Under review as a conference paper at ICLR 2026

GENERATIVE MODELING WITH
BAYESIAN SAMPLE INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

We derive a novel generative model from iterative Gaussian posterior inference.
By treating the generated sample as an unknown variable, we can formulate the
sampling process in the language of Bayesian probability. Our model uses a
sequence of prediction and posterior update steps to iteratively narrow down the
unknown sample starting from a broad initial belief. In addition to a rigorous
theoretical analysis, we establish a connection between our model and diffusion
models and show that it includes Bayesian Flow Networks (BFNs) as a special case.
In our experiments, we demonstrate that our model improves sample quality on
ImageNet32 over both BFNs and the closely related Variational Diffusion Models,
while achieving equivalent log-likelihoods on ImageNet32 and CIFARI10.

1 INTRODUCTION

The field of deep learning has produced a multitude of generative models over the years (Harshvardhan
et al., 2020). Variational autoencoders, for example, learn the data distribution by compressing data
into a lower-dimensional representation (Kingma & Welling, 2013). Normalizing flows learn to map
between a prior and the data distribution via invertible transformations, enabling exact likelihood
computation (Rezende & Mohamed, 2015). Generative adversarial networks generate samples by
pitting two models against each other such that one proposes artificial data samples while the other
tries to distinguish real and generated (Goodfellow et al., 2014). Recently, diffusion models (DMs)
have become a cornerstone of generative modeling (Sohl-Dickstein et al., 2015; Ho et al., 2020).
They define a multi-step forward process that gradually adds noise to the data, turning it into pure
noise. Then, a model is trained to reverse this process, enabling the generation of new data samples
by starting from noise and iteratively denoising.

In this work, we take a Bayesian viewpoint of sample generation to propose a new generative model.
Imagine that a sample @ from the data distribution p(x) is fixed but unknown to us; however, we
can receive noisy measurements y; ~ N (x, ;') of it. Then, we can infer the unknown x by
combining the information in these measurements. To be more precise, we start with a broad belief
p(x) = N(x | po, A\g') about x in the form of a Normal distribution with low precision), i.e. high
variance, that encompasses the entire data distribution. Then, we can take a first noisy measurement
v and form a posterior belief p(x | y1) about the sample, which will be a little more precise and a
little more correct. Iterating this process allows us to refine our estimate p(x | y1, ..., yx) to any
desired level of precision.

We transform this inference process into a generative model by introducing a prediction model fy
that estimates « from our current Gaussian belief about it. Since the true « is unknown at generation
time, we substitute it with an estimate & = fg(f;, A;) and sample ;4.1 ~ N (&, a;} ;) instead.
Maximizing an evidence lower bound (ELBO) for the likelihood that this simple process assigns
to the training data, trains fp to reconstruct true « from uncertain belief states (;, A;) about them.
Consequently, the noisy measurements y; of predicted samples & become indistinguishable from
those of real samples «, and our generative process converges toward producing new samples from
the data distribution.

Under review as a conference paper at ICLR 2026

Inferring a new sample from noisy predictions

..... 04
N X Xit1 =N +
— Aipitogy
i =/ = fo(pi, i) y ~ Np(r, ;) Hit1 = =500
1. Current belief Np (12, \;) 2. Predict sample 3. Noisy measurement y 4. Update Np (peiq1, Nig1)

T S.i=i+1

Figure 1. We view generation as the problem of inferring the identity of an unknown sample « from noisy
observations. 1. To begin, our belief about « is so broad as to cover the complete data distribution. 2. We use a
model fg to guess which x likely corresponds to the information we have collected so far. 3. Now, we pretend
that = is the true « and take a noisy measurement y. 4. We form the posterior belief about & to incorporate the
information contained in y. 5. Repeat until we have identified a new sample with sufficient precision A;.

Our key contributions can be summarized as follows.

* We present a new generative model based on iterative posterior inference from noisy predictions.

* We derive an ELBO to enable effective likelihood optimization and show how we can reduce the
variance of the training loss with importance sampling.

* Further, we compare our model in detail to Variational Diffusion Models (VDMs) (Kingma et al.,
2023) and Bayesian Flow Networks (BFNs) (Graves et al., 2023).

* We show that the simple generative process described above includes BFN as a special case,
providing a novel and simplified perspective on them, and analyze the relationship to DMs.

* Finally, we describe our model design and demonstrate empirically that our model surpasses
both VDM and BFN in terms of sample quality on ImageNet32 while achieving equivalent
log-likelihoods.

Notation We parametrize Normal distributions either with a variance o as A'(u, 02T or with
a precision A = 1/5% as Np(u, A\I). Since all Normal distributions in this work are isotropic, we
shorten these to N'(u,0?) and Np(u, A). [n] is the set of integers 1,...,n and R, refers to the
non-negative reals.

2 SAMPLE DISCOVERY THROUGH ITERATIVE MEASUREMENT

Consider a sample & € R" that is unknown to us, but we can access noisy measurements y; ~
Np(z, ;) of it. Then we can infer « from the sequence of measurements y,; through Bayesian
inference. We start with a broad initial belief p(z) ~ Np (o, Ao) and update it with information
contained in y; per the following lemma.

Lemma 2.1 (Posterior Update). Let x,p € R™ and A\ € R such that x is latent and p(x) =
Np(x | p, \) is a prior on x; and y ~ Np(x, o) where a € R Then the posterior is p(x | y) =
Ne(z | ', N) with

N=X+a and p =N [+ ayl. (1)
Proof. See (Murphy, 2012, Section 4.4.1). O
We can now iterate over the noisy measurements and update our belief until p(x | y1,...,yx) ~

Np(px, A) identifies & with sufficient precision. Sufficiency depends on the application but could be
defined, for example in the case of images, such that most of the probability mass for each dimension
of an image @ is contained within a single color intensity bin of width 1/256 for 8-bit color. Note that,
at each step, all information contained in y1, . . ., yi is captured in the current pi.

Under review as a conference paper at ICLR 2026

3 SAMPLE GENERATION WITH POSTERIOR INFERENCE

We turn the procedure in Section 2 into a generative model, which we call Bayesian
Sample Inference (BSI), as follows. We begin with an initial belief (po,\o) about
the sample = which we will generate in the end, with py sampled from a suitable
prior distribution p(pg) and Ao fixed. Obviously, « is unknown a priori, so we can-
not measure it, but we can estimate it from the information we have gathered so far.
Let fo : R" x Ry — R” be a learned model
with parameters @ that estimates which un-
known sample x we have observed so far from
our current belief (u;, \;). We estimate x as
&i—1 = fo(pi—1,Xi—1) and sample a noisy
measurement y; ~ Np(&;_1,;) of &;_; in
place of x with precision «;. Then, we can up-
date our belief with y; and Lemma 2.1 to the
posterior (g, A;). Now, we alternate between
these two steps, i.e. predicting and taking a noisy Yi~ Np(%*lﬁ ;)
measurement followed by updating our current Update belief

belief, until the posterior precision J; is suffi- P(@ | Y1, yi) = Ne(pi; Ai):

Algorithm 1: Sampling with posterior infer-
ence
input Initial precision Ag,
precision schedule «; for i € [£]

output Sample =*

1: Initialize belief (g, Ao) with pg ~ p(po)
cfori=1,2,... kdo
: Ti_1 = fa(ui—l,)\i—l)

PN

cient. Finally, we return &* = fo(pr, \x) as 6 i = i‘iil +o
our generated sample. See Algorithm 1 for a 7: Hi = Ao pion + @iyl
formal description and Fig. 1 for a visual expla- 8: end forA

9: Return * = fo(ptx, Ax)

nation.

Since the posterior precision A; does not depend on the generated sample &;, we can choose the
number of measurement rounds k and precision schedule «; a priori such that A\; will always be
sufficiently large.

We have collected the proofs of all formal statements in this section in Section D.

3.1 EVIDENCE LOWER BOUND

By interpreting BSI as a hierarchical latent variable model, we derive an ELBO (Kingma & Welling,
2013), i.e. a lower bound on log p(x) assigned to a data point by our model. The ELBO will then
serve as a natural training target for fg to ensure that true data samples have high likelihood under
our model.

We form our hierarchy out of the sequence of belief means {u; }, giving us

p() p(.uo)'p(ll'l|N0)"‘p(ﬂk‘ﬂk—l))[p(| 1)l 2)

The precisions {\;} are not included as latent variables, because they do not depend on x. With this
hierarchy, we can derive the following ELBO.

