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Abstract

A common assumption in many domains is that high dimensional data are a
smooth nonlinear function of a small number of independent factors. When is
it possible to recover the factors from unlabeled data? In the context of deep
models this problem is called “disentanglement” and was recently shown to be
impossible without additional strong assumptions [19]. In this paper, we
show that the assumption of local isometry together with non-Gaussianity of the
factors, is sufficient to provably recover disentangled representations from data.
We leverage recent advances in deep generative models to construct manifolds of
highly realistic images for which the ground truth latent representation is known,
and test whether modern and classical methods succeed in recovering the latent
factors. For many different manifolds, we find that a spectral method that explicitly
optimizes local isometry and non-Gaussianity consistently finds the correct latent
factors, while baseline deep autoencoders do not. We propose how to encourage
deep autoencoders to find encodings that satisfy local isometry and show that this
helps them discover disentangled representations. Overall, our results suggest
that in some realistic settings, unsupervised disentanglement is provably possible,
without any domain-specific assumptions.
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Figure 1: (a) Manifold of highly realistic images with two independent latent factors. Given unlabled
images, is it possible to recover the true factors? HLLE+ICA (b) succeeds while a baseline autoen-
coder (c) learns a highly entangled embedding. Similarly, the representation found by HLLE+ICA
approximately satisfies local isometry while the encoding of the baseline autoencoder does not
(bottom). In this paper we show that the assumptions of local isometry and non-Gaussianity are
sufficient to provably recover disentangled representations.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



1 Introduction

With the recent success of deep learning approaches, there has been a resurgence of interest in the
problem of recovering the independent factors that generate high dimensional data. As a motivating
example, consider the cat1 manifold shown in figure[Th. Each image is of size 256 x 256 x 3, but is
generated as a smooth, nonlinear function of just two independent latent factors: the fur color and
pose of the cat. Is it possible to recover these latent factors, given only samples of images?

This problem is closely related, yet different from the problem of learning a deep generative model
from data. Given a training set {z'}, deep generative models find parameters 6 such that x* = gg(z°)
where each latent variable 2’ is sampled from a base distribution, and the different components of
z are independent. Tremendous progress in deep generative models has been achieved by methods
including Generative Adversarial Networks (GAN) [9, [1,[16]], Variational Auto-Encoders (VAE) and
their variants [18]] and optimization-based approaches [4].

While deep generative models have achieved remarkable success in generating realistic images
given a random input, the latent variables that they find are often very different from the desired
“independent factors” [19]. Returning to our motivating example in figure[Th, a deep generative model
may generate perfectly realistic images given random latent vectors z, where some of the coordinates
of z have only a weak relationship to the true latent factors, and no single coordinate encodes a latent
factor perfectly, as desired.

Figure [T] illustrates this issue. In the top of column (c) we show the representation learned by a
particular autoencoder [[13] for the data on the left (see figure [5|for additional baseline autoencoders).
The embedding is shown as a function of the ground truth factors (z;: fur color, z»: cat pose). The
autoencoder learned two latent dimensions, y; and ys, and we plot y1 (21, 22), y2(21, 22) using the
"jet" colormap that goes from blue to red. If each learned dimension encodes only one factor, then
these plots should have contours that are parallel to the axes. For this particular autoencoder, however,
this is not the case. Even though it gives very low reconstruction loss (see supplementary), it can
be seen that neither fur color nor pose are directly encoded by either of the learned factors. Such a
representation is called “entangled” [3]], and there has been much recent work attempting to quantify
the extent to which a learned representation is “disentangled” [8 [1.1} 5]
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Figure 2: For any generative model, g, we can always apply a transformation ¢ to the latent code
z and add ¢~ to the generator to obtain an equivalent generative model, §. In the linear case, if
the code z is sufficiently non-Gaussian any linear transformation ¢ will make the distribution more
Gaussian and so it is possible to differentiate between the true z, G and any alternative 2, §. In the
non-linear case, even if we assume a non-Gaussian prior, there exist many invertible functions ¢ that
preserve the distribution. This enables the construction of g, such that the pair 2, § is indistinguishable
from the true z, g.

