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Abstract
Diffusion models (DMs) have recently shown outstanding capabilities in modeling
complex image distributions, making them expressive image priors for solving
Bayesian inverse problems. However, most existing DM-based methods rely on
approximations in the generative process to be generic to different inverse problems,
leading to inaccurate sample distributions that deviate from the target posterior
defined within the Bayesian framework. To harness the generative power of DMs
while avoiding such approximations, we propose a Markov chain Monte Carlo algo-
rithm that performs posterior sampling for general inverse problems by reducing it
to sampling the posterior of a Gaussian denoising problem. Crucially, we leverage
a general DM formulation as a unified interface that allows for rigorously solving
the denoising problem with a range of state-of-the-art DMs. We demonstrate the
effectiveness of the proposed method on six inverse problems (three linear and
three nonlinear), including a real-world black hole imaging problem. Experimental
results indicate that our proposed method offers more accurate reconstructions and
posterior estimation compared to existing DM-based imaging inverse methods.

1 Introduction
Inverse problems arise in many computational imaging applications, where the goal is to recover an
image x ∈ Rn from a set of sparse and noisy measurements y ∈ Rm. The relationship between x
and y can be described by

y = A(x) + n, (1)

where A(·) : Rn → Rm is the forward operator (linear or nonlinear) and n is the random measure-
ment noise in Rm. Since the sparsity and noisiness of y often lead to significant uncertainty in x, it is
preferable to sample the posterior distribution p(x|y) over all possible solutions based on some prior
distribution p(x), rather than finding a single deterministic solution. Traditional posterior sampling
methods often rely on simple image priors that do not reflect the sophistication of real-world image
distributions. On the other hand, diffusion models (DMs) have recently emerged as a powerful tool
for modeling highly complex image distributions [33, 63]. Nevertheless, it remains a challenge to
turn DMs into reliable imaging inverse solvers, which motivates us to develop a principled Bayesian
method that leverages DMs as priors for posterior sampling.

Diffusion models generate samples from a distribution by reversing a diffusion process from the
target distribution to a simple (usually Gaussian) distribution [33, 63]. In particular, it estimates a
clean image x0 from a noise image xT by successively denoising noisy images, where xt ∼ pt
is the intermediate noisy image at time t ∈ [0, T ]. Reversing diffusion requires one to estimate
the time-varying gradient log density (score function) ∇ log pt(xt) along the diffusion process, or
∇ log pt(xt|y) in the case of sampling the posterior p(x|y).
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Figure 1: Demonstration of the proposed method, PnP-DM, for posterior sampling using the real
data for the M87 black hole from April 6th, 2017 [21]. The black hole imaging problem is non-convex
and highly ill-posed due to severe noise corruption and measurement sparsity. Our method rigorously
integrates measurements from a real-world imaging system with an expressive image prior in the
form of a diffusion model, which was trained with images from the GRMHD black hole simulation
[22] in this case. Besides having high visual quality, our posterior samples accurately capture key
features of the M87 black hole such as the bright spot location and ring diameter.

To design generic DM-based inverse problem solvers, most existing methods attempt to approximate
the time-varying gradient log density∇ log pt(xt|y) [17, 73, 84, 62, 39, 58, 60, 44, 15, 77, 18, 55, 8].
In particular they first apply Bayes’ rule to separate the forward operator from an unconditional prior
over the intermediate noisy image xt:

∇ log pt(xt|y) = ∇ log pt(y|xt) +∇ log pt(xt). (2)

By instead aiming to evaluate the right hand side, one can leverage the existing pre-trained DMs for
the unconditional term∇ log pt(xt). However, the main challenge in this case is that∇ log pt(y|xt)
is intractable to compute in general, as pt(y|xt) involves an integral over all possible x0’s that
could give rise to xt [17]. Various methods have been proposed to circumvent the intractability
and can mostly be categorized into two groups. One group of methods explicitly approximate
∇ log pt(y|xt) by making simplifying assumptions [62, 17, 60, 8]. However, even for arguably the
finest approximation to date proposed in the recent work [8], it is exact only when the prior distribution
p(x) is Gaussian. For general prior distributions beyond Gaussian, these methods do not sample the
true posterior p(x|y). The other group of methods do not make explicit approximations but instead
substitute ∇ log pt(y|xt) with empirically designed updates where y is treated as a guidance signal
[73, 84, 39, 58, 44, 15, 77, 18, 55]. Although these methods may have strong empirical performance,
they have deviated from the Bayesian formulation and no longer aim to sample the target posterior.
In summary, these existing DM-based inverse methods should be best viewed as guidance methods,
where the generative process is guided towards the regions where the measurement y is more likely to
be observed, not as posterior sampling methods [8]. We also note that some recent work considered
combing DMs with Sequential Monte Carlo to ensure asymptotic consistency in posterior sampling
[11, 23], but the investigation has been limited to linear imaging inverse problems.

Our contributions In this work, we pursue a different path towards posterior sampling with DM
priors by proposing a new Markov chain Monte Carlo (MCMC) algorithm, which we call Plug-and-
Play Diffusion Models (PnP-DM). It incorporates DMs in a principled way and circumvents the
approximation required when taking the approach in (2). The proposed algorithm is based on the Split
Gibbs Sampler [71] that alternates between two sampling steps that separately involve the likelihood
and prior. While the likelihood step can be tackled with traditional sampling techniques, the prior
step involves a Bayesian denoising problem that requires careful design. Importantly, we identify a
connection between the Bayesian denoising problem and the unconditional image generation problem
under a general formulation of DMs presented in [37] (which is referred to as the EDM formulation
hereafter). This connection allows us to perform rigorous posterior sampling for denoising using
DMs without approximating the generative process and enables the use of a wide range of pretrained
DMs through the unified EDM formulation. We present an analysis on the non-asymptotic behavior
of PnP-DM by establishing a stationarity guarantee in terms of the average Fisher information. We
further demonstrate the strong empirical performance of PnP-DM by investigating three linear and
three nonlinear noisy inverse problems, including a black hole interferometric imaging problem
involving real data that is both nonlinear and severely ill-posed (see Figure 1). Overall, PnP-DM
outperforms existing baseline methods, achieving higher accuracy in posterior estimation.
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2 Preliminaries
Split Gibbs Sampler (SGS) is an MCMC approach developed for Bayesian inference [71]. It is also
related to the Proximal Sampler [42, 14, 25, 79] and serves as the backbone for the Generative
Plug-and-Play (GPnP) [6] and Diffusion Plug-and-Play (DPnP) [78] frameworks in computational
imaging. The goal of SGS is to sample the posterior distribution

p(x|y) ∝ p(y|x)p(x) = exp(−f(x;y)− g(x)) (3)

where f(x;y) := − log p(y|x) and g(x) := − log p(x) are the potential functions of the likelihood
and prior distribution, respectively. The dual dependence of (3) on both the likelihood and prior
makes it nontrivial to directly sample from it in general. Instead, SGS leverages the composite
structure of the posterior distribution by adopting a variable-splitting strategy and considers sampling
an alternative distribution

π(x, z) ∝ exp

(
−f(z;y)− g(x)− 1

2ρ2
∥x− z∥22

)
(4)

where z ∈ Rn is an augmented variable and ρ > 0 is a hyperparameter that controls the strength of
the coupling between x and z. We denote the x- and z-marginal distributions of (4) as πX(x) :=∫
π(x, z)dz and πZ(x) :=

∫
π(x, z)dx, respectively. As ρ → 0, πX converges to the target

posterior p(x|y) in terms of total variation distance [71], so one can obtain approximate samples
from the target posterior by sampling (4) instead.

SGS samples (4) via Gibbs sampling. Specifically, SGS starts from an initialization x(0) and, for
iteration k = 0, · · · ,K − 1, alternates between

1. Likelihood step: sample z(k) ∼ πZ|X=x(k)

(z) ∝ exp
(
−f(z;y)− 1

2ρ2 ∥x(k) − z∥22
)

2. Prior step: sample x(k+1) ∼ πX|Z=z(k)

(x) ∝ exp
(
−g(x)− 1

2ρ2 ∥x− z(k)∥22
)

.

Note that the two conditional distributions separately involve f(·;y) and g(·). The likelihood and
prior are decoupled so that these two steps can be designed in a modular way. A similar variable-
splitting strategy is also adopted in optimization methods such as the Half-Quadratic Splitting (HQS)
method [31] and the Alternating Direction Method of Multipliers (ADMM) [30, 7]. In fact, SGS can
be viewed as a sampling analogue of HQS. SGS is a principled approach to posterior sampling if the
two sampling steps are rigorously implemented.

Existing works related to SGS Several works have designed algorithms for solving imaging
inverse problems based on SGS [53, 19, 6, 27, 78]. The key distinction among these methods lies in
their approaches to the prior step. For instance, the works [53, 6, 27] applied Langevin-based updates
for sampling πX|Z=z such that the prior information is encoded by either traditional regularizers
or off-the-shelf image denoisers. The work [19] tackled the prior step by heuristically customizing
a diffusion model (i.e. DDPM [33]) for sampling πX|Z=z . A concurrent work [78] improved the
implementation by devising two diffusion processes that rigorously solve the prior step. Our method
differs from [78] by connecting the prior step to the EDM formulation [37]. This connection allows us
to seamlessly integrate state-of-the-art DMs as expressive image priors for Bayesian inference through
a unified interface, eliminating the need for additional customization for each model and leading
to better empirical performance. We also note the recent work [43] that adopted the optimization-
based variable-splitting formulation of HQS and utilized general DMs as image priors. We instead
considers the SGS formulation from a Bayesian posterior sampling standpoint. Additionally, while
SGS-based methods theoretically accommodate general inverse problems, empirical evidence on
real-world nonlinear inverse problems remains scarce in the literature. In this work, we demonstrate
our method on three nonlinear inverse problems, including a black hole imaging problem. For a more
comprehensive review of related works, see Appendix E.

3 Method
A schematic diagram for the proposed method is shown in Figure 2. Our method, dubbed PnP-DM,
builds upon the SGS framework with rigorous implementations of the two sampling steps and an
annealing schedule for the coupling parameter ρ. We start with our implementations of the first step
for solving both linear and nonlinear inverse problems.
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Figure 2: A schematic diagram of our method. Our method alternates between a likelihood step that
enforces data consistency and a prior step that solves a denoising posterior sampling problem by
leveraging the Split Gibbs Sampler [71]. An annealing schedule controls the strength of the two steps
at each iteration to facilitate efficient and accurate sampling. A crucial part of our design is the prior
step, where we identify a key connection to a general diffusion model framework called the EDM
[37]. This connection allows us to easily incorporate a family of state-of-the-art diffusion models as
priors to conduct posterior sampling in a principled way without additional training. Our method
demonstrates strong performance on a variety of linear and nonlinear inverse problems.

