, which makes the first sampling step
747 deterministic and equal across all samples.

748 In Section 3.2, we have argued that the reasonable range of prior precisions γ_0 is $[\lambda_0, \infty]$. *BSI and*
749 *BFN occupy the two extremes of this range* with BSI using the least informed prior $\gamma_0 = \lambda_0$, i.e.
750 making the fewest assumptions, and BFN the most informed one $\gamma_0 = \infty$. Note that these extremes
751 are the only choices in the reasonable range for which the precision $\lambda^2(\lambda - \lambda_0 + \lambda_0^2/\gamma_0)^{-1}$ of the
752 encoder q in Lemma 3.4 simplifies, i.e. to just λ for BSI and $\lambda^2(\lambda - \lambda_0)^{-1}$ for BFN.

753 In our comparison to DMs in Appendix A.2, we see that BSI and BFN also differ in their associated
754 noising process. While BSI’s noising process, i.e. how one could go from a more precise measurement
755 back to a less precise one, does not form a Markov chain, BFN’s does, making BFN more similar to
DMs.

756 In Appendix A.2, we exploit that BFN can be represented as a special case of BSI to derive a
 757 Markovian forward process for BFN as DMs.
 758

759 A.2 DIFFUSION MODELS 760

761 DMs are a widely used class of generative models built on the concept of inverting a diffusion process
 762 (Sohl-Dickstein et al., 2015; Ho et al., 2020). Given a sample \mathbf{x} , they define a Markov chain of
 763 increasingly noisy versions $\mathbf{x}_1, \mathbf{x}_2, \dots$ of \mathbf{x} where $\mathbf{x}_0 = \mathbf{x}$ and

$$764 p(\mathbf{x}_i \mid \mathbf{x}_{i-1}) = \mathcal{N}(\alpha_i \mathbf{x}_{i-1}, \beta_i) \quad (22)$$

765 for some coefficients α_i and β_i . In training, a model learns to invert this Markov chain, which lets you
 766 finally generate data by sampling from a noise distribution and stepping along the learned, reverse
 767 Markov chain until you reach the data distribution.

768 While DMs initially achieved prominence in image generation (Dhariwal & Nichol, 2021), they
 769 have since been applied successfully across a variety of domains, such as text-to-image mapping
 770 (Saharia et al., 2022), fluid simulations (Lienen et al., 2024; Saydemir et al., 2024), adversarial attacks
 771 (Kolloviev et al., 2024a), temporal (Lüdke et al., 2023) and general point processes (Lüdke et al.,
 772 2024), molecular dynamics (Lewis et al., 2025), molecular structure generation (Ayadi et al., 2024),
 773 and time series forecasting (Kolloviev et al., 2023; 2024b).

774 DMs and BSI are remarkably similar at first glance. Both revolve around the concept of iteratively
 775 transforming noise into data samples, though DMs work with Langevin dynamics and BSI uses
 776 posterior inference. For training, both models aim to align a parametric distribution $p_{\theta}(\mathbf{x}'' \mid \mathbf{x}')$ with
 777 a distribution $q(\mathbf{x}'' \mid \mathbf{x}', \mathbf{x})$ that describes a less noisy version \mathbf{x}'' of a noisy sample \mathbf{x}' given that the
 778 true sample is \mathbf{x} .

779 However, conceptually, they approach sampling from two different perspectives. DMs start with
 780 the so-called forward process, where signal is iteratively converted into noise forming a Markov
 781 chain of intermediate states as in Eq. (22). Then, they revert this chain to derive the reverse process
 782 that enriches noise with data. In contrast, BSI defines the reverse process directly in the form of
 783 Lemma D.1 and never uses the associated forward process directly.

784 We can revert BSI’s process to derive its “noising” process. This will let us see what BSI would look
 785 like as a DM and thus understand the relationship between the two. Assume that our current belief is
 786 $(\boldsymbol{\mu}, \lambda = \lambda_0 + \alpha)$ and we want to denoise further based on a sample \mathbf{x} and measurement precision α' ,
 787 i.e. update our belief to $(\boldsymbol{\mu}', \lambda' = \lambda_0 + \alpha + \alpha')$. The denoising process described by Lemma D.1
 788 tells us that

$$789 p(\boldsymbol{\mu}' \mid \boldsymbol{\mu}, \mathbf{x}) = \mathcal{N}_P(1/\lambda' [\lambda \boldsymbol{\mu} + \alpha' \mathbf{x}], \lambda'^2/\alpha'). \quad (23)$$

790 To find the noising process, we revert this and get

$$792 p(\boldsymbol{\mu} \mid \boldsymbol{\mu}', \mathbf{x}) = \mathcal{N}\left(\xi^{-1} \left[\frac{\lambda \lambda'}{\alpha'} \boldsymbol{\mu}' + \lambda \left(\frac{\alpha}{\alpha + \lambda_0^2/\gamma_0} - 1 \right) \mathbf{x} \right], \xi\right) \quad (24)$$

793 where $\xi = \lambda^2((\alpha + \lambda_0^2/\gamma_0)^{-1} + \alpha'^{-1})$ and γ_0 is the precision of the initial belief prior $p(\boldsymbol{\mu}_0) =$
 794 $\mathcal{N}(\mathbf{0}, \gamma_0)$. Find the proof at the end of this section.

795 Plugging in $\gamma_0 = \lambda_0$, we get that the noising process of BSI is

$$796 p(\boldsymbol{\mu} \mid \boldsymbol{\mu}', \mathbf{x}) = \mathcal{N}\left(\xi^{-1} \left[\frac{\lambda \lambda'}{\alpha'} \boldsymbol{\mu}' - \lambda_0 \mathbf{x} \right], \xi\right) \quad \text{where} \quad \xi = \lambda \left(1 + \frac{\lambda}{\alpha'}\right). \quad (25)$$

801 Note that this distributions depends on \mathbf{x} since $\lambda_0 > 0$. Therefore, BSI’s forward process would
 802 not be Markov, i.e. you cannot add more noise to a belief state without knowing the sample \mathbf{x} that
 803 the belief state originated from. While DMs with non-Markov forward processes exist (Song et al.,
 804 2021a; Chen et al., 2024), they are uncommon. In conclusion, we see that BSI can be represented as
 805 a DM, though with a rather complex, non-Markovian forward process.

806 As we have shown in Appendix A.1, BFN are a special case of our generative framework in Section 3
 807 if we choose $\gamma_0 = \infty$. Curiously, Eq. (24) shows that this is the only prior on $\boldsymbol{\mu}_0$ for which the
 808 associated forward process is Markov as the coefficient of \mathbf{x} becomes 0. This agrees with Xue et al.
 809 (2024), who have shown that BFN admit a formulation based on stochastic differential equations
 (SDEs), like score-based DMs.

810 *Proof of Eq. (24).* We know from Lemma 3.4 that
 811

$$812 \quad q(\boldsymbol{\mu} | \mathbf{x}, \lambda) = \mathcal{N}_P \left(\frac{\lambda - \lambda_0}{\lambda} \mathbf{x}, \frac{\lambda^2}{\lambda - \lambda_0 + \lambda_0^2/\gamma_0} \right) = \mathcal{N}_P \left(\frac{\alpha}{\lambda} \mathbf{x}, \frac{\lambda^2}{\alpha + \lambda_0^2/\gamma_0} \right) \quad (26)$$

813 and from Lemma D.1 that
 814

$$815 \quad p(\boldsymbol{\mu}' | \boldsymbol{\mu}, \mathbf{x}) = \mathcal{N}_P \left(\frac{1}{\lambda'} [\lambda \boldsymbol{\mu} + \alpha' \mathbf{x}], \frac{\lambda'^2}{\alpha'} \right). \quad (27)$$

816 Therefore, $p(\boldsymbol{\mu}, \boldsymbol{\mu}' | \mathbf{x})$ is a Gaussian linear system and we can use (Murphy, 2012, Equation (4.125))
 817 to see that
 818

$$819 \quad p(\boldsymbol{\mu} | \boldsymbol{\mu}', \mathbf{x}) = \mathcal{N}_P(\boldsymbol{\nu}, \xi) \quad (28)$$

820 with
 821

$$822 \quad \xi = \lambda^2 \left(\alpha + \frac{\lambda_0^2}{\gamma_0} \right)^{-1} + \left(\frac{\lambda}{\lambda'} \right)^2 \frac{\lambda'^2}{\alpha'} = \lambda^2 \left((\alpha + \lambda_0^2/\gamma_0)^{-1} + \alpha'^{-1} \right) \quad (29)$$