An intriguing result from the recent literature on disentanglement is that the problem is impossible
without additional assumptions, even with infinite data [19} [17]]. This issue is well-understood in
the context of linear functions of latent factors, i.e. Independent Component Analysis [[12]. In the
linear ICA setting, it is known that while the problem is non-identifiable when the latent factors



are Gaussian, it can be solved if the latent factors have a sufficiently non-Gaussian distribution.
The recent work of [[19} [I7], points out that in the nonlinear case, the identifiability problem is
much more severe: even if the independent factors are non-Gaussian, there can be many non-linear
transformations 2 = ¢(z) that preserve the distribution of z. By defining §(2) = g(q~*(2)), for
g(z) = x, we can perfectly generate the data from latent variables that have the desired distribution
yet are highly entangled (see figure [2|for a graphical representation of the impossibility result). This
suggests that disentanglement is impossible without additional strong assumptions on the architecture
and the data even with infinite data, and indeed Locatello et al. demonstrated empirically that many
deep autoencoder methods fail to learn a disentangled representation.

In this paper we show the power of one very general assumption that can enable the learning of
disentangled representations. The assumption of local isometry, i.e. that an € change in the latent
representation corresponds to an e change in the observed variables. In the bottom of figure [Tb,c
we show a scatter plot of the distances d(z?,27) and d(y*, y’) for randomly chosen pairs of nearby
points. If the embedding satisfies local isometry, these points should lie on a straight line. As can be
seen, the highly entangled autoencoder embedding does not satisfy local isometry: there is almost no
correlation between the magnitude of change in the embedding space Y and the magnitude of change
in the original input space X.

Specifically, we prove that as the number of datapoints goes to infinity, a combination of two
classical methods: Hessian Eigenmaps [[7]] and fastICA [12], is guaranteed to find a disentangled
representation when the manifold parameterization satisfies local isometry and the base distribution
is sufficiently non-Gaussian. Figure [Ib shows the result of our proposed method on the same data
that the autoencoder was trained on. The contours in the plots are now axis-aligned, indicating that
a perfectly disentangled representation was learned. As shown in the bottom plot, there is a strong
correlation between the pairwise distances of points in the input space X and their corresponding
representations in the embedding space Y.

In the remaining sections, we first derive analytical conditions on manifold parameterizations that
guarantee that disentanglement will be possible; and discuss settings in which these conditions hold.
We leverage recent advances in deep generative models to construct manifolds of highly realistic
images for which the ground truth latent representation is known, and test whether different methods
succeed in recovering a disentangled representation. For many different manifolds, we find that
methods that explicitly optimize local isometry and non-Gaussianity consistently find the correct
latent factors, while baseline deep autoencoders do not. Finally, we discuss ways to encourage
deep autoencoders to find encodings that satisfy local isometry, and show that this helps them
discover disentangled representations. Overall, our results suggest that in some realistic settings,
disentanglement is possible without any domain-specific assumptions.

2 Local Isometry + non-Gaussianity make disentanglement possible

Our main theoretical result shows that a combination of two classical algorithms is guaranteed to find
disentangled representations under two classical assumptions: local isometry and non-Gaussianity.
We first define the assumptions and the algorithms and then state the result.

Local Isometry: Intuitively, a mapping from a latent representation z to an observed vector z satisfies

local isometry if an € change in 2z corresponds to an e change in z. Formally, a mapping ¢ from z to
is said to satisfy local isometry if for all z, the Jacobian J(z) = % satisfies:

J)TJ(z) =1

As we discuss in section [3] local isometry has been widely used in manifold learning algorithms and
any manifold can be approximated to arbitrarily high accuracy using an isometric parameterization.

