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Abstract001

Cross-Domain Named entity recognition is a002
crucial task in natural language processing003
that helps extract meaningful entities from004
text when transferring across different domains.005
However current cross-domain NER methods006
are often limited in leverage heterogeneous in-007
formation from other modalities, which limits008
the ability of cross-domain knowledge discov-009
ery and data mining, thereby constraining the010
application potential of large-scale information011
systems. To address these challenges, we pro-012
pose a cross-domain NER method that utilizes013
image-aware contexts, consisting of Domain-014
specific Dynamic Image Captioning(DDC) and015
Cross-domain Reasoning Chain(CRC). DDC016
generates contextualized image captions by017
aligning the semantics of text and captions con-018
ditioned on textual domain cues. Then CRC019
identifies potential entities and classifies them020
using captions generated by DDC and chain-of-021
thought. Experimental results demonstrate that022
our method achieves a remarkable 6.23% aver-023
age F1 improvement across all tested domains.024
Particularly notable are the performance gains025
in the political and scientific domains, where026
our approach surpasses the best baseline model027
with F1-score increases of 8.22% and 9.58%.028

1 Introduction029

Named Entity Recognition (NER) is a core task in030

information extraction and knowledge discovery031

(Li et al., 2023b)(Esmaail et al., 2024)(Bhowmick032

et al., 2023)(Li et al., 2023a)(Wang et al., 2024),033

which is widely applied in various scenarios, in-034

cluding question-answering systems (Mollá et al.,035

2006)(He and Golub, 2016), automatic summariza-036

tion (Chen et al., 2004)(Etzioni et al., 2008)(Aone037

et al., 1999)(Aramaki et al., 2009), and infor-038

mation retrieval (Sun et al., 2020)(Zeng et al.,039

2023)(Simonyan and Zisserman, 2015)(Guo et al.,040

2009)(Petkova and Croft, 2007). In recent years,041

increasing attention has been focused on cross-042

domain NER, aiming to address the challenges043

posed by textual data from diverse domains which, 044

as data sources and channels expand, are particu- 045

larly evident in the scarcity of high-quality anno- 046

tated data (Li et al., 2023b)(Bhowmick et al., 2023). 047

For example, in domain-specific texts like scientific 048

literature or political reports, entity annotations for 049

specialized terms are scarce. Annotating unlabeled 050

data often requires significant time and human re- 051

sources. Therefore, efficiently acquiring entities 052

in these low-resource settings has become a focal 053

point of research (Bhowmick et al., 2023)(Arora 054

and Park, 2023)(Zhao et al., 2022). Some stud- 055

ies have alleviated domain differences through la- 056

bel alignment and domain adaptation approaches 057

(Golde et al., 2024)(Li et al., 2020). For instance, 058

LAR proposed a label alignment and reallocation 059

strategy to enhance cross-domain capabilities by 060

passing label information between source and tar- 061

get domains (Zhang et al., 2023). In social media 062

streams, (Bhowmick et al., 2023) used a global 063

context embedding aggregation strategy to enhance 064

the coherence and accuracy of entity recognition, 065

demonstrating high adaptability in data-scarce envi- 066

ronments. (Li et al., 2020) explored meta-learning 067

approaches to improve NER adaptability and per- 068

formance in few-shot learning scenarios. By sepa- 069

rating task-irrelevant and task-specific components, 070

the model can quickly adapt to different few-shot 071

tasks and reduce the risk of overfitting. While these 072

cross-domain NER methods have attempted to ad- 073

dress these challenges, they tend to focus primar- 074

ily on text and lack the ability to effectively in- 075

corporate other modalities, such as images, which 076

could provide valuable contextual information and 077

enhance entity recognition. This limitation has 078

hindered the progress of cross-domain NER, es- 079

pecially in real-world applications where multi- 080

modal data is abundant but underutilized. Recog- 081

nizing this untapped potential, multimodal NER 082

has emerged as a promising direction that syner- 083

gistically combines text with visual/audio modal- 084
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Figure 1: This figure illustrates the strengths and lim-
itations of cross-domain NER and multimodal NER
approaches. Our method enhances cross-domain NER
through image captions and chain-of-thought.

