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Abstract

We study the task of noiseless linear regression under Gaussian covariates in the
presence of additive oblivious contamination. Specifically, we are given i.i.d.
samples from a distribution (x, y) on Rd×R with x ∼ N (0, Id) and y = x⊤β+z,
where z is drawn independently of x from an unknown distribution E. Moreover,
z satisfies PE [z = 0] = α > 0. The goal is to accurately recover the regressor β to
small ℓ2-error. Ignoring computational considerations, this problem is known to be
solvable using O(d/α) samples. On the other hand, the best known polynomial-
time algorithms require Ω(d/α2) samples. Here we provide formal evidence that
the quadratic dependence in 1/α is inherent for efficient algorithms. Specifically,
we show that any efficient Statistical Query algorithm for this task requires VSTAT
complexity at least Ω̃(d1/2/α2).

1 Introduction

Linear regression is a prototypical supervised learning task with a wide range of applications [RL87;
Die01; McD09]. In the vanilla setting, we are given labeled samples (x(i), y(i)), where the covariates
x(i) are drawn i.i.d. from a distribution on Rd and the labels y(i) are (potentially noisy) evaluations
of a linear function. The goal of the learner is to approximately recover the hidden regression vector.
In this standard setting, linear regression is well-understood both statistically and computationally.
Specifically, under Gaussian covariates with additive Gaussian noise, the least-squares estimator is
computationally efficient and statistically optimal.

In many real-world scenarios, the input data is subject to some form of contamination, e.g., er-
rors due to skewed and corrupted measurements, making even simple statistical estimation tasks
algorithmically challenging. In the context of linear regression, classical computationally efficient
estimators inherently fail in the presence of data contamination. An important goal in this context is
to understand the possibilities and limitations of computationally efficient estimation in the presence
of contaminated data.

∗The majority of this work was done while the author was at the Simons Institute, UC Berkeley.
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In this work, we study the fundamental problem of linear regression with Gaussian covariates in the
presence of oblivious additive contamination in the responses (see Definition 1.1). In the oblivious
contamination model, an adversary is allowed to corrupt a (1−α)-fraction of the labels (by adding an
adversarially selected value to the label), for some parameter α > 0, and is limited in their capability
by requiring the contamination be independent of the samples. Interestingly, the oblivious model
information-theoretically allows for consistent estimation even for α→ 0. This stands in contrast
to the more challenging model of adversarial contamination [Hub64; DK23], where non-trivial
guarantees are impossible if more than half of the labels are corrupted.

To facilitate the subsequent discussion, we define our learning task below.

Definition 1.1 (Noiseless Linear Regression with Oblivious Contamination in Responses). Let
α ∈ (0, 1) be the probability of inliers. Let E be a univariate distribution with PZ∼E(Z = 0) ≥ α.
For β ∈ Rd, we denote by Pβ,E the distribution on labeled examples (x, y) ∈ Rd × R defined as
follows:

x ∼ N (0, Id) and y = x⊤β + Z, where Z ∼ E is independent of x.

Given i.i.d. samples {(xi, yi)}ni=1 from an unknown Pβ∗,E , the goal is to construct an estimate β̂

such that ∥β̂ − β∗∥2 is small.

The model of Definition 1.1 goes back to the work of Candes and Tao [CT05], who studied it (for
more general design matrices) as a classical example of error correction. It is also a standard model in
face recognition [WM10], image inpainting [NT13], privacy-preserving data analysis [DMT07], and
model repair [GL20]. A basic result in this area is that the true β can be recovered exactly, as long
as the design matrix satisfies restricted isometry (therefore, for Gaussian design) and the number of
nonzero entries of the noise is not too large (detailed below) [CT05; CRTV05; WM10; NT13; GL20].
Interestingly, Candes and Tao [CT05] noted that the model can also be recast as compressed sensing.

The statistical task of linear regression with Gaussian covariates under oblivious contamination has
been extensively studied over the past decade [TJSO14; JTK14; BJK15; BJKK17; SBRJ19; PF20;
DT19; dNS21]. The oblivious model has also been explored for other natural tasks, including PCA,
sparse recovery [PF20; dLNNST21], and estimating a signal with additive oblivious contamina-
tion [dNNS22]. While most prior work has focused on Gaussian or subgaussian design matrices, a
more recent line of investigation has developed efficient estimators in the distribution-free setting
under mild assumptions [DKPT23a; DKPT23b].

Let us return to Definition 1.1 and discuss the precise quantitative aspects. Ignoring computational
constraints, the sample complexity n required to obtain any non-trivial estimate of β∗ for the problem
of Definition 1.1 is n = d/α; in fact, n = Θ(d/α) samples suffice to estimate β∗ exactly. In contrast,
the best known computationally efficient algorithms require sample complexity of n = Ω(d/α2)
samples [GL20; dNS21]. Interestingly, known polynomial-time algorithms using n = O(d/α2)
samples succeed even for the (more challenging) noisy version of the estimation task—where (in
addition to oblivious contamination) the clean labels are perturbed by random observation noise (e.g.,
Gaussian noise).2

While noisy linear regression with oblivious contamination information-theoretically requires
Ω(d/α2) samples, this is not the case for the noiseless version considered in this work—where,
as mentioned above, O(d/α) samples suffice. This quadratic gap in 1/α between the information-
theoretic optimum and the sample complexity of known polynomial-time algorithms can be significant
in applications where the fraction of inliers α is small. Beyond practical considerations, given the
fundamental nature of this estimation problem, it is natural to ask whether a computationally efficient
algorithm with (near-)optimal sample complexity (i.e., within logarithmic factors of the optimal)
exists. This leads to the central question motivating our work:

Question 1.2. Does there exist a constant c > 0 so that for all d ∈ N, α ∈ (0, 1), there exists an
algorithm, using O(poly(d)α2−c ) samples and running in poly(d, n) time, that computes an estimate β̂

such that ∥β̂ − β∗∥2 is small?

2To be precise, in the noisy version of the problem, the labels are of the form y = x⊤β + ξ + Z, where
ξ ∼ N(0, σ2). Definition 1.1 corresponds to the important special case of σ = 0. For the noisy case of σ > 0,

the information-theoretic error rate is ∥β̂ − β∗∥2 = Θ
(
σ ·

√
d

nα2

)
.
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Our main result answers this question in the negative for efficient Statistical Query (SQ) algorithms—a
broad and well-studied family of algorithms.

1.1 Main Result

To establish our negative result, we shall show that even the following (easier) testing task is
computationally hard for SQ algorithms:
Testing Problem 1.3 (Testing Version of Linear Regression with Oblivious Contamination). Let
ρ > 0 be the signal strength and α ∈ (0, 1) be the inlier probability. Let E be a (known) univariate
distribution on R that assigns at least α probability to 0. Let R∗

ρ,E be the univariate distribution
of G + z, where G ∼ N (0, ρ2) and z ∼ E independently. The algorithm gets sample access to a
distribution (x, y) ∼ Θ with the goal of distinguishing:

• “Null”: Θ = P , where under P : x ∼ N (0, Id) and y ∼ R∗
ρ,E independently.

• “Alternate”: First a unit vector v is sampled uniformly, and then conditioned on v, Θ = Qv,
where under Qv: x ∼ N (0, Id) and y = ρv⊤x+ z, where z ∼ E is independent of x.

We say that an algorithm A succeeds if the failure probability of A is less than 1/10 under both the
“null” and the “alternate”.

Note that, under the null hypothesis, the features x and the responses y are independent of each other;
while under the alternate hypothesis, they follow the distribution Pβ,E of Definition 1.1 with ∥β∥2 =
ρ. We show in Appendix C that a (computationally-efficient) estimation algorithm for the task of
estimating β with error ρ/4 suffices to (computationally-efficiently) solve the testing problem above.
Proposition 1.4 (Efficient Reduction of Testing to Estimation; Informal). If there exists a
computationally-efficient algorithm to compute β̂ with ∥β̂ − β∗∥ ≤ ρ/4 with high probability,
then it can be transformed into a computationally-efficient algorithm for Testing Problem 1.3.

Basics on SQ Algorithms. Instead of getting sample access, SQ algorithms [Kea98; FGRVX17]
interact with the underlying distribution D through the following oracle.
Definition 1.5 (VSTAT Oracle). Let D be a distribution on X . A statistical query is a bounded func-
tion f : X → [0, 1]. For a “simulation complexity” m ∈ N, a VSTAT(m) oracle for the distribution
D on the input f returns a value v such that |v − ED[f ]| ≤ max

{
1/m,

√
(ED[f ](1− ED[f ]))/m

}
.

That is, the VSTAT(m) oracle returns an estimate of ED[f ] with error comparable to the deviation in
Bernstein’s inequality for high-probability estimates of taking m i.i.d. samples from the Bernoulli
distribution with bias ED[f ]. We thus refer to m as the simulation complexity.

A Statistical Query (SQ) algorithm is an algorithm whose objective is to learn some information
about an unknown distribution D by making adaptive calls to the corresponding VSTAT oracle. The
complexity of an SQ algorithm is quantified by the total number of queries to the VSTAT oracle
(viewed as a measure of the algorithm’s running time) and the maximum simulation complexity of
any such query (viewed as a measure of the algorithm’s sample complexity).

In the context of our learning problem (Definition 1.1), it is worth pointing out the following. First,
there exists an inefficient SQ algorithm with small simulation complexity, which in particular can
be simulated using Õ(d/α) many i.i.d. samples (see Appendix D). Second, there exist efficient SQ
algorithm whose simulation complexity matches the sample complexity Õ(d/α2) of known efficient
algorithms (see Appendix E).