Theorem 3.1. Let x € R™ and ag, o; € Ry, i € [k]. Then the log-likelihood of x is lower-bounded
as
logp(x) > —Lr — Ly 3)

by a reconstruction term Lr and a measurement term Lk

k
Lr= E -log Np(z | T, o and Lk, == E [ai T — & 2} n
R q(llk|w1>\k)|: g Np(x | &k, ar)] 2 itt(C) +1]] 13| @
a(mile,Xi)
where

a(pi | =, \i) = p(%) [p(ui | Ho,w,)\i)], &; = fo(pi, i) and N = Mo+ Zaj. (@)
0

Jj=1

The measurement term £ corresponds to the noisy measurement and update loop in Algorithm 1
and Ly to the final computation of the sample Z*. q(u; | @, A;) is the distribution of our belief
(i, A;) about the unknown sample « after i steps if we would have observed the true @ instead of

Under review as a conference paper at ICLR 2026

&1,..., 2. p(p | po, x, \;) is the marginal distribution of possible posterior beliefs (g;, A;) with
posterior precision A; reachable from an initial belief (pto, Ag). Equivalently, p(p; | o, , A;) is the
distribution of beliefs (p;, A;) after updating our initial belief (e, \p) with a single measurement of
a with Lemma 2.1 — marginalized over all possible noisy measurements y at precision @ = A; — Ag.

On closer examination, we see that Lg, measuring how accurately we can reconstruct « at the
end, only depends on the total precision A\ that we accumulated in the first phase of the algorithm.
However, £¥; depends both on the number of rounds & and the precision schedule cv;. We can derive
an ELBO that is independent of k and «; by considering the limit as ¥ — oo and refining the precision

schedule {c;}¥_, into smaller and smaller steps while keeping the total precision ap = Zle o
constant.

Theorem 3.2. Let ar, anm € Ry. For any sequence of precision schedules ay,; for k € N, i € [k]
such that Zle ag,; = an and the sequence of functions [k] — Ry : i — ay; converges uniformly
to 0, we can take the limit of Theorem 3.1 as k — oo to get

. oM

Lr = E “log Np(x | &5y, and L3} = —

" q(liw,AM)[g Nb(@ | &, on)] M2 (o)
a(pxlz,X)

IEEENHERO!

where q(px | ,A) = Epuo) [P(ka | 10,2, X)), Amt = Ao + o and &\ = fo(pr, N).

As long as our model is more accurate in reconstructing from more precise measurements, a
reasonable assumption, Theorem 3.2 is a tighter bound on the log-likelihood than Theorem 3.1. To
see this, we rewrite £3] in terms of the expected squared error at belief precision A

A= E |o—az|3 7
q(pex|a,N)

as

oM
M=— E h(A
= LE O] ®)

for which we have the following result.

Lemma 3.3. If h is strictly decreasing, L3} < ﬁ’g/[Sfor any k and any precision schedule {«; }.

3.2 PRIOR DISTRIBUTION

Let’s consider possible priors of the form p(go) = Np (0, 7o) for our initial belief. Then we have the
following result for the encoding distribution q(gy | @,) in Theorems 3.1 and 3.2.

Lemma 3.4. Let \g,vo € Ry, p(po) = Np(0,70) and X\ > Xg. Then

Ao A2
PN W VRIS /N &

q(pa | =, A) :NP< 9

How should we choose ~,? We start the sampling process with initial precision, i.e. confidence, \g.
If Ay was larger than -y, we would be unreasonably confident in our initial belief, since we know that
o has more uncertainty than \g. From this, we deduce that the reasonable range for g is [Ag, 00].
At the same time, we want to avoid unwarranted assumptions by the prior, so we choose 79 = Ao
for our model, which also gives us a particularly simple form for the encoding distribution.

Corollary 3.5. Let \o € Ry, p(po) ~ Np(0, Xg) and A > Ng. Then

A=A
Al | z,\) :Np< : Om,)\). (10)

3.3 VARIANCE REDUCTION

The squared distance ||z — &3 in £3; will necessarily vary significantly across the range of A with
large values for small A where q(uy | €, \) &~ p(po) and small values for large A when p) ~ x.
We can reduce the variance of Monte Carlo (MC) estimates of L3} for ELBO evaluation or gradient
computation in training with importance sampling with a suitable proposal distribution p(\).

Under review as a conference paper at ICLR 2026

Corollary 3.6. Let p(\) be a probability distribution with support [\g, Am|. Then we have

1 1
M=z E |—lz-2 2]. 11
=3 By |agsle- ol (1)
a(pale,A)
We can further rewrite L3} as
1 h()\)}
Lyi=- E |—% 12
M2y L@(A) (2

with h as defined in Eq. (7). To minimize the variance of MC estimates of L7, we want to bring
h(XN/p(x) as close to a constant as possible. If it were actually constant, the variance of the MC
estimate would be zero.

Let’s begin by examining ~» more closely. If we
approximate fg as fo(p,A) = p and assume _
that « is normalized to zero mean and unit vari- input Data sample

Algorithm 2: Estimating the BSI training loss

ance, we get the closed form output Monte Carlo estimate of L3}
21 1: Sample ¢t ~ U(0,1),e ~ N(0,1I)
E[R(\)] o< 35 + 1 (13) 2 A= exp ((log Am — log Ao) - t +1og(Xo))
N 3 py = =2+ 4/ xe
While fg(p,A\) = p might seem a crude ap- 4. Return
proximation at first, it is not too far off for large (log Ant — 1og Ao) A - [l — fo(pa, A)|12

A where the model just needs to predict a small
correction to its input.

Algorithm 3: Sampling with BSI
Eq. (13) suggests that we should choose p(\) o input Initial precision Ag,

A3/x2 4 1/x to minimize the variance of MC precision schedule o for i € [k]
estimates. While evaluating p()) is simple output Sample &*
enough, we would need to invert its cumula- 1: Sample €; ~ N(0,1),i=0,...,k

tive distribution function (CDF) numerically . po = /1 Tro €0
to sample from it. Instead, we recognize that fori—=1.2.... kdo
1/x dominates A3/x? except for the smallest .)

9%}

4: 5’.3%; = i— ,)\i,
A and choose p(A) oc 1/x, ie. a standard 5.). ! /\,fegfl ,1)
. L . i = Ai—1 T Q4
Log-Uniform(Ag, Ap) distribution. 6 g =
A ()\if - i(@Tic1 + /Y aig;)
3.4 TRAINING & SAMPLING ! W1t o (w 1 V)
7: end for

We train our model with the ELBO from The- 8 Return &* = fo(px, Ak)
orem 3.2 by optimizing 2£87/n. We do not
optimize Ly directly as its magnitude is negligible for sufficiently large ays and it is structurally
similar to £37, i.e. both amount to a squared distance. Algorithm 2 shows the resulting algorithm
with our belief prior p(p) and proposal distribution p(\). Similarly, Algorithm 3 implements the
abstract Algorithm 1 with our belief prior.

4 DISCUSSION

We are aware of two generative models that are closely related to BSI, BFN (Graves et al., 2023)
and VDM (Kingma et al., 2023). BFNs are generative models motivated from an information theory
perspective with a sender and a receiver communicating about the sample. We show in Section A.1
that BFNs are a special case of our framework in Section 3 if we translate them to the probabilistic
perspective and choose vy = oo instead of v = A for the initial belief prior, meaning that sampling
always starts from the deterministic g = 0. VDM are a type of DM that have shown excellent
performance in likelihood-based modeling. They are similar to BSI insofar as they specify the
distribution of latent variables directly rather than defining a Markovian noising process as classical
DMs do.

All three models admit an ELBO of the form

w—w R
—log p(x) §£R+77 E [Hw—wwH%} (14)
w U (w,w)
a(Yu|®,w)

Under review as a conference paper at ICLR 2026

Table 1. Central structures of VDM, BFN and BSI. To improve comparability, we parametrize VDM in terms of
the signal-to-noise ratio (SNR) . BFN and BSI are parametrized with the precision « as introduced in Section 3.
€; ~ N(0, I) is sampling noise.

Model ELBO Encoder q(v | z,w) Latent Prior Update Step for Sampling
" VVis1(I+vigr) zi+1+("1*”z+1)(ii+ ﬁei)
VDM q(z | z,v) = Np (1 /15 T 1+ V) zr ~Np(0,1) =z = NoxETs v ¥
BFN q(u|@,\) = No (O /@, ¥/aa) o =0 Mmoot (81T o)
BSI q(u| @\ =Ne(O2hm) o~ Ne(0, M) o A

t=00 t=01 t=02 t=03 t=04 t=05 t=06 t=07 t=08 t=09 t=1.0

BSI

VDM

Figure 2. ELBO encoders q, i.e. training inputs, of BSI, BFN and VDM. ¢ parametrizes the precision levels by
the respective model’s precision schedule with ¢ = 0 being pure noise, ideally, and ¢ = 1 almost equaling the
data. Top half shows the mean of g and bottom half a sample. Mean 0 is gray because all models rescale the
data to [—1, 1]. BENs apply little noise overall and reach a deterministic state at ¢ = 0. For VDM, significant
information about the sample is preserved in the structure of the mean at the highest noise level. In contrast, BSI
converges to its latent prior distribution.

for a set of latent variables 1) at precision levels w between w and @w. For BSI and BFN, the precision
level w is the belief precision A between Ao and Ay and 1), = py. For VDM, the latent variables 1)
are called z and they parametrize w as the SNR v between e~® and e!3-3.