Non-Gaussianity: Given a distribution over p(z), we say that z is sufficiently non-Gaussian, if a
linear ICA algorithm is guaranteed to recover z (up to permutation) from a linear mixing Az, given
infinite training examples. As mentioned above, this assumption is crucial to enable disentanglement
in linear generative models.

The two algorithms that we will use are HLLE [[7]] and fastICA [13]].

Hessian Eigenmaps (HLLE) belongs to a family of manifold learning techniques that first estimate
a local parameterization around each datapoint and then align the local parameterizations by solving



an eigenvector problem (e.g. [25 130, 28]). Specifically, it is based on the insight that the local
isometry assumption means that local PCA will recover a parameterization that is locally isometric
to the true parameterization. Given a dataset {2}, , an integer K that determines the size of the
neighborhoods, and d the dimensionality of the manifold (or equivalently the dimension of the latent
code), the algorithm proceeds in the following steps:

* For each point z¢, identify its K nearest neighbors using Euclidean distance.

* Perform a local principal components analysis (PCA) within each neighborhood and use the
principal components in each neighborhood to define a global, M x M, matrix H.

* Calculate the d + 1 eigenvectors of H with smallest eigenvalues. Discard the trivial, constant
eigenvector to obtain a d dimensional embedding Y. The embedding of x*, which is a vector
of length d denoted y* is then computed from the ith index of the d eigenvectors.

As shown in [7]], given infinite samples from a manifold for which the mapping from z to x satisfies
local isometry, the HLLE algorithm is guaranteed to find a representation of x that is the same as z
up to a linear transformation: y* = Az* + b for some matrix A.

The fastICA algorithm [12] searches for projections of the data (v = w”x) which maximize the

deviation between the expectation of a nonlinear function of the projection, G(u), and the same
expectation with a Gaussian distribution. It is guaranteed to be consistent “for most reasonable
choices of G, and distributions of the sources. In particular, if G(u) = u*, the condition is fulfilled
for any distribution of non-zero kurtosis. In that case, it can also be proven that there are no spurious
optima”[[13]]. In other words, if p(z) has nonzero kurtosis and we observe infinite samples from
x = Az, then fastICA with G(u) = u* is guaranteed to correctly recover A.

Finally, we refer to HLLE+ICA as an algorithm that first runs HLLE and then runs ICA on the
embedding found by HLLE. We are now ready to state our main result.

Definition: A representation y(x) is said to be a disentangled representation of the true latent factors
z if there exists a permutation 7 and a pointwise nonlinearity f such thaty = 7(f(2)).

Theorem 1: Let {z°} be samples from a manifold z = g(z). Assume that the support of p(z) is
connected. If there exists an alternative representation of the manifold x = g»(s) with s = Af(2),
for any matrix A and pointwise nonlinearity f, such that g, satisfies local isometry and f(z) is
sufficiently non-Gaussian; then as the number of samples goes to infinity, HLLE+ICA will provably
find a disentangled representation of the true latent factors z.

Proof: Donoho and Grimes [7]] showed that as the number of examples goes to infinity, the H matrix
constructed in the HLLE algorithm converges to the (continuous) Hessian operator on the manifold
whose d + 1 eigenfunctions with zero eigenvalue are spanned by the latent factors. They also showed
that if the support of p(z) is connected, then HLLE will recover the isometric embedding of the
manifold, up to a linear transformation. In our setting, the results of Donoho and Grimes guarantee
that HLLE will recover s up to a linear transformation. Since s is assumed to be a linear mixing of
independent factors, the assumption of non-Gaussianity means that running fastICA on the output of
HLLE will provably recover a disentangled representation.

Figure [3]illustrates our theorem for a two dimensional manifold created by translating white squares
on a black background. The location of each square is sampled from a uniform distribution. The
mapping from z (the horizontal and vertical position) to = (the image of the square) has been shown
to satisfy local isometry by [6]. Thus, HLLE (left) is guaranteed to find a representaton that is
related to the true positions by a linear transformation. However, this is not a perfectly disentangled
representation just yet. Nevertheless, since the distribution is uniform, not Gaussian, applying ICA
on the result of HLLE (middle) indeed recovers a perfectly disentangled representation.