With this context, our main result is the following:
Theorem 1.6 (SQ Hardness of Testing Problem 1.3; informal). Consider the Testing Problem 1.3.
Suppose that (i) α≫ 1

dpolylog(d) (i.e., the fraction of inliers is not too tiny) and (ii) ρ = Θ̃(α). Then
there exists a distribution E satisfying PZ∼E(Z = 0) ≥ α such that any SQ algorithm that solves
Testing Problem 1.3 either

• uses dΩ(log2(d/α)) many queries, or
• uses at least one query to VSTAT(m) for m = Ω̃(

√
d/α2).
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Informally speaking, Theorem 1.6 shows that no SQ algorithm can solve the testing problem (and, via
Proposition 1.4, the estimation problem of approximating β∗) with less than super-polynomial in d

many queries, unless using queries whose simulation complexity is at least Ω̃(
√
d/α2). That is, either

the algorithm “uses” Ω̃(
√
d/α2) many “samples” (in the sense of simulation complexity mentioned

above) or it takes super-polynomial “time” (in the sense of number of queries). We thus obtain
evidence that the quadratic dependence in 1/α on the sample size is required for computationally
efficient algorithms.

It is worth noting that the SQ-hard instances that we construct for the testing problem are efficiently
solvable with Õ(

√
d/α2) samples. We conjecture that the correct dependence on d is in fact linear

(i.e., an Ω(d/α2) lower bound on the computational sample complexity). This is left as an interesting
question for future work (see Section 4).

Finally, while the focus of this work is on the SQ model, SQ-hardness results typically translate
to quantitatively similar hardness for low-degree polynomial tests [Hop18; KWB19], via the work
of [BBHLS21]. While we do not establish a formal theorem in this regard, we believe that our
SQ-hard instances are also hard for low-degree polynomials.

1.2 Overview of Techniques

We wish to show that it is hard to solve Testing Problem 1.3 with fewer than
√
d/ρ2 samples (we

will ultimately set ρ = Θ̃(α)). The first question we face is to make a judicious choice of the
contamination distribution E that (I) satisfies our noise model, namely PZ∼E(Z = 0) ≥ α; and (II)
it is SQ-hard to distinguish the null and alternate hypotheses.

Choice of Contamination Distribution: Intuition. A natural first step to consider is what happens
if we select the contamination distribution E to be the standard Gaussian, i.e., E = N (0, 1). In this
case, the testing task corresponding to Testing Problem 1.3 is information-theoretically impossible
with o(

√
d/ρ2) samples. Unfortunately, this choice does not fit our criterion (I), requiring that the

contamination distribution must be exactly 0 with probability at least α.

Inspired from the information-theoretic sample complexity lower bound for the Gaussian contam-
ination setting, we instead consider a scenario where the contamination is given by a distribution
E, which is a discrete Gaussian with spacing s (see Definition 2.9). Heuristically, the discrete
Gaussian approximately matches its low-degree moments with the continuous Gaussian case, and
thus, prior work [DKS17] hints that it is SQ-hard to distinguish between the cases of discrete Gaus-
sian and continuous Gaussian contamination. Since the case of continuous Gaussian contamination
information-theoretically requires Ω(

√
d/ρ2) samples, intuitively we are moving in the right direction.

Note that the aforementioned discrete Gaussian E assigns probability Ω(s) to 0. Taking s = Θ(α),
we simultaneously satisfy criterion (I) above and have a reasonable chance of satisfying (II).

The above is the key intuitive idea underlying our proof. However, there are a number of important
technical steps required to make the analysis work towards satisfying (II).

Discrete Noise and Non-Gaussian Component Analysis. For a unit vector v, let Qv be the
distribution over (x, y) such that y = ρv⊤x + Z, where Z ∼ E independently of x and E is the
suitable discrete Gaussian distribution. Let P be the distribution over (x, y) corresponding to the
null hypothesis, namely x and y are independent with correct marginals (i.e., x ∼ N (0, Id) and
y ∼ ρ2G+ Z, where G ∼ N(0, 1) and Z ∼ E are independent). We wish to show that it is SQ-hard
to distinguish between Qv, for random v, and P . Note that conditioning on the value of y, Qv is a
standard Gaussian in the directions orthogonal to v and is given by some known distribution, Ay , in
the v–direction. This means that the testing problem we are considering is effectively a conditional
Non-Gaussian Component Analysis (NGCA) problem (Testing Problem 2.8). Unfortunately, there
are several technical obstacles preventing us from applying existing tools [DKS17; DKS19].

The first technical hurdle arises from the fact that Ay is a discrete distribution, and in particular has
infinite chi-squared norm with respect to the standard Gaussian. In particular, this means that the
standard SQ–dimension related techniques for proving lower bounds will not work here. Instead, we
need to leverage and adapt the recent work of [DKRS23] that directly uses Gaussian Fourier analysis
to establish SQ lower bounds even when the chi-squared distance is infinite. Unfortunately, the latter
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work [DKRS23] does not give SQ-lower bounds for conditional Non-Gaussian Component Analysis
tasks (as the one we are dealing with here). Consequently, we will require a careful adaptation of
their techniques in our context.

Connection with Continuous Gaussian Contamination. A key requirement for the Gaussian
Fourier analysis to go through in [DKRS23] is that Ay’s have well-behaved moments. Unfortunately,
an additional technical challenge arising in our context is that directly bounding the relevant moments
of Ay (which belongs to the family of discrete Gaussians) is challenging.

Instead, for the purpose of the analysis, we again leverage the connection with continuous Gaussian
contamination. Specifically, we choose By to be a continuous Gaussian counterpart of the discrete
Gaussian Ay . Let the resulting distribution on (x, y) be Tv (which is a continuous counterpart of Qv).
Note that this is again an instance of conditional NGCA. Since the By’s are now (continuous) Gaus-
sians (and hence satisfy many desirable properties, e.g., continuity), it can be shown that if v and w
are nearly orthogonal vectors, Tv and Tw will have small chi-squared inner product with respect to P .

Hardness of Continuous Noise Contamination. The fact that two random unit vectors have small
inner product with high probability can be used to show that the task of testing between P and
{Tv}v∼Sd−1 has large SQ dimension. This implies SQ-hardness of this basic testing problem. In
fact, it will imply the more powerful result that for any bounded function f , with high probability
over v, the expectations ETv [f ] and EP [f ] cannot be distinguished by a VSTAT(o(m0)) query for
m0 :=

√
d/(ρ2 · log4 d); see Proposition 3.6.

Quantitative Relationship between Discrete and Continuous Gaussian Noise. We now return
to the challenge of computing moments of discrete Gaussians Ay (for performing Gaussian Fourier
analysis). We resolve this issue by comparing these moments to the moments of By. As Ay will be
a discrete version of the Gaussian By, this relationship will be relatively manageable to prove. We
then combine this ingredient with techniques involving Hermite analysis from [DKRS23] to show
the following: for any bounded test function f , with high probability over the choice of a random v,
it holds that |EQv [f ]−ETv [f ]| is tiny (inverse super-polynomial in m0) as long as s≪ ρ

polylog(d)

(Theorem 3.7).

Putting Everything Together. Combining the above, we obtain the following: for any f , with high
probability over random v, it holds that (i) |EQv [f ]−ETv [f ]| is inverse super-polynomially small
in m0, and (ii) |ETv [f ]−EP [f ]| is smaller than the threshold for VSTAT(o(m0)). Therefore, by a
union bound and a triangle inequality, it follows that with high probability |EQv [f ]−EP [f ]| is also
smaller than the threshold for VSTAT(o(m0)), implying SQ-hardness (Proposition 2.6).

1.3 Related Work

Our work is broadly situated in the field of robust statistics, which has a long history dating back
to Huber and Tukey [Hub64; Tuk60]. Robust statistics aims to design estimators that are tolerant
to data contamination. Focusing on high-dimensional data, our work studies the statistical and
computational aspects of robust estimation, which has seen a flurry of work in the last decade since
[DKKLMS16; LRV16]; see [DK23] for a recent book on this topic. For designing robust estimators,
the choice of contamination model naturally plays a crucial role. This work is part of a broader effort
to understand computational and statistical aspects of natural, not fully adversarial, contamination
models; see, e.g., [BJK15; BJKK17; ZJS19; DGT19; DK22; DKMR22; DKRS22; DKKTZ22;
DKPT23a; DDKWZ23b; DDKWZ23a; MVBWS24; NGS24; PP24; DZ24; KG25; DIKP25].

Historically, the prototypical contamination model in robust statistics has been Huber’s contamination
model [Hub64], which was strengthened to total variation distance [Hub65] and strong contamination
models [DKKLMS16]. The task of linear regression under these contamination models is now
well understood both statistically [CGR16] and computationally [DKS19; PJL20; DKPP23]. As
mentioned earlier, it is information-theoretically impossible to achieve consistency in these models if
the proportion of contamination is bounded away from zero. Thus, an important direction is to under-
stand the possibilities and limitations in other, less adversarial, contamination models. The oblivious
adversary studied here is one such model, and indeed it does lead to consistent estimation even when
the oblivious outliers constitute the majority of the observed data; see the discussion below Defini-
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tion 1.1. Our work shows that while this weaker contamination model is benign from the perspective
of information-theoretic rates, it does present surprising information-computation tradeoffs.