823 and
 824

$$825 \quad \boldsymbol{\nu} = \xi^{-1} \left[\frac{\lambda}{\lambda'} \frac{\lambda'^2}{\alpha'} \left(\boldsymbol{\mu}' - \frac{\alpha'}{\lambda'} \mathbf{x} \right) + \lambda^2 (\alpha + \lambda_0^2/\gamma_0)^{-1} \alpha/\lambda \mathbf{x} \right] \quad (30)$$

$$826 \quad = \xi^{-1} \left[\frac{\lambda \lambda'}{\alpha'} \boldsymbol{\mu}' + \lambda \left(\frac{\alpha}{\alpha + \lambda_0^2/\gamma_0} - 1 \right) \mathbf{x} \right]. \quad (31)$$

827 \square
 828

829 A.3 STOCHASTIC INTERPOLANTS

830 Stochastic interpolants are a broad class of continuous-time stochastic processes that can interpolate
 831 between any two probability distributions ρ_0 and ρ_1 (Albergo et al., 2025). They also prescribe how
 832 to learn the interpolants' dynamics to construct generative models and it is instructive to see how they
 833 relate to BSI. The subclass of *spatially linear one-sided interpolants* assumes that ρ_0 is a standard
 834 Normal distribution and defines the interpolant

$$835 \quad \mathbf{x}_t = \alpha(t) \mathbf{z}_t + \beta(t) \mathbf{x}_1 \quad (32)$$

836 where $\mathbf{x}_1 \sim \rho_1$ and $\mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Given that α and β are smooth, non-negative functions with
 837 $\alpha(0) = \beta(1) = 1$ and $\alpha(1) = \beta(0) = 0$, \mathbf{x}_t smoothly interpolates between a standard Normal and
 838 the data distribution ρ_1 .
 839

840 For BSI, we can interpret the belief mean $\boldsymbol{\mu}_\lambda$ for a data sample \mathbf{x}
 841

$$842 \quad \boldsymbol{\mu}_\lambda = \frac{1}{\sqrt{\lambda}} \mathbf{z} + \frac{\lambda - \lambda_0}{\lambda} \mathbf{x} \quad (33)$$

843 as an interpolant that is normally distributed with mean $\mathbf{0}$ and precision λ_0 at $\lambda = \lambda_0$ and equals
 844 the data sample \mathbf{x} at $\lambda = \infty$. We could rewrite this as an interpolant in the above sense on $[0, 1]$
 845 by parameterizing λ as a strictly increasing function $\lambda(t) : [0, 1] \rightarrow \mathbb{R}_+$ with $\lambda(0) = \lambda_0$ and
 846 $\lim_{t \rightarrow 1} \lambda(t) = \infty$, e.g. $\lambda(t) = \lambda_0 - \log(1 - t)$, similar to the mapping between score-based
 847 diffusion and stochastic interpolants (Albergo et al., 2025, Section 5.1). But to avoid the scaling
 848 and correction factors, we will consider it an interpolant on $[\lambda_0, \infty]$ instead with $\alpha(\lambda) = 1/\sqrt{\lambda}$ and
 849 $\beta(\lambda) = (\lambda - \lambda_0)/\lambda$. We will furthermore write $\alpha(\lambda)$ and $\beta(\lambda)$ as α and β to reduce visual clutter.

850 (Albergo et al., 2025, Section 4.4) shows that the probability path $\rho(\lambda, \boldsymbol{\mu}_\lambda)$ of the interpolant solves
 851 the transport equation $\partial_\lambda \rho + \nabla \cdot (b\rho) = 0$ with the velocity field
 852

$$853 \quad b(\lambda, \boldsymbol{\mu}) = \frac{\dot{\alpha}}{\alpha} \boldsymbol{\mu} + \left(\dot{\beta} - \frac{\dot{\alpha}}{\alpha} \beta \right) \eta(\lambda, \boldsymbol{\mu}) \quad (34)$$

854 and its score $\nabla \log \rho(\lambda, \boldsymbol{\mu})$ is given by
 855

$$856 \quad s(\lambda, \boldsymbol{\mu}) = -\frac{\boldsymbol{\mu} - \beta \eta(\lambda, \boldsymbol{\mu})}{\alpha^2}. \quad (35)$$

$\eta(\lambda, \boldsymbol{\mu}) = \mathbb{E}[\mathbf{x} \mid \boldsymbol{\mu}_\lambda = \boldsymbol{\mu}]$ is the denoiser, i.e. the expected data sample that led to belief $\boldsymbol{\mu}$ at precision λ . Note that $\eta(\lambda, \boldsymbol{\mu})$ is learned with a model $\hat{\eta}$, which is equivalent to $f_{\boldsymbol{\theta}}(\boldsymbol{\mu}, \lambda)$ in BSI and fit by minimizing (Albergo et al., 2025, Eq. (4.21))

$$\mathcal{L}(\hat{\eta}) = \int_{\lambda_0}^{\lambda_M} \mathbb{E} \left[\frac{1}{2} \|\hat{\eta}(\lambda, \boldsymbol{\mu})\|_2^2 - \boldsymbol{\mu} \cdot \hat{\eta}(\lambda, \boldsymbol{\mu}) \right] d\lambda. \quad (36)$$

$\mathcal{L}(\hat{\eta})$ is equivalent to \mathcal{L}_M^∞ in Theorem 3.2 up to a constant factor and offset.

With the velocity field and score, we can write down the forward SDE corresponding to the probability path ρ as (Albergo et al., 2025, Corollary 18)

$$d\boldsymbol{\mu}_\lambda = b_F(\lambda, \boldsymbol{\mu}_\lambda) d\lambda + \sqrt{2\varepsilon(\lambda)} dW_\lambda \quad (37)$$

where W_λ is Brownian motion, $\varepsilon(\lambda) : \mathbb{R} \rightarrow \mathbb{R}_+$ is any noise level specification and

$$\begin{aligned} b_F(\lambda, \boldsymbol{\mu}) &= b(\lambda, \boldsymbol{\mu}) + \varepsilon(\lambda) s(\lambda, \boldsymbol{\mu}) \\ &= \left(\frac{\dot{\alpha}}{\alpha} - \frac{\varepsilon}{\alpha^2} \right) \boldsymbol{\mu} + \left(\frac{\varepsilon}{\alpha^2} - \frac{\dot{\alpha}}{\alpha} + \frac{\dot{\beta}}{\beta} \right) \beta \eta(\lambda, \boldsymbol{\mu}) \end{aligned} \quad (38)$$

is the forward drift. If we plug in α and β , we get

$$d\boldsymbol{\mu}_\lambda = \left[-\left(\frac{1}{2\lambda} + \varepsilon\lambda \right) \boldsymbol{\mu}_\lambda + \left(\varepsilon\lambda + \frac{1}{2\lambda} + \frac{\lambda_0}{\lambda(\lambda - \lambda_0)} \right) \frac{\lambda - \lambda_0}{\lambda} \eta(\lambda, \boldsymbol{\mu}_\lambda) \right] d\lambda + \sqrt{2\varepsilon} dW_\lambda. \quad (39)$$

Since this holds for any non-negative ε , we can choose $\varepsilon = \frac{1}{2\lambda^2}$ to simplify the equation to

$$d\boldsymbol{\mu}_\lambda = \frac{1}{\lambda} [\eta(\lambda, \boldsymbol{\mu}_\lambda) - \boldsymbol{\mu}_\lambda] d\lambda + \frac{1}{\lambda} dW_\lambda. \quad (40)$$

We can now sample from the learned stochastic interpolant by integrating Eq. (40) from λ_0 to λ_M (Albergo et al., 2025, Algorithm 5). Let's say we are at precision λ with state $\boldsymbol{\mu}_\lambda$ and want to move ahead by a step of length α . With the Euler-Maruyama method suggested by (Albergo et al., 2025), the integration step becomes

$$\begin{aligned} \boldsymbol{\mu}_{\lambda+\alpha} &= \boldsymbol{\mu}_\lambda + \alpha \cdot \frac{1}{\lambda} [\hat{\eta}(\lambda, \boldsymbol{\mu}_\lambda) - \boldsymbol{\mu}_\lambda] + \frac{\sqrt{\alpha}}{\lambda} \boldsymbol{\varepsilon} \\ &= \frac{\lambda - \alpha}{\lambda} \boldsymbol{\mu}_\lambda + \frac{\alpha}{\lambda} \hat{\eta}(\lambda, \boldsymbol{\mu}_\lambda) + \frac{\sqrt{\alpha}}{\lambda} \boldsymbol{\varepsilon} \end{aligned} \quad (41)$$

where $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. This is almost the same as the BSI sampling step

$$\begin{aligned} \boldsymbol{\mu}_i &= \frac{\lambda_{i-1} \boldsymbol{\mu}_{i-1} + \alpha_i (\hat{\mathbf{x}}_{i-1} + \sqrt{\frac{1}{\alpha_i}} \boldsymbol{\varepsilon}_i)}{\lambda_{i-1} + \alpha_i} \\ &= \frac{\lambda_i - \alpha_i}{\lambda_i} \boldsymbol{\mu}_{i-1} + \frac{\alpha_i}{\lambda_i} \hat{\mathbf{x}}_{i-1} + \frac{\sqrt{\alpha_i}}{\lambda_i} \boldsymbol{\varepsilon}_i \end{aligned} \quad (42)$$

in Algorithm 3. The subtle difference is that Eq. (41) uses the current λ to compute $\boldsymbol{\mu}_{\lambda+\alpha}$ whereas Eq. (42) uses the next $\lambda_i = \lambda_{i-1} + \alpha_i$ for $\boldsymbol{\mu}_i$. This difference reflects that BSI employs an exact Bayesian update rather than a first-order Euler-Maruyama approximation.