ities to enhance entity recognition. Approaches085

like VisualBERT (Li et al., 2019b) improve entity086

recognition by using image captions as auxiliary087

information. However, these multimodal methods088

were not originally designed for cross-domain tasks089

(Li et al., 2019b)(Wang et al., 2022a)(Wang et al.,090

2022b). When directly applied to cross-domain091

NER, they often face significant limitations, such092

as the use of image captions that do not adapt to093

domain-specific contexts. Consequently, they fail094

to fully capture the nuances of domain-specific enti-095

ties and struggle to generalize to different domains096

effectively. Figure 1 illustrates the challenges of097

cross-domain and multimodal NER.098

To overcome these challenges, we first gener-099

ate domain-specific image captions by aligning the100

semantics of the raw textual context, which are con-101

ditioned on textual domain cues. These captions102

encapsulate both entity information and domain103

knowledge, enhancing the understanding of poten-104

tial entities in the original text. This enables a105

more seamless integration of visual and textual in-106

formation. We then employ a reasoning chain to107

progressively process these contextually enriched108

captions and extract complex entity relationships,109

facilitating cross-domain and multimodal reason-110

ing. The main contributions of our work are as111

follows:112

• We propose Domain-specific Dynamic Im-113

age Captioning (DDC): Our approach gener-114

ates domain-relevant image captions based on115

the specific contextual information of each116

domain. This method provides rich addi-117

tional semantic information through the align-118

ment of text and image semantics conditioned119

on textual domain cues. By deeply integrat- 120

ing image content with text context, DDC 121

extracts more contextually relevant features 122

from the visual modality, thereby enhancing 123

entity recognition in complex settings. 124

• We propose Cross-domain Reasoning 125

Chain (CRC): In collaboration with domain- 126

specific image captions, CRC enhances the 127

reasoning process by leveraging the contex- 128

tualized image captions. It ensures a smooth 129

and comprehensive reasoning chain for cross- 130

domain tasks by progressively guiding the 131

exploration of relationships between entities. 132

Through multi-step reasoning, CRC facilitates 133

the deduction of entity relationships, leading 134

to more accurate inference and classification. 135

This significantly improves the model’s ability 136

to understand complex cross-domain texts and 137

their interrelated entity relationships. 138

• Experimental results demonstrate that our 139

method not only significantly outperforms 140

all baseline models in cross-domain NER 141

tasks, but also achieves substantial improve- 142

ments. Specifically, in the political and sci- 143

entific domains, our model achieves F1 score 144

increases of 8.22% and 9.58%, respectively, 145

compared to the best baseline. Additionally, 146

our method sets a new state-of-the-art (SOTA) 147

performance in multimodal NER tasks, sur- 148

passing the current leading models. Ablation 149

experiments further validate the critical con- 150

tributions of the DDC and CRC modules in 151

enhancing performance. Furthermore, in few- 152

shot learning scenarios, our method demon- 153

strates exceptional generalization ability in 154

low-resource environments. 155

2 Related Works 156

2.1 Named Entity Recognition 157

NER primarily aims to automatically identify and 158

classify entities in text, such as person, organiza- 159

tion, location, etc. (Arora and Park, 2023)(Wang 160

et al., 2023a). In recent years, with the advance- 161

ment of deep learning, pre-trained language models 162

like BERT have significantly enhanced the perfor- 163

mance of NER (Sun et al., 2021). The NER Glob- 164

alizer system proposed by (Bhowmick et al., 2023) 165

combines local context embeddings and global con- 166

text information for named entity recognition. In 167

the local part, an attention-based model is used for 168
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entity detection and type classification. The Resu-169