Note that the definition of local isometry is sensitive to rescalings: if we parameterize the squares
manifold in terms of horizontal and vertical position, then it will satisfy local isometry. However,
we can also parameterize the same manifold using log(z), exp(y) and such a parameterization
does not satisfy local isometry. Nevertheless, Theorem 1 guarantees that we will still recover a
disentangled representation, regardless of the rescaling of the true factors. In the supplementary
material, we show that another classical manifold learning algorithm, Laplacian EigenMaps (LEM),
followed by fastICA, will also recover disentangled representations under certain conditions, but
unlike HLLE+ICA, LEM+ICA is very sensitive to rescalings.
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Figure 3: The results of running HLLE+ICA on 3000 samples from a 2D manifold created by
translating a white square on a black background. The results of [6] guarantee that this manifold
satisfies local isometry and our theorem guarantees that HLLE followed by ICA will recover a
perfectly disentangled representation. As can be seen, the algorithm work perfectly even with finite
data.

3 Are the assumptions reasonable?

Our theorem is based on two assumptions: non-Gaussianity and local isometry. While both as-
sumptions have been used in machine learning for over 20 years, it is natural to ask whether these
assumptions are reasonable in the context of disentanglement.

Regarding non-Gaussianity, this assumption has been successfully used in linear ICA in a wide range
of real-world applications including analysis of gene expression data, extracting features from stock
market data and removing artifacts from EEG data [14]]. In particular, linear ICA algorithms can
successfully disentangle sources with different distributions and in the presence of outliers.

The history of local isometry in manifold learning goes back to to work of Roweis and Saul [25]],
who used the assumption that manifolds are locally linear as the basis of LLE, and Tenenbaum et
al. [29] who used the stronger assumption of global isometry as the basis of ISOMAP. Donoho and
Grimes [7] showed how to interpret LLE in terms of local isometry and presented HLLE as a more
principled alternative to LLE. They also showed that local isometry is a more general assumption
than the global one used by ISOMAP, and which covers many interesting articulation manifolds.
Taken together, these algorithms have been used in a remarkably wide range of applications.

Manifold learning approaches based on local isometry have been shown to be successful on precisely
the type of manifolds that are typically used in the disentanglement literature. Many recent papers
use dsprites [23]], or some variant of it, which consists of simple 2D objects translating and rotating
in the image plane. These types of manifolds were shown to satisfy local isometry by Donoho and
Grimes [6]. An additional example that is very common in the disentanglement literature is images
of faces at different poses, illumination and expressions. Donoho and Grimes [6] have shown that a
manifold of images of faces with different expressions satisfies local isometry, and such datasets are
successfully handled with HLLE.

As we mentioned above, any manifold can be approximated by one that satisfies local isometry. This
follows from the Nash-Kuiper theorem (1956) [27]] which shows that any manifold of dimension d
embedded in an n dimensional space (n > d + 1), can be approximated to arbitrary accuracy with an
isometric parameterization.

Note that this result does not contradict Gauss’s Theorema Egregium which states that Gaussian
curvature is preserved under isometries and hence, for example, it is impossible to find a global,
exact isometry from a partial sphere to the plane. But this impossiblity is only for global, exact



isometries. Indeed we have found that running HLLE on data sampled from a partial sphere will find
an embedding that satisfies local isometry almost perfectly.

As the preceding discussion shows, there always exists an approximate parameterization of a manifold
that satisfies local isometry, but for our theorem to hold, this parameterization should correspond (up
to a linear mixing and rescalings) with the "ground truth" factors that we seek. In the next section we
ask whether this holds in realistic image manifolds.
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Figure 4: Realistic 2D image manifolds generated with StyleGAN and GANSpace. Each dataset
consists of 3000 samples. The rows correspond to the z; direction and the columns to the 2o direction.