3.1 Likelihood step: enforcing data consistency
For the likelihood step at iteration k, we sample

z(k) ∼ πZ|X=x(k)

(z) ∝ exp

(
−f(z;y)− 1

2ρ2
∥x(k) − z∥22

)
. (5)

Linear forward model and Gaussian noise We first consider a simple yet common case where the
forward modelA is linear and the noise distribution is zero-mean Gaussian, i.e. A := A ∈ Rm×n and
n ∼ N (0,Σ). In this case, the potential function of the likelihood term is f(x;y) = 1

2∥y −Ax∥2Σ
(up to an additive constant that does not depend on x and y) where ∥ · ∥2Σ := ⟨·,Σ−1·⟩. It is then
straightforward to show that

πZ|X=x = N (m(x),Λ−1)

where Λ := ATΣ−1A + 1
ρ2 I and m(x) := Λ−1(ATΣ−1y + 1

ρ2x). The problem of sampling
from Gaussian distributions has been systematically studied [72]. We refer readers to Appendix C.1
for a more detailed discussion.

General case For general nonlinear inverse problems, the likelihood step is not sampling from a
Gaussian distribution anymore. Nevertheless, since we have access to πZ|X=x in closed form up to a
multiplicative factor, we can use Monte Carlo methods based on Langevin dynamics to draw samples
from it as long as the likelihood potential is differentiable. Specifically, we first set up the following
Langevin SDE that admits πZ|X=x as the stationary distribution

dzt = ∇ log πZ|X=x(zt)dt+
√
2dwt =

[
−∇f(z;y)− 1

ρ2
(z − x)

]
dt+

√
2dwt.

We then initialize the SDE at z0 = x and run it with Euler discretization. The pseudocode is provided
in Appendix C.1.

3.2 Prior step: denoising via the EDM framework
For the prior step at iteration k, we sample

x(k+1) ∼ πX|Z=z(k)

(x) ∝ exp

(
−g(x)− 1

2ρ2
∥x− z(k)∥22

)
. (6)

A closer examination of (6) reveals that this prior step is essentially to draw posterior samples for
a Gaussian denoising problem, where the “measurement” is z(k), the noise level is ρ, and the prior
distribution is p(x) ∝ exp(−g(x)).
We tackle this denoising posterior sampling problem within SGS using DMs as image priors. In
particular, we leverage the EDM framework [37], which was originally proposed to unify various
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formulations of DMs for unconditional image generation. To see the connection of the EDM
framework to (6), consider a family of mollified distributions p(x;σ) given by adding i.i.d Gaussian
noise of standard deviation σ to the prior distribution p(x), i.e. x+ σϵ ∼ p(x;σ). The core idea of
the EDM framework is that a variety of state-of-the-art DMs can be unified into the following reverse
SDE:

dxt =

[
ṡ(t)

s(t)
xt − 2s(t)2σ̇(t)σ(t)∇ log p

(
xt

s(t)
;σ(t)

)]
dt+ s(t)

√
2σ̇(t)σ(t)dw̄t (7)

where w̄t is an n-dimensional Wiener process running backward in time, σ(t) > 0 is a pre-defined
noise level schedule with σ(0) = 0, s(t) is a pre-defined scaling schedule, and σ̇(t), ṡ(t) are their
time derivatives. As shown in [37], the defining property of (7) is that xt/s(t) ∼ p(x;σ(t)) for any
time t. Therefore, solving this SDE backward in time allows us to travel from any noise level σ(t) to
the clean image distribution at t = 0. This means that we can use (7) to solve (6) with arbitrary noise
level ρ as long as ρ is within the range of σ(t). Indeed, the distribution of x0 conditioned on xt is

p(x0|xt) ∝ p(xt|x0)p(x0) ∝ N (s(t)x0, s(t)
2σ(t)2I) exp(−g(x0))

∝ exp

(
−g(x0)−

1

2σ(t)2
∥x0 − xt/s(t)∥22

)
.

We highlight that the last line exactly matches (6) when xt = s(t)z(k) and σ(t) = ρ. Therefore, we
can naturally design a practical algorithm that samples (6) by following these three steps: (1) find
t∗ such that σ(t∗) = ρ, (2) initialize at xt∗ = s(t∗)z(k), and (3) solve (7) backward from t∗ to 0 by
choosing the discretization time steps and integration scheme. Through this unified interface, any
DMs, once converted to the EDM formulation, can be directly turned into a rigorous solver for (6).

Leveraging the connection with EDM, our prior step implementation comes with a large design
space that encompasses a variety of existing DMs, such as DDPM (or VP-SDE) [33], VE-SDE
[63], and iDDPM [52]. In our experiments, we conduct posterior sampling with all these different
models within our framework and all of them provide high-quality samples. The pseudocode of our
implementation and more details on the EDM formulation for the prior step is given in Appendix C.2.

3.3 Putting it all together
The pseudocode of PnP-DM in complete form is presented in Algorithm 1. PnP-DM alternates
between the two sampling steps with an annealing schedule {ρk} for the coupling parameter. We find
that the annealing schedule on ρ accelerates the mixing time of the Markov chain and prevents the
algorithm from getting stuck in bad local minima for solving highly ill-posed inverse problems. This
is a common practice in both Langevin-based [40, 34, 65] and SGS-based [6, 78] MCMC algorithms
to improve the empirical performance in solving inverse problems.

Our work shares some similarities with PnP-SGS [19] but contains three main key differences. First,
as demonstrated in our experiments, we investigate three nonlinear inverse problems, while nonlinear
inverse problems are beyond the scope of [19]. Our experiments show that PnP-SGS struggles with
challenging nonlinear inverse problems such as Fourier phase retrieval. Second, we adopt the EDM
formulation to ensure that the prior step of PnP-DM is a rigorous mapping from the image manifold
with the desired noise level to the clean image manifold, aligning with the theory of SGS. In contrast,
the prior step of PnP-SGS [19] is heuristic (which is also pointed out by [78]) and not rigorously
designed to sample (6). Third, unlike PnP-SGS [19] that uses a constant ρ, we consider an annealing
schedule {ρk} for the coupling parameter, which is important for highly ill-posed inverse problems.

Algorithm 1 Plug-and-Play Diffusion Models (PnP-DM)
Input: initialization x0 ∈ Rn, total number of iterations K > 0, coupling strength schedule
{ρk > 0}K−1

k=0 , likelihood potential f( · ;y) with measurements y ∈ Rm, pretrained model
Dθ( · ; · ) that approximates∇ log p (x;σ) with (Dθ(x;σ)− x)/σ2.

1: for k = 0, ...,K − 1 do
2: z(k) ← LikelihoodStep(x(k), ρk, f( · ;y)) ▷ Section 3.1
3: x(k+1) ← PriorStep(z(k), ρk, Dθ( · ; · )) ▷ Section 3.2
4: end for
5: return x(k+1)
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3.4 Theoretical insights
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Figure 3: A conceptual illustration
of the non-stationary and stationary
time-continuous processes as inter-
polations of K discretize iterations
of PnP-DM.

We provide some theoretical insights on the non-asymptotic
behavior of PnP-DM. We start with the following definitions.
For two probability measures µ and µ̃ such that µ ≪ µ̃, the
Kullback–Leibler (KL) divergence and Fisher information (or
Fisher divergence) of µ with respect to µ̃ are defined, respec-
tively, as

KL(µ||µ̃) :=
∫

µ log
µ

µ̃
and FI(µ||µ̃) :=

∫
µ

∥∥∥∥∇ log
µ

µ̃

∥∥∥∥
2

2

.

Both divergences are equal to zero if and only if µ = µ̃. KL
divergence is a common metric for quantifying the difference
of one distribution with respect to another. Fisher information has been used for analyzing the
stationarity of sampling algorithms [3, 66].

We analyze PnP-DM via a continuous-time perspective, leveraging the interpolation techniques
introduced for Langevin Monte Carlo [68, 3, 66]. We assume that the likelihood step (5) can be
implemented exactly and the prior step (6) involves running the reverse diffusion process (7) with an
approximated score function st ≈ ∇ log pt := ∇ log p( · ;σ(t)). Let νX0 be the distribution of the
initialization x(0). Let νZk and νXk+1 be the distributions of z(k) and x(k+1) at the kth iteration. Recall
that the stationary distributions are πX and πZ . Our analysis is concerned with two continuous-time
processes: (1) the non-stationary process from νX0 , a non-stationary initialization, to νXK where
(7) is run with the approximated score function st and (2) the stationary process that alternates
between stationary distributions πX and πZ . These two processes are the interpolation PnP-DM
in non-stationary and stationary states and define continuous transitions over discrete iterations. A
conceptual illustration of the two processes is provided in Figure 3 with the exact formulations in
Appendix A. Now we present our main result:

Theorem 3.1. Consider running K iterations of PnP-DM with ρk ≡ ρ > 0 and a score estimate
st ≈ ∇ log pt := ∇ log p( · ;σ(t)). Let t∗ > 0 be such that σ(t∗) = ρ and δ := inft∈[0,t∗] v(t)

where v(t) := s(t)
√
2σ̇(t)σ(t). Define ντ and πτ as the distributions at time τ of the non-stationary

and stationary process, respectively. Then, for over K iterations of PnP-DM, or equivalently over
τ ∈ [0, T ] with T := K(t∗ + 1), we have

1

T

∫ T

0

FI (πτ ||ντ ) dτ ≤
4KL(πX ||νX0 )

K(t∗ + 1)min(ρ, δ)2︸ ︷︷ ︸
convergence from initialization

+
4ϵscore

(t∗ + 1)δ2︸ ︷︷ ︸
score approximation error

, (8)

where we assume that the score estimation error ϵscore :=
∫ t∗+1

1
v(τ)2Eπτ ∥sτ −∇ log pτ∥22dτ <∞.

The proof is provided in Appendix A. This theorem states that the average distance (measured by
Fisher information) of the non-stationary process with respect to the stationary process over K
iterations of PnP-DM goes to zero at a rate of O(1/K) under certain conditions up to the score
approximation error. Note that our theory only requires L2-accurate score estimate under the
measure πτ , which is a relatively weaker condition than the common L∞-accurate score estimate
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Figure 4: Results on a synthetic problem with
the ground truth posterior available. PnP-DM
can sample it more accurately that DPS [17].

assumption in prior analysis of sampling methods
involving score estimates [5, 66]. This result resem-
bles the first-order stationarity for Langevin Monte
Carlo [3]. Unlike the non-asymptotic analysis in [78],
we utilize the average Fisher information instead of
the total variation distance, enabling us to obtain an
explicit convergence rate. Here δ is the infimum of
the diffusion coefficient along the reverse diffusion
in (7); see further discussions on the role of δ in
Appendix A.3. Our theory shows that the accurate
implementations of the two sampling steps lead to a
sampler that provably converges to the stationary pro-
cess that alternates between the two target stationary
distributions.

6



Table 1: Quantitative comparison on three noisy linear inverse problems for 100 FFHQ color test
images. Bold: best; Underline: second best.