Former model proposed by (Yao et al., 2023) uti-170

lizes a combination of BERT and BiLSTM+CRF171

structures for named entity recognition, improv-172

ing model robustness and efficiency through a self-173

training framework. These deep learning-based174

methods improve the understanding of complex175

syntactic structures by leveraging contextual infor-176

mation. .177

In addition, recent research has focused on few-178

shot and zero-shot learning to address the data179

scarcity issue in low-resource scenarios (Zhu et al.,180

2024)(Xie et al., 2023). For example, MetaNER181

uses meta-learning to achieve rapid generalization182

in low-resource environments (Li et al., 2020). Al-183

though these methods improve the model’s per-184

formance in low-resource scenarios, they are still185

mainly confined to a single modality of textual data186

and fail to fully leverage non-textual information187

(Wang et al., 2022a).188

2.2 Cross-domain Named Entity Recognition189

Cross-domain NER aims to address the perfor-190

mance degradation encountered when a model191

trained on one domain is applied to another. Some192

approaches focus on the data itself, improving193

cross-domain performance through data augmen-194

tation. For instance, (Golde et al., 2024) expanded195

the entity types and guided the model to learn and196

understand natural language descriptions of labels.197

(Yang et al., 2022) proposed semi-factual genera-198

tion by randomly replacing non-entity words and199

counterfactual generation by randomly replacing200

entity words. By combining these two methods to201

generate augmented instances, the model’s general-202

ization ability can be enhanced. In contrast, (Chen203

et al., 2021) employed cross-domain data augmen-204

tation to teach the model patterns across different205

domains, transforming high-resource domain data206

into low-resource domain data.207

Other methods are based on domain adaptation,208

aiming to reduce the distributional discrepancies209

between domains through techniques such as adver-210

sarial training and feature alignment. (Wang et al.,211

2023b) enhanced cross-domain generalization by212

extracting domain-relevant features and generating213

corresponding prompts. (Li et al., 2019a) utilized214

a pointer network to perform entity boundary tag-215

ging, integrating adversarial transfer learning to in-216

troduce domain-invariant representations into end-217

to-end sequence labeling models. (Li et al., 2023a)218

proposed FEWNER, a meta-learning-based cross-219

domain few-shot NER approach, which effectively 220

adapts to new tasks and reduces overfitting by di- 221

viding the network into task-independent and task- 222

specific components, facilitating efficient learning 223

on cross-domain few-shot tasks. (Chen et al., 2023) 224

incorporated logical rules and posterior regulariza- 225

tion into deep learning, effectively improving the 226

generalization ability of NER models. With the ad- 227

vent of large language models (LLMs), the underly- 228

ing reasoning capabilities of LLMs have also been 229

leveraged to help address the challenges posed by 230

cross-domain NER and few-shot learning. (Ashok 231

and Lipton, 2023) exploited the reasoning power 232

of LLMs, guiding the model to predict entities in 233

natural language by adding entity definitions be- 234

yond the standard few-shot examples. This allows 235

large language models to generate potential entity 236

lists and corresponding explanations. (Wang et al., 237

2023a) proposed a method that transforms the NER 238

task into a text generation problem, enhancing per- 239

formance in low-resource NER scenarios through 240

labeling and self-verification strategies. (Xie et al., 241

2023) employed a decomposition strategy, convert- 242

ing the NER task into a series of sub-tasks and 243

proposed a two-stage majority voting strategy to 244

improve zero-shot NER performance. Similarly, 245

(Arora and Park, 2023) utilized a decomposition 246

approach, splitting the task into span detection and 247

span classification steps. Additionally, some re- 248

searchers have proposed prompt templates to fur- 249

ther enhance cross-domain performance. For ex- 250

ample, (Zhu et al., 2024) introduced an innovative 251

prompt template and label injection instructions, 252

enabling large models to output entities and thereby 253

improving few-shot NER performance. 254

3 Method 255

As shown in Fig. 2, we propose a novel cross- 256

domain NER method that introduces two key in- 257

novations: Domain-specific Dynamic Image Cap- 258

tioning (DDC) and Cross-domain Reasoning Chain 259

(CRC). Firstly, our DDC generates domain-relevant 260

image captions that align with the textual context. 261

Unlike traditional methods that rely on predefined, 262

static descriptions, DDC generates captions for 263

each image based on the current domain context, 264

effectively utilizing visual and textual information. 265

This approach goes beyond simply concatenating 266

images as supplementary input, instead convert- 267

ing visual content into semantically rich support, 268

tightly aligned with the textual context. As a result, 269
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Figure 2: The overall architecture of the proposed method.

