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Abstract

Learning strong and interpretable representations for textures is fundamental in1

many computer vision tasks, particularly texture synthesis, where the aim is to2

match the intricate statistical patterns of one texture to generate new syntheses.3

With modern deep learning architectures, it is difficult to obtain interpretable and4

attributable features with their highly over-parameterized representation spaces5

despite their strong task performance. More traditional approaches to representing6

texture on the other hand, rely on highly interpretable, hand-picked statistic sets,7

but often at the cost of performance. In order to bridge the gap between these8

two approaches and obtain performant yet interpretable texture features, we intro-9

duce a new texture representation model. Our method combines the interpretable10

neuroscience-based multi-scale pyramid filter structure of traditional well-tested11

texture models with the power of pairwise-correlation approaches. This analysis-12

by-synthesis model generates texture images with similar quality to style-transfer13

based approaches. With our interpretable approach, we create a organizational14

structure for our statistics, breaking them into families, and evaluating the contri-15

bution of these families to synthesis quality. We then use contrastive learning to16

identify which statistics are most and least important for differentiating textures,17

and show that this ordering transfers to synthesis quality. By attributing synthesis18

quality to a subset of interpretable statistics, we are able to reduce the number19

of parameters to below that of previous methods while retaining similar or better20

synthesis quality.21

1 Introduction22

While deep-network-based texture models have been successful at generating synthetic textures,23

biologically inspired approaches grounded in neuroscience, such as multi-scale pyramid models,24

have gained renewed interest for their more interpretable and attributable features. These models25

capture key statistical properties of textures that align with both behavioral and physiological findings,26

allowing them to also serve as models of early visual processing in humans. For instance, Portilla27

and Simoncelli’s parametric texture synthesis model [Portilla and Simoncelli, 2000] uses responses28

from V1-like filters to summarize textures through a set of summary statistics, mimicking the texture29

representation in early visual areas. Such models have proven to be effective not only in producing30

perceptually plausible textures but also in explaining neural responses to natural scenes [Ziemba31

et al., 2016]. They offer a biologically interpretable framework for understanding how textures are32

encoded, with the potential to explain phenomena including texture segregation, surface perception,33

and perceptual grouping. This interplay between neuroscience and texture synthesis holds promise34

for advancing our understanding of how the brain processes complex visual information in natural35

environments.36
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Here, we further this line of work by incorporating the power and flexibility of style-transfer based37

texture synthesis approaches into a biologically feasible and interpretable model. We demonstrate38

that our single-layer method can generate syntheses on par with the quality of deep-networks, while39

retaining interpretable features, for which we create an organizational framework of statistical families.40

We use this framework to attribute texture synthesis quality to a subset of the statistical families.41

Finally, we use contrastive learning to learn a reduced set of interpretable statistics, and show that42

this reduced set produces quality syntheses with a small parameter set.43

Figure 1: Depleted syntheses optimized using statistics subsets defined by categorical families.
Families with ’structured’ statistics pairs where only one parameter differs generate poor synthesis
compared to larger families of unstructured pairs.

2 Previous Work44

A wide body of research from the neuroscience, vision science, psychology, and computer science45

literature has worked towards creating valid, testable models of human texture perception. For texture46

synthesis specifically, approaches have historically ranged from modeling texture in pixel [Julesz,47

1962], fourier [Matsuyama et al., 1983], and multi-scale pyramid [Burt and Adelson, 1987, Heeger48

and Bergen, 1995] space. Such texture models are often measured for quality as models of peripheral49

vision [Rosenholtz et al., 2012, Freeman and Simoncelli, 2011] using statistics sets similar to the50

Portilla & Simoncelli model [Portilla and Simoncelli, 2000]. The interpretability of these statistics51

sets has enabled the study of which textures succeed and fail [Brown et al., 2021], which statistics are52

necessary and sufficient [Koevesdi et al., 2023] for synthesis, and their interaction [Balas, 2006].53
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Progress in deep learning has enabled methods to synthesize spatial textures without hand-picked54

statistics sets. Matching the gram matrix from deep network layers [Gatys et al., 2015] as in style55

transfer [Gatys et al., 2016] has produced successful both texture and peripheral syntheses [Deza56

et al., 2017, Wallis et al., 2017], and been shown to work on single layer networks [Ustyuzhaninov57

et al., 2022]. While these methods are able to create successful syntheses, they have three major58