Method Gaussian deblur Motion deblur Super-resolution (4×)

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

PnP-ADMM [13] 26.88 0.7855 0.3472 26.55 0.7655 0.3600 26.61 0.7634 0.3766
DPIR [80] 28.74 0.8348 0.2677 29.97 0.8529 0.2404 28.75 0.8378 0.2577

DDRM [39] 27.05 0.7819 0.2570 – – – 29.47 0.8437 0.2322
DPS [17] 28.83 0.8212 0.2330 27.87 0.8035 0.2542 29.45 0.8379 0.2274

PnP-SGS [19] 27.46 0.8356 0.2445 28.98 0.8447 0.2190 28.30 0.8349 0.2160
DPnP [78] 29.24 0.8360 0.2098 30.21 0.8527 0.2010 29.32 0.8407 0.2127

PnP-DM (VP) 29.46 0.8215 0.2202 30.06 0.8336 0.2099 29.40 0.8238 0.2219
PnP-DM (VE) 29.65 0.8399 0.2090 30.38 0.8547 0.1971 29.57 0.8431 0.2108

PnP-DM (iDDPM) 29.60 0.8383 0.2203 30.26 0.8507 0.2103 29.53 0.8404 0.2213
PnP-DM (EDM) 29.66 0.8411 0.2170 30.35 0.8547 0.2062 29.60 0.8435 0.2191
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Figure 5: Visual examples for the motion deblur problem (σy = 0.05). We visualize one sample
generated by each sampling algorithm.

4 Experiments

4.1 Validation with ground truth posterior

We first demonstrate the accuracy of PnP-DM for posterior sampling on a simulated compressed
sensing problem with a Gaussian prior where the posterior distribution can be expressed in a closed
form. The mean and per-pixel standard deviation of the prior are visualized on the bottom left of
Figure 4. The linear forward model A ∈ Rm×n is a Gaussian matrix (m = n/2), i.e. Aij ∼ N (0, 1).
A test image is randomly generated from the prior (see top left of Figure 4), and the measurement
is calculated according to (1) with n ∼ N (0, 0.012I). We compare our method with the popular
DM-based method DPS [17]. We draw 1,000 samples and visualize the empirical mean and per-pixel
standard deviation for both algorithms. Compared with the true posterior (second column), we find
that the both methods accurately estimate the mean. However, the standard deviation image estimated
by DPS significantly deviates from the ground truth. In contrast, our standard deviation image
matches the ground truth in terms of both absolute magnitude and spatial distribution. These results
highlight the accuracy of our method over DPS by taking a more principled Bayesian approach.

4.2 Benchmark experiments

Dataset and inverse problems We test our proposed algorithm and several baseline methods on
100 images from the validation set of the FFHQ dataset [38] for five inverse problems: (1) Gaussian
deblur with kernel size 61×61 and standard deviation 3.0, (2) Motion deblur with kernel size 61×61
and intensity of 0.5, (3) Super-resolution with 4× downsampling ratio, (4) the coded diffraction
patterns (CDP) reconstruction problem (nonlinear) in [10, 51] (phase retrieval with a phase mask),
and (5) the Fourier phase retrieval (nonlinear) with 4× oversampling. We add i.i.d. Gaussian noise
to all the simulated measurements y. In particular, i.e. n ∼ N (0, σ2

yI). For all problems except
for Fourier phase retrieval, the noise standard deviation is set as σy = 0.05. Due to the severe
ill-posedness of Fourier phase retrieval, we consider a smaller noise standard deviation σy = 0.01.

Baselines and comparison protocols We consider four variants of DMs as plug-in priors for our
method, namely VP-SDE (VP) [33], VE-SDE (VE) [63], iDDPM [52], and EDM [37]. We compare
our method with various baselines, including (1) optimization-based methods: PnP-ADMM [13],
DPIR [80]; (2) conditional DMs: DDRM [39], DPS [18]; and (3) SGS-based method: PnP-SGS
[19], DPnP [78]. For fair comparison, we use the same pre-trained score function checkpoint for
all DM-based methods. Since the pre-trained score function was trained with the DDPM formu-
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lation (VP-SDE) [33], we convert it to the EDM formulation by applying the VP preconditioning
[37]. We use the Peak Signal-to-Noise Ratio (PSNR), the Structural Similarity Index Measure
(SSIM), and the Learned Perceptual Image Patch Similarity (LPIPS) distance for quantitative com-
parison. For each sampling method, we draw 20 randoms samples, calculate their mean, and report
the metrics on the mean image. More experimental details are provided in Appendices B, C, D.

D
PS

Pn
P-

SG
S |er

ror
|/S

D = 3
0.45

0 0.15std

<latexit sha1_base64="t9RNolqLMHHva0Gve3UhkS3A0eU="></latexit> |x̄
�

x
|

0

|er
ror

|/S
D = 3

0.45

0 0.15std

<latexit sha1_base64="t9RNolqLMHHva0Gve3UhkS3A0eU="></latexit> |x̄
�

x
|

0

3.80 %

96.20 %

11.23 %

88.77 %

Abs. error (            )
<latexit sha1_base64="t9RNolqLMHHva0Gve3UhkS3A0eU="></latexit>|x̄� x| Std. deviation (      )

0.0 3.0≥

O
ur
s:

 P
nP

-D
M

 (E
D

M
)

0.0 0.150.0 0.3

|er
ror

|/S
D = 3

0.45

0 0.15std

<latexit sha1_base64="t9RNolqLMHHva0Gve3UhkS3A0eU="></latexit> |x̄
�

x
|

0

2.54 %

97.46 %

<latexit sha1_base64="4A7GQ21R7DHMNdvP7sXD5ot/2xQ=">AAACYHicbVFNS8NAEN3Erxo/2upNL8FS8FQSkepJRC8eFawtmCKT7aYu7m7i7kQtIX/Dq/4tr/4St7UH2/pg4c17MzDzNs4ENxgEX467tLyyulZZ9zY2t7artfrOnUlzTVmHpiLVvRgME1yxDnIUrJdpBjIWrBs/XY797gvThqfqFkcZ60sYKp5wCmilKJKAjyYpDA7Kh1ojaAUT+IsknJIGmeL6oe6cRYOU5pIppAKMuQ+DDPsFaORUsNKLcsMyoE8wZPeWKpDM9IvJ0qXftMrAT1Jtn0J/ov6dKEAaM5Kx7ZwsOe+NxX899qxAaxj9a8aynK3nBZkL5Dp9nVUR4lyAfiu95sxRmJz2C66yHJGr4e9RSS58TP1x2v6Aa0ZRjCwBqrnNxaePoIGi/RPPJh7O57tI7o5aYbvVvjlunF9Ms6+QfXJADklITsg5uSLXpEMoycg7+SCfzrdbcatu/bfVdaYzu2QG7t4PbaK6UQ==</latexit>

std vs.
<latexit sha1_base64="t9RNolqLMHHva0Gve3UhkS3A0eU="></latexit>|x̄� x|

<latexit sha1_base64="4A7GQ21R7DHMNdvP7sXD5ot/2xQ=">AAACYHicbVFNS8NAEN3Erxo/2upNL8FS8FQSkepJRC8eFawtmCKT7aYu7m7i7kQtIX/Dq/4tr/4St7UH2/pg4c17MzDzNs4ENxgEX467tLyyulZZ9zY2t7artfrOnUlzTVmHpiLVvRgME1yxDnIUrJdpBjIWrBs/XY797gvThqfqFkcZ60sYKp5wCmilKJKAjyYpDA7Kh1ojaAUT+IsknJIGmeL6oe6cRYOU5pIppAKMuQ+DDPsFaORUsNKLcsMyoE8wZPeWKpDM9IvJ0qXftMrAT1Jtn0J/ov6dKEAaM5Kx7ZwsOe+NxX899qxAaxj9a8aynK3nBZkL5Dp9nVUR4lyAfiu95sxRmJz2C66yHJGr4e9RSS58TP1x2v6Aa0ZRjCwBqrnNxaePoIGi/RPPJh7O57tI7o5aYbvVvjlunF9Ms6+QfXJADklITsg5uSLXpEMoycg7+SCfzrdbcatu/bfVdaYzu2QG7t4PbaK6UQ==</latexit>

std
<latexit sha1_base64="VHOVN8pLeo+Q2tSjAWZlPQLHpWY="></latexit>|x̄� x|/std

Figure 6: Comparison of uncertainty quantifica-
tion (UQ) for the motion deblur. Left 3 columns:
absolute error (|x̄− x|), standard deviation (std),
and absolute z-score (|x̄−x|/std) with the outlier
pixels in red. Right column: scatter plot of |x̄−x|
versus std. Note that PnP-DM leads to a better UQ
performance than the baselines by having the low-
est percentage of outliers while avoiding having
overestimated per-pixel standard deviations.

Results: linear problems A quantitative com-
parison is provided in Table 1. PnP-DM gener-
ally outperforms the baseline methods and that
the VE and EDM variants consistently outper-
form the other two variants on these linear prob-
lems. Figure 5 contains visual examples for
the motion deblur problem (see Appendix F.2
for the other two linear problems). PnP-DM
provides high-quality reconstructions that are
both sharp and consistent with the ground truth
image. We also provide an uncertainty quantifi-
cation analysis based on pixel-wise statistics in
Figure 6. In the left three columns, we visualize
the absolute error (|x̄− x|), standard deviation
(std), and absolute z-score (|x̄ − x|/std). In
the third column, red pixels highlight locations
where the ground truth pixel values are outliers
of the 3-sigma credible interval (CI) under the
estimated posterior uncertainty. The fourth col-
umn contains scatter plots of |x̄− x| versus std
for each pixel of the reconstructions, where red
boxes show the percentages of outliers (outside
of 3-sigma CI) and gray boxes indicate the per-
centages within the 3-sigma CI. Similar to the
synthetic prior experiment, DPS tends to have larger standard deviation estimations, as shown by the
less concentrated distribution of gray points around the origin. Compared with baselines, especially
PnP-SGS, our approach captures a higher percentage (97.46%) of ground truth pixels than the base-
lines (96.20% and 88.77%). If the true posterior were truly Gaussian, 99% of the ground-truth pixels
should lie within the 3-sigma CI; however, as the posterior is not Gaussian with a DM-based prior,
we do not necessarily expect to reach 99% coverage.

Results: nonlinear problems We provide a quantitative comparison in Table 2. For the CDP
reconstruction problem, PnP-DM performs on par with DPS but outperforms other SGS-based
methods. We then consider the Fourier phase retrieval (FPR) problem, which is known to be a
challenging nonlinear inverse problem. One challenge lies in its invariance to 180◦ rotation, so the
posterior distribution have two modes, one with upright images and another with 180◦-rotated images,
that equally fit the measurement. To increase the chance of getting properly-oriented reconstructions,
we run each algorithm with four different random initializations and report the metrics for the best
run, following the practice in [18]. We find that PnP-DM significantly outperforms the baselines on
this highly ill-posed inverse problem. As shown in Figure 7 (a), our method can provide high-quality
reconstructions for both orientations, while the baseline methods fail to capture at least one of the
two modes. We further run our method for a test image with 100 different random initialization and
collect reconstructions in both orientations that are above 28dB in PSNR (90 out of 100 runs). The
percentage of upright and rotated reconstructions are visualized by the pie chart in Figure 7 (b). With
a prior on upright face images, our method generate mostly samples with the upright orientation.
Nevertheless, it can also find the other mode that has an equal likelihood, demonstrating its ability to
capture multi-modal posterior distributions.