Despite this shared ELBO form, the models vary significantly. Table 1 lists the encoding distribution
q(® | x,w) for each model, their prior, from which they begin the sampling process, and the update
step that the models iterate during sampling. First, we see that VDM starts sampling from a standard
Normal vector and BFN from the deterministic 0. Only BSI allows sampling from an initial precision
Ao less than 1, which has been shown to improve sample diversity in consistency models (Song &
Dhariwal, 2024). Second, the update step shared between BSI and BFN is significantly simpler than
the VDM update with respect to the precision parameter and does not require working in log-space
for numerical stability as recommended for VDM (Kingma et al., 2023).

For the encoding distribution q(v | @, w), which provides the training inputs when the models
optimize their ELBO, we turn to Fig. 2. First, we note that BFN adds little noise overall due to
their noise variance (A—*0)/x? going to 0 for both small and large A. Next, we notice the encoding
distribution (% | x,w) with the most noise at t = 0. While it agrees exactly with the latent prior
used for sampling for BSI and BFN, for VDM it becomes approximately Np(0.08x, 1), which differs
significantly from the standard Normal prior for sampling. In fact, the image motif is still clearly
discernible in the distribution mean for VDM at its maximum noise level. The amount of signal
remaining in the mean for BSI at high noise levels is counteracted by much higher noise variance, e.g.
15.85 at t = 0.1 for BSI compared to 0.96 for VDM.

Diffusion Models If we currently hold the belief (u/, \’), the distribution over beliefs (u, A — «)
that are « less precise is

p(p |, x) = N(S‘l [%u’ -)\ofﬂ] ,£> (15)

for a certain precision £. This shows that BSI can be written as a DM with a non-Markovian forward
or “noising” process. See Section A.2 for a detailed derivation of this connection. There we also

Under review as a conference paper at ICLR 2026

exploit that BFNs are a special case of BSI to derive the forward process for BFN and show that it is
Markov, in contrast to the BSI process.

5 MODEL DESIGN

In this section, we introduce a design for the prediction model in BSI. We begin by deriving a
preconditioning structure for fg, i.e. a type of model structure similar to noise prediction in DMs.
Then, we describe how we bring A into a suitable range as an input for deep learning. Finally, we
give our choice of the hyperparameters Ay, an and ag and report the model architectures we used as
the backbone of fy.

5.1 PRECONDITIONING

It has long been known in the context of DMs that training models to predict & directly from a
noisy input can hinder learning and limit sample quality (Karras et al., 2022; Ho et al., 2020). For
probabilistic modeling, it is especially important that the model prediction stays close to the true
sample if the input is already at a low noise level to achieve high ELBOs. This can be seen, for
example, in Corollary 3.6 where prediction errors for high-precision input beliefs with large A have
a higher weight. Instead of predicting &, DMs commonly either predict a variation of the noise in
the model input (Ho et al., 2020; Song et al., 2021a) or an adaptive mixture of the noise and the true
sample (Salimans & Ho, 2021). In the end, these approaches amount to adding a skip connection to
the model with specific weights.

For BSI, we derive such a preconditioning structure with the adaptive-mixture approach from Karras
et al. (2022). Let fg be our neural network. Then we define the preconditioned fg as

f@ (/1'7 >\) = CskipM + Coutfé (Cmu, /\) (16)
and find the parameters through the conditions proposed by Karras et al. (2022). ¢;, and coyt, are
chosen such that the input to fg and its training target have unit variance. cg;p, is then chosen to
minimize ¢, which minimizes the influence of prediction errors and ensures that fg retains most of
the signal already contained in g at large precisions .

From these conditions, we derive

Cskip = (A_AO)/"G, Cout = \/ﬁ, Cin = / A/"é (17)
where £ = 1 + (A=20)?/x in Section C. \ is the precision of our current belief about and the input
to fo.

5.2 PRECISION ENCODING

The magnitude of \ makes it impractical as a feature for neural networks. However, the CDF F’ of
p(A) is a natural way to scale A from [\, Am] to [0, 1] as in DMs and flow matching (FM) (Lipman
et al., 2023). In practice, we use fg(u,t) instead of fo(p, A) where
log A — log g
t=F(\) = —2_ "7 18

*) log(Am) — log Ao (18)
Compared to linear re-scaling, our method makes it easier for fg to distinguish belief precisions in
the high-noise regime.

5.3 HYPERPARAMETERS

Apart from fg, BSI has three hyperparameters, Ay, ay; and ag. Ao should be small enough that the
initial belief covers the whole data distribution. We have found experimentally that A\g = 10~2 works
well for images rescaled to [—1, 1]. This agrees with the finding of Song & Dhariwal (2024) that
large initial noise scales improve sample diversity in consistency models.

ay should be large enough that a noisy measurement at precision oy identifies an x, e.g. for images
almost all probability mass of NVp(x, apr) should be contained within a single 8-bit color intensity
bin. We choose ayy = 108, which Graves et al. (2023) also picked for BFN. While L3} dwarfs Lg,
ar = 2ay gives a slight edge in likelihood, empirically, as also observed by Graves et al. (2023).

Under review as a conference paper at ICLR 2026

5.4 ARCHITECTURE

After the preconditioning and mapping A to a ¢t € [0, 1], there are two more steps to turn the
inputs p and t of fy into effective features for a neural network. Regarding ¢, we convert it into a
32-dimensional precision embedding with a sinusoidal position encoding (Vaswani et al., 2017).

The Fourier features proposed by Kingma et al. (2023) are an essential component to reach high
likelihoods, because they help the model distinguish fine details at high likelihoods, i.e. for inputs
that are already close to the data distribution. They are basically a sinusoidal embedding of every
dimension of p. In particular, we extend g to the vector

(p sin(2imp) cos(2imp)) € REOFHMmax=nmmm))n gy o (19)

before passing it into the neural network. We choose ny,i, = 6 and ny,x = 8, in effect increasing
the dimensionality of the input to the neural network from n to 7n.

For the neural network itself, we use two architectures, U-Nets (Ronneberger et al., 2015) and
Vision Transformers (ViTs) (Dosovitskiy et al., 2020). We use the U-Net configuration proposed by
Kingma et al. (2023) which adapts the widely used configuration from (Ho et al., 2020) for likelihood
estimation. Most notably, the (Kingma et al., 2023) version has no downsampling between layers of
the U-Net, which lets them increase the number of U-Net levels to 32.

ViTs are a more recent architecture inspired by the success of transformers (Vaswani et al., 2017).
They represent images as a set of patches with a 2D position embedding and process them with global
attention, in contrast to convolutional architectures like the U-Net where communication happens
primarily locally. We opt for the Diffusion Transformer (DiT) architecture (Peebles & Xie, 2023)
which has been shown to improve sample quality over variants of the (Ho et al., 2020) U-Net model.

6 EXPERIMENTS

We evaluate BSI on the ImageNet (Deng et al., 2009) and CIFAR10 (Krizhevsky, 2009) datasets
in terms of log-likelihood and sample quality. While BSI as a method is general and not specific
to images, we chose image datasets, because they are established benchmarks in the probabilistic
modeling literature. In our experiments, we compare against BFN (Graves et al., 2023) and VDM
(Kingma et al., 2023). BFNs are a special case of our framework (see Section 3) and provides an
important reference point for the effect of the non-deterministic hyper-prior p(go) in BSI. VDMs are
a representative of the diffusion family of models specifically designed for probabilistic modeling
that is structurally similar to BSI as we explained in Section 4.

In Section B, we describe how we compute the ELBO, which we derived in Section 3.1 for continuous
x, on discretized images with 8-bit color channels. Section E lists hyperparameters and training
details and Section F shows some generated samples.

6.1 IMAGENET32

For this evaluation, we train a DiT-L-2 (Peebles & Xie, Table 2. Log-likelihood in BPD and sam-
2023) in the BFN, VDM and BSI model, respectively, ple quality (FID) against the test set on Im-
on the official 32x32 version of ImageNet (Chrabaszcz ageNet32. We compute standard deviations
et al., 2017). We train each model from three seeds for over 3 seeds. Lower is better.

2 M steps and evaluate the log-likelihood of the test set in
bits per dimension (BPD) and the sample quality in terms Model BPD | FID |
of Fréchet inception distance (FID) against the test set. VDM 3.452+0.006 99+0.5
For the log-likelihood, we evaluate each model’s ELBO BEN 3.448+0.005 11.0+0.1
with 5 samples from the respective equivalent of L3 and BSI 3.448+0.006 89+0.1
2 samples from the respective equivalent of L. For the
sample quality, we draw 50 000 unconditional samples from each model with 1024 steps and then
compute the FID between the generated samples and the test set.