In summary, we can write BSI as a spatially linear one-sided stochastic interpolant, though two important differences remain. First, while the sampling steps Eqs. (41) and (42) are equivalent in the continuous limit of $\alpha \rightarrow 0$, they differ in practice due to their derivation from an SDE discretization and posterior inference, respectively. Second, stochastic interpolants require the interpolation's endpoints to equal the noise and data distribution exactly, which corresponds to $\lambda = \infty$ in the above formulation. In contrast, BSI only infers the sample \mathbf{x} up to a maximum precision of λ_M , e.g. precisely enough to identify the exact color in an image with 8-bit color channels.

918 B ELBO IN BITS PER DIMENSION
919

920 A common metric in probabilistic modeling is the negative log-likelihood of unseen data. The
921 benefits of this metric are that it is theoretically motivated by the probabilistic framework and it can
922 be computed across domains regardless of data modality. If the negative log-likelihood is small, the
923 generative model assigns high likelihood to the unseen data and can thus be regarded as a good model
924 (though likelihood and sample quality are not necessarily the same thing (Theis et al., 2016)). For
925 models that come with an ELBO like BSI, we can use it to upper bound the negative log-likelihood
926 to compare against other ELBO-based or exact-likelihood models.

927 The negative log-likelihood is usually reported in bits per pixel, per color channel or, in general, per
928 dimension. This unit comes from the fact that an entropy coder could use the model to encode samples
929 $\mathbf{x} \in \mathbb{S}^d$ from a finite symbol alphabet \mathbb{S} from the data distribution asymptotically in $-\log_2 p_{\theta}(\mathbf{x})/d$
930 bits per dimension (Duda et al., 2015). Note that the underlying space \mathbb{S} must be discrete. If it were
931 continuous, $p_{\theta}(\mathbf{x})$ would be a density and the theory would predict that we could compress \mathbf{x} into a
932 negative number of bits.

933 The discreteness requirement is a natural fit for many domains. While, for example, images are
934 usually treated as tensors with continuous color values, the colors are actually stored as discrete
935 values in the range $[0, 2^8 - 1]$ for 8-bit images. Similarly, audio data is a sequence of discrete values
936 in, for example, a 16-bit range.

937 Let's say that \mathbb{S} is the set of integers $\{0, \dots, r - 1\}$. Then we can compute an upper bound on the
938 bits needed to encode $\mathbf{x} \in \mathbb{S}^d$ by

$$939 -\log_2 p(\mathbf{x}) \leq \log(2)(\mathcal{L}'_{\text{R}} + \mathcal{L}^{\infty}_{\text{M}}) \quad (43)$$

940 as per Theorems 3.1 and 3.2. The multiplication by $\log(2)$ converts the logarithms in \mathcal{L}'_{R} and $\mathcal{L}^{\infty}_{\text{M}}$ to
941 base 2. \mathcal{L}'_{R} is the same as \mathcal{L}_{R} but with a discretized Normal likelihood to account for the discrete
942 nature of \mathbf{x} , i.e.

$$943 \mathcal{L}'_{\text{R}} = \mathbb{E}_{q(\boldsymbol{\mu}_{\lambda_{\text{M}}} | \mathbf{x}, \lambda_{\text{M}})} [-\log \mathcal{N}'_{\text{P}}(\mathbf{x} | \hat{\mathbf{x}}_{\lambda_{\text{M}}}, \alpha_{\text{R}})] \quad (44)$$

944 where

$$945 \mathcal{N}'_{\text{P}}(x_j | \hat{\mathbf{x}}_{\lambda_{\text{M}}}, \alpha_{\text{R}}) = \Phi(r_j | \hat{\mathbf{x}}_{\lambda_{\text{M}}}, \alpha_{\text{R}}) - \Phi(l_j | \hat{\mathbf{x}}_{\lambda_{\text{M}}}, \alpha_{\text{R}}). \quad (45)$$

946 $\Phi(r_j | \hat{\mathbf{x}}_{\lambda_{\text{M}}}, \alpha_{\text{R}})$ is the CDF of $\mathcal{N}(\hat{\mathbf{x}}_{\lambda_{\text{M}}}, \alpha_{\text{R}})$ and l_j and r_j are the boundaries of the discretization
947 interval containing x_j , i.e.

$$948 l_j = \begin{cases} -\infty & \text{if } x_j < \frac{1}{2} \\ r - \frac{3}{2} & \text{if } x_j \geq r - \frac{3}{2} \\ \lfloor x_j - \frac{1}{2} \rfloor + \frac{1}{2} & \text{otherwise} \end{cases} \quad \text{and} \quad r_j = \begin{cases} \infty & \text{if } x_j \geq r - \frac{3}{2} \\ \frac{1}{2} & \text{if } x_j < \frac{1}{2} \\ \lfloor x_j + \frac{1}{2} \rfloor - \frac{1}{2} & \text{otherwise.} \end{cases} \quad (46)$$

949 $\mathcal{L}^{\infty}_{\text{M}}$ is usually not discretized during ELBO computation as the latent variables only enter as a
950 mean squared error instead of a log-likelihood. In a practical implementation, the latent variable
951 distributions would need to be discretized as well, decreasing the ELBO slightly (Kingma et al., 2023;
952 Townsend et al., 2019). If \mathbf{x} is discretized to a different set of discrete symbols, e.g. numbers between
953 -1 and 1 instead of the integers \mathbb{S} , the boundaries of the discretization intervals and bin widths in the
954 discretized Normal distribution have to be adapted accordingly.

955 C PRECONDITIONING DERIVATION
956

957 We will assume in this section that the data is normalized such that $\mathbb{E}[\mathbf{x}] = \mathbf{0}$ and $\text{Var}[\mathbf{x}] = \mathbf{I}$.

958 Assume that we have a current belief $(\boldsymbol{\mu}, \lambda)$. We derive the parameters c_{skip} , c_{out} and c_{in} of the
959 preconditioned model

$$960 f_{\theta}(\boldsymbol{\mu}, \lambda) = c_{\text{skip}}\boldsymbol{\mu} + c_{\text{out}}f'_{\theta}(c_{\text{in}}\boldsymbol{\mu}, \lambda) \quad (47)$$

961 analogously to Karras et al. (2022). However, while we proceed in the same way, the resulting
962 parameters for BSI differ from Karras et al. (2022) because BSI is not included in the family of DMs
963 that Karras et al. (2022) consider, see Appendix A.2.