4.3 Experiments on black hole imaging

Problem setup We finally validate PnP-DM on a real-world nonlinear imaging inverse problem:
black hole imaging (BHI) (see Appendix B for more details). A visual illustration of BHI is provided
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Table 2: Quantitative evaluation on two noisy nonlinear inverse problems for 100 FFHQ grayscale
test images. Bold: best; Underline: second best.

Method Coded diffraction patterns Fourier phase retrieval

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

HIO [29] – – – 20.66 0.4308 0.6469
DPS [17] 33.43 0.9049 0.1374 23.60 0.6804 0.3126

PnP-SGS [19] 32.19 0.8889 0.2010 15.36 0.3659 0.5730
DPnP [78] 32.19 0.8853 0.2000 29.28 0.8397 0.2180

PnP-DM (VP) 32.91 0.8846 0.1906 30.36 0.8553 0.2115
PnP-DM (VE) 33.13 0.8971 0.1663 29.88 0.8464 0.2186

PnP-DM (iDDPM) 33.35 0.9083 0.1471 30.61 0.8718 0.1975
PnP-DM (EDM) 33.25 0.9050 0.1386 31.14 0.8731 0.2024

DPS Ours: PnP-DM (EDM)PnP-SGS Ground truth
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Figure 7: Results of the Fourier phase retrieval problem. (a) PnP-DM provides both upright and
rotated reconstructions (two modes given by the invariance of the forward model to 180◦ rotation)
with high fidelity, while the baseline methods cannot. (b) We visualize the percentages of upright and
rotated reconstructions out of 90 runs for a test image with two samples for each orientation.

in Figure 8 (a). This BHI inverse problem is severely ill-posed. Even with an Earth-sized telescope,
only a small fraction of the Fourier frequencies of the target black hole can be measured (region
within the red box); in reality, this region is further subsampled with a highly sparse pattern (black
lines). Additionally, the atmospheric noise causes nonlinearity of this BHI problem that sometimes
results in a multi-modal posterior distribution of the reconstructed image [64]. Here we demonstrate
the effectiveness of PnP-DM in capturing a multi-modal posterior distribution. For brevity, we restrict
our choice of diffusion models in PnP-DM to EDM and use DPS as the baseline.

Results on simulated data We use the simulated data from [64] where the measurements are
generated assuming that the ground-truth black hole image were at the location of the Sagittarius A∗

black hole. Figure 8 (b) visually compares the results obtained by PnP-DM and DPS. We use the
t-SNE method [67] to cluster the generated samples (100 for each method) and identify two modes
in the samples generated by PnP-DM and three modes in those generated by DPS. We visualize the
mean and three samples for each image mode. A metric for quantifying the degree of data mismatch
is labeled on the top right corner of each image. As illustrated by both the mean and sample images,
PnP-DM successfully captures the two modes previously identified for this dataset [64]. Note that
PnP-DM generates high-fidelity samples from both modes with sharp details of the flux ring, and
its samples from “Mode 1” align well with the ground truth image. In contrast, two out of the three
modes sampled by DPS fail to exhibit a meaningful black hole structure and do not correspond with
the observed measurements, as indicated by the significantly larger data mismatch values.

Results on real data Finally, we apply PnP-DM to the real M87 black hole data from April 6th,
2017 [21], with the results shown in Figure 1. By leveraging an expressive DM-based image prior,
PnP-DM generates high-quality samples that are both visually plausible and consistent with the ring
diameters observed in the official EHT reconstruction. These results highlight the robustness and
effectiveness of our method in tackling a highly ill-posed real-world inverse problem.

5 Conclusion

We have introduced PnP-DM, a posterior sampling method for solving imaging inverse problems.
The backbone of our method is a split Gibbs sampler that iteratively alternates between two steps
that separately involve the likelihood and prior. Crucially, we establish a link between the prior step
and a general DM framework known as the EDM formulation. By leveraging this connection, we
seamlessly integrate a diverse range of state-of-the-art DMs as priors through a unified interface.
Experimental results demonstrate that our method outperforms existing DM-based methods across
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Figure 8: Results on a nonlinear and severely ill-posed black hole imaging problem. Our method,
PnP-DM, is compared with the conditional diffusion model baseline DPS. A metric quantifying the
mismatch with the observed measurements is labeled for each sample, which should be around 2
for ideal measurement fit. Samples generated by PnP-DM exhibit two distinct modes with sharp
details and a consistent ring structure, while samples given by DPS display inconsistent ring sizes and
sometimes fail to capture the black hole structure entirely with samples having poor measurement fit.

both linear and nonlinear inverse problems, including a nonlinear and severely ill-posed black hole
interferometric imaging problem.

Limitations PnP-DM can be further improved in the following two aspects. First, PnP-DM
currently requires evaluating the likelihood and prior steps for the entire image at a time. This
potentially poses computational challenges in solving large-scale inverse problems (e.g. 3D imaging)
or those with expensive likelihood evaluation (e.g. PDE inverse problems). Second, the current
theoretical analysis does not consider the approximation error introduced in the likelihood step for
general nonlinear inverse problems when running Langevin MCMC for finite iterations. Explicit
incorporation of this error would offer further insights into the empirical performance of PnP-DM.

Broader impacts We expect this work to make a positive impact in computational imaging and
related application domains. For many imaging problems, there is a need to facilitate image recon-
struction with expressive image priors and quantify uncertainty, which could lead to better imaging
systems that enables further understanding of the imaging target. Nonetheless, as we are introducing
DMs as priors into the imaging process, it is inevitable to inherent the potential bias of these models.
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A Theory

A.1 Interpolation of PnP-DM

In this section, we formally introduce the interpolation of PnP-DM. We consider the case where the
coupling strength ρ is constant, i.e. ρk ≡ ρ and make the following assumption.
Assumption A.1. There exists a unique t∗ such that σ(t∗) = ρ.

This assumption is satisfied for common diffusion models. Popular choices of the noise level schedule
include σ(t) = t or σ(t) =

√
t, which are monotonically increasing functions of t. We first present

two propositions showing that the two steps in SGS can be implemented by running two SDEs.
Proposition A.2 (Brownian bridge for the likelihood step). For iteration k with iterate x(k), the
likelihood step of SGS is equivalent to solving the following SDE from t = 0 to t = 1:

dxt = ρ2∇ log ϕt(xt)dt+ ρdwt (9)

where x0 = x(k) and ϕt(x) :=
∫
exp[−f(z;y)− 1

2ρ2(1−t)∥x− z∥22]dz.

Proof. This proposition is due to the Brownian bridge construction presented in Lemma 4 of [79].
This SDE satisfies that p(x1|x0) ∝ exp

(
−f(x1;y)− 1

2ρ2 ∥x0 − x1∥22
)

. Therefore, solving (9)
from t = 0 to t = 1 is equivalent to taking a likelihood step.

Proposition A.3 (EDM reverse diffusion for the prior step). For iteration k with iterate z(k), the
prior step of SGS is equivalent to solving the following SDE from t = t∗ to t = 0:

dxt =
[
u(t)xt − v(t)2∇ log pt (xt)

]
dt+ v(t)dw̄t (10)

where xt∗ = s(t∗)z(k), u(t) := ṡ(t)
s(t) , v(t) := s(t)

√
2σ̇(t)σ(t), and pt is the distribution of s(t)x+

s(t)σ(t)ϵ with x following the prior distribution p(x) ∝ exp(−g(x)) and ϵ ∼ N (0, I).

Proof. First note that (10) is exactly (7) written in terms of u(t) and v(t). We know that the (10) is
the reverse SDE of the following SDE

dxt = u(t)xtdt+ v(t)dwt. (11)
where x0 ∼ p(x) and pt is the marginal distribution of xt. As we showed in the main text, it holds
for (11) that

p(x0|xt) ∝ exp

(
−g(x0)−

1

2σ(t)2
∥x0 − xt/s(t)∥22

)
.

As (10) is the time-reversed process of (11), they share the same path distribution and thus the same
conditional distribution p(x0|xt). So, if we set xt∗ = s(t∗)z(k), we have that

p(x0|xt∗) ∝ exp

(
−g(x0)−

1

2σ(t∗)2
∥x0 − z(k)∥22

)
∝ exp

(
−g(x0)−

1

2ρ2
∥x0 − z(k)∥22

)
,

which is the desired conditional distribution of the prior step. Therefore, solving (10) from t = t∗ to
t = 0 is equivalent to taking a prior step.

Due to Proposition A.2 and Proposition A.3, the SDEs (9) and (10) implement the two desired
conditional distributions in SGS. In PnP-DM, the prior step involves a network that approximates
the score function of the prior distribution, i.e. st ≈ ∇ log pt, so the continuous-time process for the
actual update is

dxt =
[
u(t)xt − v(t)2st (xt)

]
dt+ v(t)dw̄t. (12)

We can then interpolate PnP-DM by considering a dynamic that alternates between running (9) and
(12).

Since each likelihood step takes 1 unit of time and each prior step takes t∗ unit of time, the total time
of the interpolating process for K iterations of PnP-DM is T := K(t∗ + 1). We use τ to denote
the time that has elapsed from initializing PnP-DM with x(0). We define {ντ} and {πτ} as the
distributions at time τ of the non-stationary process initialized at x(0) ∼ νX0 (Figure 3 top) and the
stationary process initialized at x(0) ∼ πX (Figure 3 bottom), respectively. Therefore, we have
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• ντ = νXk , πτ = πX for τ = k(t∗ + 1) with k = 0, · · · ,K, and

• ντ = νZk , πτ = πZ for τ = k(t∗ + 1) + 1 with k = 0, · · · ,K − 1.

A.2 Proof of Theorem 3.1

Before proving our main result, we present a key lemma for our analysis, which quantifies the
time-derivative of the KL divergence in terms of the Fisher information along a pair of general
diffusion processes.
Lemma A.4. Given the following pair of diffusion processes

dxt = b(xt, t)dt+ c(t)dwt (13)

dx̃t = b̃(x̃t, t)dt+ c(t)dwt (14)

where b(·, ·) : Rn × R→ Rn, b̃(·, ·) : Rn × R→ Rn, and c(·) : R→ R. Let µt be the distribution
of xt initialized with x0 ∼ µ0 for (13), and let µ̃t be the distribution of x̃t initialized with x̃0 ∼ µ̃0

for (14). Then we have

∂tKL(µt||µ̃t) ≤ −
c(t)2

4
FI (µt||µ̃t) +

1

c(t)2

∫ ∥∥∥b̃t − bt

∥∥∥
2

2
µt. (15)

Proof of Lemma A.4. Writing b(·, t) as bt and b̃(·, t) as b̃t, by the Fokker-Planck equations of (13)
and (14), we have that

∂tµt = div

[(
c(t)2

2
∇ logµt − bt

)
µt

]
and ∂tµ̃t = div

[(
c(t)2

2
∇ log µ̃t − b̃t

)
µ̃t

]
.