Table 2 shows that BSI achieves equivalent likelihoods to VDM and BFN while generating higher-
quality samples in terms of FID. This aligns with the result for consistency models by Song &
Dhariwal (2024) that a larger variance of the initial state — initial belief tio for BSI — improves the

Under review as a conference paper at ICLR 2026

sample diversity. Ordering the models by improving FID, we have BFN first with an initial variance
of 0 (o = 0), then VDM with an initial variance of 1 and finally BSI with an initial variance of
Ag' = 100. Furthermore, Fig. 3 shows that BSI generates significantly better samples than the closely
related BFN with fewer steps.

FID 10° 107
— p(A) uniform
2 =< .
107 ¢ BFN 1 <03
10)
— VDM =)
= BSI 10-2 -E—/H' 10 /—-\
__________________ -1 .
1 Noise floor = 10 p(A) log-uniform
wy o T 1073 ,
2‘3 2‘4 2‘5 2‘6 2‘7 2‘8 2‘9 2‘10 26 28 210 212 214 216 10—2 100 102 104 106
Steps k Steps k Precision \

Figure 3. BSI’s sample quality con-
verges quickly and to a lower FID
with increasing number of steps.

Figure 4. L¥ converges to
L3t from above as predicted in
Lemma 3.3.

Figure 5. Our proposal distribution
shrinks the range of »(N)/p(x), re-
ducing ELBO variance.

ELBO Convergence Fig. 4 shows how the finite step ELBO from Theorem 3.1 converges towards
its infinite step counterpart as k — oo on the test set of ImageNet32. For this plot, we sampled
100 precisions A per image for the Monte Carlo estimates of £X; and £57. The convergence trend
continues right to the noise floor where the noise overshadows the signal, marked in the plot by the
standard deviation of the Monte Carlo estimator for the difference between the two terms.

6.2 CIFARI10

We train the same U-Net architecture as VDM (Kingma et al., Table 3. Test set log-likelihood on CI-
2023) and BFN (Graves et al., 2023) on CIFAR10. Table 3 FARI10 of the same U-Net in different

shows that BST achieves equivalent log-likelihoods in terms of ~models.
BPD. Due to the significant number of training steps (10 M), —
we followed (Kingma et al., 2023; Graves et al., 2023) and ~ Model Training Steps BPD
trained only a single model on this dataset. VDM 265
BSI 10M 2.64

Variance Reduction Fig. 5 verifies the effect of importance

.) . L : BFN 2.66
sampling with a log-uniform distribution that we propose in BSI 5M 265

Section 3.3. It reduces the range of the #(%)/p(x) term in Eq. (12)
by about 4 orders of magnitude on CIFAR10 and therefore the
variance of a Monte Carlo estimate of the ELBO.

7 CONCLUSION

We have introduced our generative model BSI through a novel perspective on generative modeling
that frames sample generation as iterative Bayesian inference. We have derived an ELBO for both
finite steps and the infinite step limit and an importance sampling distribution to minimize the training
loss variance. In addition, we have thoroughly discussed how BSI relates to BEN and DMs and shown
that BSI includes BFN as a special case. Our experiments have demonstrated that BSI generates
better samples than both VDM and BFN while achieving equivalent log-likelihoods on established
image datasets. Overall, BSI contributes a Bayesian perspective to the landscape of probabilistic
generative modeling that is theoretically simple and empirically effective.

SOFTWARE

For our results, we rely on excellent software packages, notably numpy (Harris et al., 2020),
pytorch (Paszke et al., 2019), einops (Rogozhnikov, 2022), matplotlib (Hunter, 2007),
h5py (Collette, 2013), hydra (Yadan, 2019) and jupyter (Granger & Pérez, 2021).

Under review as a conference paper at ICLR 2026

REFERENCES

Ayadi, S., Hetzel, L., Sommer, J., Theis, F. J., and Giinnemann, S. Unified Guidance for Geometry-
Conditioned Molecular Generation. In Neural Information Processing Systems, November 2024.

Chen, Z., Yuan, H., Li, Y., Kou, Y., Zhang, J., and Gu, Q. Fast Sampling via Discrete Non-Markov
Diffusion Models with Predetermined Transition Time. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, November 2024.

Chrabaszcz, P., Loshchilov, 1., and Hutter, F. A Downsampled Variant of ImageNet as an Alternative
to the CIFAR datasets, August 2017.

Collette, A. Python and HDF5. O’Reilly, 2013.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. ImageNet: A Large-scale Hierarchical
Image Database. In Computer Vision and Pattern Recognition Conference, 2009.

Dhariwal, P. and Nichol, A. Diffusion Models Beat GANs on Image Synthesis. In Neural Information
Processing Systems, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale. In International Conference on Learning
Representations, October 2020.

Duda, J., Tahboub, K., Gadgil, N. J., and Delp, E. J. The use of asymmetric numeral systems as an
accurate replacement for Huffman coding. In 2015 Picture Coding Symposium (PCS), pp. 65-69,
May 2015. doi: 10.1109/PCS.2015.7170048.

Goodfellow, L. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. Generative Adversarial Networks. In Neural Information Processing Systems.
arXiv, 2014.

Granger, B. E. and Pérez, F. Jupyter: Thinking and Storytelling With Code and Data. Computing in
Science & Engineering, 23(2):7-14, March 2021. ISSN 1558-366X. doi: 10.1109/MCSE.2021.
3059263.

Graves, A., Srivastava, R. K., Atkinson, T., and Gomez, F. Bayesian Flow Networks, November
2023.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser,
E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,
Haldane, A., del Rio, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. Array programming with NumPy.
Nature, 585(7825):357-362, September 2020. doi: 10.1038/s41586-020-2649-2.

Harshvardhan, GM., Gourisaria, M. K., Pandey, M., and Rautaray, S. S. A comprehensive survey
and analysis of generative models in machine learning. Computer Science Review, 38:100285,
November 2020. ISSN 1574-0137. doi: 10.1016/j.cosrev.2020.100285.

Ho, J., Jain, A., and Abbeel, P. Denoising Diffusion Probabilistic Models. In Neural Information
Processing Systems, 2020. doi: 10.48550/arXiv.2006.11239.

Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3):
90-95, 2007. doi: 10.1109/MCSE.2007.55.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating the Design Space of Diffusion-Based
Generative Models, October 2022.

Kingma, D. P. and Welling, M. Auto-Encoding Variational Bayes, 2013.

Kingma, D. P., Salimans, T., Poole, B., and Ho, J. Variational Diffusion Models, April 2023.

10

Under review as a conference paper at ICLR 2026

Kollovieh, M., Ansari, A. F., Bohlke-Schneider, M., Zschiegner, J., Wang, H., and Wang, Y. Predict,
Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting. In
Neural Information Processing Systems. arXiv, 2023. doi: 10.48550/arXiv.2307.11494.

Kollovieh, M., Gosch, L., Lienen, M., Scholten, Y., Schwinn, L., and Giinnemann, S. Assessing
Robustness via Score-Based Adversarial Image Generation. Transactions on Machine Learning
Research, August 2024a. ISSN 2835-8856.

Kollovieh, M., Lienen, M., Liidke, D., Schwinn, L., and Giinnemann, S. Flow Matching with
Gaussian Process Priors for Probabilistic Time Series Forecasting. In International Conference on
Learning Representations, October 2024b.

Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images, 2009.

Lewis, S., Hempel, T., Jiménez-Luna, J., Gastegger, M., Xie, Y., Foong, A. Y. K., Satorras, V. G.,
Abdin, O., Veeling, B. S., Zaporozhets, 1., Chen, Y., Yang, S., Schneuing, A., Nigam, J., Barbero,
F., Stimper, V., Campbell, A., Yim, J., Lienen, M., Shi, Y., Zheng, S., Schulz, H., Munir, U.,
Clementi, C., and Noé, F. Scalable emulation of protein equilibrium ensembles with generative
deep learning, December 2024.

Lienen, M., Liidke, D., Hansen-Palmus, J., and Giinnemann, S. From Zero to Turbulence: Generative
Modeling for 3D Flow Simulation. In International Conference on Learning Representations,
2024.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and Le, M. Flow Matching for Generative
Modeling, February 2023.

Liidke, D., Bilos, M., Shchur, O., Lienen, M., and Giinnemann, S. Add and Thin: Diffusion
for Temporal Point Processes. In Neural Information Processing Systems. arXiv, 2023. doi:
10.48550/arXiv.2311.01139.

Liudke, D., Raventds, E. R., Kollovieh, M., and Giinnemann, S. Unlocking Point Processes through
Point Set Diffusion, October 2024.

Murphy, K. P. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

Nichol, A. and Dhariwal, P. Improved Denoising Diffusion Probabilistic Models. In International
Conference on Machine Learning, 2021. doi: 10.48550/arXiv.2102.09672.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Neural Information Processing Systems, 2019.