964 First, we require that $\text{Var}_{\mathbf{x}}[c_{\text{in}}\boldsymbol{\mu}] = \mathbf{I}$ for all λ . We know from Corollary 3.5 that

$$965 q(\boldsymbol{\mu} | \mathbf{x}, \lambda) = \mathcal{N}_{\text{P}}((\lambda - \lambda_0)/\lambda \mathbf{x}, \lambda). \quad (48)$$

972 Therefore, $p(\mathbf{x}, \boldsymbol{\mu})$ is a Gaussian linear system and (Murphy, 2012, Equation (4.126)) tells us that the
 973 variance of the marginal distribution of $\boldsymbol{\mu}$ is
 974

$$975 \text{Var}_{\mathbf{x}}[\boldsymbol{\mu}] = \left(\lambda^{-1} + \frac{(\lambda - \lambda_0)^2}{\lambda^2} \right) \mathbf{I}. \quad (49)$$

977 By plugging this into our requirement
 978

$$979 \text{Var}_{\mathbf{x}}[c_{\text{in}}\boldsymbol{\mu}] = c_{\text{in}}^2 \text{Var}_{\mathbf{x}}[\boldsymbol{\mu}] = \mathbf{I}, \quad (50)$$

980 we get immediately that
 981

$$982 c_{\text{in}} = \left(\lambda^{-1} + \frac{(\lambda - \lambda_0)^2}{\lambda^2} \right)^{-1/2} = \underbrace{\left(1 + \frac{(\lambda - \lambda_0)^2}{\lambda} \right)^{-1/2}}_{=: \kappa} \lambda^{1/2} = \sqrt{\lambda/\kappa}. \quad (51)$$

986 Next, we want to have the actual prediction target of $f'_{\boldsymbol{\theta}}$ during training to have unit variance, too. In
 987 training, we optimize the ELBO from Theorem 3.2, which comes down to minimizing
 988

$$989 \|\mathbf{x} - f_{\boldsymbol{\theta}}(\boldsymbol{\mu}, \lambda)\|_2^2 \quad (52)$$

990 up to constant factors only depending on λ . If we plug in Eq. (47) and isolate $f'_{\boldsymbol{\theta}}$, this distance
 991 becomes
 992

$$993 \|\mathbf{x} - c_{\text{skip}}\boldsymbol{\mu} - c_{\text{out}}f'_{\boldsymbol{\theta}}(c_{\text{in}}\boldsymbol{\mu}, \lambda)\|_2^2 = c_{\text{out}}^2 \|f'_{\boldsymbol{\theta}}(c_{\text{in}}\boldsymbol{\mu}, \lambda) - c_{\text{out}}^{-1}(\mathbf{x} - c_{\text{skip}}\boldsymbol{\mu})\|_2^2. \quad (53)$$

995 From this, we identify $c_{\text{out}}^{-1}(\mathbf{x} - c_{\text{skip}}\boldsymbol{\mu})$ as the actual training target for $f'_{\boldsymbol{\theta}}$. For the rest of this
 996 derivation, we denote use the shorthand $\alpha = \lambda - \lambda_0$ for the measurement precision accumulated in
 997 our belief $(\boldsymbol{\mu}, \lambda)$. After Corollary 3.5, we can write $\boldsymbol{\mu}$ as $\alpha/\lambda \mathbf{x} + \mathbf{z}$ where $\mathbf{z} \sim \mathcal{N}_{\mathbf{P}}(\mathbf{0}, \lambda)$ and find
 998 that the variance of the training target is

$$999 \text{Var}_{\mathbf{x}, \mathbf{z}}[c_{\text{out}}^{-1}(\mathbf{x} - c_{\text{skip}}\boldsymbol{\mu})] = c_{\text{out}}^{-2} \text{Var}_{\mathbf{x}, \mathbf{z}} \left[\mathbf{x} - c_{\text{skip}} \left(\frac{\alpha}{\lambda} \mathbf{x} + \mathbf{z} \right) \right] \\ 1000 = c_{\text{out}}^{-2} \text{Var}_{\mathbf{x}, \mathbf{z}} \left[\left(1 - c_{\text{skip}} \frac{\alpha}{\lambda} \right) \mathbf{x} - c_{\text{skip}} \mathbf{z} \right] \\ 1001 = c_{\text{out}}^{-2} \left[\left(1 - c_{\text{skip}} \frac{\alpha}{\lambda} \right)^2 + c_{\text{skip}}^2 \lambda^{-1} \right] \mathbf{I} \quad (54)$$

1002 If we now require the effective training target to have unit variance, we see that
 1003

$$1004 c_{\text{out}}^2 = \left(1 - c_{\text{skip}} \frac{\alpha}{\lambda} \right)^2 + c_{\text{skip}}^2 \lambda^{-1} = \left[1 + \frac{\alpha^2}{\lambda} \right] \frac{1}{\lambda} c_{\text{skip}}^2 - 2 \frac{\alpha}{\lambda} c_{\text{skip}} + 1. \quad (55)$$

1011 Following Karras et al. (2022), we now choose c_{skip} to minimize the impact of errors in the output
 1012 of $f'_{\boldsymbol{\theta}}$ by minimizing the magnitude of c_{out} . c_{out}^2 is a polynomial in c_{skip} with positive leading
 1013 coefficient, so we can find the minimizer as the root of
 1014

$$1015 \frac{1}{2} \frac{dc_{\text{out}}^2}{dc_{\text{skip}}} = \left[1 + \frac{\alpha^2}{\lambda} \right] \frac{1}{\lambda} c_{\text{skip}} - \frac{\alpha}{\lambda}, \quad (56)$$

1017 which is at

$$1018 c_{\text{skip}} = \left[1 + \frac{\alpha^2}{\lambda} \right]^{-1} \alpha = \kappa^{-1} \alpha = \frac{\alpha}{\kappa}. \quad (57)$$

1021 Finally, we can plug c_{skip} into Eq. (55) to get
 1022

$$1023 c_{\text{out}}^2 = \kappa \kappa^{-2} \frac{\alpha^2}{\lambda} - 2 \frac{\alpha}{\lambda} \kappa^{-1} \alpha + 1 = \kappa^{-1} \left(\frac{\alpha^2}{\lambda} - 2 \frac{\alpha^2}{\lambda} + \left[1 + \frac{\alpha^2}{\lambda} \right] \right) = \kappa^{-1} \quad (58)$$

1025 and consequently $c_{\text{out}} = \kappa^{-1/2} = \sqrt{1/\kappa}$.

1026 **D PROOFS**

1027

1028 **D.1 PROOF OF THEOREM 3.1**

1029

1030 We will begin with some auxiliary insights. First, we consider the marginal distribution of the updated
 1031 belief (μ', λ') . This means that our current belief about a sample \mathbf{x} is (μ, λ) and now we want to
 1032 know the distribution of μ' after updating μ with Lemma 2.1 marginalized over all possible noisy
 1033 measurements \mathbf{y} with precision α . Note that λ' is deterministic as it neither depends on \mathbf{x} nor \mathbf{y} .

1034 **Lemma D.1** (Update Marginal). *Let $\mathbf{x}, \mu \in \mathbb{R}^n$ and $\lambda, \alpha \in \mathbb{R}_+$. Then the distribution of the posterior
 1035 belief mean μ' marginalized over all measurements \mathbf{y} made with precision α is*

$$1036 \quad p(\mu' | \mu, \mathbf{x}, \alpha) = \mathbb{E}_{\mathbf{y} \sim \mathcal{N}_P(\mathbf{x}, \alpha \mathbf{I})} [p(\mu' | \mu, \mathbf{x}, \alpha, \mathbf{y})] = \mathcal{N}_P(1/\lambda' [\lambda \mu + \alpha \mathbf{x}], \lambda'^2/\alpha). \quad (59)$$

1037

1038

1039 *Proof.* The noisy measurement is a Normal random variable $\mathbf{y} \sim \mathcal{N}_P(\mathbf{x}, \alpha)$ and the mean of our
 1040 posterior belief (μ', λ') after observing \mathbf{y} is the deterministic linear transformation

$$1041 \quad \mu' = 1/\lambda' [\lambda \mu + \alpha \mathbf{y}] \quad (60)$$

1042

1043 of this random variable. The statement follows immediately by the linear transformation property of
 1044 the Normal distribution. \square

1044

1045 From this, we can see that the update marginal from multiple intermediate measurements is the same
 1046 as from a single measurement with the combined precision of the intermediate measurements.