Defining ϕ(x) := x log x and ϕ′(x) = d
dxϕ(x) = log x+ 1, we can calculate

∂tKL(µt||µ̃t) = ∂t

∫
ϕ

(
µt

µ̃t

)
µ̃t

=

∫
ϕ′
(
µt

µ̃t

)(
∂tµt −

µt

µ̃t
∂tµ̃t

)
+

∫
ϕ

(
µt

µ̃t

)
∂tµ̃t

=

∫
ϕ′
(
µt

µ̃t

)(
div

[(
c(t)2

2
∇ logµt − bt

)
µt

]
− µt

µ̃t
div

[(
c(t)2

2
∇ log µ̃t − b̃t

)
µ̃t

])

+

∫
ϕ

(
µt

µ̃t

)
div

[(
c(t)2

2
∇ log µ̃t − b̃t

)
µ̃t

]

= −
∫ 〈
∇ϕ′

(
µt

µ̃t

)
,
c(t)2

2
∇ logµt − bt

〉
µt +

∫ 〈
∇
[
ϕ′
(
µt

µ̃t

)
µt

µ̃t

]
,
c(t)2

2
∇ log µ̃t − b̃t

〉
µ̃t

−
∫ 〈
∇ϕ

(
µt

µ̃t

)
,
c(t)2

2
∇ log µ̃t − b̃t

〉
µ̃t

= −
∫ 〈
∇ϕ′

(
µt

µ̃t

)
,
c(t)2

2
∇ log

(
µt

µ̃t

)
− bt + b̃t

〉
µt +

∫ 〈
∇µt

µ̃t
,
c(t)2

2
∇ log µ̃t − b̃t

〉
ϕ′
(
µt

µ̃t

)
µ̃t

−
∫ 〈
∇µt

µ̃t
,
c(t)2

2
∇ log µ̃t − b̃t

〉
ϕ′
(
µt

µ̃t

)
µ̃t

= −c(t)2

2

∫ ∥∥∥∥∇ log

(
µt

µ̃t

)∥∥∥∥
2

2

µt −
∫ 〈
∇ log

(
µt

µ̃t

)
, b̃t − bt

〉
µt

≤ −c(t)2

4

∫ ∥∥∥∥∇ log

(
µt

µ̃t

)∥∥∥∥
2

2

µt +
1

c(t)2

∫ ∥∥∥b̃t − bt

∥∥∥
2

2
µt

= −c(t)2

4

∫ ∥∥∥∥∇ log

(
µt

µ̃t

)∥∥∥∥
2

2

µt +
1

c(t)2

∫ ∥∥∥b̃t − bt

∥∥∥
2

2
µt

= −c(t)2

4
FI (µt||µ̃t) +

1

c(t)2

∫ ∥∥∥b̃t − bt

∥∥∥
2

2
µt

where we used the fact that − 1
2a

2 − ab ≤ − 1
4a

2 + b2,∀a, b ∈ R for the inequality.
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Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We first consider the likelihood steps over K iterations of PnP-DM. Applying
Lemma 2 of [79] to the likelihood steps (9) of the non-stationary and stationary processes, we have
that

∂τKL(πτ ||ντ ) = −
ρ2

2
FI(πτ ||ντ ) ≤ −

ρ2

4
FI(πτ ||ντ ),

for τ ∈ [k(t∗ + 1), k(t∗ + 1) + 1] with k = 0, ...,K − 1. Integrating both sides over τ ∈ [k(t∗ +
1), k(t∗ + 1) + 1], we get

∫ k(t∗+1)+1

k(t∗+1)

FI (πτ ||ντ ) dτ =
4[KL(πX ||νXk )− KL(πZ ||νZk )]

ρ2
(16)

for k = 0, ...,K − 1.

Then, applying Lemma A.4 to the prior steps (12) with

b(xt, t) := u(t)xt − v(t)2∇ log pt (xt)

b̃(xt, t) := u(t)xt − v(t)2st (xt)

c(t) := v(t)

δ := inf
t∈[0,t∗]

v(t),

we have that

∂τKL(πτ ||ντ ) ≤ −
v(τ)2

4
FI (πτ ||ντ ) +

1

v(τ)2

∫ ∥∥v(τ)2 (sτ −∇ log pτ )
∥∥2
2
πτ

≤ −v(τ)2

4
FI (πτ ||ντ ) + v(τ)2

∫
∥sτ −∇ log pτ∥22 πτ

≤ −δ2

4
FI (πτ ||ντ ) + v(τ)2Eπτ

∥sτ −∇ log pτ∥22 ,

for τ ∈ [k(t∗ + 1) + 1, (k + 1)(t∗ + 1)] with k = 0, ...,K − 1. Integrating both sides over
τ ∈ [k(t∗ + 1) + 1, (k + 1)(t∗ + 1)], we get

∫ (k+1)(t∗+1)

k(t∗+1)+1

FI (πτ ||ντ ) dτ ≤
4[KL(πZ ||νZk )− KL(πX ||νXk+1)]

δ2
+

4ϵscore

δ2
(17)

where

ϵscore :=

∫ (k+1)(t∗+1)

k(t∗+1)+1

v(τ)2Eπτ
∥sτ −∇ log pτ∥22 dτ =

∫ t∗+1

1

v(τ)2Eπτ
∥sτ −∇ log pτ∥22 dτ.

Finally, combining (16) and (17) for k = 0, ...,K − 1, we obtain
∫ T

0

FI (πτ ||ντ ) dτ ≤
4[KL(πX ||νX0 )− KL(πX ||νXK )]

min(ρ, δ)2
+

4Kϵscore

δ2

≤ 4KL(πX ||νX0 )

min(ρ, δ)2
+

4Kϵscore

δ2
.

The proof is concluded by dividing T = K(t∗ + 1) on both sides.

A.3 Discussion

To facilitate the discussion, we first present the following proposition.
Proposition A.5. Define a weighting function λ(τ) over τ ∈ [0, T ] such that for k = 0, ...,K − 1,

λ(τ) =

{
ρ2 if τ ∈ [k(t∗ + 1), k(t∗ + 1) + 1],

v(τ)2 if τ ∈ [k(t∗ + 1) + 1, (k + 1)(t∗ + 1)].
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Then, under the same settings of Theorem 3.1, we have

1

T

∫ T

0

λ(τ)FI (πτ ||ντ ) dτ =
4KL(πX ||νX0 )

K(t∗ + 1)
+

4ϵscore

t∗ + 1
(18)

where ϵscore :=
∫ t∗+1

1
v(τ)2Eπτ

∥sτ −∇ log pτ∥22dτ .

Proof. With the definition of λ(τ), we can apply Lemma 2 of [79] to the likelihood steps and obtain
∫ k(t∗+1)+1

k(t∗+1)

λ(τ)FI (πτ ||ντ ) dτ = 4[KL(πX ||νXk )− KL(πZ ||νZk )] (19)

for k = 0, ...,K − 1. Similarly, we can apply Lemma A.4 to the prior steps and obtain
∫ (k+1)(t∗+1)

k(t∗+1)+1

λ(τ)FI (πτ ||ντ ) dτ ≤ 4[KL(πZ ||νZk )− KL(πX ||νXk+1)] + 4ϵscore (20)

where

ϵscore :=

∫ (k+1)(t∗+1)

k(t∗+1)+1

v(τ)2Eπτ
∥sτ −∇ log pτ∥22 dτ =

∫ t∗+1

1

v(τ)2Eπτ
∥sτ −∇ log pτ∥22 dτ.

Together, for τ ∈ [0, T ]. We can then get (18) by combining (19) and (20) for k = 0, ...,K − 1 and
dividing by T := K(t∗ + 1).

Unlike Theorem 3.1, this proposition calculates the weighted average of the Fisher information along
the two processes with the weighting function λ(τ). The bound in Theorem 3.1 on the unweighted
average of Fisher information can be obtained by further lower-bounding the left hand side of (18)
using the infimum of λ(τ) over τ ∈ [0, T ]. Given this observation, we can see the role of δ in
Theorem 3.1. With a strictly positive δ, the weighting function λ(τ) is always strictly positive, so
the (unweighted) average Fisher information must converge to 0. This is precisely the case for the
VP- and VE-SDE [63]. On the other hand, if δ = 0, the Fisher information FI (πτ ||ντ ) may be
increasingly large as λ(τ) gets closer to 0. For iDDPM and EDM, this could happen near t = 0 in the
reverse diffusion at v(0) = 0 for these diffusion processes. Nevertheless, we can instead consider a
slightly adjusted diffusion coefficient ṽ(t) := v(t) + ϵ with ϵ > 0. Using the relation between scores
and diffusions div(p∇ log p) = ∆p, we get the following reverse SDE which has the same law as (7)
at each t:

dxt =

[
ṡ(t)

s(t)
xt +

(
ϵ2

2
− 2s(t)2σ̇(t)σ(t)

)
∇ log p

(
xt

s(t)
;σ(t)

)]
dt+

(
s(t)

√
2σ̇(t)σ(t) + ϵ

)
dw̄t.

In this case, ṽ(t) = s(t)
√
2σ̇(t)σ(t) + ϵ is strictly positive, so the convergence on the unweighted

average Fisher information is also guaranteed.

B Inverse problem setup

Data usage We list the data we have used for our experiments:

• For the synthetic prior experiment, we took images from the CelebA dataset [45], turned
them into grayscale, rescaled them to [−1, 1], and resized them to 32×32 pixels for efficient
computation. We then found the empirical mean and covariance of the images to construct
the Gaussian image prior. The test image was randomly drawn from this Gaussian prior.

• For the benchmark experiments, we used the first 100 images (index 00000 to 00099) in
the FFHQ dataset [38]. For all linear inverse problems, the test images were in RGB and
normalized to range [−1, 1]. For all nonlinear problems, the test images were in grayscale
and normalized to range [0, 1].

• For the black hole experiments, we used the simulated data used in [64] and the publicly
available EHT 2017 data1 that was used to produce the first image of the M87 black hole.

1https://eventhorizontelescope.org/blog/public-data-release-event-horizon-telescope-2017-observations
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Gaussian and motion deblur The forward model is defined as

y ∼ N (Bx, σ2
yI)

where B ∈ Rn×n is a circulant matrix that effectively implements a convolution with kernel k under
the circular boundary condition. For the Gaussian deblurring problem, we fixed the kernel k as a
Gaussian kernel with standard deviation 3.0 and size 61× 61. For the motion deblurring problem,
we randomly generated the kernel k for each test image using the code2 with intensity of 0.5 and size
61× 61. For fair comparison, the blur kernel for each test image was set the same for all compared
methods.