disadvantages: 1) They are highly over-parameterized compared to pyramid based models, with 1-259

orders of magnitude more statistics. 2) Unlike multi-scale pyramid representations, deep network60

hidden layers bear little resemblance to human visual neuroscience. 3) The statistics are based on61

correlations of a deep network, removing the interpretability that comes along with hand-picked62

statistics.63

3 Model64

We design a simple model (Fig. 4) that combines the interpretable and biologically-inspired pyramid65

filters of Portilla & Simoncelli [Portilla and Simoncelli, 2000] with the power and flexibility of66

the Gram matrix representation [Gatys et al., 2015]. Our model uses the multi-scale pyramid67

representation from [Brown et al., 2021], convolving each color opponent channel of an input image68

with pyramid filters at individual combinations of orientation, scale, and color. We then treat each69

pyramid image as a channel, calculating the pair-wise correlations between each pyramid image pair,70

collapsing over space, resulting in a Gram matrix. We use the upper triangle and diagonal of this71

matrix as the full statistics set, combined with a set of 3 marginal statistics per color channel for72

downstream analysis.73

We use this as an analysis-by-synthesis model to generate novel texture images by matching the74

statistics of arbitrary input images. We show significant improvement over the standard multi-scale-75

pyramid synthesis method [Portilla and Simoncelli, 2000], and similar quality results to much larger,76

neural-network based synthesis methods [Gatys et al., 2015] (Figure 5).77

4 Statistical Families78

An advantage of our method is that our statisitcs are correlations between known pyramid filters that79

can be interpreted, and quality of syntheses attributed to different statistical families. We organize80

these families into two groups: one of statistics with one or more non-subband (pyramid level) filter81

image, and one group with correlations exclusively between subband images (Table A.4). We further82

organize the subband group into sub-groups, based on which properties are shared and differ between83

the two pyramid images correlated.84

Figure 2: Using the contrastively learned importance ordering, we visualize the percent contribution
of individual families to the total set, for varying statistics set size. Families sub_Xmulti, highpass,
and pass_multi contribute most when selecting for the most important statisics (left).

The hand-curated statistics sets from previous models [Portilla and Simoncelli, 2000] rely heavily85

on correlation statistics from groups like the first 6 sub-band families, which we call ’structured’86

statistics. These share all properties except for one (i.e. sub_Xlevel share orientation, phase,87

and color at different scales). To attribute the quality of synthesis to different family groups, we88

performed ablation experiments, synthesizing textures with subsets of the statistical families (Figure89

1). Interestingly, we find that these ’structured’ correlation statistics generate poor synthesis even90
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when combined together. By contrast, unstructured statistics generate superior syntheses, though we91

note these represent a majority of the statistics.92

5 Parameter Reduction93

To further investigate the contribution of individual texture families to synthesis quality, we use94

contrastive learning to reduce the correlation statistics to a 100 element feature vector (Figure 4).95

We crop texture images from [Cimpoi et al., 2014], and train a single fully connected layer using96

InfoNCE [Oord et al., 2018] to group texture crops from the same parent texture image in latent space.97

We find that the single trained layer is sufficient to group same textures in embedding space (Fig. 6).98

Next, to evaluate the importance of different statistics to the contrastive learning task, we ordered99

statistics from most to least important based on both the absolute value of their weightings (Figure100

7), as well as by their Shapley values [Roth, 1988] (not shown, similar results). Again, we find101

correlations between sub-band filter outputs with few or no shared attributes (sub_Xmulti) are most102

important to the contrastive learning task. By contrast, correlations between lowpass filter outputs are103

least important for grouping textures. We visualize the relative contributions of individual families to104

the total statistics set when ordered by importance (Figure 2), and find that sub_Xmulti, lowpass, and105

pass_multi families make an out-sized contribution to the most important statistics.106

Finally, we evaluate the transfer of importance in the contrastive learning task to synthesis quality. To107

do this, we again perform an ablation experiment, but selectively optimize selecting statistics based108

on their importance to the contrastive learning task (Figure 3). Using the most important statistics,109

we are able to achieve good syntheses that outperform the Portilla & Simoncelli model with only110

5,000 of the total 29,000 correlation statistics, for a reduction of 83%. Statistic groups of the same111

size from the least important statistics set are extremely poor, and randomly selected are only slightly112

better (Figure 8).113

Figure 3: Depleted syntheses optimized using statistics subsets defined by order from contrastive
learning. Top ordered groups demonstrate high quality syntheses, despite small set sizes.