1047 **Lemma D.2.** *Let $\mathbf{x}, \mu, \mu', \mu'' \in \mathbb{R}^n$ and $\lambda, \alpha, \alpha' \in \mathbb{R}_+$. μ' is the posterior belief mean after
 1048 a measurement with precision α and μ'' the posterior belief mean after a second, subsequent
 1049 measurement with precision α' . Then we have that the marginal distribution of the second update is*

1050

$$1051 \quad \mathbb{E}_{p(\mu' | \mu, \mathbf{x}, \alpha)} [p(\mu'' | \mu', \mathbf{x}, \alpha')] = p(\mu'' | \mu, \mathbf{x}, \alpha + \alpha'). \quad (61)$$

1052

1053 *Proof.* We know from Lemma D.1 that μ' is a random variable

$$1054 \quad p(\mu' | \mu, \mathbf{x}, \alpha) = \mathcal{N}_P\left(\underbrace{1/\lambda' [\lambda \mu + \alpha \mathbf{x}]}_{=: \nu}, \underbrace{\lambda'^2/\alpha}_{=: \xi}\right) \quad (62)$$

1055

1056

1057 and μ'' is a random variable that depends linearly on μ'

$$1058 \quad p(\mu'' | \mu', \mathbf{x}, \alpha') = \mathcal{N}_P(1/\lambda'' [\lambda' \mu' + \alpha' \mathbf{x}], \lambda''^2/\alpha'). \quad (63)$$

1059

1059 As such, they jointly form a Gaussian linear system for which the marginal distribution of μ'' is
 1060 (Murphy, 2012, Equation (4.126))

1061

$$1061 \quad \mathbb{E}_{p(\mu' | \mu, \mathbf{x}, \alpha)} [p(\mu'' | \mu', \mathbf{x}, \alpha')] = \mathcal{N}\left(1/\lambda'' [\lambda' \nu + \alpha' \mathbf{x}], \frac{\alpha'}{\lambda''^2} + \frac{\lambda'^2}{\lambda''^2 \xi}\right). \quad (64)$$

1062

1062 Plugging ν into the mean expression and simplifying yields the marginal mean

1063

$$1063 \quad 1/\lambda'' [\lambda \mu + (\alpha + \alpha') \mathbf{x}]. \quad (65)$$

1064

1064 Similarly, plugging ξ into the covariance expression and simplifying yields the marginal covariance

1065

$$1065 \quad \frac{\alpha + \alpha'}{\lambda''^2}. \quad (66)$$

1066

1066 If we now recall from Lemma 2.1 that

$$1067 \quad \lambda' = \lambda + \alpha \quad \text{and} \quad \lambda'' = \lambda' + \alpha' = \lambda + \alpha + \alpha', \quad (67)$$

1068

1068 we can identify Eq. (64) as $p(\mu'' | \mu, \mathbf{x}, \alpha + \alpha')$. \square

1069

1069 This trivially generalizes to any finite sequence of measurements, which can be collapsed into a single
 1070 measurement with the total precision instead.

1071

1071 We will furthermore need to know the KL divergence between the update marginal distributions of
 1072 the same belief but based on two different samples \mathbf{x} and \mathbf{x}' .

1073

1080 **Lemma D.3.** Let $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^n$ and $\lambda, \alpha \in \mathbb{R}_+$. Then

$$D_{\text{KL}}(p(\boldsymbol{\mu}' | \boldsymbol{\mu}, \mathbf{x}, \alpha), p(\boldsymbol{\mu}' | \boldsymbol{\mu}, \mathbf{x}', \alpha)) = \frac{1}{2} \alpha \|\mathbf{x} - \mathbf{x}'\|_2^2. \quad (68)$$

1084 *Proof.* Both update marginal distributions – with \mathbf{x} and \mathbf{x}' – are Normal distributions of equal
1085 precision $\xi := \frac{\lambda'^2}{\alpha}$ as given by Lemma D.1 and respective means of

$$\boldsymbol{\nu} = \frac{1}{\lambda'} [\lambda \boldsymbol{\mu} + \alpha \mathbf{x}] \quad \text{and} \quad \boldsymbol{\nu}' = \frac{1}{\lambda'} [\lambda \boldsymbol{\mu} + \alpha \mathbf{x}']. \quad (69)$$

1088 As a consequence, the closed form solution for the KL divergence between two equal-covariance
1089 Normal distributions becomes

$$\begin{aligned} D_{\text{KL}}(p(\boldsymbol{\mu}' | \boldsymbol{\mu}, \mathbf{x}, \alpha), p(\boldsymbol{\mu}' | \boldsymbol{\mu}, \mathbf{x}', \alpha)) &= \frac{1}{2} (\boldsymbol{\nu} - \boldsymbol{\nu}')^\top \xi (\boldsymbol{\nu} - \boldsymbol{\nu}') \\ &= \frac{1}{2} (\mathbf{x} - \mathbf{x}')^\top \alpha \lambda'^{-1} \xi \lambda'^{-1} \alpha (\mathbf{x} - \mathbf{x}') \\ &= \frac{1}{2} (\mathbf{x} - \mathbf{x}')^\top \alpha (\mathbf{x} - \mathbf{x}') \\ &= \frac{1}{2} \alpha \|\mathbf{x} - \mathbf{x}'\|_2^2 \end{aligned} \quad (70)$$

□

1100 Equipped with these, we can derive the ELBO.

1101 **Theorem 3.1.** Let $\mathbf{x} \in \mathbb{R}^n$ and $\alpha_R, \alpha_i \in \mathbb{R}_+, i \in [k]$. Then the log-likelihood of \mathbf{x} is lower-bounded
1103 as

$$\log p(\mathbf{x}) \geq -\mathcal{L}_R - \mathcal{L}_M^k \quad (3)$$

1104 by a reconstruction term \mathcal{L}_R and a measurement term \mathcal{L}_M^k ,

$$\mathcal{L}_R = \mathbb{E}_{q(\boldsymbol{\mu}_k | \mathbf{x}, \lambda_k)} [-\log \mathcal{N}_P(\mathbf{x} | \hat{\mathbf{x}}_k, \alpha_R)] \quad \text{and} \quad \mathcal{L}_M^k = \frac{k}{2} \mathbb{E}_{\substack{i \sim \mathcal{U}(0, k-1) \\ q(\boldsymbol{\mu}_i | \mathbf{x}, \lambda_i)}} [\alpha_{i+1} \|\mathbf{x} - \hat{\mathbf{x}}_i\|_2^2] \quad (4)$$

1105 where

$$q(\boldsymbol{\mu}_i | \mathbf{x}, \lambda_i) = \mathbb{E}_{p(\boldsymbol{\mu}_0)} [p(\boldsymbol{\mu}_i | \boldsymbol{\mu}_0, \mathbf{x}, \lambda_i)], \quad \hat{\mathbf{x}}_i = f_{\boldsymbol{\theta}}(\boldsymbol{\mu}_i, \lambda_i) \quad \text{and} \quad \lambda_i = \lambda_0 + \sum_{j=1}^i \alpha_j. \quad (5)$$

1111 *Proof.* For any distribution $p(\mathbf{x})$ and any latent variable \mathbf{z} , i.e. any choice of prior $p(\mathbf{z})$, encoding
1112 distribution $q(\mathbf{z} | \mathbf{x})$ and likelihood $p(\mathbf{x} | \mathbf{z})$, we have the variational lower bound

$$\log p(\mathbf{x}) \geq -\mathbb{E}_{q(\mathbf{z} | \mathbf{x})} [-\log p(\mathbf{x} | \mathbf{z})] - D_{\text{KL}}(q(\mathbf{z} | \mathbf{x}), p(\mathbf{z})) \quad (71)$$

1113 on $\log p(\mathbf{x})$ (Kingma & Welling, 2013). In particular, we can choose our sequence of beliefs as the
1114 latent variable $\mathbf{z} = \{\boldsymbol{\mu}_0, \dots, \boldsymbol{\mu}_k\}$ and define the likelihood of \mathbf{x} under this latent variable as

$$p(\mathbf{x} | \mathbf{z}) = \mathcal{N}_P(\mathbf{x} | \hat{\mathbf{x}}_k, \alpha_R). \quad (72)$$

1115 Remember that $\hat{\mathbf{x}}_k = f_{\boldsymbol{\theta}}(\boldsymbol{\mu}_k, \lambda_k)$ is the model's estimate of \mathbf{x} .

1116 Since the belief means $\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_k$ are updated only based on their predecessor after Lemma 2.1,
1117 they form a Markov chain conditional on \mathbf{x} and we can write the encoding distribution as

$$q(\mathbf{z} | \mathbf{x}) = p(\boldsymbol{\mu}_0) \prod_{i=1}^k p(\boldsymbol{\mu}_i | \boldsymbol{\mu}_{i-1}, \mathbf{x}, \alpha_i). \quad (73)$$

1118 Each $p(\boldsymbol{\mu}_i | \boldsymbol{\mu}_{i-1}, \mathbf{x}, \alpha_i)$ is the update marginal of $\boldsymbol{\mu}_{i-1}$ over all possible noisy measurements of
1119 \mathbf{x} with precision α_i from Lemma D.1. Our encoding distribution is ignorant about the influence of
1120 \mathbf{x} on the initial belief $\boldsymbol{\mu}_0$, because there is no closed form for $p(\boldsymbol{\mu}_0 | \mathbf{x})$. Since we can choose any
1121 encoding, not encoding \mathbf{x} in $\boldsymbol{\mu}_0$ at all is valid.