Super-resolution The forward model is defined as

y ∼ N (Pfx, σ
2
yI)

where Pf ∈ R
n
f ×n is a matrix that implements a block averaging filter to downscale the images by a

factor of f . Specifically, we set f = 4 and used the SVD implementation from the code3 of [39].

Coded diffraction patterns (CDP) CDP is a measurement model originally proposed in [10]. The
target x is illuminated by a coherent source and modulated by a phase mask D. The light field then
undergoes the far-field Fraunhofer diffraction and is measured by a standard camera. Mathematically,
the forward model of CDP is defined as

y ∼ N (|FDx|, σ2
yI)

where F denotes the 2D Fourier transform. We followed [75] to set D as a diagonal matrix with
entries drawn randomly from the complex unit circle.

Fourier phase retrieval We adopted a similar setting as [18]. In particular, the forward model is
defined as

y ∼ N (|FPx|, σ2
yI),

where P denotes the oversampling matrix that effectively pads x in 2D matrix form with zeros. We
considered a 4× oversampling ratio for grayscale images of size 256 × 256, so Px has a size of
512× 512.

Black hole imaging We adopted the same BHI setup as in [64, 66]. The relationship between the
black hole image and each interferometric measurement, or so-called visibility, is given by

V t
a,b = gtag

t
b · e−i(ϕt

a−ϕt
b) · F t

a,b(x) + ηa,b ∈ C, (21)

where a and b denote a pair of telescopes, t represents the time of measurement acquisition, i is the
imaginary unit, and F t

a,b(x) is the Fourier component of the image x corresponding to the baseline
between telescopes a and b at time t. In practice, there are three main sources of noise in (21):
gain error ga and gb at the telescopes, phase error ϕt

a and ϕt
b, and baseline-based additive white

Gaussian noise ηa,b. The gain and phase errors stem from atmospheric turbulence and instrument
miscalibration and often cannot be ignored. To correct for these two errors, multiple noisy visibilities
can be combined into data products that are invariant to these errors, which are called closure phase
and log closure amplitude measurements [12]

ycph
t,(a,b,c) = ∠(Va,bVb,cVa,c) := Acph

t,(a,b,c)(x),

ylogcamp
t,(a,b,c,d) = log

(
|V t

a,b||V t
c,d|

|Va,c||V t
b,d|

)
:= Alogcamp

t,(a,b,c,d)(x),

where ∠ computes the angle of a complex number. Given a total of M telescopes, there are in
total (M−1)(M−2)

2 closure phase and M(M−3)
2 log closure amplitude measurements at time t, after

eliminating repetitive measurements. In our experiments, we used a 9-telescope array (M = 9) from

2https://github.com/LeviBorodenko/motionblur (license unknown)
3https://github.com/bahjat-kawar/ddrm (MIT license)
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the Event Horizon Telescope (EHT) and constructed the data likelihood term based on these nonlinear
closure quantities. Additionally, because the closure quantities do not constrain the total flux (i.e.
summation of the pixel values) of the underlying black hole image, we added a constraint on the total
flux in the likelihood term. The overall potential function of the likelihood is given by

f(x;y) =
∑

t,c

∥Acph
t,c (x)− ycph

t,c ∥22
2σ2

cph

+
∑

t,d

∥Alogcamp
t,d (x)− ylogcamp

t,d ∥22
2σ2

logcamp

+

∥∥∑
i xi − yflux

∥∥2
2

2σ2
flux

. (22)

In this equation, yflux is the total flux of the underlying black hole, which can be accurately measured.
We use y := (ycph,ylogcamp,yflux) to denote all the measurements and c, d as the indices for
the closure phase and log closure amplitude measurements. Parameters σcph, σlogcamp were given
by the telescope system and σflux was set to

√
2 in our experiments to constrain the total flux.

The data mismatch metric reported in Figure 8 is defined as the sum of the reduced χ2 values
for the closure phase and log closure amplitude measurements, which are calculated using the
ehtim.obsdata.Obsdata.chisq function of the ehtim package4. Both χ2 values should ideally
be around 1 for data with high signal-to-noise ratio (SNR). Therefore, a data mismatch value around
2 to 3 is considered as fitting the measurements well.

C Technical details of PnP-DM

C.1 Likelihood step

Linear forward model and Gaussian noise As we showed in the main paper, in case of linear
forward models and Gaussian noise, the likelihood step is

πZ|X=x = N (m(x),Λ−1)

where Λ := ATΣ−1A+ 1
ρ2 I and m(x) := Λ−1(ATΣ−1y+ 1

ρ2x). The bottleneck here is that both
the mean and the covariance involve the matrix inverse Λ−1, which can be prohibitive to compute
directly for high-dimensional problems. Nevertheless, the computational cost can be significantly
alleviated when the noise is i.i.d. Gaussian, i.e. Σ = σ2

yI , and A can be efficiently decomposed. For
example, if one can efficiently calculate the SVD of the forward model A, i.e. A = USV T , one can
find the Cholesky decomposition of Λ−1 as

Λ−1 = LLT where L := V

(
1

σ2
S2 +

1

ρ2
I

)−1/2

.

Since S is a diagonal matrix, the second term can be calculated with only O(n) complexity. Then,
leveraging the property of multivariate Gaussian distribution, we can sample η ∼ N (0, I) and calcu-
late z = m(x)+Lη as a sample that exactly follows the target Gaussian distributionN (m(x),Λ−1).
An analogous derivation with Fourier transform can be done when A is a circulant convolution matrix.

Nonlinear forward model We provide the pseudocode of the LMC algorithm for sampling the
likelihood step with general differentiable forward models in Algorithm 2.

Algorithm 2 Langevin Monte Carlo for the likelihood step under general A
Input: state x, coupling strength ρ > 0, likelihood potential f( · ;y) with measurements y
Hyperparameter: step size γ > 0, number of iterations J > 0

1: u0 ← x
2: for j = 0, · · · , J − 1 do
3: uj+1 ← uj − γ∇f(uj ;y)− γ

ρ2 (uj − x) +
√
2γϵj where ϵj ∼ N (0, I)

4: end for
5: return uJ

Table 3 summarizes the hyperparameters we used for solving the nonlinear inverse problems consid-
ered in this work.

4https://github.com/achael/eht-imaging (GPL-3.0 license)
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Table 3: List of hyperparameters for the likelihood step of PnP-DM
Inverse problem Step size (γ) Number of iterations (J)

Coded diffraction patterns 1.0e-3 100
Fourier phase retrieval 1.0e-4 100

Black hole imaging 1.0e-5 200

C.2 Prior step

The EDM framework We formally introduce the EDM formulation [37] using our notations. The
forward diffusion process is defined as the following linear Itô SDE

dxt = u(t)xtdt+ v(t)dwt, (23)

where u(t) : R→ R, v(t) : R→ R are the drift and diffusion coefficients. The generative process is
the time-reversed version of (23). According to [2], it is another Itô SDE of the form

dxt =
[
u(t)xt − v(t)2∇xt

log pt(xt)
]
dt+ v(t)dw̄t, (24)

where pt(xt) is the marginal distribution of xt. There also exists a reverse probability flow ODE

dxt =

[
u(t)xt −

1

2
v(t)2∇xt

log pt(xt)

]
dt, (25)

which shares the same marginal distributions as (24). Based on (23), we have

p(xt|x0) = N (s(t)x0, s(t)
2σ(t)2I)

where s(t) := exp
(∫ t

0
u(ξ)dξ

)
and σ(t) :=

√∫ t

0
v(ξ)2

s(ξ)2 dξ. We also have xt/s(t) ∼ p(x;σ(t))

where p(x;σ(t)) is the distribution obtained by adding i.i.d. Gaussian noise of standard deviation
σ(t)) to the prior data. The idea of the EDM formulation is to write the reverse diffuison directly in
terms of the scaling and noise level of xt with respect to x0, which are more important than the drift
and diffusion coefficients. With the relations between u(t), v(t), pt and s(t), σ(t), p(·;σ(t)), we can
rewrite (24) and (25) as

dxt =

[
ṡ(t)

s(t)
xt − 2s(t)2σ̇(t)σ(t)∇xt

log p

(
xt

s(t)
;σ(t)

)]
dt+ s(t)

√
2σ̇(t)σ(t)dw̄t (26)

and

dxt =

[
ṡ(t)

s(t)
xt − s(t)2σ̇(t)σ(t)∇xt

log p

(
xt

s(t)
;σ(t)

)]
dt. (27)

Note that (26) is precisely the SDE (7) we considered for the prior step. Finally, due to the Tweedie’s
formula [24], we can approximate∇xt

log p ( · ;σ(t)) by a denoiser [Dθ( · ;σ(t))− · ]/σ(t)2 trained
to minimize the ℓ2 error of a denoising objective. Substituting the score function by the approximation
with the denoiser and using the chain rule, we can further rewrite (26) and (27) as

dxt =

[(
2σ̇(t)

σ(t)
+

ṡ(t)

s(t)

)
xt −

2σ̇(t)s(t)

σ(t)
Dθ

(
xt

s(t)
;σ(t)

)]
dt+ s(t)

√
2σ̇(t)σ(t)dw̄t (28)

and

dxt =

[(
σ̇(t)

σ(t)
+

ṡ(t)

s(t)

)
xt −

σ̇(t)s(t)

σ(t)
Dθ

(
xt

s(t)
;σ(t)

)]
dt. (29)

Pseudocode We provide the pseudocode for our prior step in Algorithm 3. Note that the update rule
is precisely the Euler discretization of (28) and (29). The discretization time steps {ti}Ni=0, scaling
schedule s(·), and noise schedule σ(·), are kept the same as in Table 1 of [37]. For all experiments,
we set the total number of time steps to 100, i.e. N = 100. We note that this does not imply that each
prior step has a number of function evaluations (NFE) equal to 100. Since ρ is to a small value as the
algorithm runs, the number of steps in later iterations of the algorithm are much fewer than 100. The
prior step is similar to the image synthesis process in SDEdit [50] that starts from the middle of the
reverse diffusion process. We used the pf-ODE solver for the CDP problem and the SDE solver for all
other problems. Part of our code implementation is based on the repository5.