4 Experiments

We conducted experiments on two simple synthetic manifolds and 8 realistic synthetic manifolds.
The two simple manifolds were constructed by squares on a black background, where we varied
the 2D position in the first manifold (shapes-xy), and the diagonal position and the color in the
second (shapes-xc). Similar manifolds have been used in many recent papers on disentanglement
(e.g. [11L [13])), and we ensured that the latent representation has a non-Gaussian distribution by
sampling the latent variables from independent uniform distributions.

In addition to these simple manifolds, we also leveraged recent advances in deep generative models
to create realistic image manifolds where each image is a complex, nonlinear function of a small
number of known latent variables.

Specifically we use GANSpace [[10] to find interpretable semantic directions in the W space of
StyleGAN?2 [16], using PCA. To generate a d-dimensional manifold we select d such directions and
obtain their corresponding PCA components. We then uniformly sample the coefficients of these
d components, while fixing the coefficients of the remaining components to a constant (0). For
example, for the £fhq manifold, we use the first two PCA components identified by GANSpace,
which correspond to head pose and gender, as visible in figure[d For the cat2 manifold, the directions
we select correspond to pose and fur pattern. The following table lists the 8 realistic manifolds that
we generated using GANspace and their independent factors.

ffhq catl | cat2 horse | car kitchen | bedroom church
z1 | gender | pose | pose pose viewpoint | structure | viewpoint zoom level
z2 | pose color | pattern | color color cabinet illumination | building material

For each dataset we ran both modern deep autoencoder methods as well as the two classical methods
described previously: HLLE+ICA (our proposed method) and LEM+ICA. HLLE has a single free
parameter k (the number of neighbors) and we find it by choosing the k for which the local isometry
score is maximal. The local isometry score is defined as the correlation coefficient between distances
in the input space d(x?, 27) and distances in the embedding space d(y*, 3’), when we only consider
pairs of nearby points z*, 27 for which d(x?, 27) < ¢, and € was set to include the closest 5% among
the pairs of points. Since d(y?,y7) is sensitive to a rescaling of the latent representations, we first
compute a diagonal rescaling of the representations that minimizes the MSE between the rescaled
d(yt,y7) and d(x%, 27). For some values of k we found that fastiICA did not converge (less than 5%
of the runs) and we simply ignored the results with that value.
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Figure 5: The embeddings found for the cat1 manifold shown in figure[I|by various methods. None
of the baseline methods manage to learn a disentangled representation.
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Figure 6: Boxplots for the Mean Correlation Coefficient (MCC) for all methods, over the 8 styleGAN
manifolds. The box plots are computed using Matplotlib’s boxplot command and the box extends
from the lower to upper quartile values of the data, with a line at the median. The whiskers extend
from the box to show the range of the data. Outliers are plotted as separate dots. Our proposed
methods succeed in finding a disentangled representation for all 8 manifolds, while the baseline
autoencoders are no better than PCA.

We also measured the performance of baseline autoencoders on the same datasets. Since these
methods have many free parameters, we do not claim that the results shown here are exhaustive. Our
main focus is to show that the disentanglement tasks we use here are not trivial: simply using an
autoencoder with a small bottleneck along with standard regularization methods is not sufficient to
ensure disentanglement, even if it excels in alternative tasks (e.g. reconstruction). The autoencoders
we use were all taken from the code of a recent paper [13] and includes an implementation of a
"vanilla" autoencoder (AE) with 4 conv+relu layers with stride=2 and one fully-connected layer. The
Implicit Rank-Minimizing Autoencoder IRMAE) includes in addition a number of fully connected
linear layers and this has been shown to implicitly regularize the solution towards a low rank
embedding. We also tested a basic implementation of a 5-VAE with the value of 8 that was found
in to provide the best performance. Results for all auto-encoders are for 100 iterations (as shown
in the supplementary material, the reconstruction quality continues to improve with more iterations
but the embedding is largely unchanged). Since deep autoencoders sometimes fail to learn good
representations with very narrow bottlenecks, we trained two versions of all autoencoders: one in
which the bottleneck was of width 2 (the true dimensionality of the manifold), and another with a
bottleneck of width 128. In the second case, we ran fastICA to find a two dimensional projection of
the 128 dimensional latent vector that is as non-Gaussian as possible. We also provide the results of a
PCA encoder as a baseline.