1134 If we now plug Eq. (73) into the first term of Eq. (71), we get
 1135

$$1136 \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[-\log p(\mathbf{x}|\mathbf{z})] = \mathbb{E}_{p(\boldsymbol{\mu}_0)} \mathbb{E}_{p(\boldsymbol{\mu}_1|\boldsymbol{\mu}_0, \mathbf{x}, \alpha_1)} \cdots \mathbb{E}_{p(\boldsymbol{\mu}_k|\boldsymbol{\mu}_{k-1}, \mathbf{x}, \alpha_k)}[-\log p(\mathbf{x}|\mathbf{z})]. \quad (74)$$

1138 The intermediate expectations collapse into a single measurement with the sum of all precisions
 1139 $\bar{\alpha}_i = \sum_{j=1}^i \alpha_j$ according to Lemma D.2, because $\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_{k-1}$ do not appear in the inner log-
 1140 likelihood, and we are left with

$$1141 \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[-\log p(\mathbf{x}|\mathbf{z})] = \mathbb{E}_{p(\boldsymbol{\mu}_0)} \mathbb{E}_{p(\boldsymbol{\mu}_k|\boldsymbol{\mu}_0, \mathbf{x}, \bar{\alpha}_k)}[-\log p(\mathbf{x}|\mathbf{z})]. \quad (75)$$

1144 Since $\lambda_i = \lambda_0 + \sum_{j=1}^i \alpha_j = \lambda_0 + \bar{\alpha}_i$, we can define

$$1145 p(\boldsymbol{\mu}_k | \boldsymbol{\mu}_0, \mathbf{x}, \lambda) := p(\boldsymbol{\mu}_k | \boldsymbol{\mu}_0, \mathbf{x}, \alpha = \lambda - \lambda_0) = p(\boldsymbol{\mu}_k | \boldsymbol{\mu}_0, \mathbf{x}, \bar{\alpha}_k). \quad (76)$$

1147 If we now define

$$1148 q(\boldsymbol{\mu}_k | \mathbf{x}, \lambda_k) := \mathbb{E}_{p(\boldsymbol{\mu}_0)} [p(\boldsymbol{\mu}_k | \boldsymbol{\mu}_0, \mathbf{x}, \lambda_k)], \quad (77)$$

1150 we can rewrite Eq. (75) as

$$1151 \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[-\log p(\mathbf{x}|\mathbf{z})] = \mathbb{E}_{q(\boldsymbol{\mu}_k|\mathbf{x}, \lambda_k)}[-\log p(\mathbf{x}|\boldsymbol{\mu}_k)] \quad (78)$$

1154 which equals the definition of \mathcal{L}_R after plugging in Eq. (72).

1155 Next, we investigate the KL-divergence in Eq. (71). We begin by defining the latent prior $p(\mathbf{z})$
 1156 autoregressively as

$$1157 p(\mathbf{z}) = p(\boldsymbol{\mu}_0) \prod_{i=1}^k p(\boldsymbol{\mu}_i | \boldsymbol{\mu}_{i-1}, \hat{\mathbf{x}}_{i-1}, \alpha_i) \quad (79)$$

1160 where $\hat{\mathbf{x}}_{i-1} = f_{\theta}(\boldsymbol{\mu}_{i-1}, \lambda_{i-1})$ is the point estimate of \mathbf{x} produced by our model based on the belief
 1161 at step $i-1$. So the prior for $\boldsymbol{\mu}_i$ is the update marginal in Lemma D.1 if $\hat{\mathbf{x}}_{i-1}$ were the actual sample
 1162 \mathbf{x} .

1163 Now, we plug Eqs. (73) and (79) into the KL-divergence term from Eq. (71).

$$\begin{aligned} 1165 D_{\text{KL}}(q(\mathbf{z}|\mathbf{x}), p(\mathbf{z})) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{q(\mathbf{z}|\mathbf{x})}{p(\mathbf{z})} \right] \\ 1166 &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\boldsymbol{\mu}_0)}{p(\boldsymbol{\mu}_0)} + \sum_{i=1}^k \log \frac{p(\boldsymbol{\mu}_i | \boldsymbol{\mu}_{i-1}, \mathbf{x}, \alpha_i)}{p(\boldsymbol{\mu}_i | \boldsymbol{\mu}_{i-1}, \hat{\mathbf{x}}_{i-1}, \alpha_i)} \right] \\ 1167 &= \sum_{i=1}^k \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\boldsymbol{\mu}_i | \boldsymbol{\mu}_{i-1}, \mathbf{x}, \alpha_i)}{p(\boldsymbol{\mu}_i | \boldsymbol{\mu}_{i-1}, \hat{\mathbf{x}}_{i-1}, \alpha_i)} \right] \\ 1168 &= \sum_{i=1}^k \mathbb{E}_{p(\boldsymbol{\mu}_0)} \mathbb{E}_{p(\boldsymbol{\mu}_1 | \boldsymbol{\mu}_0, \mathbf{x}, \alpha_1)} \cdots \mathbb{E}_{p(\boldsymbol{\mu}_i | \boldsymbol{\mu}_{i-1}, \mathbf{x}, \alpha_i)} \left[\log \frac{p(\boldsymbol{\mu}_i | \boldsymbol{\mu}_{i-1}, \mathbf{x}, \alpha_i)}{p(\boldsymbol{\mu}_i | \boldsymbol{\mu}_{i-1}, \hat{\mathbf{x}}_{i-1}, \alpha_i)} \right] \\ 1169 &= \sum_{i=1}^k \mathbb{E}_{q(\boldsymbol{\mu}_{i-1}|\mathbf{x}, \lambda_{i-1})} \left[D_{\text{KL}}(p(\boldsymbol{\mu}_i | \boldsymbol{\mu}_{i-1}, \mathbf{x}, \alpha_i), p(\boldsymbol{\mu}_i | \boldsymbol{\mu}_{i-1}, \hat{\mathbf{x}}_{i-1}, \alpha_i)) \right] \end{aligned} \quad (80)$$

1170 The intermediate expectations have collapsed again according to Lemma D.2 in the same way as for
 1171 the reconstruction term.

1172 We know the closed form for the inner KL divergences from Lemma D.3, so we can further simplify
 1173 the KL-divergence term to

$$1174 D_{\text{KL}}(q(\mathbf{z}|\mathbf{x}), p(\mathbf{z})) = \frac{1}{2} \sum_{i=1}^k \mathbb{E}_{q(\boldsymbol{\mu}_{i-1}|\mathbf{x}, \lambda_{i-1})} [\alpha_i \|\mathbf{x} - \hat{\mathbf{x}}_{i-1}\|_2^2]. \quad (81)$$

1175 Shifting the sum indices by 1 and replacing the sum $\sum_{i=0}^{k-1}$ with $k \mathbb{E}_{i \sim \mathcal{U}(0, k-1)}$ yields \mathcal{L}_M^k . \square

1188 D.2 PROOF OF THEOREM 3.2
1189

1190 **Theorem 3.2.** Let $\alpha_R, \alpha_M \in \mathbb{R}_+$. For any sequence of precision schedules $\alpha_{k,i}$ for $k \in \mathbb{N}, i \in [k]$
1191 such that $\sum_{i=1}^k \alpha_{k,i} = \alpha_M$ and the sequence of functions $[k] \rightarrow \mathbb{R}_+ : i \mapsto \alpha_{k,i}$ converges uniformly
1192 to 0, we can take the limit of Theorem 3.1 as $k \rightarrow \infty$ to get

$$1193 \mathcal{L}_R = \mathbb{E}_{q(\mu_{\lambda_M} | \mathbf{x}, \lambda_M)} [-\log \mathcal{N}_P(\mathbf{x} | \hat{\mathbf{x}}_{\lambda_M}, \alpha_R)] \quad \text{and} \quad \mathcal{L}_M^\infty = \frac{\alpha_M}{2} \mathbb{E}_{\substack{\lambda \sim \mathcal{U}(\lambda_0, \lambda_M) \\ q(\mu_\lambda | \mathbf{x}, \lambda)}} [\|\mathbf{x} - \hat{\mathbf{x}}_\lambda\|_2^2] \quad (6)$$

1196 where $q(\mu_\lambda | \mathbf{x}, \lambda) = \mathbb{E}_{p(\mu_0)} [p(\mu_\lambda | \mu_0, \mathbf{x}, \lambda)]$, $\lambda_M = \lambda_0 + \alpha_M$ and $\hat{\mathbf{x}}_\lambda = f_\theta(\mu_\lambda, \lambda)$.
1197

1198 *Proof.* Since \mathcal{L}_R only depends on $\sum_i \alpha_{k,i}$ but not individual $\alpha_{k,i}$, the equivalence of the finite and
1199 infinite step \mathcal{L}_R is immediately apparent.
1200