5https://github.com/NVlabs/edm/tree/main (Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International Public license)
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Algorithm 3 EDM for the prior step (Bayesian denoising with noise level ρ)
Input: noisy image z ∈ Rn, assumed noise level ρ > 0, pretrained model Dθ( · ; · ) that approxi-

mates ∇ log p (x;σ) with (Dθ(x;σ)− x)/σ2

Hyperparameter: discretization time steps {ti}Ni=0 (monotonically decreasing to tN = 0), scaling
schedule s(·), noise schedule σ(·), solver (SDE or pf-ODE)

1: i∗ ← smallest i such that σ(ti) ≤ ρ ▷ Find the starting point of the reverse diffusion
2: vi∗ ← s(ti∗)z ▷ Initialize at time ti∗
3: for i = i∗, · · · , N − 1 do
4: λ← 2 if solver is SDE else 1

5: di ←
(

λσ̇(ti)
σ(ti)

+ ṡ(ti)
s(ti)

)
vi − λσ̇(ti)s(ti)

σ(ti)
Dθ

(
vi

s(ti)
;σ (ti)

)

6: vi+1 ← vi + (ti+1 − ti)di ▷ Drift
7: if i ̸= N − 1 and solver is SDE then
8: vi+1 ← vi+1 + s(t)

√
2σ̇(t)σ(t)(ti − ti+1)ϵi where ϵi ∼ N (0, I) ▷ Diffusion

9: end if
10: end for
11: return vN

Model checkpoint For experiments with FFHQ color images, we used the pretrained checkpoint
from [16] available at the repository6. For experiments with synthetic data, FFHQ grayscale images,
and black hole images, we trained our own models using the same repository. The model network is
based on the U-Net architecture in [52] with BigGAN [9] residual blocks, multi-resolution attention,
and multi-head attention with fixed channels per head. See the appendix of [16] for architecture details.
Specifically, we changed the input and output channels to 1 and 2, respectively, to accommodate
grayscale inputs, and reduced the number of down-pooling and up-pooling levels in the U-Net for
smaller images. We trained all models until convergence using an exponential moving average (EMA)
rate of 0.9999, 32-bit precision, and the AdamW optimizer [46]. Here is a list of training data we
used for each model:

• For the Gaussian prior model, we randomly generated images from the constructed Gaussian
prior distribution.

• For the FFHQ grayscale model, we used the images with index 01000 to 69999 in the FFHQ
dataset.

• For the black hole model, we used 3068 simulated black hole images from the GRMHD
simulation, which stands for general relativistic magnetohydrodynamic simulation [22]. See
Figure 9 for some example training images. We applied data augmentation with random
flipping and resizing, so that the flux spin rotation and the ring diameter vary from sample
to sample.

Figure 9: Example images from the dataset for training the black hole diffusion model prior.

Preconditioning Since the checkpoints we used are all trained based on the DDPM (or VP-SDE)
formulation [33], we converted them to the denoiser Dθ under the EDM formulation via the VP
preconditioning [37]. Specifically, if we denote the pretrained model as Fθ( · ; · ), the model we used
for Algorithm 3 is

Dθ(x;σ) := cskip(σ)x+ cout(σ)Fθ (cin(σ)x; cnoise(σ)) , (30)

where cskip(σ) = 1, cout(σ) = −σ, cin(σ) = 1/
√
σ2 + 1, and cnoise(σ) = 999σ−1

VP (σ). Here σ−1
VP (·)

is the inverse of the VP-SDE noise schedule defined as σVP(t) :=
√

e
1
2βdt2+βmint − 1 with βd = 19.9

and βmin = 0.1. This adaption allows us to make a fair comparison with other DM-based methods
using the same pretrained models. One can also incorporate DMs trained with other formulations
into PnP-DM by properly setting the preconditioning parameters.

6https://github.com/jychoi118/P2-weighting (MIT license)
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Connection to DDS-DDPM in [78] A concurrent work [78] introduced a rigorous implementation
of the prior step, called DDS-DDPM, by converting the DDPM [33] (or VP-SDE [63]) sampler into
a reverse diffusion based on the VE-SDE [63]. The diffusion process after the conversion can be
used to solve (6) rigorously by properly choosing the starting point. In fact, our formulation admits
DDS-DDPM as a special case with the VP preconditioning and reverse diffusion based on the VE-SDE.
Here we explicitly show this connection. For the VE-SDE, we have sVE(t) = 1, σVE(t) =

√
t,

uVE(t) = 0, and vVE(t) = 1. So (28) becomes

dxt =

[
1

t
xt −

1

t
Dθ

(
xt;
√
t
)]

dt+ dw̄t (31)

Applying the VP preconditioning (30) to (31), we obtain

dxt =

[
1√
t
Fθ

(
xt√
t+ 1

; 999σ−1
VP (
√
t)

)]
dt+ dw̄t. (32)

We can then rescale the time range from [0, 1] to [0, 1000], discretize (32) backward in time over the
time steps {τt} from [78], and apply the exponential integrator [83] to the drift term, resulting in the
following update rule:

x̂t−1 = x̂t − 2(
√
τt −

√
τt−1)Fθ

(
x̂t√
τt + 1

;σ−1
VP (
√
τt)

)
+
√
τt − τt−1ϵ where ϵ ∼ N (0, I)

Based on the definition τt := ᾱ−1
t − 1 = σVP(t)

2 in DDS-DDPM, we get

x̂t−1 = x̂t − 2(
√
τt −

√
τt−1)Fθ

(√
ᾱtx̂t; t

)
+
√

τt − τt−1ϵ where ϵ ∼ N (0, I) (33)

This is exactly the update rule of DDS-DDPM with Fθ( · ; t) denoting the noise estimate ϵ̂t(·) of
DDPM. One can also verify that the initialization in DDS-DDPM is equivalent to ours by checking
that ᾱt ≥ 1

η2+1 is equivalent to τt = σVP(t)
2 ≤ η2 where η ≡ ρ is the assumed noise level in (6).

As one can see, DDS-DDPM is equivalent to our prior step by choosing the VP-preconditioning, VE
reverse diffusion, and a particular integration scheme. In fact, our prior step allows for more general
definitions of diffusion processes and includes both the ODE and SDE solvers.

C.3 Others

Annealing schedule for ρ In this work, we considered an exponential annealing schedule for the
coupling strength ρ. We note that the schedule can be more general than exponential decay and we
leave the investigation of other decay schedules in future work. Specifically, we specified a starting
level ρ0, decay rate α, and a minimum value ρmin. Then we set

ρk = max(αkρ0, ρmin)

for k = 0, · · · ,K − 1. Table 4 summarizes the annealing hyperparameters that we used for all the
inverse problems considered in this work.

Table 4: List of hyperparameters for the annealing schedule of ρ in PnP-DM
Inverse problem Starting level (ρ0) Minimum level (ρmin) Decay rate (α)

Synthetic prior experiments 0.03 0.03 1
Gaussian deblur 10 0.3 0.9
Motion deblur 10 0.3 0.9

Super-resolution 10 0.3 0.9
Coded diffraction patterns 10 0.1 0.9

Fourier phase retrieval 10 0.1 0.9
Black hole imaging 10 0.02 0.93

Initialization For the linear inverse problems, we used the zero initialization, i.e. x(0) = 0 ∈
Rn. For the CDP and Fourier phase retrieval problems, we used the Gaussian initialization, i.e.
x(0) ∼ N (0, I). For black hole imaging experiments, we used the uniform random initialization
between 0 and 1 for each pixel. We found that PnP-DM, as an MCMC algorithm, is insensitive to
the initialization. Except for the black hole experiments where we found the negative values would
cause problems, any reasonable initialization would lead to comparable results. This observation
corroborates our convergence result, which holds for any initialization νX0 .
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Number of iterations We ran 500 iterations for the synthetic prior experiments, 200 iterations for
the black hole experiments, and 100 for all other experiments. The numbers were chosen so that the
algorithm was fully converged.

Sample collection To collect multiple samples using our method, there are two main approaches:
(1) Run a single Markov chain and collect samples after a certain number of iterations, known as
the burn-in period, to ensure the chain has converged. (2) Run several independent Markov chains
and collect one sample from each chain after convergence. The first approach is more efficient,
but the collected samples are not entirely independent and thus may have a small effective sample
size. The second approach ensures all samples are fully independent but takes longer to run. In our
experiments, we used the first approach for all tests involving 256× 256 images to enhance efficiency.
Specifically, we set the burn-in period to 40 iterations and collected 20 random samples from the
remaining 60 iterations (one every 3 iterations). For other experiments, due to the smaller image
sizes, we employed the second approach to obtain fully independent samples.

Compute All experiments were performed on NVIDIA RTX A6000 and A100 GPUs. The runtime
per image depends on several factors, such as the choice of GPU, the total number of iterations
and the coupling strength schedule {ρk} (as it takes more network evaluations for larger ρ for our
EDM-based denoiser). In our actual experiments, we ran each image for at least 100 iterations to
ensure convergence, which took around 1 minute for a single Markov chain. Here we present a
comparison of computational efficiency with the major baselines on a linear super-resolution and a
nonlinear coded diffraction patterns problem in Table 5. The clock time in seconds and number of
function evaluations (NFE) are calculated for each method to measure its computational efficiency.
All hyperparameters are kept the same for each method as those used for Table 1 and Table 2 in the
manuscript. As expected, DM-based approaches (DDRM & DPS) generally yield shorter runtimes
due to their lower NFEs. Nevertheless, our PnP-DM method significantly outperforms these methods
while achieving comparable runtimes with DPS (≈ 1.5×), despite its larger NFEs (≈ 3×). This is
primarily due to two factors: 1) PnP-DM avoids running the full diffusion process by adapting the
starting noise level to ρk at each iteration, and 2) the runtime is further reduced by using an annealing
schedule of ρk. We also note that the runtime reported for DDRM and DPS below is the time it
takes to generate one sample. For the linear inverse problem experiments, where we generated 20
samples for each sampling method, PnP-DM was faster than DPS because we took 20 samples that
PnP-DM generated along one Markov chain of batch size 1 (hence same runtime as below, around 50
seconds) but DPS requires running a diffusion process with batch size 20, which was significantly
slower (around 330 seconds).

Table 5: Comparison of computational efficiency between PnP-DM and other baseline methods
Inverse problem Metric DDRM DPS PnP-SGS DPnP PnP-DM (ours)

Super-resolution Clock time (s) 0.4 39 20 322 55
NFE 20 1000 1030 18372 3032

Coded diffraction patterns Clock time (s) – 37 54 261 50
NFE – 1000 2572 14596 2482

D Implementation details of baseline methods

PnP-ADMM We set the ADMM penalty parameter as 2 and ran for 500 iterations to ensure
convergence. We used the pretrained DnCNN denoiser [81] available at the deepinv library7.

DPIR We followed the annealing schedule in [80] and ran for 40 iterations. We used the pretrained
DRUNet denoiser [82] available at the deepinv library.

DDRM We ran all the experiments with the default parameters: ηB = 1.0, η = 0.85, and 20 steps
for the DDIM sampler [59]. For the Gaussian deblur problem, we used the SVD-based forward model
implementation based on separable 1D convolution. We ran it with an additional batch dimension to
collect multiple samples.