DDC significantly enhances entity recognition per-270

formance, particularly in scenarios where context271

plays a crucial role. Secondly, CRC enables multi-272

step reasoning that adapts to specific input texts and273

task requirements. CRC generates reasoning chains274

that guide entity identification and provide logical275

steps for entity classification, allowing for a deeper276

understanding of complex relationships within the277

text. By leveraging the complementary strengths278

of DDC and CRC, our approach incorporates both279

textual and visual information, enhancing entity280

recognition capabilities in complex, cross-domain,281

and low-resource environments.282

3.1 Domain-specific Dynamic Image283

Captioning284

3.1.1 Formulation285

Traditional Named Entity Recognition tasks primar-286

ily rely on pure text input. Even in multimodal set-287

tings, existing methods often treat images merely288

as supplementary information, using image cap-289

tions that do not adapt to task context, leading to290

a disconnect between image information and tex-291

tual content. In contrast, our method introduces292

DDC, which generates image captions based on293

the specific context of each domain. This approach294

ensures that image information is fully integrated295

with text and directly contributes to the entity recog-296

nition process. Rather than simply concatenating297

image captions with the text, DDC treats the gener-298

ated captions as a key element in the NER task, en-299

hancing semantic understanding and demonstrating300

strong generalization across domains and in low- 301

resource settings. Specifically, assume we have a 302

text T = {t1, t2, ..., tn} and a corresponding image 303

I . The domain-specific image caption is generated 304

through a Visual Language Model (VLM), denoted 305

as C(T, I), and its generation process is defined as 306

follows: 307

C(T, I) = VLM(T, I; θ) (1) 308

where θ represents the parameters of the VLM 309

model. The dynamic caption C(T, I) is adjusted 310

based on the domain and context, ensuring that the 311

image caption is not merely an additional piece 312

of information but serves as an effective semantic 313

extension of the text. 314

3.1.2 Domain-related Caption Generation 315

In the process of generating C(T, I) within the 316

DDC module, the Visual Language Model (VLM) 317

first projects the text T and the image I into a high- 318

dimensional embedding space to capture semantic 319

features. The text embedding vector t̃ is obtained 320

through the text encoder Et: 321

t̃ = Et(T ; θt) (2) 322

where θt represents the parameters of the text 323

encoder, and t̃ ∈ Rdt is the text feature vector. 324

Similarly, the image I is mapped into the feature 325

space, resulting in the embedding ĩ: 326

ĩ = Ei(I; θi) (3) 327
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where θi denotes the parameters of the image328