Peebles, W. and Xie, S. Scalable Diffusion Models with Transformers. In International Conference
on Computer Vision. arXiv, 2023. doi: 10.48550/arXiv.2212.09748.

Rezende, D. J. and Mohamed, S. Variational Inference with Normalizing Flows. In International
Conference on Machine Learning, 2015.

Rogozhnikov, A. Einops: Clear and Reliable Tensor Manipulations with Einstein-like Notation. In
International Conference on Learning Representations, 2022.

Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convolutional Networks for Biomedical Image
Segmentation. In Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F. (eds.), Medical
Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science,
pp- 234-241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi:
10.1007/978-3-319-24574-4_28.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E. L., Ghasemipour, K., Gontijo Lopes,
R., Karagol Ayan, B., Salimans, T., Ho, J., Fleet, D. J., and Norouzi, M. Photorealistic Text-to-
Image Diffusion Models with Deep Language Understanding. In Neural Information Processing
Systems, volume 35, pp. 36479-36494, 2022.

11

Under review as a conference paper at ICLR 2026

Salimans, T. and Ho, J. Progressive Distillation for Fast Sampling of Diffusion Models. In Interna-
tional Conference on Learning Representations, October 2021.

Saydemir, A., Lienen, M., and Glinnemann, S. Unfolding Time: Generative Modeling for Turbulent
Flows in 4D. In Al for Science: Scaling in Al for Scientific Discovery Workshop, ICML, 2024.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. Deep Unsupervised Learning
using Nonequilibrium Thermodynamics. In International Conference on Machine Learning, 2015.

Song, J., Meng, C., and Ermon, S. Denoising Diffusion Implicit Models. In International Conference
on Learning Representations, January 2021a.

Song, Y. and Dhariwal, P. Improved Techniques for Training Consistency Models. In International
Conference on Learning Representations, 2024.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. Score-Based
Generative Modeling through Stochastic Differential Equations. In International Conference on
Learning Representations, 2021b.

Theis, L., van den Oord, A., and Bethge, M. A note on the evaluation of generative models. In
International Conference on Learning Representations. arXiv, 2016. doi: 10.48550/arXiv.1511.
01844.

Townsend, J., Bird, T., Kunze, J., and Barber, D. HiLLoC: Lossless image compression with
hierarchical latent variable models. In International Conference on Learning Representations,
September 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. Attention Is All You Need. In Neural Information Processing Systems, 2017.

Xue, K., Zhou, Y., Nie, S., Min, X., Zhang, X., Zhou, J., and Li, C. Unifying Bayesian Flow Networks
and Diffusion Models through Stochastic Differential Equations. In Forty-First International
Conference on Machine Learning, June 2024.

Yadan, O. Hydra - A framework for elegantly configuring complex applications. Github, 2019.

12

Under review as a conference paper at ICLR 2026

A How BSI RELATES TO ...

A.1 BAYESIAN FLOW NETWORKS

BFNs are a recent class of generative models for continuous and discrete data motivated from an
information-theoretic perspective (Graves et al., 2023). In it, a sender communicates a latent sample
to a receiver while trying to minimize the transported data volume. The sender compresses the data
with entropy coding, so that minimizing the data volume is equivalent to the receiver maximizing
the log-likelihood of the latent sample based on the information that it has received from the sender
so far. Finally, a sample can be generated when the receiver also assumes the role of the sender and
repeatedly refines its belief.

Our generative approach in Section 3 includes BFN for continuous data as a special case. To see
this, we begin by choosing our belief prior p(po) as Np(0, 7o) and letting o — o0, i.e. the initial
belief mean will always be gy = 0. With Lemma 3.4, this gives us

>_>\0w A2
A A=/

Al [z, A) = Np((20)

If we now define a = A\ —), choose the initial precision Ay = 1 and write the Normal distribution
in variance format, we see that

« (0%
Q(H‘)\|m7)\)_N(1+ama (1_'_&)2)’ (21

which equals the BFN flow distribution pr(€ | x;t) (Graves et al., 2023, Equation (76)) if we
parametrize A (and therefore «) in terms of ¢ € [0, 1] as in Section 5.2.

Since a comprehensive description of BFN would go beyond the scope of this work, we will only
point out the correspondence between terms from Section 3 and their BEN counterparts without
explaining them in detail. For a complete description, we refer the reader to the original work (Graves
et al., 2023).

The current belief (g;, \;) is equivalent to the input distribution p; (Graves et al., 2023, Equation
(43)). Lemma 2.1 is the equivalent of the Bayesian update function h (Graves et al., 2023, Section
4.2). A noisy measurement y ~ Np(x,) corresponds to the sender distribution pg (Graves et al.,
2023, Equation (86)), while a noisy measurement y ~ Np (&, o) of the model’s current prediction &
of the true sample corresponds to the receiver distribution pr (Graves et al., 2023, Equation (88)).
The output distribution po and the Bayesian update distribution py are just intermediate terms to
derive the model and appear neither in the final training nor sampling algorithm.

Fixing the initial belief to po = 0 with infinite precision for BEN recovers the behavior described by
Graves et al. (2023, Figures 3 and 4) and shown in Eq. (21) that the precision (1 -+ «)?/a of the flow /
encoding distribution q(g | @, A) in the ELBO first falls and then rises again as « grows. In contrast,
with our belief prior p(g9) = Np(0, \g) of the same precision as the initial belief (g0, Ag) as we
choose it in Section 3.2, the precision of q(g) | @, A) grows linearly in A (and «) in lockstep with the
precision of the belief (p;, A;). We hypothesize that this makes learning for the model easier, because
the noise level in its input varies linearly instead of non-linearly across noise levels. Furthermore,
in BSI, the first sampling step will already contribute to drawing a random sample, since the initial
input pg to fg is random. In BFN, the initial belief is fixed to 0, which makes the first sampling step
deterministic and equal across all samples.

In Section 3.2, we have argued that the reasonable range of prior precisions g is [Ag, 00]. BSI and
BFN occupy the two extremes of this range with BSI using the least informed prior 79 = Ao, i.e.
making the fewest assumptions, and BFN the most informed one vy = co. Note that these extremes
are the only choices in the reasonable range for which the precision A%(A — Ao + Aﬁ/w)_l of the
encoder q in Lemma 3.4 simplifies, i.e. to just A for BSI and A2(A — A¢)™" for BFN.

In our comparison to DMs in Section A.2, we see that BSI and BFN also differ in their associated
noising process. While BSI’s noising process, i.e. how one could go from a more precise measurement

back to a less precise one, does not form a Markov chain, BFN’s does, making BFN more similar to
DMs.

13

Under review as a conference paper at ICLR 2026

In Section A.2, we exploit that BFN can be represented as a special case of BSI to derive a Markovian
forward process for BFN as DMs.

A.2 DIFFUSION MODELS

DMs are a widely used class of generative models built on the concept of inverting a diffusion process
(Sohl-Dickstein et al., 2015; Ho et al., 2020). Given a sample x, they define a Markov chain of
increasingly noisy versions 1, o, . .. of where ¢y = x and

p(x; | zi—1) = N(ouzi—1, i) (22)
for some coefficients c; and B;. In training, a model learns to invert this Markov chain, which lets you

finally generate data by sampling from a noise distribution and stepping along the learned, reverse
Markov chain until you reach the data distribution.

While DMs initially achieved prominence in image generation (Dhariwal & Nichol, 2021), they
have since been applied successfully across a variety of domains, such as text-to-image mapping
(Saharia et al., 2022), fluid simulations (Lienen et al., 2024; Saydemir et al., 2024), adversarial attacks
(Kollovieh et al., 2024a), temporal (Liidke et al., 2023) and general point processes (Liidke et al.,
2024), molecular dynamics (Lewis et al., 2024), molecular structure generation (Ayadi et al., 2024),
and time series forecasting (Kollovieh et al., 2023; 2024b).

DMs and BSI are remarkably similar at first glance. Both revolve around the concept of iteratively
transforming noise into data samples, though DMs work with Langevin dynamics and BSI uses
posterior inference. For training, both models aim to align a parametric distribution pg(z” | ') with
a distribution q(x” | @', x) that describes a less noisy version «” of a noisy sample x’ given that the
true sample is x.

However, conceptually, they approach sampling from two different perspectives. DMs start with
the so-called forward process, where signal is iteratively converted into noise forming a Markov
chain of intermediate states as in Eq. (22). Then, they revert this chain to derive the reverse process
that enriches noise with data. In contrast, BSI defines the reverse process directly in the form of
Lemma D.1 and never uses the associated forward process directly.