Qualitative results are shown in figure 5] for the cat1 manifold. None of the baseline autoencoder
methods managed to find a disentangled representation, while HLLE+ICA and LEM+ICA did find
one. Evidently the VAE suffered from "posterior collapse"”, i.e. "when the variational distribution
closely matches the uninformative prior" [21].



As a quantitative performance metric we used the Mean Correlation Coefficient (MCC) which is
standard in the nonlinear ICA community [17]. To compute it, we first solve the problem of permuting
the components of the embedding y(z) so it best matches the latent factors z(x), using the Hungarian
algorithm. We then measure the Pearson correlation between the permuted embedding and the
latent variables. The results are summarized in figure[6} our proposed method consistently found a
disentangled embedding, while baseline autoencoders did not.

As expected, run-times of the spectral methods were much faster than the autoencoders. With k = 30
neighbors, running HLLE took about 6 seconds per manifold and ICA took less than a second, while
training the autoencoder took over an hour.

4.1 Hessian Auto-Encoder (HAE)

We saw that our proposed HLLE+ICA algorithm continuously succeeds in finding disentangling
representations, while the autoencoders fail to do so. However, these autoencoders offer a built-
in decoder and also enable out-of-sample extensions. These are two valuable advantages that
HLLE+ICA lacks. In this section we propose a way to achieve both, by encouraging autoencoders to
learn representations which satisfy local isometry.

In order to do so, we use a "student-teacher" paradigm. We first run HLLE+ICA and then train the
autoencoder to minimize the following loss:

L(01,0552,y) = Y _ | E(@':01) — /|| + | D(y'; 02) — || (D

where 6, are the parameters of the encoder F(z), 62 are the parameters of the decoder D(y) and y is
the embedding calculated by HLLE+ICA. This essentially decouples the learning of the encoder and
the decoder. We use exactly the same encoder and decoder architectures as the baseline methods. As
can be seen in the embedding visualizations in figures[7] [8] this method, which we call the Hessian
Autoencoder (HAE), gives near perfect disentanglement on all manifolds, as opposed to the baseline
autoencoders which often find highly entangled embeddings. This entanglement can also be seen
in the interpolations in the figures. The baseline autoencoders often jump abruptly across the latent
space, while HAE transitions smoothly along the manifold, gradually moving in both dimensions, as
desired.

Whereas the vanilla autoencoders only strive for good reconstruction quality, the HAE also aims to
learn its HLLE+ICA teacher’s embeddings. As a result of its more complex loss, it typically requires
more iterations to achieve the same reconstruction quality as the vanilla AE. However, with more
iterations it is indeed able to achieve the same high quality results as its vanilla AE counterpart. The
results in figure[7)show reconstructions with 1000 iterations for HAE and 100 iterations for the vanilla
AE. A more detailed comparison can be found in the supplementary material.

5 Related Work

Our work was inspired by the recent work of Locatello et al. [19] who point out that “unsupervised
learning of disentangled representations is fundamentally impossible without inductive biases on
both the models and the data”. They conducted extensive empirical experiments on “more than
12000 models covering most prominent methods and evaluation metrics in a reproducible large-scale
experimental study on seven different data sets” and observed “that while the different methods
successfully enforce properties encouraged by the corresponding losses, well-disentangled models
seemingly cannot be identified without supervision”.

We agree with the fundamental need for inductive biases, but our work suggests that a relatively
general inductive bias (local isometry) makes disentanglement possible without supervision.