2 Preliminaries
For a univariate distribution E, we define R∗

ρ,E to be the univariate distribution of G + z, where
G ∼ N (0, ρ2) and z ∼ E independently. For two vectors v and w in Rd, we use ⟨v, w⟩ to denote
the standard inner product

∑
i∈[d] viwi. A degree-k tensor in d-dimensions v is an element in

(Rd)⊗k. with entries (vi1,...,ik)i1∈[d],...,ik∈[d]. For a vector v, we use v⊗k to denote the k-tensor
with entries

∏d
ℓ=1 viℓ . For two k-tensors v and w, we use ⟨v,w⟩ to denote the inner product∑

i1,...,ik
vi1,...,ikwi1,...,ik and use ∥v∥2 :=

√
⟨v,v⟩. A k-tensor function F : X → (Rd)⊗k maps

each x ∈ X to a k-tensor.

Hermite Polynomials For a k ∈ N, we use hk : R→ R to denote the k-th normalized probabilist’s
polynomial (which is a degree-k polynomial with definition hk(x) :=

1√
k!
(−1)kex2/2 dk

dxk e
−x2/2).

We shall also use the k-th Hermite tensor Hk as defined in [DKRS23, Definition 2.2].

Fourier Analysis For a distribution P on a domain X , we use L2(X , P ) to denote the space of
all functions f : X → R with Ex∼P [f2(x)] < ∞. For two functions f, g ∈ L2(X , P ), we
use ⟨f, g⟩P to denote the inner product Ex∼P [f(x)g(x)] and ∥f∥L2(P ) to denote ⟨f, f⟩P . For a
function f : Rd → R and an ℓ ∈ N, we define f≤ℓ to be the degree-ℓ Hermite approximation
function f≤ℓ(x) :=

∑ℓ
k=0⟨Ak,Hk⟩ where Ak := Ex∼P [f(x)Hk(x)]. We extend this definition

to f : Rd × R as follows: First, for each y ∈ R, we define fy : Rd → R as x 7→ f(x, y) and then
define f≤ℓ(x, y) := fy(x)

≤ℓ, that is, for each y, we perform degree-ℓ approximation of fy. We use
f>ℓ := f − f≤ℓ to denote the residual.

Fact 2.1. For every function f : Rd → [−1, 1], ∥f>ℓ∥L2(N (0,Id)) → 0 as ℓ→∞. Furthermore, for
all f : Rd × R→ [−1, 1] and univariate measures R, ∥f>ℓ∥L2(N (0,Id)×R) → 0 as ℓ→∞.

We use Ω̃, Θ̃ notation to hide polylog(d, 1/α) factors. For two non-negative functions, a and b,
we use a ≲ b (similarly a ≳ b) to say that there exists a constant (independent of other problem
parameters) such that a ≤ Cb (respectively, a ≥ Cb); if a ≲ b and b ≳ a, then we say a ≍ b.

SQ Algorithms We state the preliminaries of SQ for the following generic testing problem.

Testing Problem 2.2 (Generic Testing Problem). Let P and {Qv}v∈Sd−1 be distributions over a
domain Z , which correspond to “null” and “alternate”, respectively.

• First sample Γ ∼ Ber(1/2) and v ∼ Sd−1 independently (unknown to the statistician).
• Then set Θ = P (“null”) if Γ = 0 and Θ = Qv (“alternate”) otherwise.
• The statistician gets (either sample/oracle) access to the distribution Θ and generates Γ̂ ∈ {0, 1}

using an algorithm A. We say A solves the testing problem if P(Γ̂ ̸= Γ) ≤ 0.1.

We say an SQ algorithm A solves a problem with query complexity q and accuracy complexity m if
it iteratively (potentially also adaptively and randomly) makes queries f1, . . . , fq (each fi is bounded
in [0, 1] and could depend on the previous queries and their responses) on the underlying distribution
(Θ above) to a VSTAT(m) oracle. An SQ lower bound is an information-theoretic lower bound of
the following form: any successful SQ algorithm A must have either q ≥ q0 or m ≥ m0. In the
remainder of this section, we detail the technical results for proving such lower bounds.

Definition 2.3 (Pairwise Correlation). For a reference distribution P , and candidate distributions Q1

and Q2, the pairwise correlation between Q1 and Q2 with respect to P is defined as χP(Q1,Q2) :=

EZ∼P
[ q1(Z)q2(Z)

p2(Z) − 1
]
, where q1(·), q2(·), p(·) denote the densities of Q1,Q2, and P with respect

to a common measure, respectively. When Q1 = Q2, the pairwise correlation becomes the same as
the χ2-divergence between Q1 and P , i.e., χ2(Q1,P) =

∫
Z
q21(x)
p(x) dx− 1.

Statistical dimension is then defined using these pairwise correlations:

Definition 2.4 (Statistical dimension from [BBHLS21]). The statistical dimension of Testing Prob-
lem 2.2 at accuracy complexity m is defined as:
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SDA(m) := max
{
q ∈ N : supE:Pv,v′ (E)≥1/q2Ev,v′

[
|χP(Qv,Qv′)|

∣∣E] ≤ 1
m

}
,

where (i) v, v′
iid∼ Sd−1 independently and (ii) the inner supremum is taken over events E ⊂

Sd−1 × Sd−1 on v and v′ (i.i.d. from unit sphere) that have probability at least 1/q2.

We now define the notion of success of a query f that will be useful to us:
Definition 2.5 (Success of a query on a distribution). We say that a query f : Z → [0, 1] succeeds on
distinguishingQv and P with accuracy complexity m, denoted by the event Ef,v,m, if |EQv

[f(Z)]−
EP [f(Z)]| ≥ max

(
1
m ,min

(√
a(1−a)
m ,

√
b(1−b)
m

))
for a := EP [f ] and b := EQv

[f ].

We are now equipped to state the SQ lower bounds that we will use repeatedly.
Proposition 2.6 (SQ Lower Bound). Consider Testing Problem 2.2. Then

(C.I) For any query f : Z → [0, 1], Pv∼Sd−1 (Ef,v.m) ≤ 1
SDA(7m) .

(C.II) Suppose for all queries f : Z → [0, 1], it holds that Pv∼Sd−1 (Ef,v,m) ≤ 1
q . Then any SQ

algorithm A that solves Testing Problem 2.2 must use either Ω(q) queries in expectation or
at least one query as powerful as VSTAT(m+ 1).

Non-Gaussian Component Analysis We will primarily consider Testing Problem 2.2 of a particular
form called Non-Gaussian Component Analysis (NGCA). We begin by defining High-Dimensional
Hidden Direction Distribution:
Definition 2.7 (High-Dimensional Hidden Direction Distribution). For a unit vector v ∈ Rd and
a distribution H on the real line, we define PH

v to be the distribution over Rd, where PH
v is the

product distribution whose orthogonal projection onto the direction of v isH, and onto the subspace
perpendicular to v is the standard (d−1)-dimensional normal distribution. In particular, if H is
a continuous distribution with probability density function (pdf) H(x), then PH

v (x) has the pdf
H(v⊤x)ϕ⊥v(x), where ϕ⊥v(x) = exp

(
−∥x− (v⊤x)v∥22/2

)
/(2π)(d−1)/2.

[DKS17] established SQ lower bounds for the NGCA problem, where the null and the alternate are
N (0, Id) and {PH

v }v∼Sd−1 , respectively and (i) H (nearly) matches many moments with N (0, 1)
and (ii) has finite χ2(H,N (0, 1)). For linear regression, we would need the following generalization:

Testing Problem 2.8 (Conditional NGCA). Let {Hy}y∈R be a family of univariate distributions and
R be a univariate distribution. Consider Testing Problem 2.2 over (x, y) on the domain Rd × R with

• (“Null”) Under P: x ∼ N (0, Id) and y ∼ R independently.
• (“Alternate”) Under Qv: y ∼ R and conditioned on y = y0, X|y=y0 ∼ P

Hy0
v .

Building on [DKS17], [DKS19] showed SQ-hardness for the problem above if (i) Hy matches
moments with N (0, 1) for (nearly) all y ∈ R and (ii) χ2(Qv,P) < ∞. Unfortunately, neither of
these conditions holds for us, and we need more flexible and powerful tools to bypass these limitations.

Discrete Gaussian We define Discrete Gaussian distributions that are central in our analysis.
Definition 2.9. For a center µ ∈ R, deviation σ > 0, base θ, and spacing s > 0, define the distribution
DG′[µ, σ, θ, s] to be the positive measure over θ + sZ that assigns mass sϕµ,σ(θ + si) for all i ∈ Z;
here, ϕµ,σ denotes the pdf of the Gaussian distribution with mean µ and standard deviation σ. We
use DG

[
µ, σ, θ, s

]
to denote the normalized probability distribution.

Discrete Gaussians behave similarly to Gaussians with respect to low-degree polynomials:
Fact 2.10 ([DKRS23, Fact C.3] and [DK22, Lemma 3.12]). For any polynomial p of degree
at most k and θ ∈ R and s > 0, we have that

∣∣EG∼N (0,1)[p(G)] − EY∼DG[0,1,θ,s][p(Y )]
∣∣ ≲√

EG∼N (0,1)[p2(G)]k!2O(k) exp(−Ω(1/s2)).

3 Proof of Theorem 1.6

In this section, we will prove our main result Theorem 1.6. The first step is to make a judicious
choice of the noise distribution E. For reasons outlined in Section 1.2, we choose E to be a discrete
Gaussian with σ2 ≈ 1 and spacing s (eventually set to Θ̃(α)).
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As the second step, we note that the resulting testing problem is an instance of conditional NGCA.

Testing Problem 3.1 (NGCA with Discrete Gaussian). For y ∈ R, define the distribution Ay :=
DG
[
µy, σ̃, θy, s

′] with parameter values in Definition 3.2. Consider Testing Problem 2.8 with

• (Marginal of y) R := R∗
ρ,E with E = DG

[
0, σ, 0, s

]
.3

• (Conditional NGCA) For each y ∈ R,Hy is equal to Ay .