We can revert BSI’s process to derive its “noising” process. This will let us see what BSI would look
like as a DM and thus understand the relationship between the two. Assume that our current belief is
(p, A = Ao + «) and we want to denoise further based on a sample & and measurement precision o,
i.e. update our belief to (', A = Mg + @ +). The denoising process described by Lemma D.1
tells us that

p(p' | @) = Np (YN [Ap+ o'x], 27 /a’). (23)
To find the noising process, we revert this and get
AN @
/ -1 /
= — AM————-—-1 24
p(p | w's) N<€ [a,u+ <a+A3/70)45) 24)

where £ = A\ ((a+ /\3/70)_1 + o 71) and ~p is the precision of the initial belief prior p(po) =
N(0,0). Find the proof at the end of this section.

Plugging in vy = Ag, we get that the noising process of BSI is
, [N, A
Pl | w@) =N (&1 5w = doz|.& | where €=A(1+2). (25)

Note that this distributions depends on x since A\g > 0. Therefore, BSI’s forward process would
not be Markoyv, i.e. you cannot add more noise to a belief state without knowing the sample « that
the belief state originated from. While DMs with non-Markov forward processes exist (Song et al.,
2021a; Chen et al., 2024), they are uncommon. In conclusion, we see that BSI can be represented as
a DM, though with a rather complex, non-Markovian forward process.

As we have shown in Section A.1, BFN are a special case of our generative framework in Section 3
if we choose 9 = oco. Curiously, Eq. (24) shows that this is the only prior on gy for which the
associated forward process is Markov as the coefficient of & becomes 0. This agrees with Xue et al.
(2024), who have shown that BFN admit a formulation based on stochastic differential equations,
like score-based DMs.

14

Under review as a conference paper at ICLR 2026

Proof of Eq. (24). We know from Lemma 3.4 that

A— Ao A2 I} A2
) =N ; 3 =Np|~x,——— 26
a(p |z, M) P(3 scA_/\OjLAU/%) P(/\ma+xo/70> (26)

and from Lemma D.1 that
p(p' | p,x) = Np (YN [Ap + 'z],2°/a"). (27)

Therefore, p(p, ' | @) is a Gaussian linear system and we can use (Murphy, 2012, Equation (4.125))
to see that

plp | 1, x) = Np(v,€) (28)
with 1
o\ - 21,2
- r (o) (G S e)
0
and
/2 /
v=¢T1 [:2(;& - ‘;m) + 220+ 280) " o/ w] (30)
| W >
¢ [a,uH(aHgM 1)4 G1)
O

B ELBO IN BITS PER DIMENSION

A common metric in probabilistic modeling is the negative log-likelihood of unseen data. The
benefits of this metric are that it is theoretically motivated by the probabilistic framework and it can
be computed across domains regardless of data modality. If the negative log-likelihood is small, the
generative model assigns high likelihood to the unseen data and can thus be regarded as a good model
(though likelihood and sample quality are not necessarily the same thing (Theis et al., 2016)). For
models that come with an ELBO like BSI, we can use it to upper bound the negative log-likelihood
to compare against other ELBO-based or exact-likelihood models.

The negative log-likelihood is usually reported in bits per pixel, per color channel or, in general, per
dimension. This unit comes from the fact that an entropy coder could use the model to encode samples
x € S? from a finite symbol alphabet S from the data distribution asymptotically in —log, pg(x)/d
bits per dimension (Duda et al., 2015). Note that the underlying space S must be discrete. If it were
continuous, pe(x) would be a density and the theory would predict that we could compress into a
negative number of bits.

The discreteness requirement is a natural fit for many domains. While, for example, images are
usually treated as tensors with continuous color values, the colors are actually stored as discrete
values in the range [0, 28 — 1] for 8-bit images. Similarly, audio data is a sequence of discrete values
in, for example, a 16-bit range.

Let’s say that S is the set of integers {0, ..., — 1}. Then we can compute an upper bound on the
bits needed to encode = € S? by

—log, p(z) < log(2)(LR + L3) (32)

as per Theorems 3.1 and 3.2. The multiplication by log(2) converts the logarithms in £f; and £} to
base 2. Lr, is the same as Lg but with a discretized Normal likelihood to account for the discrete
nature of x, i.e.

Lk = E [-log Np (x| @ay, or)] (33)

(kg lEAM)

where
Nlé(l‘] | ﬁi,\M,OéR) = Sp(’l"j | ﬁi)\M,OéR) — @(ZJ | .’f})\M,OzR). (34)

15

Under review as a conference paper at ICLR 2026

D(r; | Zxy, or) is the CDF of N(&»,,, ar) and I; and r; are the boundaries of the discretization
interval containing x;, i.e.

—00 ifw; <3 00 ifo;>r—32
l; = r—% iijZT—% and r; = % ifzj<% 35)
lz; — 1]+ 1 otherwise lz; + 1] — 1 otherwise.

LY} is usually not discretized during ELBO computation as the latent variables only enter as a
mean squared error instead of a log-likelihood. In a practical implementation, the latent variable
distributions would need to be discretized as well, decreasing the ELBO slightly (Kingma et al., 2023;
Townsend et al., 2019). If «x is discretized to a different set of discrete symbols, e.g. numbers between
—1 and 1 instead of the integers S, the boundaries of the discretization intervals and bin widths in the
discretized Normal distribution have to be adapted accordingly.

C PRECONDITIONING DERIVATION

We will assume in this section that the data is normalized such that E[x] = 0 and Var[z] = I.

Assume that we have a current belief (u,). We derive the parameters cskip, Cout and cin of the
preconditioned model

f@(ﬂv)\) = Cgkipt + Coutf{) (Cinllfa)‘) (36)
analogously to Karras et al. (2022). However, while we proceed in the same way, the resulting
parameters for BSI differ from Karras et al. (2022) because BSI is not included in the family of DMs
that Karras et al. (2022) consider, see Section A.2.

First, we require that Varg[cin] = I for all A. We know from Corollary 3.5 that
a(p |, A) = Np((A—20)/xz, N). (37)

Therefore, p(x, p) is a Gaussian linear system and (Murphy, 2012, Equation (4.126)) tells us that the
variance of the marginal distribution of p is

A=)
Varg [u] = (Xl + (AQ"))I (38)
By plugging this into our requirement
Varg [cinpt] = ¢, Varg[u] = 1, (39)
we get immediately that
-1/2 9 Y2
A= Xo)” A=A
e (022 (02
—_————

=K

Next, we want to have the actual prediction target of fj during training to have unit variance, too. In
training, we optimize the ELBO from Theorem 3.2, which comes down to minimizing

2

Iz = folre, M, (41)
up to constant factors only depending on A. If we plug in Eq. (36) and isolate f, this distance
becomes

& = coipht — Cout fo(Cintts V|2 = Ruc|| fo(Cintts A) — b (@ — campm) |2 @2)

From this, we identify c;l (¢ — coippt) as the actual training target for f5. For the rest of this

derivation, we denote use the shorthand o = A —)\ for the measurement precision accumulated in
our belief (p, \). After Corollary 3.5, we can write p as @/xx + z where z ~ Np(0, \) and find
that the variance of the training target is

Vaurm’z[c,;}lt (x — cskipt)] = C;ﬁt Varg . {az — Cskip (i x + z)]
) (6%
= Cout Varm,z 1-— CskipX T — Cgkip® (43)

2
a
= Cont [(1 - Cskip/\> + Cgkip)‘_l] 1

16

Under review as a conference paper at ICLR 2026

If we now require the effective training target to have unit variance, we see that

2 «

2
le} 1
2, = (1 - cskipA> + A = {1 + —O;\] T Buip — 25 Cokip + 1. (44)

Following Karras et al. (2022), we now choose cski, to minimize the impact of errors in the output
of fj by minimizing the magnitude of cout. 2, is a polynomial in cgp, with positive leading
coefficient, so we can find the minimizer as the root of

1 dc2, a1 !

- — = |14+ — | —Cskip — —» 45

2 deway L TN AR TN 43)
which is at .

Cskip = [1 + O;\} a=rta= %. (46)
Finally, we can plug cq;p, into Eq. (44) to get

2 2 2 2
= /m‘Q% - 2%/{1a +1=x" (a}\ - 2% + [1 + 0;\}) =r" “47)

and consequently cou, = £7/% = \/1/x.

D PROOFS

D.1 PROOF OF THEOREM 3.1

We will begin with some auxiliary insights. First, we consider the marginal distribution of the updated
belief (@', \'). This means that our current belief about a sample x is (u, A) and now we want to
know the distribution of p after updating g with Lemma 2.1 marginalized over all possible noisy
measurements ¢y with precision «. Note that)\’ is deterministic as it neither depends on x nor y.

Lemma D.1 (Update Marginal). Let x, u € R™ and A\, o € R.. Then the distribution of the posterior
belief mean p' marginalized over all measurements y made with precision o is

p(p | p,x,0) = yNNE%m - (e | 1,z 0, y)] = Np (Yx [Ap + ax], \?/a). (48)

Proof. The noisy measurement is a Normal random variable y ~ Ap(x,) and the mean of our
posterior belief (p', \') after observing y is the deterministic linear transformation

B =1/N A+ ay] (49)

of this random variable. The statement follows immediately by the linear transformation property of
the Normal distribution.