1201 For \mathcal{L}_M^k , we will consider its sum form from Eq. (81).

$$1202 \mathcal{L}_M^k = \frac{1}{2} \sum_{i=1}^k \mathbb{E}_{q(\mu_{i-1} | \mathbf{x}, \lambda_{i-1})} [\alpha_i \|\mathbf{x} - \hat{\mathbf{x}}_{i-1}\|_2^2] = \frac{1}{2} \sum_{i=1}^k \alpha_i \underbrace{\mathbb{E}_{\substack{\lambda \sim \mathcal{U}(\lambda_0, \lambda_{i-1}) \\ q(\mu_\lambda | \mathbf{x}, \lambda)}} [\|\mathbf{x} - \hat{\mathbf{x}}_{i-1}\|_2^2]}_{=:h(\lambda_{i-1})} \quad (82)$$

1206 Note that $h(\lambda_{i-1})$ is a deterministic function of λ_{i-1} and $\lambda_0, \dots, \lambda_k$ is a partition of the interval
1207 $[\lambda_0, \lambda_0 + \alpha_m] = [\lambda_0, \lambda_M]$ with interval lengths of α_i . It follows that Eq. (82) is a Riemann sum. Since
1208 f_θ is a neural network, we can assume that $h(\lambda_{i-1})$ is continuous almost everywhere. Combined
1209 with the fact that the interval lengths $\{\alpha_i\}$ converge uniformly to 0, it follows that \mathcal{L}_M^k converges to
1210 the Riemann integral

$$1211 \lim_{k \rightarrow \infty} \mathcal{L}_M^k = \frac{1}{2} \int_{\lambda_0}^{\lambda_M} \mathbb{E}_{q(\mu_\lambda | \mathbf{x}, \lambda)} [\|\mathbf{x} - \hat{\mathbf{x}}_\lambda\|_2^2] d\lambda \quad (83)$$

1214 as $k \rightarrow \infty$. It follows trivially that

$$1215 \lim_{k \rightarrow \infty} \mathcal{L}_M^k = \frac{\alpha_M}{2} \int_{\lambda_0}^{\lambda_M} \frac{1}{\alpha_M} \mathbb{E}_{q(\mu_\lambda | \mathbf{x}, \lambda)} [\|\mathbf{x} - \hat{\mathbf{x}}_\lambda\|_2^2] d\lambda \quad (84)$$

$$1216 = \frac{\alpha_M}{2} \mathbb{E}_{\substack{\lambda \sim \mathcal{U}(\lambda_0, \lambda_M) \\ q(\mu_\lambda | \mathbf{x}, \lambda)}} [\|\mathbf{x} - \hat{\mathbf{x}}_\lambda\|_2^2] = \mathcal{L}_M^\infty. \quad (85)$$

□

1222 D.3 PROOF OF LEMMA 3.3

1224 **Lemma 3.3.** If h is strictly decreasing, $\mathcal{L}_M^\infty < \mathcal{L}_M^k$ for any k and any precision schedule $\{\alpha_i\}$.
1225

1226 *Proof.* In the proof of Theorem 3.2, we have established that \mathcal{L}_M^k is a Riemannian sum of h , where we
1227 evaluate h on the most-negative edge of each interval. Since h is a non-negative, strictly decreasing
1228 function, the discretization error on the interval $[\lambda_{i-1}, \lambda_i]$
1229

$$1230 \epsilon := \alpha_i h(\lambda_{i-1}) - \int_{\lambda_{i-1}}^{\lambda_i} h(\lambda) d\lambda \quad (86)$$

1232 is also non-negative. Now consider a refinement of the discretization with $\lambda' \in (\lambda_{i-1}, \lambda_i)$ and the
1233 post-refinement discretization error on that interval
1234

$$1235 \epsilon' := (\lambda' - \lambda_{i-1})h(\lambda_{i-1}) + (\lambda_i - \lambda')h(\lambda') - \int_{\lambda_{i-1}}^{\lambda_i} h(\lambda) d\lambda = (\lambda' - \lambda_{i-1} - \alpha_i)h(\lambda_{i-1}) + (\lambda_i - \lambda')h(\lambda') + \epsilon. \quad (87)$$

1238 Next, we express ϵ' in terms of ϵ as

$$1239 \epsilon' = (\lambda' - \lambda_{i-1} - \alpha_i)h(\lambda_{i-1}) + (\lambda_i - \lambda')h(\lambda') + \epsilon \\ 1240 = (\lambda' - \lambda_i)h(\lambda_{i-1}) + (\lambda_i - \lambda')h(\lambda') + \epsilon \\ 1241 = (\lambda_i - \lambda')h(\lambda') - h(\lambda_{i-1}) + \epsilon. \quad (88)$$

We know that $(\lambda_i - \lambda') > 0$, because $\lambda' \in (\lambda_{i-1}, \lambda_i)$, and $(h(\lambda') - h(\lambda_{i-1})) < 0$, because h is strictly decreasing. It follows that $\epsilon' < \epsilon$.

This means that any refinement of the ELBO with more steps reduces the non-negative error between the Riemannian sum \mathcal{L}_M^k and its limit \mathcal{L}_M^∞ . In other words, $\mathcal{L}_M^\infty < \mathcal{L}_M^k$ for all k . \square

D.4 PROOF OF LEMMA 3.4 AND COROLLARY 3.5

The ELBO in Theorems 3.1 and 3.2 has one part that looks like it might not be so straightforward: the encoding distribution $q(\mu_\lambda | \mathbf{x}, \lambda)$. Its definition contains a marginalization over the belief prior $p(\mu_0)$, which we still need to specify. Let's see what $q(\mu_\lambda | \mathbf{x}, \lambda)$ becomes if we choose a zero-mean, isotropic Normal prior $p(\mu_0)$.

Lemma 3.4. *Let $\lambda_0, \gamma_0 \in \mathbb{R}_+$, $p(\mu_0) = \mathcal{N}_P(\mathbf{0}, \gamma_0)$ and $\lambda \geq \lambda_0$. Then*

$$q(\mu_\lambda | \mathbf{x}, \lambda) = \mathcal{N}_P\left(\frac{\lambda - \lambda_0}{\lambda} \mathbf{x}, \frac{\lambda^2}{\lambda - \lambda_0 + \lambda_0^2/\gamma_0}\right). \quad (9)$$

Proof. Let $p(\mu_\lambda | \mu_0, \mathbf{x}, \lambda)$ be the marginal distribution of μ_λ after a measurement of precision $\alpha = \lambda - \lambda_0$, i.e.

$$p(\mu_\lambda | \mu_0, \mathbf{x}, \lambda) = p(\mu_\lambda | \mu_0, \mathbf{x}, \alpha = \lambda - \lambda_0). \quad (89)$$

We know from Lemma D.1 that

$$p(\mu_\lambda | \mu_0, \mathbf{x}, \alpha = \lambda - \lambda_0) = \mathcal{N}_P\left(\frac{1}{\lambda} [\lambda_0 \mu_0 + (\lambda - \lambda_0) \mathbf{x}], \frac{\lambda^2}{\lambda - \lambda_0 + \lambda_0^2/\alpha}\right). \quad (90)$$

Since $p(\mu_0)$ is also Gaussian and μ_λ depends linearly on μ_0 , they form a Gaussian linear system for which the marginal distribution of μ_λ is (Murphy, 2012, Equation (4.126))

$$q(\mu_\lambda | \mathbf{x}, \lambda) = \mathbb{E}_{p(\mu_0)} [p(\mu_\lambda | \mu_0, \mathbf{x}, \lambda)] = \mathcal{N}\left(\frac{1}{\lambda} [\lambda_0 \mathbf{0} + (\lambda - \lambda_0) \mathbf{x}], \frac{\lambda - \lambda_0}{\lambda^2} + \frac{\lambda_0^2}{\lambda^2 \gamma_0}\right). \quad (91)$$

By pulling λ^{-2} out of the covariance and inverting to get a precision, we get the claimed result. \square

If we now choose $\gamma_0 = \lambda_0$, we get the simple BSI prior and the result ELBO encoder.