We denote the corresponding null by P and the alternate for direction v by Qv .

We mention the parameter choices that we shall enforce from now on:

Definition 3.2. Let signal strength ρ ∈ (0, ρ0) for sufficiently small ρ0 > 0, standard deviation
σ ∈ (0.5, 1), spacing s ∈ (0, 1) satisfy the following values:

• σ =
√
1− ρ2,

• s′ = s/ρ ≤ 0.001,
• µy := ρ y,
• θy = y/ρ.

That is, for each y, the conditional distribution of the covariates in the hidden direction is a discrete
Gaussian with mean µy (scaling linearly with y) and standard deviation σ (slightly smaller than
1). While these parameters might look a bit obscure, they perfectly resemble the typical setting
of E = N (0, σ2).4 The next result, proved in Appendix B.1, shows that Testing Problem 1.3 is
equivalent to Testing Problem 3.1.

Proposition 3.3. Testing Problem 3.1 is equivalent to Testing Problem 1.3 when E = DG
[
0, σ, 0, s

]
.

Thus, to prove Theorem 1.6, it suffices to consider Testing Problem 3.1, which is a conditional NGCA
instance. Since the distributions {Ay}y∈R are (necessarily) degenerate, the lower bound machinery
of SDA and pairwise correlations developed in [DKS17; DKS19] for (conditional) NGCA lead only
to vacuous bounds. To bypass this degeneracy, we will instead use Proposition 2.6 (C.II) and will
show that for any bounded query f : U → [0, 1],

Pv∼Sd−1{|EZ∼Qv
[f(Z)]− EZ∼P [f(Z)]| ≥ “large”} ≤ “tiny” , (1)

where the notion of being “large” is according to Definition 2.5 for m = õ(ρ2/
√
d). However, it is

unwieldy to compute (or upper bound) this probability. Hence, we first take a detour to a related
testing problem with the more usual continuous Gaussian noise in the next section.

3.1 Conditional NGCA with Continuous Gaussian

As mentioned in the introduction, we use the similarity of discrete Gaussian with continuous Gaussian
(with respect to polynomials) as an analysis tool. We define the analogous testing problem with
continuous Gaussian noise below.

Testing Problem 3.4. For y ∈ R, let By denote the distribution N
(
µy, σ

2
)

with parameters as in
Definition 3.2. Consider Testing Problem 2.8 with

• (Marginal of y) R := R∗
ρ,E with E = DG

[
0, σ, 0, s

]
.

• (Conditional NGCA) For each y ∈ R,Hy is equal to By .

We denote the corresponding null by P (same as 3.1) and the alternate for direction v by Tv .

Remark 3.5. Observe that the alternate above Tv does not correspond to the following (Gaussian)
linear model: y = ρv⊤x+z for x ∼ N (0, Id) and z ∼ N (0, σ2) independently of x. This is because
the marginal of Y under the aforementioned linear model would have been Gaussian N (0, 1), while
it is R in Testing Problem 3.4 (which is not Gaussian).

Before establishing similarity with discrete Gaussian quantitatively, we first establish that Testing
Problem 3.4 is SQ-hard. In fact, we show the stronger result that the associated SDA is large.

Proposition 3.6 (SQ Hardness of Continuous Noise). Consider Testing Problem 3.4. Then for any

m ∈ N and q ∈ N satisfying ρ2
√

log(1/q)√
d

≲ 1
m , we have that SDA(m) ≳ q.

3Recall that R∗
ρ,E is the distribution of x+ z for x ∼ N (0, ρ2) and z ∼ E independent of each other.

4The conditional distribution of x|y in the hidden direction v would be N (µy, σ
2) [DKPPS21, Fact 3.3].
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Proof Sketch. We prove a bound on SDA by calculating an analytic upper bound on the pairwise
correlation χP (Tv, Tv′). Since the marginal of y is identical (R) under P, Tv, and Tv′ , the pairwise
correlation is equal to Ey∼R[χN (0,Id)(P

By
v , P

By

v′ )]. Since P
By
v and P

By

v′ are Gaussians, there is a
closed-form expression (in terms of y), which we integrate out using nice properties of R.

As a consequence, Proposition 2.6 (C.I) implies that for any f : U → [0, 1] and m = o(ρ
2 log4 d√

d
),

Pv∼Sd−1{|ETv [f ]− EP [f ]| ≥ “threshold of VSTAT(m)”} ≤ 1
dω(log2 d)

. (2)

3.2 Hardness of Distinguishing Discrete and Gaussian Noise

Towards establishing (1), a natural step after proving (2) is to argue that, with high probability,
|ETv

[f(Z)]− EQv
[f(Z)]| is small. This is exactly what we establish in the next result, which is our

main technical result:
Theorem 3.7. Suppose that (i) α≫ 1

dpolylog(d) and ρ2 ≥ s2 logC(d/α) for a large constant C > 0.

Then for any f : U → [0, 1], it holds that Pv∼Sd−1

[∣∣∣EQv [f ]− ETv [f ]
∣∣∣ ≳ (αd)log2(d/α)]

≤ 1
dlog2 d

.

In the remainder of this section, we detail the proofs and intuition for the above result.

As a first step, we do a Hermite expansion of the function f as in [DKRS23], but generalized to the
setting of conditional NGCA. However, for technical reasons due to the degeneracy of Ay and hence
Qv , we would need to perform another truncation operation.

Definition 3.8. Define Ãy to be the univariate distribution Ay conditioned on {z : |z| ≤ d} and let
Q̃v to be analogous to Qv but with Ãy instead of Ay .

We now use the Hermite expansion to obtain the following result:

Proposition 3.9. Let f : Rd × R→ [0, 1]. For any L ≤ [1, d2 ], ℓ ∈ N, and f̃ := f · 1|y|≤L, we have

|ETv [f ]− EQv [f ]| ≲ e−Ω(L2) + e−Ω(d) +
ℓ∑

k=1

max
|y|≤L

∣∣∣Ãk,y −Bk,y

∣∣∣ · Ey∼R[ ∣∣⟨v⊗k,Tk,y⟩
∣∣ ]

+
∣∣EQ̃v

[f̃>ℓ]− EQv
[f̃>ℓ]

∣∣ (3)

where Tk,y := Ex∼N (0,Id)[f̃y(x)Hk(x)], Ãk,y := Ex∼Ãy
[hk(x)], and Bk,y := Ex∼By [f̃(x)].

Proof Sketch. Since Rρ,E has very light tails, we can replace f with f̃ which leads to a difference of
at most P(|y| ≥ L) ≲ e−Ω(L2).
Next, we decompose f̃ as f̃≤ℓ and f̃>ℓ, where the f̃>ℓ term appears as is in (3) and can be ignored
momentarily. Then, using law of total expectation, we can write E(x,y)∼TQv

[f̃≤ℓ] = Ey[Ex[f̃≤ℓ
y (x)]].

The result in [DKRS23, Lemma 3.3] implies that E
P

Ay
v

[f̃≤ℓ
y (x)] =

∑ℓ
k=0 Ak,y

〈
v⊗k,Tk,y

〉
for

Ak,y := Ex∼Ay
[hk(x)]. A similar argument holds for By . Taking the difference and integrating over

y, we obtain EQv [f̃
≤ℓ]− ETv [f̃

≤ℓ] = Ey
[∑ℓ

k=1

(
A′
k,y −Bk,y

)
⟨v⊗k,Tk,y⟩

]
.

Since f̃ is zero for |y| ≥ L, Tk,y is also zero for large y and we can take the maximum only over
|y| ≤ L, yielding (3) roughly. However, later on, we would still need to control EQ[f̃>ℓ], which could
potentially be large because of degeneracy and unboundedness of Ays. Therefore, we replace Ays
with Q̃ys to make it bounded; using concentration of Ays, this leads to an additional e−Ω(d2) term.

Thus, we crucially need to control |Ãk,y −Bk,y| and obtain high-probability estimates (over ran-
domness in v) on |⟨v⊗k,Tk,y⟩|. We begin with the former, whose proof is deferred to Appendix B.5;
we note that the key ingredient in proving this result is Fact 2.10.
Lemma 3.10 (Closeness of Hermite Coefficients). For any y ∈ R and k ∈ N, we have

• (Tighter for small k) |Ãk,y −Bk,y| ≲ max
(
1, |µy|k

)
kO(k) ·

(
e
−Ω

(
ρ2

s2

)
+ e−Ω(d)

)
.

• (Tighter for larger k) |Ãk,y −Bk,y| ≲ eO(µ2
y).
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Thus, Lemma 3.10 implies that (i) for small k, the difference is inverse super-polynomially small if
ρ2 ≫ s2polylog(d) ≍ α2polylog(d) and (ii) it stays bounded by O(1)eL

2

for |y| ≤ L for any k.

We now turn to computing high-probability estimates on Ey|⟨v⊗k,Tk,y⟩|. Here, we reparameterize
the arguments in [DKRS23] and obtain the following result, whose proof is deferred to Appendix B.6.

Proposition 3.11. Let {Tk,y}k∈N,y∈R be tensors with ∥Tk,y∥2 ≤ 1 for all k ∈ N, y ∈ R, and let t ∈
N be arbitrary . Then for any δ ∈ (0, 1), it holds with probability 1−δ over a random unit vector v that

Ey[
t∑

k=1

|⟨v⊗k,Tk,y⟩|] ≲ t and
∞∑

k>t+1

Ey
[
|⟨v⊗k,Tk⟩|

]
≲ dO(1)

( t log t
δ

d

)t/4
+ dO(1) · 1δ e

− Cd

log d
δ .