Khemakhem et al. [17]] extend the impossibility results and relate them to classical results on
identifiability of nonlinear ICA. They state that “models with any form of unconditional prior p(z)
are unidentifiable" and argue for using conditional priors (where z is conditioned on a third variable
such as time). Our work again acknowledges the non-identifiability issue without inductive bias, but
shows that a relatively general inductive bias allows us to estimate the correct latent factors even with
an unconditional prior.
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Figure 7: Interpolations in the embedding space of HAE and the vanilla autoencoder, around a chosen
point (upper left image of each grid). The rows correspond to an e change in the first dimension
and the columns in the second. For each manifold and model, the corresponding embeddings are
visualized to the right of the interpolation. On both manifolds, HAE’s two directions perfectly match
the true underlying factors, whereas the AE’s do not. As can be seen, entangled embeddings result in
discontinuous interpolations.

Atzmon et al. [2]] suggested using local isometry as a regularizer in deep autoencoders and compared
this regularizer to other regularizers in the context of visualization of high dimensional data. Our
focus, on the other hand, has been to show that local isometry together with non-Gaussianity is
sufficient to guarantee disentanglement.

Mathieu et al. [22]] have argued that the stochastic encoder used by VAE may provide an inductive
bias that enables disentanglement. Our experimental results, as well as those of others [20, 15]],
suggest that in many cases this inductive bias is not sufficiently strong to guarantee disentanglement,
and our theoretical results show that local isometry is sufficiently strong.

There has been much work on performance evaluation methods for disentanglement [8]. Here we
used the simple MCC performance measure, and verified using visual inspection that it captures the
success or failure of disentanglement. A second major difference between our work and most existing
papers on evaluating disentanglement is the use of a more realistic, complex dataset that we define
using StyleGAN. While we have also shown results on simple 2D shapes on constant background,
we believe the StyleGAN datasets are much more realistic and capture a much wider range of latent
factors that affect images.

The fact that LEM is highly sensitive to the relative scaling of different dimensions was previously
pointed out by Singer and Coifman [26] and by [24]. Both of them suggested methods for improving
LEM: either by pre-computing a local covariance at each point and using it do define affinity or by
post-processing the LEM output. On our datasets, HLLE consistently outperformed LEM but we
believe improvements to LEM can be of great interest given our theoretical results.
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Figure 8: Interpolations in the embedding space of the different autoencoders generated by linearly
interpolating between the encodings of the left and right image and then decoding. HAE transitions
smoothly along the manifold between the two endpoints, while the baseline autoencoders often
fail to do so. For each manifold and model, the corresponding embeddings are visualized to the
right of the interpolation sequence. As can be seen, entangled embeddings result in discontinuous
interpolations. All models were run for 100 iterations (see supplementary material for a discussion
on the reconstruction quality).

6 Conclusions and Limitations

The main question addressed in our work is whether disentanglement is possible. Our theoretical
and empirical results show that when we make two modest assumptions: (1) local isometry and
(2) non-Gaussianity, the answer is “yes”’; and a combination of two classical methods, HLLE and
fastICA, can successfully learn disentangled representations in less than a minute. Our work does
not contradict the recent impossiblity theorems on disentanglement which argue that the task is
impossible without additional assumptions, but it shows that two very general assumptions suffice
with no need for domain-specific assumptions. Moreover, in a set of experiments with highly complex
realistic image manifolds, the assumptions appear to hold and disentanglement is possible with a
simple, well-understood method.

While our work has shown that disentanglement is possible, we do not mean to suggest that the
problem has been solved by running HLLE followed by fastICA. A major limitation of our theoretical
result is that we focus on the infinite data limit and similarly the datasets we constructed correspond to
a very dense sampling of the manifold (3000 images for a 2D manifold). When the sampling is sparser,
it is known that spectral methods can be fooled by sampling noise. Furthermore, running spectral
methods on large datasets (e.g. millions of images) is challenging and may require special-purpose
approximations. We hope that our “possibility results” will encourage more research that will allow
similarly successful disentanglement in a broader range of datasets.
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