encoder, and ĩ ∈ Rdi is the image feature vector.329

The embedding vectors t̃ and ĩ capture the domain-330

specific semantic information of the text and image.331

These features are then combined into a domain-332

relevant caption using a fusion function f . The333

generation process of the image caption C(T, I)334

can be represented as:335

c = f(t̃, ĩ;ϕ) (4)336

where ϕ represents the domain-specific parame-337

ters, and c ∈ Rdc is the fused multimodal feature338

vector. The fused feature c is then input to the339

decoder to generate the image caption C(T, I):340

C(T, I) = D(c; θc) (5)341

where θc denotes the parameters of the decoder.342

For example, given an image of a literary award343

ceremony, the VLM generates a caption that de-344

tails the award recipient and the award scene.345

This domain-specific caption provides rich addi-346

tional semantic information, closely integrating347

with the original textual information, supporting348

multimodal understanding.349

3.1.3 Deep Text-Image Fusion350

We project the text embedding and image caption351

embedding into a shared feature space, aligning352

their dimensions using a linear transformation:353

ht = σ(Wtt+ bt) (6)354

355

hc = σ(Wcc+ bc) (7)356

where Wt and Wc are linear transformation matri-357

ces, bt and bc are bias terms, and σ is an activation358

function. ht and hc are the aligned text and image359

caption features, respectively. This transformation360

maps ht and hc into a shared feature space to en-361

able further semantic fusion.362

Next, the text feature ht generates a selective363

weighting coefficient α based on the image caption364

feature hc, while the image caption feature hc gen-365

erates its selective weighting coefficient β based366

on the text feature ht:367

α = softmax(ht · h⊤c ) (8)368

β = softmax(hc · h⊤t ) (9)369

where (·) denotes the dot product operation, and 370

α and β represent the selective weighting coeffi- 371

cients for the image caption in the text feature space 372

and for the text in the image caption feature space, 373

respectively. 374

Finally, we generate the final cross-modal fusion 375

representation h through a bidirectional weighted 376

sum: 377

h = αhc + βht (10) 378

This fused feature h captures the bidirectional 379

interaction between the text and image caption at 380

the semantic level, thereby enhancing semantic rea- 381

soning capabilities. This fusion approach enables 382

the image caption to supplement implicit informa- 383

tion in the text and to help infer potential entities 384

through bidirectional interaction. 385

3.2 Cross-domain Reasoning Chain 386

3.2.1 Context-Based Generation 387

The CRC utilizes multimodal information h and 388

textual context T to construct a multi-step reason- 389

ing chain {Pi}ni=1, where each step is guided to 390

adaptively select different components of the fusion 391

based on the context. The formula is as follows: 392

Pi(T, h) = fi

(
h(i), T (i)

)
, i = 1, 2, . . . , n

(11) 393

where fi denotes the generation function at step 394

i, h(i) represents the fused feature selection at step 395

i, and T (i) represents the semantic information of 396

the text at the given step. This multi-step reasoning 397

chain design enables the model to capture entities 398

embedded within complex textual contexts by adap- 399

tively extracting relevant entities. It improves the 400

precision of identifying complex and nested enti- 401

ties. 402

3.2.2 Collaborative Reasoning with 403

Multimodal Information 404

The CRC works in conjunction with the DDC to 405

enhance the reasoning capabilities through the mul- 406

timodal fused representation h generated by DDC. 407

The image captions complement the textual entity 408

information and provide CRC with richer contex- 409

tual support. In the reasoning chain of CRC, the 410

image caption acts as part of the reasoning process, 411

helping to reveal implicit relationships between 412

images and text. For example, when describing a 413

scientific experiment, the image caption generated 414
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by DDC of experimental equipment can assist CRC415

in deducing possible research methods.416

The collaborative reasoning process in CRC with417

multimodal information is expressed as follows:418

Pi(T, h) = fi(g(h
(i), c(i)), T (i)) (12)419

where c(i) represents the selective feature of the420

image caption generated by DDC at step i. This421

formula demonstrates the multimodal collabora-422

tive reasoning process, where at each reasoning423

step Pi, a key feature in the image caption is se-424

lected from the fused representation h to help iden-425

tify implicit relationships within the text. We then426

concatenates the original text T = {t1, t2, ..., tn}427

with the obtained PCoT as Z = [T ;PCoT ]. The428

transformer-based encoder integrates information429

from the CRC Pi into the token representations430

Z = {z1, · · · , zn} by leveraging its attention431

mechanism. This allows each token representation432

to encode contextually relevant signals from both433

the input sentence T and the auxiliary information.434

In our research, the sequence Z = {z1, · · · , zn}435

is passed through a CRF layer to model the de-436

pendency structure of the label sequence y. The437

conditional probability of y given T and PCoT is438

expressed as:439

P (y|T, PCoT ) =

∏n
i=1 ψ(yi−1, yi, zi)∑

y′∈Y
∏n

i=1 ψ(y
′
i−1, y

′
i, zi)