The result above is applicable to our setting because for each y ∈ R:
∑∞
k=1 ∥Tk,y∥22 =

∥f̃y∥2L2(N (0,Id)
≤ 1, where the equality uses the orthonormality of Hermite tensors under N (0, Id)

and the inequality uses that f̃ is bounded by 1.

3.2.1 Proof sketch of Theorem 3.7

We are now ready to present a proof sketch of Theorem 3.7. Combining Proposition 3.9 with
Lemma 3.10 and Proposition 3.11 and the fact that |µy| ≤ L for L ≥ 1, we obtain that for any t ∈ N
with probability at least 1− d− log2 d,∣∣ETv [f ]− EQv [f ]

∣∣ ≲ e−Ω(L2) + e−Ω(d) + LttO(t)
(
e−Ω(ρ2/s2) + e−Ω(d)

)
t

+ ecL
2

(dt)O(1)
(
t log t log3 d

d

)t/4
+ ecL

2

e−d/polylog(d) +
∣∣ETv [f̃

>ℓ]− EQ̃v
[f̃>ℓ]

∣∣.
For L = log5 d, t = L6 and ρ = st2, the sum of the first four terms is at most O(e−L

2

) ≤ d− log2(d/α).
For the last term, we show that taking ℓ large enough suffices—this argument uses Fact 2.1 and the
truncation of Ay as per [DKRS23]; see Appendix B.8 for details.

3.3 Proof Sketch of Theorem 1.6

Since E = DG
[
0, σ, 0, s

]
, we have that PE(z = 0) = Θ(s/σ) up to normalization 1± e−1/s2 ; see

Fact 2.10. Taking s = Θ(α), we get that P(z = 0) ≥ α satisfying our model. To establish SQ
lower bound, it suffices to show that the probability of success of f on distinguishing Qv and P with
m ≪ m0 := Θ̃(

√
d/α2) accuracy complexity is at most 1/q0 := d−Ω(log2 d) (cf. Proposition 2.6).

Let this event be Ef,v,m. We now define the following events:

• E ′f,v,m := {v :
∣∣EQv

[f(x, y)]−ETv
[f(x, y)]

∣∣ ≥ 1
4m2 }; Theorem 3.7 implies that P(E ′f,v,m) ≤ 1

2q0
.

• E ′′f,v,m is defined analogous to Ef,v,m but with (i) T instead of Q and (ii) Cm accuracy complexity
as opposed to m for a large constant C. Proposition 3.6 implies P(E ′′f,v,m) ≤ 1

2q0
.

Since Ef,v ⊂ E ′f,v,m ∪ E ′′f,v,m (Claim B.7), the desired result follows by a union bound.

4 Conclusions and Open Problems

In this work, we studied the fundamental problem of noiseless linear regression under Gaussian
marginals with additive oblivious contamination. Our main result is an information-computation
tradeoff for SQ algorithms, suggesting that efficient learners require sample complexity at least
quadratic in 1/α, where α is the fraction of inliers, while linear dependence in 1/α information-
theoretically suffices. An immediate open problem concerns the dependence on d in the lower
bound. Specifically, it is a plausible conjecture that there exists a lower bound of Ω(d/α2) on the
computational sample complexity of the problem (thus, exactly matching the sample complexity of
known algorithms). We note that such a lower bound would require a new hardness construction, as
our hard testing instance is efficiently solvable with O(d1/2/α2) samples.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• The answer NA means that the paper does not include experiments.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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models that generate Deepfakes faster.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks exist for this paper.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No such assets are used.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Question: Are new assets introduced in the paper well documented and is the documentation
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Answer: [NA]
Justification: No such assets are released.
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create an anonymized URL or include an anonymized zip file.
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Answer: [NA]
Justification: No such experiments are involved.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No such experiments were conducted.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material
The Appendix is organized as follows: Appendix A contains additional preliminaries and background
on SQ algorithms. Appendix B contains proofs deferred from Section 3. Appendix C gives a
computationally-efficient reduction from testing to estimation. Appendix D gives an inefficient SQ
algorithm that uses VSTAT oracle with accuracy complexity linear in 1

α , whereas Appendix E gives
an efficient SQ algorithm that uses a VSTAT oracle with accuracy complexity quadratic in 1

α .

A Additional Preliminaries

We say a random variable X or a distribution P is σ-subgaussian if P(|X| ≥ t) ≤ 2 exp(−ct2/σ2)
for all t > 0; here c is an absolute constant.

Fact A.1. There exists a finite constant a0 > 0 such that if X is σ-subgaussian then
∣∣∣E[eaX2

σ2

]
− 1
∣∣∣ ≲

|a| for |a| ≤ a0.

Proof. We use expansion of ex and the fact that E[|X|p] ≤ (Cσ
√
p)p for a σ-subgaussian distribu-

tion [Ver18, Proposition 2.5.2] to get

E[e
aX2

σ2 − 1] = E

[ ∞∑
i=1

ai
X2i

σ2ii!

]
≤

∞∑
i=1

ai
(cσ
√
2i)2i

σ2ii!
≤
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i=1

(
√
eac
√
2i)2i

ii
≤

∞∑
i=1

(
√
eac
√
2)2i,

which is of order O(a) for small enough a because it then converges as a geometric sequence.

For completeness, we provide the proof of Fact 2.1.

Fact 2.1. For every function f : Rd → [−1, 1], ∥f>ℓ∥L2(N (0,Id)) → 0 as ℓ→∞. Furthermore, for
all f : Rd × R→ [−1, 1] and univariate measures R, ∥f>ℓ∥L2(N (0,Id)×R) → 0 as ℓ→∞.

Proof. The first statement is a simple consequence of the fact that Hermite polynomials are a complete
orthonormal system of L2(Rd,N (0, Id)).

For the second statement, we shall use dominated convergence theorem. Define the residue
f>ℓy (x) := f(x, y) − fy(x)

>ℓ and Jℓ(y) := ∥f>ℓy ∥2L2(N (0,Id))
. Observe that Ey∼R[Jℓ(y)] =

∥f>ℓ∥L2(N (0,Id)×R). The first statement implies that for each y ∈ R, Jℓ(·) → 0 as ℓ → ∞.
Furthermore, Jℓ is uniformly bounded by 4 as follows:

Jℓ(y) = ∥fy(x)− f ℓy(x)∥2L2(N (0,Id))
≤ 2∥fy∥2L2(N (0,Id))

+ 2∥f≤ℓ
y ∥2L2(N (0,Id))

≤ 4,

where we use Parseval’s identity to say ∥f≤ℓ
y ∥2L2(N (0,Id))

≤ ∥fy∥2L2(N (0,Id))
and that |fy| ≤1. Since

Jℓ → 0 pointwise as ℓ → ∞ and 0 ≤ Jℓ ≤ 4 uniformly, by the dominated convergence theorem,
Ey[Jℓ(y)]→ 0 as ℓ→∞.

A.1 Statistical Query Algorithms

Instead of getting sample access, SQ algorithms interact with the underlying distribution through an
oracle. Observe that there are many ways of implementing a VSTAT(m) oracle, especially when the
SQ algorithm A makes multiple requires—all we require is that each response is a valid VSTAT(m)
response to each query.

Recall the notion of success from Definition 2.5. The notion of success is intimately tied to the SDA
as shown by the following result:

Proposition A.2 (SQ lower bounds using SDA; Proposition 2.6 (C.I)). For any query f : Z → [0, 1],
the following holds: Pv∼Sd−1 (Ef,v.m) ≤ 1

SDA(7m) .

We use the arguments implicit in [FGRVX17; BBHLS21; DKRS23].
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Proof. Here, we assume that Qv has a valid density with respect to P . For a v ∈ Sd−1 and z ∈ Z ,
we use qv(z) to denote the Radon–Nikodym derivative of Qv with respect to P . Observe that

EQv
[f ]− EP [f ] =

〈
qv − 1, f

〉
P .

Fix a query f and assume that a1 := EP [f ] ≤ 1
2 , otherwise apply the following arguments to 1− f .

We shall show that P(Ef,v,m) ≤ 1/SDA(7m) by contradiction. Suppose P(Ef,v,m) > 1/SDA(7m).

Lemma 3.5 in [FGRVX17] implies that for any m ≥ 1, 0 ≤ a1, a2 ≤ 1,

if |a1 − a2| ≥ max
(

1
m , min

(√a1(1−a1)
m ,

√
a2(1−a2)

m

))
, then |a1 − a2| ≥

√
a1(1−a1)

3m .

Applying this with a1 = EP [f ] and a2 = EQv[f ], then if f succeeds on v, then

1Ef,v,m

∣∣⟨qv − 1, f⟩P
∣∣ ≥ √

a1
6m 1Ef,v,m

.

Taking expectation over v and squaring gives

P(Ef,v,m)2 · a1
6m
≤
(
Ev
[
1Ef,v,m

|⟨qv − 1, f⟩P |
])2

=
(
Ev
[
1Ef,v,m

⟨qv − 1, f⟩P · sgn⟨qv−1,f⟩P

])2
=
(
Ev
[
EP

[
1Ef,v,m

(qv(Z)− 1) (f(Z)) · sgn⟨qv−1,f⟩P

]])2
=
(
EP

[
Ev
[
1Ef,v,m

(qv(Z)− 1) (f(Z)) · sgn⟨qv−1,f⟩P

]])2
=
〈
Ev
[
1Ef,v,m

(qv − 1) sgn⟨qv−1,f⟩P

]
, f
〉2
P

≤ ∥f∥2L2(P) ·
∥∥∥Ev [1Ef,v,m

(qv − 1) sgn⟨qv−1,f⟩P

]∥∥∥2
L2(P)

= a1 ·
(
Ev,v′,P

[
1Ef,v,m

1Ef,v′,m (qv(Z)− 1) (qv′(Z)− 1) sgn⟨qv−1,f⟩P sgn⟨qv′−1,f⟩P

])
= a1 ·

(
Ev,v′

[
1Ef,v,m

1Ef,v′,m ⟨qv − 1, qv′ − 1⟩P sgn⟨qv−1,f⟩P sgn⟨qv′−1,f⟩P

])
≤ a1 ·

(
Ev,v′

[
1Ef,v,m

1Ef,v′,m |⟨qv − 1, qv′ − 1⟩P |
])

.