From this, we can see that the update marginal from multiple intermediate measurements is the same
as from a single measurement with the combined precision of the intermediate measurements.

Lemma D.2. Let x,pu, p', 1p”’ € R™ and \,a,a’ € Ry. p' is the posterior belief mean after
a measurement with precision o and p' the posterior belief mean after a second, subsequent
measurement with precision . Then we have that the marginal distribution of the second update is

E [pp"|u zd)]=pH"|pezat+ad). (50)
p(p'|p,@,0)

Proof. We know from Lemma D.1 that g’ is a random variable

p(p' |,) = Np(Yx [Ap+ ax], /o) (51)
N——— e N~
= =:£
and p” is a random variable that depends linearly on g’
p(p” | 1z, o) = Np (Yn' [Np' + o'x], N /ar). (52)

17

Under review as a conference paper at ICLR 2026

As such, they jointly form a Gaussian linear system for which the marginal distribution of p” is
(Murphy, 2012, Equation (4.126))

o N?
p(p | p,z,a)] = N(l/A” Nv +a'z], e + /\Ngg) (33)

p(p'|p,2,a)

Plugging v into the mean expression and simplifying yields the marginal mean
Un'[Ap+ (o + o)z]. (54)

Similarly, plugging ¢ into the covariance expression and simplifying yields the marginal covariance

%/20‘/. (55)

If we now recall from Lemma 2.1 that
N=X4+a and N =XN+d =X+a+, (56)
we can identify Eq. (53) as p(p” | p, ¢, 0 + o). O

This trivially generalizes to any finite sequence of measurements, which can be collapsed into a single
measurement with the total precision instead.

We will furthermore need to know the KL divergence between the update marginal distributions of
the same belief but based on two different samples x and x’.
LemmaD.3. Letx,x',u € R" and \,« € R,. Then

-DKL(p(ll’/ | /’l’vmva)up(p’/ | N’vw/aa)) = 1/2QH$ - mng (57)

Proof. Both update marginal distributions — with & and @’ — are Normal distributions of equal
’2 . .
A~ as given by Lemma D.1 and respective means of

(03

precision & =
v=1x[Ap+azx] and v =1/N[Ap+az']. (58)

As a consequence, the closed form solution for the KL divergence between two equal-covariance
Normal distributions becomes

1
Dir(p(p' | 2, 0),p(0 | @', 0)) = 5 (v =) Te(w = 0/)

= 1(oc —)TN N a(x — o)
2 (59)

= 1(a: —2)Ta(x —)

2

1
= salle — /|3

Equipped with these, we can derive the ELBO.

Theorem 3.1. Let x € R™ and ag, o; € Ry, i € [k]. Then the log-likelihood of x is lower-bounded
as
logp(z) > —Lr — LY 3

by a reconstruction term Ly and a measurement term LY,

k
L = E log Np(x | &1, o and LF == F [ai * — & 2} 4
t q(uklme)[gNp(@ | 2 R)] 2 i~ (0,k—1) 1]l I2 @
a(peil@,\)
where

q(ui|33,/\i)=p(]13)[p(ﬂi\Mo,ﬁf%)\z’)], T = fo(piNi) and X=X+ aj. (5

j=1

18

Under review as a conference paper at ICLR 2026

Proof. For any distribution p(x) and any latent variable z, i.e. any choice of prior p(z), encoding
distribution q(z |) and likelihood p(| z), we have the variational lower bound

log p(z) > _q(gw)[_ logp(z | z)] — Dxi(a(z | z),p(2)) (60)

on log p(z) (Kingma & Welling, 2013). In particular, we can choose our sequence of beliefs as the
latent variable z = {0, .. ., pty, } and define the likelihood of & under this latent variable as

p(z | 2) = Np(x | &g, aR)- (61)

Remember that &), = fg(pr, \x) is the model’s estimate of x.

Since the belief means p1, . . ., gy are updated only based on their predecessor after Lemma 2.1,
they form a Markov chain conditional on and we can write the encoding distribution as
k
q(z [=) = p(po) HP(M | im1, @,). (62)

=1

Each p(p; | pi—1,, ;) is the update marginal of p;_1 over all possible noisy measurements of
a with precision a; from Lemma D.1. Our encoding distribution is ignorant about the influence of
x on the initial belief p(, because there is no closed form for p(po |). Since we can choose any
encoding, not encoding x in pg at all is valid.

If we now plug Eq. (62) into the first term of Eq. (60), we get

E [-logp(xz|2z)]= E E . E [-logp(x | 2)]. (63)

a(z|x) p(Ho) P(H1|po,@,01) P(Kk|pk—1,®,01)

The intermediate expectations collapse into a single measurement with the sum of all precisions
a; = 22:1 a; according to Lemma D.2, because pt1,. .., px—1 do not appear in the inner log-
likelihood, and we are left with

E [-logp(z|z)]= E E [-logp(z | 2)]. (64)
q(zlz) p(po) p(pr o, 2,ak)

Since \; = X\g + Z;Zl o = Ao + @&, we can define

Ptk | o, 2, A) = p(pr | o, z, 0 = X — Xo) = (x| po, x, o). (65)

If we now define

a(pr | M) = E [p(pe | po, 2, Ae)], (66)
p(1o)
we can rewrite Eq. (64) as
E [-Hlogp(z|z)= E [logp(z|p)] (67)
a(z|x) a(pr|z,Ak)

which equals the definition of Lg after plugging in Eq. (61).

Next, we investigate the KL-divergence in Eq. (60). We begin by defining the latent prior p(z)
autoregressively as

k
p(z) = p(po) [[plwsi | pior, &io1, 1) (68)
i=1

where &,_1 = fo(pi—1, Ai—1) is the point estimate of x produced by our model based on the belief
at step 4 — 1. So the prior for p; is the update marginal in Lemma D.1 if &;_; were the actual sample
x.

19

Under review as a conference paper at ICLR 2026

Now, we plug Eqs. (62) and (68) into the KL-divergence term from Eq. (60).

q@l@}

Dxw(a(z | ®),p(2)) = a(z|x) [P(Z)

_ [O | pi1,x, ;) }
a(zlz) uz | Kim1, i1, ;)
k
_ Z E [log p(#i | uiq:w,ai) }
— q(z[2) p(pi | pi1, Ti-1,04)
_ Z N {log p(u; | mq:w,ai) }
P(uo)p(ulluo@ a) p(pilpio,@an) P | i1, i1,)

= Z {DKL (p(ltz' | phiz1, @,), p(p; | Hiflviiflvai))}
Q(:U'L llw Ai— 1)

(69)
The intermediate expectations have collapsed again according to Lemma D.2 in the same way as for
the reconstruction term.

We know the closed form for the inner KL divergences from Lemma D.3, so we can further simplify
the KL-divergence term to

1
D z|x),p(z)) == o;lle — 2 2]. 70
s lopE) =53 B e - ailh 70)
Shifting the sum indices by 1 and replacing the sum Zf:_ol with £ E;z4(0,k—1) yields LcE. O

D.2 PROOF OF THEOREM 3.2

Theorem 3.2. Let ag, am € Ry. For any sequence of precision schedules oy, ; for k € N, i € [k]
such that Ei;l ag,; = an and the sequence of functions [k] — Ry : i — ay,; converges uniformly
to 0, we can take the limit of Theorem 3.1 as k — oo to get

amM

2 A~Uo,)
a(pexlz,N)

LR = E [-log Np(x | &5y, ar)] and L3 =

a(pay l®Am)

Iz —a&Al3] (6)

where q(/lo\ | CC,)\) = EP(MO) [p(u)\ | Mo, T, /\)], AM = Ao +ay and &\ = fg(u)\, /\)

Proof. Since Lg only depends on ZZ ay,.; but not individual «y, ;, the equivalence of the finite and
infinite step Lg is immediately apparent.

For E’K/I, we will consider its sum form from Eq. (70).

k k
1 1
ﬁk = = |:0éi xr — ii— 2j| - |: xr — i‘i_ 2:| (71)
M2 ;q(ui_l\m,)\i_l) | 1z 2 Z; a(mi— 1|m Xi—1) | illz
::h()\ifl)
Note that h(X;—1) is a deterministic function of \;_1 and Ag, ..., Ax is a partition of the interval

[/\07 Ao+ am] = [Ao, Am] with interval lengths of «;. It follows that Eq. (71) is a Riemann sum. Since
fe is a neural network, we can assume that A(\;_1) is continuous almost everywhere Combined
with the fact that the interval lengths {«;} converge uniformly to 0, it follows that £¥; converges to
the Riemann integral

1 AMm .
lim £k, —7/A E)[H(a)fmA)H%} dA (72)

Fros 2 [\, alaleA

20

Under review as a conference paper at ICLR 2026

as k — oo. It follows trivially that

AM
1
nm.ckzo‘—M/ — E [m—a?; Q]dA 73
R e A A [CEEN - 73)
M - 2 oo
> sl (@ - &2)13] = 255 (74)
q(px|z,\)
O

D.3 PROOF OF LEMMA 3.3

Lemma 3.3. [f h is strictly decreasing, L3S < LY, for any k and any precision schedule {c;}.