(13)440

Here, ψ(yi−1, yi, zi) and ψ(y′i−1, y
′
i, zi) denote441

the potential functions capturing the relationships442

between labels and token representations. The443

model’s parameters are optimized by minimizing444

the negative log-likelihood of the predicted label445

sequence with respect to the ground-truth labels y∗,446

formulated as:447

LNLL(θ) = − logPθ(y
∗|T, PCoT ) (14)448

4 Experiments and Results449

4.1 Experiment Settings450

4.1.1 Dataset451

To evaluate our method, we selected four datasets:452

CoNLL2003 (Tjong Kim Sang and De Meulder,453

2003), CrossNER (Liu et al., 2021), Twitter 2015454

(Zhang et al., 2018), and Twitter 2017 (Lu et al.,455

2018), with detailed dataset statistics shown in Ap-456

pendixA. We first conducted pre-training on the457

CoNLL2003 dataset to enable the model to capture 458

basic entity recognition capabilities. Subsequently, 459

we performed experiments on the CrossNER, Twit- 460

ter 2015, and Twitter 2017 datasets. 461

4.1.2 Implementation Details 462

We conducted our experiments on an NVIDIA 463

3090 GPU using the Pytorch framework for train- 464

ing and evaluation. The backbone of our model is 465

bert-large-cased. We used the Adam optimizer with 466

a linear warmup learning rate schedule, where 10% 467

of the training steps were allocated for warmup. 468

The learning rate was set to 2e-05 during the pre- 469

training phase and 1e-05 during the fine-tuning 470

phase. To prevent overfitting, we applied a weight 471

decay of 0.01 for regularization, and the maximum 472

gradient norm was set to 1.0 to avoid gradient ex- 473

plosion. The model was trained for 200 epochs, 474

with a batch size of 2 due to hardware constraints. 475

Model performance was evaluated using the F1 476

score, and we monitored the model by evaluating 477

on the validation set every 10 epochs. 478

4.1.3 Baselines 479

To verify the effectiveness of our method, we com- 480

pared it with several competitive models. First, 481

we selected several multimodal NER models for 482

comparison, including: a. VEC-MNER(Wei et al., 483

2024): enhances text representations with visual 484

features, adopting a fusion strategy between vi- 485

sual scene graphs and text features. b. VisualPT- 486

MoE(Zhu et al., 2024): leverages a mixture of 487

experts (MoE) structure to integrate multiple im- 488

age representations. c. DPE-MNER(Zheng et al., 489

2024): fuses visual and textual information at 490

different granularities through incremental multi- 491

modal representation. d. UniNER-7B(Zhou et al., 492

2024): distills a large language model to produce 493

a compact cross-domain NER model. e. LST- 494

NER(Zheng et al., 2022): uses a graph matching 495

algorithm to transfer label information between 496

source and target domains. f. PromptNER(Shen 497

et al., 2023): unifies entity localization and typing 498

through a dual-slot prompt template, treating them 499

as a single prompt-learning task. 500

4.2 Results and Discussions 501

4.2.1 Main Results 502

The results are presented in Table 1. In our exper- 503

iments, we assessed the entity recognition ability 504

of the model in different domains and compared 505

it with several baseline models. The metric used 506
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Table 1: F1 scores of different models on CrossNER dataset across five domains and on Twitter 2015 and Twitter
2017 datasets.

Model Politics Science Music Literature AI Avg. Twitter 2015 Twitter 2017

UMT - - - - - - 73.41 85.31
VisualPT-MoE - - - - - - 75.63 87.42
VEC-MNER - - - - - - 74.89 84.51
DPE-MNER - - - - - - 77.56 87.90

PromptNER 73.61 71.23 64.61 60.09 57.79 66.47 - -
UniNER-7B 66.90 70.80 70.60 64.90 62.90 67.40 - -
LST-NER 68.51 66.48 72.04 66.73 60.69 67.07 - -

Ours 8.22 ↑ 9.58 ↑ 3.2 ↑ 5.72 ↑ 4.65 ↑ 6.23 ↑ 2.4 ↑ 3.64 ↑
76.73 76.06 75.24 72.45 65.34 73.63 79.96 91.54

Table 2: Ablation study results on the impact of DDC and CRC modules.

Model Politics Science Music Literature AI Avg. Twitter 2015 Twitter 2017

w/o DDC+CRC 73.61 71.23 64.61 60.09 57.79 66.47 76.52 88.19
w/o DDC 76.02 75.41 72.95 64.64 63.35 71.24 77.43 88.94
w/o CRC 74.47 73.09 67.34 64.08 60.52 68.73 76.47 88.57