Dividing both sides by a1 P(Ef,v,m)2 and noting independence gives, for E = Ef,v,m ∩ Ef,v′,m,

1

6m
≤ Ev,v′

[∣∣⟨qv − 1, qv′ − 1⟩P
∣∣ ∣∣∣ E].

Since P(E) = P(Ef,v,m)2 ≥ 1
SDA(7m)2 , the definition of SDA implies the RHS is < 1

7m , a contra-
diction. Hence, P(Ef,v,m) ≤ 1

SDA(7m) .

Proposition A.3 (Query Complexity Lower Bound; Proposition 2.6 (C.II)). Fix a m ∈ N and q ∈ N.
Suppose that for all bounded queries f : Z → [0, 1], the probability of success is small as follows:

Pv∼Sd−1 (Ef,v,m) ≤ 1

q
. (4)

Then any (potentially randomized and adaptive to the responses of the previous queries) SQ algorithm
A for solving Testing Problem 2.2 (with failure probability less than 0.25) must use either Ω(q) =
Ω(SDA(7m)) queries or at least one query as powerful as VSTAT(m+ 1).

Again, we use ideas implicit in [FGRVX17; BBHLS21; DKRS23].

Proof. We will fix the VSTAT oracle to be a deterministic oracle V∗ defined below (independent of
the algorithm A). Since the oracle is fixed, it suffices to show lower bounds against deterministic
algorithms.

Consider the following oracle V∗:
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• If Θ = P , then for any query f , it returns EP [f ].

• If Θ = Qv , then it answers differently based on the “niceness” of f :

– (“a good query for V∗ on v”) If EP [f ] is a valid VSTAT(m) response, then answer EP [f ].
– (otherwise) Return EQv

[f ].

Observe that the oracle V above is a valid VSTAT(m) oracle for all both null and all alternate.

Now, let A′ be any deterministic SQ algorithm (deterministic as a function of the answers of the
oracle) that solves the testing problem with queries f1, . . . , fq′ for q′ = aq for some a < 1 to be
decided soon.

Consider the case when Θ = P . Recall that the adversary returns EP [fi] for i ∈ [q′], which is a valid
response. Then, the accuracy guarantee of A implies that A must output “null” on these instances
(because it is deterministic); otherwise the failure probability P(Γ̂ ̸= Γ) ≥ 0.5.

Now, consider the alternate case where Θ = Qv for v ∼ Sd−1. Observe that if E∁f,v,m holds for a
query f , then it is a “a good query for V∗ on v”. By assumption, the probability (over v) that any
fixed query f is not good is at most PΘ(Ef,v,m) ≤ 1/q. Thus, by a union bound, the probability
(over v) that all the queries {fi}q

′

i=1 are good for V∗ is at least 1− a. When all the queries are good,
the algorithm’s input is the same as in the null case, and hence the algorithm must answer “null”.
Therefore, the overall failure probability is at least 0.5(1− a) ≥ 0.25, which is a contradiction.

A.2 Pairwise Correlation

We will use the following closed-form expression for the pairwise correlations between Gaussians:
Lemma A.4. Let unit vectors u, v ∈ Rd and scalars a ∈ R and γ ∈ (0, 1). Let cos θ = u⊤v. Then

1 + χN (0,Id)

(
N (av, I − γvv⊤),N (au, I − γuu⊤)

)
=

exp
(
α2 cos θ
1+γ cos θ

)
√
1− γ2 cos2 θ

.

Proof. For any two Gaussians A = N (µ1,Σ1) and B = N (µ2,Σ2), the average correlation with
respect to the standard Gaussian can be calculated as follows:

χN (0,Id)(A,B) =
exp((h′ − h)/2)
√
s1s2
√
s1,2

where (5)

• A = (Σ−1
1 + Σ−1

2 − I)−1 • s1 = det(Σ1) • s2 = det(Σ1) • s1,2 = det(A−1)

• h = µ⊤
1 Σ

−1
1 µ1 + µ⊤

2 Σ
−1
2 µ2 • y = Σ−1

1 µ1 +Σ−1
2 µ2 • h′ = y⊤Ay.

We will now instantiate the formula above in our context below.

• (Calculating s1 and s2) s1 = s2 = 1− γ. Also define b := 1− γ.

• (Calculating h) Moreover, Σ−1
1 = (I − vv⊤) + b−1vv⊤ and Σ−1

2 = (I − uu⊤) + b−1uu⊤.
Therefore, h = µ⊤

1 Σ
−1
1 µ1 + µ⊤

1 Σ
−1
1 µ1 = 2a2b−1.

• (Calculating y) The same calculations as above give y = Σ−1
1 µ1 +Σ−1

1 µ1 = ab−1(v + u).

• (Calculating s1,2) We begin by calculating A−1:

A−1 = Σ−1
1 +Σ−1

2 − I = (I − vv⊤) + b−1vv⊤ + (I − uu⊤) + b−1uu⊤ − I

= I +
γ

1− γ
· (vv⊤ + uu⊤) .

Therefore, the determinant of A−1 is 1−γ2 cos2 θ
(1−γ)2 for α = γ

1−γ . This can be seen as follows
by considering 2× 2 matrices:

det

(
I +

[
α αu⊤v

αu⊤v α

])
= det

([
1 + α αu⊤v
αu⊤v 1 + α

])
= (1 + α)2 − α2(u⊤v)2,

which equals the expression above.
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• (Calculating A and h′) Letting U = [u; v] ∈ Rd×2 and C = αI2, then

A = (I + UCU⊤)−1 = I − U(C−1 + U⊤U)U⊤

= I − U

([
α−1 0
0 α−1

]
+

[
1 cos θ

cos θ 1

])−1

U⊤

= I − U

([
1 + α−1 cos θ
cos θ 1 + α−1

])−1

U⊤

= I − U

([
γ−1 cos θ
cos θ γ−1

])−1

U⊤

= I − 1

1− γ2 cos2 θ
U

([
γ −γ2 cos θ

γ2 cos θ γ

])−1

U⊤

= I −
(

γ

1− γ2 cos2 θ
· (uu⊤ + vv⊤) +

−γ2 cos θ

1− γ2 cos2 θ
(vu⊤ + uv⊤)

)
= I − γ

1− γ2 cos2 θ
· (uu⊤ + vv⊤) +

γ2 cos θ

1− γ2 cos2 θ
(vu⊤ + uv⊤) .

First, observe that (u+ v)⊤Juu⊤(u+ v) = (1 + cos θ)2 for J ∈ {uu⊤, vv⊤, vu⊤, uv⊤}.
Therefore, (u+ v)⊤M(u+ v) equals for M := I −A

2(1 + cos θ)2 · 1

1− γ2 cos2 θ
· (γ − γ2 cos θ) =

γ(1 + cos θ)2

1 + γ cos θ
.

Let M be I −A. Then

h = a2b−2y⊤Ay = a2b−2 (u+ v)
⊤
(I −M) (u+ v)

= a2b−2

(
2 + 2 cos θ − 2γ(1 + cos θ)2

1 + γ cos θ

)
= 2a2b−2(1 + cos θ)

(
1− (1 + cos θ)γ

1 + γ cos θ

)
= 2a2b−2(1 + cos θ)

(
(1− γ)

1 + γ cos θ

)
= 2a2b−1 (1 + cos θ)

(1 + γ cos θ)
.

Overall, we get that s1s2s1,2 = 1− γ2 cos2 θ and h′ − h = 2a2b−1 (1−γ) cos θ
1+γ cos θ = 2a2 cos θ

1+γ cos θ .

A.3 Discrete Gaussian

Fact A.5 (Translation of Discrete Gaussian). For any θ ∈ R, s > 0, µ ∈ R, σ ∈ R+, the random
variables X ∼ DG

[
µ, σ, θ, s

]
and X ′ := σY + µ for Y ∼ DG

[
0, 1, θ′, s′

]
with θ′ = (θ − µ)/σ and

s′ = s/σ have the same law.

Proof. First the support of both X and X ′ are equal to θ + sZ (indeed the support of Y is θ′ + s′Z,
which when multiplied by σ, yields (θ − µ) + sZ, and further shifting by µ yields θ + sZ.

Starting with X , for any i ∈ Z, P(X = θ+ si) ∝ sϕµ,σ(θ+ si) ∝ s
σ exp(−0.5(θ+ si−µ)2/σ2) ∝

exp(−0.5(θ+si−µ)2/σ2), where we use that s and σ can be absorbed into the normalizing constant.

Turning to the random variable X ′,

P(X ′ = θ + si) = P(σY + µ = θ + si) = P(Y = (θ − µ)/σ + si/σ) = P(Y = θ′ + s′i)

∝ exp(−0.5(θ′ + s′i)2) ∝ exp

(
−0.5

(
θ + si− µ

σ

)2
)
,
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using the definitions of θ′ and s′. Since the support is equal and the two distributions are equal up to
constant, they must be equal.