Proof. In the proof of Theorem 3.2, we have established that £ is a Riemannian sum of h, where we
evaluate i on the most-negative edge of each interval. Since h is a non-negative, strictly decreasing
function, the discretization error on the interval [A;_1, \;]
Ai
€ = Oéih()\ifl) — / h()\) dA (75)
Aic1
is also non-negative. Now consider a refinement of the discretization with A’ € (A\;_1, \;) and the
post-refinement discretization error on that interval
A

¢ = ()‘/_)\i—l)h(/\i—l)""(/\i_)‘/)h()‘/)_/ h(A) dX = (N =Xi—1=a)h(Ai—1)+ (X =X)h(X) +e.

Ai—1
(76)
Next, we express €' in terms of € as
6/ = ()\/ - /\i—l — Oli)h()\i_l) + ()\1 - /\/)h(>\,) +e€
= (A = N)(A(N) = h(Aiz1)) + €.
We know that (A\; — \') > 0, because X € (A\;—1,;), and (h(\) — h(X\;=1)) < 0, because h is
strictly decreasing. It follows that €’ < e.

This means that any refinement of the ELBO with more steps reduces the non-negative error between
the Riemannian sum £%; and its limit £5$. In other words, £55 < L5 for all k. O

D.4 PROOF OF LEMMA 3.4 AND COROLLARY 3.5

The ELBO in Theorems 3.1 and 3.2 has one part that looks like it might not be so straightforward:
the encoding distribution q(gey | @, \). Its definition contains a marginalization over the belief prior
p(pe0), which we still need to specify. Let’s see what q(pe | , A) becomes if we choose a zero-mean,
isotropic Normal prior p(go).

Lemma 3.4. Lef Ao, v0 € R, p(po) = Np(0,70) and A > Xg. Then

A— o A2
A) = .
Q(HA|CU,) NP(2 :B’)_)\O_"_)\(z)/%)

&)

Proof. Let p(py | po,x, A) be the marginal distribution of p after a measurement of precision
a=\—)\0, ie.

p(/“’)\ | /1/0,$,A) :p(NA | /,Lo,$,Oé:A7A0). (78)
We know from Lemma D.1 that
p(pa | o, @, = X — Xo) = Np (YA [Aopto + (A = Xo)x], A?/(x=20)). (79)

Since p(po) is also Gaussian and) depends linearly on g, they form a Gaussian linear system for
which the marginal distribution of w) is (Murphy, 2012, Equation (4.126))

A=A bY:
a(pn [2, A) = k. [p(pa | po, 2, N)] =N <l/x [A00 + (A = Ao)a], —3 °+ Ag?y()). (80)

By pulling A~2 out of the covariance and inverting to get a precision, we get the claimed result. [

21

Under review as a conference paper at ICLR 2026

If we now choose g = Ay, we get the simple BSI prior and the result ELBO encoder.
Corollary 3.5. Let \g € Ry, p(po) ~ Np(0, \g) and A > Xo. Then

A— A
q(uum):Np(Om).

A

Proof. If we choose vy = Ao in Lemma 3.4, we get

A— A\ 22
qwm,»:Np(:)

w’
A A— Ao+ /\g/Ao
The precision simplifies to

A2 A2
A= X0+ 2/ A= o+ o

=)\7
proving the result.

D.5 PROOF OF COROLLARY 3.6

Corollary 3.6. Let p()\) be a probability distribution with support [Ao, Am|. Then we have
1

1

== E |—~lz—= ﬂ.

M2 ey Lﬁﬂ Al
a(pale,A)
Proof. We know from Eq. (72) that L3} is the following Riemann integral.
1 [*m)
E“:f/‘ E [l =&l ax

SR AN (G

Now we can trivially multiply by P(A)/p(») inside the expectation, proving the statement.
I p(N)
cmzf/ [ﬂ@
M=o AN ()II(z)|2
78 POl
= A HER
RN I [CRENTE

D.6 PROOF OF EQ. (13)

(10)

(81)

(82)

Y

(83)

(84)

(85)

Proof. We know from Corollary 3.5 that we can write gy = *—*o/xx + 1/v/X e for Gaussian noise
€ ~ N(0, I) independent of . Together with the assumption fg(u, \) = p, we can rewrite h as

h(\) = T—Z
W= E lo-al3
X=X 1P
—]E — _
e~N(0,I) ‘Ilf A T \/XE 9
) &w+4L52 (86)
Ce~ND) || A VAl
2\ e Ao
o (3) 1B+ 51l - 2 e e
If we now make use of our assumption that E[x] = 0 and Var[z] = I, we can distribute the
expectation across terms and get
[o ? o 1 9 Ao A1
BN = (32) Ellel] +3E[Ielf] 2% Efe-eloc 30+ 5. @
—_——— ——— N ,
=n =n =0
O

22

Under review as a conference paper at ICLR 2026

E EXPERIMENT DETAILS

We trained each model on 4 H100 GPUs at a batch size of 128 on CIFAR10 and 512 on ImageNet32.
Training progressed at about 26,300 steps per hour for the U-Net on CIFAR10 and 6,100 steps per
hour for the DiT-L-2 backbones on ImageNet32. If we take the different batch sizes into account,
the two model architectures needed about equal amounts of training time. Total training time for the
10 M step training on CIFAR10 came to about two weeks.

Furthermore, we take an exponential moving average (EMA) of model weights (Song et al., 2021b;
Nichol & Dhariwal, 2021). We provide an overview of the model and training hyperparameters in
Table 4, and show the U-Net and DiT parameters in Tables 5 and 6, respectively. On ImageNet32, we
train the models with a cosine learning rate scheduler (with linear warm up from 1 x 107%) to achieve
faster convergence.

To reduce the variance of the training loss further, we use low-discrepancy sampling for ¢ in Algo-
rithm 2 as proposed by Kingma et al. (2023). Instead of sampling b independent ¢ for a batch size
of b, we set t; = i-1/b+ ¢ mod 1,4 € [b] for a shared § ~ U(0,1) where mod 1 means that we
discard the integer part of the result. The marginal distribution of each ¢; is (0, 1), but jointly they
cover the [0, 1] interval more uniformly than independent samples would, smoothing out the loss
across batches.

Table 4. Model and training parameters of BSI on CIFAR10 and all three models on ImageNet32.

Parameter CIFARI10 ImageNet32
_ ag 1 x 1072
@ anr 1% 10°
aR 2 X]06
. Learning rate 2x 107 5x 107
g LR Scheduler None Cosine } 5 x 107
) Weight decay 1x1072
Batch size 128 512
Steps 10000000 2000000
< 0.9999
E First update after step 1000

Table 5. U-Net hyperparameters for CIFAR10. Table 6. DiT hyperparameters for ImageNet32.

Parameter Value
Parameter Value
]] Archi I DiT-L-2
Hidden dim. 128 rehitecture
Hidden dim. 1024
Levels 32
Depth 24
Dropout 0.1 .
. Attention heads 16
Attention heads 1
Convolution paddin Zeros Dropout 0.05
P g Patch Size 2

23

Under review as a conference paper at ICLR 2026

F GENERATED SAMPLES

Fig. 6 shows generated samples from models trained on ImageNet32 for visual reference.

SI

<
S
<

ImageNet32

i

{2

o

AERMNAN NS W
&
A

B -l
BDEEET Nich "
SR SR e W
L I i RPN
AR AT MY
DENE Nic.”

Dol - 3

Figure 6. Samples from BSI, BEN and VDM trained on ImageNet32. Generated with 1024 steps. The first two
columns show samples from the dataset for comparison.

	Introduction
	Sample Discovery through Iterative Measurement
	Sample Generation with Posterior Inference
	Evidence Lower Bound
	Prior Distribution
	Variance Reduction
	Training & Sampling

	Discussion
	Model Design
	Preconditioning
	Precision Encoding
	Hyperparameters
	Architecture

	Experiments
	ImageNet32
	CIFAR10

	Conclusion
	Appendix
	How BSI relates to …
	Bayesian Flow Networks
	Diffusion Models

	ELBO in Bits per Dimension
	Preconditioning Derivation
	Proofs
	Proof of 3.1
	Proof of 3.2
	Proof of 3.3
	Proof of 3.4 and 3.5
	Proof of 3.6
	Proof of 13

	Experiment Details
	Generated Samples