in the table is the F1 score, which measures the507

model’s performance in cross-domain NER tasks508

supported by image semantics.509

The results show that our method achieves an510

overall F1 score of 73.63 across all domains, out-511

performing our baseline models. This improve-512

ment highlights the effectiveness of our DDC and513

CRC in enhancing text-image fusion and contex-514

tual reasoning. Notably, in the politics and sci-515

ence domains, our method outperforms baseline516

models with improvements of 8.22% and 9.58%,517

respectively. The image captions generated by518

DDC enrich the textual context, allowing the model519

to better distinguish between complex entities in520

multimodal settings. And the CRC module sig-521

nificantly improves the model’s ability to handle522

implicit relationships in complex domain-specific523

contexts. However, our method faces some chal-524

lenges in the AI domain, where image captions pro-525

vide limited contextual support for abstract entities.526

In this domain, textual reasoning is more promi-527

nent for entity recognition, which might explain528

the slightly lower performance (F1 score of 65.34).529

When compared with multimodal baselines, our530

method achieves state-of-the-art performance. On531

the Twitter 2017 dataset, our model attains an F1532

score of 91.54, surpassing the best baseline model,533

DPE-MNER, by 3.64%. Similarly, on the Twitter534

2015 dataset, our model achieves an F1 score of535

79.96, outperforming other multimodal models and 536

setting a new SOTA in multimodal NER tasks. 537

4.2.2 Ablation Study 538

To validate the effectiveness of the DDC and CRC 539

modules, we conducted an ablation study. In this 540

study, we progressively removed the DDC and 541

CRC modules and evaluated their impact on the 542

model’s performance. The results are shown in 543

Table 2: 544

Impact of Removing Both DDC and CRC. 545

When both DDC and CRC modules are removed, 546

the model’s average F1 score drops to 66.47, in- 547

dicating that the synergy of these two modules is 548

crucial to the model’s overall performance. In par- 549

ticular, in the science (71.23) and music (64.61) 550

domains, the model’s performance declines signif- 551

icantly without the image caption and reasoning 552

chain, suggesting that these domains have a strong 553

dependency on multimodal information. 554

Impact of Removing DDC. When the DDC 555

module is removed, the model’s average F1 score 556

decreases to 71.24. Specifically, in the music 557

(72.95) and science (75.41) domains, the absence 558

of image captions leads to a decline in performance. 559

This demonstrates that the dynamic image captions 560

generated by DDC are essential for enriching tex- 561

tual context and enhancing entity recognition capa- 562

bilities. 563
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Table 3: Performance comparison across domains with different K values.

Samples K = 20 K = 50

Domain Pol. Sci. Mus. Lit. AI Pol. Sci. Mus. Lit. AI

BiLSTM-CRF(Lample et al., 2016) 41.75 42.54 37.96 35.78 37.59 53.46 43.65 41.54 44.73 56.13
Coach(Liu et al., 2020) 46.15 48.71 43.37 41.64 41.55 60.97 51.56 48.73 51.15 56.09
Multi-Cell LSTM(Jia and Zhang, 2020) 59.58 60.55 67.12 63.92 55.39 68.21 70.47 66.85 58.67 58.48
BERT-tagger(Devlin et al., 2019) 61.01 60.34 64.73 61.79 53.78 66.13 68.41 63.44 58.93 58.16
NNShot(Yang and Katiyar, 2020) 60.93 60.67 64.21 61.64 54.27 66.33 67.94 63.19 59.17 57.34
StructShot(Yang and Katiyar, 2020) 63.31 62.95 67.27 63.48 55.16 67.16 70.21 65.33 59.73 58.74
templateNER(Cui et al., 2021) 63.39 62.64 62.00 61.84 56.34 58.39 65.23 64.57 64.49 56.58
LST-NER(Zheng et al., 2022) 64.06 64.03 68.83 64.94 57.78 68.51 72.04 66.73 60.69 61.25

Ours 67.26 70.68 68.85 65.77 57.67 75.75 73.57 74.82 67.08 62.36

Impact of Removing CRC. When only the CRC564

module is removed, the F1 scores in the politics565

(74.47) and literature (64.08) domains drop con-566

siderably, indicating that the CRC module plays567

a crucial role in handling complex textual rela-568

tionships and multi-entity associations in these do-569

mains. However, in other domains, such as AI570

(60.52), the performance remains relatively stable,571

suggesting that the contribution of CRC is more572

significant for reasoning tasks involving complex573

textual information.574

4.2.3 Few-shot Study575

To evaluate our method’s performance in low-576

resource scenarios, we conducted experiments with577

20-shot and 50-shot settings across five domains:578

politics, science, music, literature, and AI. The ex-579

perimental results are shown in Table 3. In the 20-580

shot setting, our method achieves higher F1 scores581

in most domains, especially in politics (67.26) and582

science (70.68), where it outperforms the second-583

best method by significant margins. However, it584

performs slightly lower in the AI (57.67) domains.585

The lower performance in AI is likely due to the586

abstract nature of its entities, which makes it harder587

for the model to generalize with limited data. In588

the 50-shot setting, our method dominates across589

most domains, with significant improvements over590

other methods, especially in politics(75.75) and591

music (74.82), demonstrating its robustness in low-592

resource settings. The results show that as the num-593

ber of training samples increases, the F1 scores594

improve significantly, approaching stable levels in595

each domain. We also tested additional k-values596

(5-shot, 10-shot, 20-shot, 50-shot). The results597

are shown in Table 4. The performance improves598

with more data, especially in the 50-shot setting,599

Table 4: Few-shot performance of our model on the
CrossNER dataset across different domains.