6 Discussion114

We present a human vision inspired texture model that synthesizes textures using pyramid-based115

correlation statistics, bridging insights from neuroscience and machine learning to incorporate both116

biological plausibility and interpretability. We demonstrate quality texture syntheses from our full117

model, then combine our model with contrastive learning to reduce the number of parameters118

significantly, and demonstrate quality syntheses with a reduced model. Finally, we provide a method119

of categorizing correlation statistics into families for interpretability, enabling future work to explore120

the relative contributions of these statistics to the final syntheses.121
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A Appendix173

A.1 Model174

Figure 4: Our model decomposes images into pyramid stacks with varying scales, orientations, and
color using a multi-scale pyramid filter bank. Pair-wise correlations between all pyramid images are
represented in the gram matrix. The upper triangle of this gram matrix represents the full statistics set.
To learn a reduced statistics set, a single fully connected layer compresses to a reduced representation.
This fully connected layer is trained using a contrastive loss, self-supervised by training on crops
from the same texture image.

Figure 5: We generate texture image syntheses with better quality than Portilla & Simoncelli, and with
similar performance to Gatys et al, but with a smaller model. STGN-Wrap uses a wrapped Fourier
transform, conserving purely spatially-invariant information, while STGN-Black uses zero-padding,
and retains more spatial image content. Gatys et al synths are from unofficial Pytorch repo for [Gatys
et al., 2015] (https://github.com/trsvchn/deep-textures)
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A.2 Contrastive Learning175

Figure 6: We verify the success of training with UMAP [McInnes et al., 2018, McInnes et al., 2018]
to visualize the reduced latent space trained through contrastive learning. For both the training set
(left), and validation set (right), crops from the same texture (plotted as same color) lie very close in
latent space.

Figure 7: Correlation statistics by the absolute value of the magnitude of their learned weightings.
Highest weighted correlation statistics (left) are from the sub_Xmulti group, corresponding to
correlations between subband filter outputs with few or no shared attributes. Lowest weighted
correlation statistics (right) are from the lowpass group, corresponding to correlation statistics
between lowpass filter outputs.

A.3 Synthesis Procedure176

To synthesize images, we first seed a noise image, initializing a tensor with a random normal177

distribution in the range [0,1] and of the same size as our target image. We then use the codebase178
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from [Brown et al., 2021] to decompose the image into 3 color-opponent channels, and convolve179

each channel with with a pyramid filter bank with 4 spatial scales, real/imaginary pyramids, plus 3180

marginal statistics per color channel. We then follow the method of [Gatys et al., 2015], calculating181

the gram matrix of the filter responses, collapsing over the orientation, scale, and color channel182

dimensions, measuring the pairwise correlation between all filter outputs. We reduce this to the183

upper-triangle plus diagonal. We calculate the MSE loss on the difference between these statistics for184

the target and synthesis video, and back-propagate this loss using the L-BFGS optimizer [Liu and185

Nocedal, 1989] using default hyper-parameters. We run 1000 iterations for each synthesis, which186

takes approximately 2 minutes on a single GPU.187

A.4 Statistics Families188

Non-Subband Pyramid Stats
Group Name Stat A Stat B Number Stats
marginal mean | var | std mean | var | std 9
highpass highpass highpass 6
lowpass lowpass lowpass 231
pass_multi highpass | lowpass X 5247

Subband Pyramid Stats
Group Name Stats Same Stats Differ Stats
sub_Xori Level, Color, Pyr Ori 324
sub_Xcolor Level, Ori, Pyr Color 432
sub_Xlevel Color, Ori, Pyr Level 540
sub_Xri_eq Level, Color, Ori RealXImag 72
sub_Xrm_eq Level, Color, Ori RealXMag 72
sub_Xim_eq Level, Color, Ori ImagXMag 72
sub_real_Xmulti Real Level, Color, Ori 2196
sub_imag_Xmulti Imag Level, Color, Ori 2196
sub_magn_Xmulti Magn Level, Color, Ori 2196
sub_Xmulti - Pyr, Level, Color, Ori 15336

A.5 Ablation Control189

Figure 8: Depleted syntheses optimized using statistics subsets defined by reverse order from
contrastive learning.
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