Fact A.6 ([DKRS23, Fact C.3] and [DK22, Lemma 3.12]). We have the following:

• For any polynomial p of degree at most k and θ ∈ R and s > 0, we have that∣∣∣∣EG∼N (0,1)[p(G)]− E
Y∼DG

[
0,1,θ,s

][p(Y )]

∣∣∣∣ ≲√EG∼N (0,1)[p2(G)]k!2O(k) exp(−Ω(1/s2)).

• (Monomials and for the unnormalized measure) For any k ∈ N and s ≥ 0:∣∣∣∣EG∼N (0,1)[G
k]− E

Y∼DG′
[
0,1,θ,s

][Y k]

∣∣∣∣ ≲ k!(O(s))k exp(−Ω(1/s2)). In particular, the to-

tal mass of DG′[0, 1, θ, s] is 1± exp(−Ω(1/s2)).

B Proofs Deferred from Section 3

B.1 Proof of Proposition 3.3

Proposition 3.3. Testing Problem 3.1 is equivalent to Testing Problem 1.3 when E = DG
[
0, σ, 0, s

]
.

Proof. First, by definition the distributions P under Testing Problem 1.3 and Testing Problem 3.1
are the same. For Q, we shall do the calculations explicitly.

As a starting point, it is easy to see that the conditional distribution of X given y under Testing
Problem 1.3 is an instance of NGCA, as in Testing Problem 3.1. To see this, define x′ = v⊤x to be
the projection of x along v, and define x⊥ = x− (v⊤x)v to be its orthogonal projection. Observe
that x′ and x⊥ are distributed as standard (multivariate) Gaussian and are independent of each other
(because X ∼ N (0, Id)). Hence, the conditional distribution of y given X ≡ (x′, x⊥) can be written
as y = ρx′ + Z, implying that y is independent of x⊥. Therefore, the conditional distribution of X
given y = y0 follows like a standard (multivariate) Gaussian in subspace orthogonal to v. Along the
direction v, the distribution of X is equivalent to the conditional distribution of x′ given y, which we
denote by J̃y . Our goal is to show that J̃y is equal to DG

[
µy, σ, θy, s

′] as in Testing Problem 3.1.

Observe that marginal distribution of Y is a Gaussian mixture with countable components, given by

Y ∼
∑
i∈Z

w(i)N (si, ρ2),

with w(i) = cs(2π)−1/2 exp(−s2i2/(2σ2)), where c denotes the normalization constant. Since Z
is discrete over the domain sZ, the conditional distribution of X given Y = y0 is discrete with
support (y0 − sZ)/ρ = θy0 − s′Z, which is the same support as DG

[
µy0 , σ, θy0 , s

′]. For any x0 in
this discrete set, the conditional probability of X = x0 given y = y0 is given by the following (where
we hide multiplicative terms that do not depend on x0 under the normalization constant):

P(X = x0|X + Z = y0) ∝ fX(x0)P(Z = y0 − ρx0)

∝
(
exp(−x2

0/2)
)
(w(y0 − ρx0))

∝ exp(−x2
0/2) exp

(
−(y0 − ρx0)

2/(2σ2)
)

∝ exp

(
−1

2

(
x2
0 +

ρ2x2
0

σ2
− 2y0ρx0

σ2

))
∝ exp

(
−1

2

(
x2
0

σ2
− 2y0ρx0

σ2

))
∝ exp

(
−1

2

(x0

σ
− y0ρ

σ

)2)
∝ exp

(
− 1

2σ2
(x0 − y0ρ)

2

)
∝ exp

(
− 1

2σ2
(x0 − µy0)

2

)
,
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which is the mass assigned by DG
[
µy0 , σ, θy0 , s

′]; Here we repeatedly use that ρ2 + σ2 = 1.

B.2 Concentration Properties of Distributions

In this section, we state the concentration properties of various distributions that appear in our analysis.

Lemma B.1. Let the parameters be as in Definition 3.2. Then we have the following:

1. The distributions Ay , Ãy , and By are O(|y|+ σ)-subgaussian and if X follows either one
of these distributions, then P(|X − µy| > t) ≲ e−t

2/2σ2

.

2. The distribution DG
[
0, σ, 0, s

]
is an O(σ)-subgaussian distribution, and Rρ,E is an O(σ +

ρ)-subgaussian distribution.

3. The distributions PAy
v , P Ãy

v , and P
By
v are a O(|y|+ σ + 1)-subgaussian distributions.5

Proof. We do it case-by-case.

1. For s′′ := s′/σ and that t ≥ 1:

PX∼Ay
(|x− µy| > t)

= P
X∼DG

[
0,1,(θy−µy)/σ,s′′

](|W | > t/σ) (Fact A.5)

≲
∑
i∈N

s′′ϕ0,1(
t
σ + s′′i) +

∑
i∈N

sϕ0,1(− t
σ − s′′i) (Fact 2.10 as s′′ ≪ 1)

≲
∑
i∈N

s′′e−0.5σ−2t2−0.5s′′2i2 (σ ≤ 1)

≲ e−t
2/2σ2 ∑

i∈N
s′′e−0.5i2s′′2

≲ e−t
2/2σ2

. (6)

This tail also implies O(|y| + σ)-subgaussianity as follows: we claim that P (|X| > t) ≲

e
− ct2

max(|µy|,σ)2 . Observe that it suffices to consider t ≳ max(|µy|, σ); otherwise, the bound is
trivially true. For t≫ |µy|, P(|X| > t) ≤ P(|X − µy| ≥ t/2) and we can then use (6). The same
arguments hold for By . The claim for the tails of |X| under Ãy follows from that of Ay because Ãy
is obtained from conditioning on an event of probability at least 0.5.

2. The claim for DG
[
0, σ, 0, s

]
follows from (6). For Rρ,E , we use the fact that if x1 and x2

are two independent σ1 and σ2-subgaussian random variables, then their sum is O(
√
σ1 + σ2)-

subgaussian [Ver18, Proposition 2.6.1].

3. After rotating appropriately, PAy
v and PBy are vectors of independent coordinates and thus follow

a multivariate subgaussian distribution with variance proxy bounded by the subgaussian parameter
of any individual coordinate [Ver18, Lemma 3.4.2]. The subgaussian proxy for the v direction is
established in the first item, while for the other coordinates it is O(1).

B.3 Proof of Proposition 3.6

Proposition 3.6 (SQ Hardness of Continuous Noise). Consider Testing Problem 3.4. Then for any

m ∈ N and q ∈ N satisfying ρ2
√

log(1/q)√
d

≲ 1
m , we have that SDA(m) ≳ q.

5A multivariate random vector X is termed σ-subgaussian if, for all unit vectors v, the real-valued random
variable v⊤X is σ-subgaussian.
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Proof. To calculate the average SQ correlation between Tv and Tv′ , we can first calculate the average
correlation between the conditional distributions and then take the average marginal over y to obtain
the following expression:

χN (0,Id)×R (Tv, Tv′) = Ey∼R
[
χN (0,Id)

(
PBy
v , P

By

v′

)]
. (7)

Here, we crucially used that the marginal distribution of y under P , Tv and Tv′ is identical.

Observe that the distribution P
By
v is equal toN (µyv, (Id− vv⊤) + σ2vv⊤). Using Lemma A.4 with

a = µy = ρy, γ = 1− σ2 = ρ2, and cos θ = v⊤v′ to calculate χN (0,Id)

(
P
By
v , P

By

v′

)
, we obtain

1 + χN (0,Id)

(
PBy
v , P

By

v′

)
=

exp
(
α2 cos θ
1+γ cos θ

)
√
1− γ2 cos2 θ

=
exp

(
ρ2y2 cos θ
1+ρ2 cos θ

)
√
1− γ2 cos2 θ

= (1 + f(θ)) exp
(
g(θ)y2

)
for appropriately defined f(θ) := 1√

1−ρ4 cos2 θ
− 1 and g(θ) := ρ2 cos θ

1+ρ2 cos θ . Therefore, the average

correlation over y ∈ R is equal to

χN (0,Id)×R (Tv, Tv′) = (1 + f(θ))Ey∼R
[
exp

(
g(θ)y2

)]
− 1 . (8)

Now, observe that |g(θ)| ≤ ρ2 ≤ ρ20 by assumption for a sufficiently small ρ0. Therefore, if we
define r(θ) := Ey∼R

[
exp

(
g(θ)y2

)]
− 1, then Fact A.1 implies that

|r(θ)| :=
∣∣Ey∼R [exp (g(θ)y2)]− 1

∣∣ ≲ |g(θ)|.
Combining this with (8), we obtain∣∣χN (0,Id)×R (Tv, Tv′)

∣∣ = (1 + f(θ))(1 + r(θ))− 1 ≲ f(θ) + |r(θ)| (using |r(θ)| ≲ 1)

≲ ρ4 cos2 θ + ρ2| cos θ| ≲ ρ2| cos θ|, (9)

where we use that ρ2| cos θ| ≤ 0.1. In particular,

χ2 (Tv,N (0, Id)×R) ≲ ρ2 . (10)

We are now ready to show that SDA(m) ≥ q, for which we need to show the following:

sup
E:Pv,v′ ((v,v′)∈E)≥1/q2

Ev,v′
[
|χP (Tv, Tv′)|

∣∣E] ≤ 1

m
.