7https://github.com/deepinv/deepinv (BSD-3-Clause license)
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DPS We followed the original paper to use a 1000-step DDPM sampler backbone. For the linear
inverse problems, we used the step size given in [17], i.e. ζ ′ = 1. For the nonlinear inverse problems,
we optimized the step size ζ ′ by performing a grid search, which led to ζ ′ = 3 for CDP and Fourier
phase retrieval and ζ ′ = 0.001 for black hole imaging. For the synthetic prior experiments, we also
optimized the step size and used ζ ′ = 0.1 for compressed sensing and ζ ′ = 1 for Gaussian deblur.
We ran it with an additional batch dimension to collect multiple samples.

PnP-SGS We performed a grid search for the coupling parameter ρ and found that ρ = 0.1 worked
the best for all problems. We followed the practice in [19] to have a burn-in period of 20 iterations
during which the reverse diffusion is early-stopped. We ran the algorithm for 100 iterations in total
and collect 20 samples in the 80 iterations after the burn-in period.

DPnP We implemented the DDS-DDPM sampler for the prior step. For fair comparison, we used the
same annealing schedule for the coupling strength (denoted as ηk in [78]) as PnP-DM. We ran it for
the same number of iterations for each inverse problem with the same way of collecting samples as
our method.

HIO We set β = 0.7 and applied both the non-negative constraint and the finite support constraint.
To mitigate the instability of reconstruction depending on initialization, we first repeatedly ran the
algorithm with 100 different random initializations and chose the reconstruction that has the best
measurement fit. Then we ran another 10,000 iterations with the chosen reconstruction to ensure
convergence and report the metrics on the final reconstruction.

E Additional related works

Image reconstruction with plug-and-play priors Plug-and-Play priors (PnP) [69] is an algo-
rithmic framework that leverages off-the-shelf denoisers for solving imaging inverse problems.
Recognizing the equivalence between the proximal operator and finding the maximum a posteriori
(MAP) solution to a denoising problem, PnP substitutes the proximal update in many optimization
algorithms, such as ADMM [13, 56] and HQS [82, 80], with generic denoising algorithms, par-
ticularly those based on deep learning [49, 82, 80]. The PnP framework enjoys both convergence
guarantees [65, 56] and strong empirical performance [76, 1] due to its compatibility with state-
of-the-art learning-based denoising priors. Recent works have also proposed learning-based PnP
frameworks that have direction interpretations from an optimization perspective [20, 26]. See [36]
for a comprehensive review on the theory and practice of PnP.

Posterior sampling with MCMC and learning priors Learning-based priors have also been
considered in the Bayesian context [35], where one seeks to sample the posterior distribution defined
under a learned prior. An important technique is denoising score matching (DSM) [70], which
connects image denoising with learning the score function of an image distribution. Based on
DSM, prior works have incorporated deep denoising priors into MCMC formulations, particularly
focusing the Langevin Monte Carlo and its variants as they involve the score function of the target
distribution [40, 34, 41, 66, 54]. Recently, methods based on SGS have also gained increasing
popularity [53, 19, 6, 27, 78]. Unlike PnP methods based on optimization, these sampling methods
possess the ability to generate diverse solutions and quantify the uncertainty of solution space.

Solving inverse problems with diffusion models The remarkable performance of diffusion models
[33, 63] on modelling image distributions makes them desirable choices as images priors for solving
inverse problems. One popular approach is to leverage a pretrained unconditional model and modify
the reverse diffusion process during inference to enforce data consistency [73, 18, 17, 60, 39, 61,
62, 8, 44, 84, 58]. Despite of the promising performance of these methods, they usually involve
approximations and empirically driven designs that are hard to justify theoretically and may lead to
inconsistent sample distributions. Another line of work learns task-specific models, which achieves
higher accuracy at the cost of re-training models for new problems [4, 57, 44]. Methods based on
Particle Filtering and Sequential Monte Carlo are also considered to ensure asymptotic consistency
[11, 23, 74]. Diffusion models have also been considered as a prior for variational inference [28, 47]
and pluy-and-play image reconstruction [32, 48].
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F Additional experimental results
F.1 Synthetic prior experiment
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Figure 10: Comparison of our method and DPS
[17] on estimating the posterior distribution of a
Gaussian deblurring problem under a Gaussian
prior. While the mean estimations of the two meth-
ods are of roughly the same quality, our approach
provides a much more accurate estimation of the
posterior per-pixel standard deviation than DPS.

In addition to the compressed sensing exper-
iment presented in the main paper, we show
another comparison on a Gaussian deblurring
problem in Figure 10. Here, the linear forward
model A ∈ Rm×n is a 2D convolution matrix
with a Gaussian blur kernel of size 7×7 and stan-
dard deviation 3.0. Similar to the compressed
sensing experiment, both methods yield accu-
rate reconstructions of the mean. However, in
terms of the posterior standard deviation, DPS
exhibits a notable difference from the ground
truth, whereas our method achieves a signifi-
cantly more accurate result.

F.2 Linear inverse problems

We provide visual comparisons for the Gaus-
sian deblur and super-resolution problems in
Figure 11.
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Figure 11: Visual comparison between our method and baselines on solving the Gaussian deblurring
and super-resolution problems with i.i.d. Gaussian noise (σy = 0.05). We visualize one sample
generated by each algorithm.

Additional visual examples are provided in Figure 12 (Gaussian deblurring), Figure 13 (motion
deblurring), and Figure 14 (super-resolution).

F.3 Nonlinear inverse problems

We provide visual comparisons for the CDP reconstruction problem in Figure 15, where we visualize
one sample for each method. As shown by the red zoom-in boxes, PnP-DM can recover fine-grained
features such as the hair threads that are missing in the reconstructions by the baselines. Additional
reconstruction examples are given in Figure 16 for the CDP reconstruction problem.

We then show some additional reconstruction examples with comparison to DPS in Figure 17. For
each method, we visualize the best reconstruction out of four runs for each test image according
to the PSNR value. While DPS failed on around half of the test images, our proposed method
provided high-fidelity reconstructions on almost all test images. This comparison highlights the better
robustness of our method over DPS.
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Figure 12: Additional visual examples for the Gaussian deblurring problem.
Ours (EDM)Measurement Ground truthOurs (VE) Ours (EDM)Measurement Ground truthOurs (VE)

Figure 13: Additional visual examples for the motion deblurring problem.

F.4 Black hole imaging

Finally, we present visual examples from the black hole imaging experiments. Samples generated by
PnP-DM (EDM) and DPS using the simulated data are shown in Figure 18, with the data mismatch
metric labeled at the top right corner of each sample. Consistent with the results in Figure 8,
DPS can only capture one of the two posterior modes. DPS samples from Mode 2 and Mode 3
significantly deviate from the measurements and lack the expected black hole structure. In contrast,
PnP-DM successfully samples both posterior modes and consistently produces samples that fit the
measurements well. Additionally, Figure 19 presents more samples obtained by applying PnP-DM to
the real M87 black hole data. The generated samples are not only diverse but also fit the measurements
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Figure 14: Additional visual examples for the 4× super-resolution problem.
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Figure 15: Visual comparison between our method and baselines on solving the coded diffraction
pattern (CDP) reconstruction problems with i.i.d. Gaussian noise (σy = 0.05). We visualize one
sample generated by each algorithm.

well with data mismatch values around 2. These samples exhibit a ring diameter consistent with the
official EHT reconstruction in Figure 1 and share a common bright spot location at the lower half of
the ring.

F.5 Further analysis

Sensitivity analysis on the annealing schedule {ρk} In Figure 20, we present a sensitivity
analysis on the annealing schedule {ρk}. In particular, we show the PSNR curves of xk with
different exponential decay rates α (left) and minimum coupling levels ρmin (right) for one linear
(super-resolution) and one nonlinear (coded diffraction patterns) problem. We have the following
conclusions based on the results. First, different decay rates lead to different rates of convergence,
which corroborates with our theoretical insights that ρ plays the same role as the step size. The
final level of PSNR is not sensitive to different decay rates, as all curves converge to the same level.
Second, as ρmin decreases, the final PSNR becomes higher. This is as expected because the stationary
distribution of the xk, πX should converge to the true target posterior, p(x|y), as ρ decreases.

Convergence curves with intermediate visual examples In Figure 21, we show some visual
examples of intermediate xk and zk iterates (left) and convergence plots of PSNR, SSIM, and LPIPS
for xk (right) on the super-resolution problem. As ρk decreases, xk becomes closer to the ground
truth and zk gets less noisy. Both the visual quality and metric curves stabilize after the minimum
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Figure 16: Additional visual examples for the Fourier phase retrieval problem.
Ours (EDM)DPS Ground truthOurs (iDDPM) Ours (EDM)DPS Ground truthOurs (iDDPM)

Figure 17: Additional visual examples for the Fourier phase retrieval problem.

coupling strength is achieved. Despite being run for 100 iterations in total, our method generates
good images in around 40 iterations, which is around 30 seconds and 1600 NFEs.

G Licenses

We list the licenses of all the assets we used in this paper:

• Data
– CelebA [45]: Unknown
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Figure 18: Additional visual examples given by PnP-DM and DPS using the simulated black hole
data.
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Figure 19: Additional visual examples given by PnP-DM using the real M87 black hole data.

– FFHQ [38]: Creative Commons BY-NC-SA 4.0 license
– Simulated and real black hole data: Unknown

• Code
– The license for each code repository that we have used is listed in the footnote after the

repository link.
• Pretrained model

– FFHQ model by Choi et al. [16]: MIT license
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Figure 20: Sensitivity analysis on the annealing schedule ρk with different decay rates α (left)
and minimum coupling strength ρmin (right) for a linear (super-resolution) and a nonlinear (coded
diffraction patterns) inverse problem. Recall from Appendix C.3 that ρk := max(αkρ0, ρmin), where
we set ρ0 = 10 for this experiment.
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Figure 21: Visual examples of intermediate xk and zk iterates (left) and convergence plots of PSNR,
SSIM, and LPIPS for xk iterates (right) on the super-resolution problem. The vertical dashed lines
show the iterations at which the xk and zk iterates are visualized.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have made sure that the main claims made in the abstract and introduction
accurately reflect the paper’s contributions and scope
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have added a paragraph on the limitations of our method to the conclusion
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We have presented our theoretical result in the main paper with the proof in
the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided all the necessary details to reproduce the main results in our
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have included the code for reproducing the main experimental results of
our work in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided all the training and test details in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Due to the limited space and constraints of time and computational resources,
we were unable to include error bars for our experiments over multiple runs. Alternatively,
we evaluated our method and baselines based on multiple samples and various metrics. We
conducted a uncertainty quantification analysis where we calculated the per-pixel statistics
and confidence intervals. We also extensively included visual examples to better demonstrate
the performance of the methods we considered in this paper. All of these efforts aimed to
better reflect the significance of our improvement over existing methods.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided details on our compute resources in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm that our research conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have added a “Broarder Impacts” section in the main manuscript.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited the owners of all the assets used in the paper. Their
licenses are listed in the footnotes and Appendix G.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have documented the code we provide in the supplement.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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