Domain 5-shot 10-shot 20-shot 50-shot

Politics 49.00 59.81 67.26 75.75
Science 57.56 66.44 70.68 73.57
Music 50.28 62.46 68.85 74.82
Literature 46.55 56.74 65.77 67.08
AI 41.72 45.08 57.67 62.36

where the model stabilizes. Even with 5-shot and 600

10-shot settings, our method maintains a reason- 601

able recognition ability, demonstrating adaptability 602

in data-scarce situations. 603

5 Conclusions 604

We propose a cross-domain NER method that syn- 605

ergizes Domain-specific Dynamic Image Caption- 606

ing (DDC) with Cross-domain Reasoning Chain 607

(CRC), achieving significant performance improve- 608

ments across diverse domains. By employing DDC 609

to generate context-aware visual semantics through 610

text-image alignment and constructing CRC for 611

progressive deduction entity relationships via multi- 612

step contextualized reasoning, our method effec- 613

tively addresses the challenges of both the scarcity 614

of high-quality annotated data in cross-domain 615

settings and the limitations of incorporating mul- 616

timodal information, particularly demonstrating 617

strong generalization capabilities in low-resource 618

scenarios. These advancements establish new 619

state-of-the-art performance while preserving inter- 620

pretability through explicit reasoning pathways. 621
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6 Limitations622

Our method has limitations in certain scenarios.623

First, while DDC enhances context comprehension624

through text-image alignment, its performance may625

be limited in domains where visual information has626

little relevance, leading to a reduced impact on627

tasks where textual reasoning is dominant. Ad-628

ditionally, although the CRC facilitates entity re-629

lationship reasoning, complex relationships may630

still be missed due to the inherent challenges of631

progressive deduction in dynamic, evolving data632

streams. In future work, we aim to improve these633

areas by exploring enhanced image-text synergy634

in domain-specific contexts and refining the multi-635

step reasoning process to handle more complex636

entity interactions.637

7 Risks638

The datasets utilized in our research are all publicly639

available, and no personal data or sensitive infor-640

mation is collected or processed. The prompts used641

in our method are designed to extract entities and642

their relationships from these datasets, ensuring no643

private or confidential information is involved. Ad-644

ditionally, the method avoids the inclusion of any645

harmful, discriminatory, or unethical content, re-646

specting the rights of individuals and groups. Our647

approach adheres to the terms of use and licens-648

ing agreements associated with publicly accessible649

large language models and datasets.650
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Table 5: The statistics of the dataset.

Dataset Type Num Sentence Num

Train Dev Test

CoNLL2003 4 14987 3466 3684
Politics 9 200 541 651
Science 17 200 450 543
Music 13 100 380 456
Literature 12 100 400 416
AI 14 100 350 431
Twitter2015 4 3999 999 3256
Twitter2017 4 3373 723 723

Fig.3. Baseline models rely exclusively on tex-951

tual inputs and often fail to perform well in sce-952

narios requiring multimodal or contextual under-953

standing. Competing methods such as PromptNER954

and UniNER employ static prompts or generic tem-955

plates, which restrict their ability to adapt to vary-956

ing domain-specific contexts. Similarly, LST-NER,957

while effective in low-resource cross-domain tasks958

through label transfer mechanisms, lacks the ca-959

pacity to fully leverage multimodal or generated960

contextual information. In contrast, our proposed961

framework addresses these limitations by introduc-962

ing DDC, which adaptively generate visual cap-963

tions aligned with textual context, and CRC that964

performs multi-step reasoning for fine-grained en-965

tity classification. By integrating dynamic visual966

and contextual information, our approach demon-967

strates superior adaptability and accuracy in com-968

plex multimodal and cross-domain NER tasks.969
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Figure 3: This is the figure of case study.
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