Corollary 3.5. *Let $\lambda_0 \in \mathbb{R}_+$, $p(\mu_0) \sim \mathcal{N}_P(\mathbf{0}, \lambda_0)$ and $\lambda \geq \lambda_0$. Then*

$$q(\mu_\lambda | \mathbf{x}, \lambda) = \mathcal{N}_P\left(\frac{\lambda - \lambda_0}{\lambda} \mathbf{x}, \lambda\right). \quad (10)$$

Proof. If we choose $\gamma_0 = \lambda_0$ in Lemma 3.4, we get

$$q(\mu_\lambda | \mathbf{x}, \lambda) = \mathcal{N}_P\left(\frac{\lambda - \lambda_0}{\lambda} \mathbf{x}, \frac{\lambda^2}{\lambda - \lambda_0 + \lambda_0^2/\lambda_0}\right). \quad (92)$$

The precision simplifies to

$$\frac{\lambda^2}{\lambda - \lambda_0 + \lambda_0^2/\lambda_0} = \frac{\lambda^2}{\lambda - \lambda_0 + \lambda_0} = \lambda, \quad (93)$$

proving the result. \square

D.5 PROOF OF COROLLARY 3.6

Corollary 3.6. *Let $p(\lambda)$ be a probability distribution with support $[\lambda_0, \lambda_M]$. Then we have*

$$\mathcal{L}_M^\infty = \frac{1}{2} \mathbb{E}_{\substack{\lambda \sim p(\lambda) \\ q(\mu_\lambda | \mathbf{x}, \lambda)}} \left[\frac{1}{p(\lambda)} \|\mathbf{x} - \hat{\mathbf{x}}_\lambda\|_2^2 \right]. \quad (11)$$

1296 *Proof.* We know from Eq. (83) that \mathcal{L}_M^∞ is the following Riemann integral.
1297

$$1298 \quad \mathcal{L}_M^\infty = \frac{1}{2} \int_{\lambda_0}^{\lambda_M} \mathbb{E}_{q(\mu_\lambda | \mathbf{x}, \lambda)} \left[\|\mathbf{x} - \hat{\mathbf{x}}_\lambda\|_2^2 \right] d\lambda \quad (94)$$

1300 Now we can trivially multiply by $p(\lambda)/p(\lambda)$ inside the expectation, proving the statement.
1301

$$1302 \quad \mathcal{L}_M^\infty = \frac{1}{2} \int_{\lambda_0}^{\lambda_M} \mathbb{E}_{q(\mu_\lambda | \mathbf{x}, \lambda)} \left[\frac{p(\lambda)}{p(\lambda)} \|\mathbf{x} - \hat{\mathbf{x}}_\lambda\|_2^2 \right] d\lambda \quad (95)$$

$$1305 \quad = \frac{1}{2} \int_{\lambda_0}^{\lambda_M} p(\lambda) \mathbb{E}_{q(\mu_\lambda | \mathbf{x}, \lambda)} \left[\frac{1}{p(\lambda)} \|\mathbf{x} - \hat{\mathbf{x}}_\lambda\|_2^2 \right] d\lambda \quad (96)$$

□

1309 D.6 PROOF OF EQ. (13)

1311 *Proof.* We know from Corollary 3.5 that we can write $\mu_\lambda = \lambda - \lambda_0/\lambda \mathbf{x} + 1/\sqrt{\lambda} \boldsymbol{\varepsilon}$ for Gaussian noise
1312 $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ independent of \mathbf{x} . Together with the assumption $f_\theta(\boldsymbol{\mu}, \lambda) = \boldsymbol{\mu}$, we can rewrite h as
1313

$$1314 \quad h(\lambda) = \mathbb{E}_{q(\mu_\lambda | \mathbf{x}, \lambda)} \|\mathbf{x} - \hat{\mathbf{x}}_\lambda\|_2^2 \\ 1315 \\ 1316 \quad = \mathbb{E}_{\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left\| \mathbf{x} - \frac{\lambda - \lambda_0}{\lambda} \mathbf{x} + \frac{1}{\sqrt{\lambda}} \boldsymbol{\varepsilon} \right\|_2^2 \\ 1317 \\ 1318 \quad = \mathbb{E}_{\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left\| \frac{\lambda_0}{\lambda} \mathbf{x} + \frac{1}{\sqrt{\lambda}} \boldsymbol{\varepsilon} \right\|_2^2 \\ 1319 \\ 1320 \quad = \mathbb{E}_{\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left(\frac{\lambda_0}{\lambda} \right)^2 \|\mathbf{x}\|_2^2 + \frac{1}{\lambda} \|\boldsymbol{\varepsilon}\|_2^2 - 2 \frac{\lambda_0}{\sqrt{\lambda^3}} \mathbf{x} \cdot \boldsymbol{\varepsilon} \quad (97)$$

1323 If we now make use of our assumption that $\mathbb{E}[\mathbf{x}] = \mathbf{0}$ and $\text{Var}[\mathbf{x}] = \mathbf{I}$, we can distribute the
1324 expectation across terms and get
1325

$$1326 \quad \mathbb{E}_{\mathbf{x}}[h(\lambda)] = \left(\frac{\lambda_0}{\lambda} \right)^2 \underbrace{\mathbb{E}_{\mathbf{x}}[\|\mathbf{x}\|_2^2]}_{=n} + \frac{1}{\lambda} \underbrace{\mathbb{E}_{\boldsymbol{\varepsilon}}[\|\boldsymbol{\varepsilon}\|_2^2]}_{=n} - 2 \frac{\lambda_0}{\sqrt{\lambda^3}} \underbrace{\mathbb{E}_{\mathbf{x}, \boldsymbol{\varepsilon}}[\mathbf{x} \cdot \boldsymbol{\varepsilon}]}_{=0} \propto \frac{\lambda_0^2}{\lambda^2} + \frac{1}{\lambda}. \quad (98)$$

□

1332 E EXPERIMENT DETAILS

1334 We trained each model on 4 H100 GPUs at a batch size of 128 on CIFAR10 and 512 on ImageNet32
1335 and ImageNet64. Training progressed at about 26,300 steps per hour for the U-Net on CIFAR10 and
1336 6,100 steps per hour for the DiT-L-2 backbones on ImageNet32. If we take the different batch sizes
1337 into account, the two model architectures needed about equal amounts of training time. Total training
1338 time for the 10 M step training on CIFAR10 came to about two weeks.

1339 Furthermore, we take an exponential moving average (EMA) of model weights (Song et al., 2021b;
1340 Nichol & Dhariwal, 2021). We provide an overview of the model and training hyperparameters in
1341 Table 5, and show the U-Net and DiT parameters in Tables 6 to 9. On ImageNet32, we train the
1342 models with a cosine learning rate scheduler (with linear warm up from 1×10^{-8}) to achieve faster
1343 convergence. Note that we reduced the training steps to 100 k for our parameter studies to make them
1344 computationally feasible.

1345 To reduce the variance of the training loss further, we use low-discrepancy sampling for t in Algo-
1346 rithm 2 as proposed by Kingma et al. (2023). Instead of sampling b independent t for a batch size
1347 of b , we set $t_i = i-1/b + \delta \bmod 1$, $i \in [b]$ for a shared $\delta \sim \mathcal{U}(0, 1)$ where $\bmod 1$ means that we
1348 discard the integer part of the result. The marginal distribution of each t_i is $\mathcal{U}(0, 1)$, but jointly they
1349 cover the $[0, 1]$ interval more uniformly than independent samples would, smoothing out the loss
across batches.

1350 *Table 5.* Model and training parameters of BSI on CIFAR10 and all three models on ImageNet32.
1351

	Parameter	CIFAR10	ImageNet32 (64)
BSI	α_0	1×10^{-2}	
	α_M	1×10^6	
	α_R	2×10^6	
Optim.	Learning rate	2×10^{-4}	5×10^{-4}
	LR Scheduler	None	Cosine $\downarrow 5 \times 10^{-5}$
	Weight decay		1×10^{-2}
	Batch size	128	512
	Steps	10M	2 M (100 k)
EMA	β	0.9999	
	First update after step		1000

1362 *Table 6.* U-Net hyperparameters for CIFAR10.
1363

Parameter	Value
Hidden dim.	128
Levels	32
Dropout	0.1
Attention heads	1
Convolution padding	Zeros

1366 *Table 7.* DiT hyperparameters for ImageNet32.
1367

Parameter	Value
Architecture	DiT-L-2
Hidden dim.	1024
Depth	24
Attention heads	16
Dropout	0.05
Patch Size	2

1377 *Table 8.* U-Net hyperparameters for ImageNet32.
1378

Parameter	Value
Hidden dim.	256
Levels	32
Dropout	0.1
Attention heads	1
Convolution padding	Zeros

1379 *Table 9.* DiT hyperparameters for ImageNet64.
1380

Parameter	Value
Architecture	DiT-L-4
Hidden dim.	1024
Depth	24
Attention heads	16
Dropout	0.05
Patch Size	4

1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404
1405 F GENERATED SAMPLES
1406
14071408 Fig. 9 shows generated samples from models trained on ImageNet32 for visual reference.
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 9. Samples from BSI, BFN and VDM trained on ImageNet32. Generated with 1024 steps. The first two columns show samples from the dataset for comparison.