Using (9), it suffices to show that

sup
E:Pv,v′ ((v,v′)∈E)≥1/q2

Ev,v′
[∣∣ρ2|v⊤v′|∣∣ ∣∣E] ≤ 1

m
. (11)

If v and v′ are two independent random unit vectors, then W := v⊤v′ is a centered
Θ(1/

√
d)-subgaussian random variable [Ver18, Theorem 3.4.6]. For subgaussian random vari-

ables, we use the simple inequality (a simple consequence of Hölder’s inequality) E[|W |
∣∣E ] ≤

∥W∥ψ2

√
log(1/P(E)) ≲ 1√

d

√
log(q). We obtain that the left hand side in (11) is less than

ρ2
(
O(1)√
d
·
√
log q

)
and hence (11) holds if

ρ2
√
log(1/q)√
d

≲
1

m
, (12)

which is the desired conclusion.
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B.4 Proof of Proposition 3.9

Observe that Proposition 3.9 follows from the result below because of Lemma B.1. Indeed,
Lemma B.1 implies that (i) Py(|y| ≥ L) ≲ e−Ω(L2) as σ ≲ 1 and ρ ≲ 1 and (ii) for any y

with |y| ≤ d/2, PAy (|z| > d) ≤ PAy (|z − µy| > d/2) ≲ e−Ω(d2).

Proposition B.2. Let f : U → [0, 1]. For L ≥ 1, define the set C : {y : |y| ≤ Lσ̃} and the function
f̃ := f1y∈C . Then for any ℓ ∈ N, we have that for y ∼ Rρ,E:

|ETv [f ]− EQv [f ]| ≤ 4P(y ̸∈ C) + max
y:|y|≤L

PAy (|z| > d) +
∣∣∣Ey[ ℓ∑

k=1

(
Ãk,y −Bk,y

)
⟨v⊗k,Tk,y⟩

]∣∣∣
+
∣∣∣EQ̃v

[f̃>ℓ]− EQv
[f̃>ℓ]

∣∣∣ , (13)

where Tk,y := Ex∼N (0,Id)[f̃y(x)Hk(x)], Ak,y := Ex∼Ãy
[hk(x)] and Bk,y := Ex∼By

[f̃(x)] for
Ay, By defined in Testing Problems 3.1 and 3.4.

Proof. We start by replacing EQv
[f ] with EQ̃v

[f ] at the cost of additive TV(Qv, Q̃v). This to-
tal variation distance is O(PQv (|v⊤x| > d)), which can be upper bounded by P(|y| ≥ L) +

maxy:|y|≤L P(|v⊤x| ≥ d). Hence, in the rest of this proof, we shall use Q̃ everywhere.

Next we decompose f = f̃ + f ′ for f ′ := f1y ̸∈C .

Then we further decompose f̃ as f̃≤ℓ + f̃>ℓy . By triangle inequality, it suffices to show that the
expectations of f̃≤ℓ, f̃>ℓ), and f ′ are close. Observe that the term for f̃>ℓ is already present in the
final conclusion. Next, for f ′, the boundedness of f and the same marginals of Qv and Tv imply that∣∣∣EQ̃v

[f ′]− ETv
[f ′]
∣∣∣ ≤ 2P(y ̸∈ C).

In the remainder, we focus on the terms corresponding to f̃≤ℓ. By the law of total expectation (whose
validity for f̃≤ℓ is justified below), we have that

EQ̃v
[f̃≤ℓ
y (x, y)] = Ey

[
E
x∼PAy

v

[
f̃≤ℓ
y

]]
. (14)

To compute the inner expectation, which is an instance of the unsupervised NGCA, we will use
[DKRS23, Lemma 3.3]:

Lemma B.3 (Fourier Decomposition Lemma of [DKRS23]). Let A′ be any distribution supported
on R and v a unit vector. Then for any ℓ ∈ N and g : Rd → [0, 1],

Ex∼PA′
v
[g≤ℓ(x)] =

ℓ∑
k=0

Ak

〈
v⊗k,Tk

〉
,

where Ak = Ex∼A′ [hk(x)] and Tk = Ex∼N (0,Id)[g(x)Hk(x)].

Consider a fixed y0 ∈ R and apply the above result to A′ := Ãy0 and g(x) := f̃y(x) :=

f(x, y0)1y0∈C . Define Ãk,y := Ex∼Ãy
[hk(x)] and Bk,y := Ex∼By

[hk(x)] and Tk,y :=

Ex∼N (0,Id)[f̃(x, y)Hk(x)]. We obtain that

EQ̃v
[f̃≤L] = Ey

[
E
x∼P Ãy

v

[
f̃≤ℓ
y (x)

]]
= Ey

[
ℓ∑

k=0

Ãk,y

〈
v⊗k,Tk,y

〉]
.

Observe that the term k = 0 corresponds to EN (0,Id)[f(x, y0)] for each y0, implying that the expec-
tation of the k = 0 term (over y) is exactly EP [f̃(x, y)]. Thus, we get the following decomposition:

EQ̃v
[f̃≤L]− EP [f̃ ] = Ey∼R′

[
ℓ∑

k=1

Ãk,y

〈
v⊗k,Tk,y

〉]
. (15)
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Similarly, the decomposition for the continuous Gaussian noise is as follows:

ETv [f̃
≤ℓ
y (x)]− EP [f̃ ] = Ey∼R′

[
ℓ∑

k=1

Bk,y

〈
v⊗k,Tk,y

〉]
. (16)

The claim follows by combining Equations (15) and (16).

Justifying (14). It suffices to show that EQ̃v
[|f̃≤ℓ|] < ∞, which we will establish below. By

Fubini’s theorem, we have that

EQ̃v
[|f̃≤ℓ|] = Ey

[
E
x∼P Ãy

v

[∣∣∣f̃≤ℓ
y

∣∣∣]]
≤ Ey

[
E
x∼P Ãy

v

[∣∣∣∣∣
ℓ∑

k=0

⟨[E
x′∼P Ãy

v

f(x′)Hk(x
′)],Hk(x)⟩

∣∣∣∣∣
]]

≤
ℓ∑

k=0

Ey
[
E
x∼P Ãy

v

[∣∣∣⟨[E
x′∼P Ãy

v

f(x′)Hk(x
′)],Hk(x)⟩

∣∣∣]] .
This can be further upper bounded by finite sum of the terms (at most dO(ℓ)) involving

EyE
x∼P Ãy

v

[|Ex′f(x′)p(x′)] · |p(x)|]

for some polynomials p(·). Since |f | is upper bounded by 1, the term above is further upper bounded
by EyE

x∼P Ãy
v

[|p(x)|2] using Jensen’s inequality. Using Lemma B.1, E
x∼P Ãy

v

[|p(x)|2] is upper

bounded by poly(|µy|, d, ∥p∥ℓ2) and since µy is linear in y, E[poly(µy)] is also finite because R is
O(1)-subgaussian.

A similar reasoning justifies (14) for Tv .

B.5 Proof of Lemma 3.10

Lemma 3.10 (Closeness of Hermite Coefficients). For any y ∈ R and k ∈ N, we have

• (Tighter for small k) |Ãk,y −Bk,y| ≲ max
(
1, |µy|k

)
kO(k) ·

(
e
−Ω

(
ρ2

s2

)
+ e−Ω(d)

)
.

• (Tighter for larger k) |Ãk,y −Bk,y| ≲ eO(µ2
y).

Proof. We first consider the case for large k.

Large k. For large k, we shall use the fact that |hk(x)| ≤ exp(x2/4) for all x ∈ R [Kra04].
Lemma B.1 implies that for both By and Ãy ,

∀t : P (|x− µy| ≥ t) ≤ O(1) exp(−x2/2),

where we use that σ ≤ 1. Therefore, under the both X ∼ Ãy and X ∼ By , we have that

P(|X| > t) ≤ O(1) exp(O(µ2
y)) exp(−0.4t2) . (17)

Indeed for t ≤ 10µy , the upper bound is bigger than 1 and hence holds; for t ≥ 10µy , P(|X| > t) ≤
P(|X − µy| ≥ 0.9t) ≲ exp(−0.4t2).
Therefore, we can upper bound E[|hk(X)|] for both distributions as follows:

E[|hk(X)|] ≤ E[eX
2/4] ≤ 1 +

∫ ∞

1

P(|X| > 2
√

loge u)du ≲ 1 +

∫ ∞

1

e−0.4·4·loge u

≲ exp(O(µ2
y))

(
1 +

∫ ∞

1

u−1.6du

)
≲ exp(O(µ2

y)).

29



Smaller k. We first define Ck,y := Ex∼Ay [hk(x)]. Since Ãy is Ay conditioned on E := {z : |z| ≤
d} and satisfies P(E) ≥ 1− τ for τ ≲ e−Ω(d) (see Lemma B.1), we have that for any function g:∣∣∣EÃy

[g]− EBy
[g]
∣∣∣ ≲ 2

∣∣EAy
[g]− EBy

[g]
∣∣+ τEBy

[g] +
√
τEAy

[g2] .

The above inequality follows by noting that the left hand side above is exactly equal to
EAy [g]−EBy [g]

1−τ +
τEBy [g]

1−τ +
EAy [gIE ]

1−τ and then applying Cauchy-Schwarz inequality. In our context, the above display
equation yields:

|Bk,y −Ak,y| ≤ 2 |Bk,y −Ck,y|+ τ |Bk,y|+
√
τ
√

EAy
[h2
k(x)]. (18)

We will now upper bound this difference. We first claim that for θ̃y = (θy − µy)/σ and s̃ = s′/σ,
we have that

Bk,y −Ck,y = Ex∼N (0,1)[hk(σx+ µy)]− E
x′∼DG

[
0,1,θ̃y,s̃

][hk(σx′ + µy)] . (19)

To see this, recall that Bk,y = Ex∼By [hk(x)] = Ex∼N (µy,σ2)hk(x), which implies that it is equal to
Ex∼N (0,1)hk(σx+ µy). For Ak,y , the claim follows analogously from Fact A.5.

Lemma B.4. Let k ∈ N, q ∈ R, a ∈ R, b ∈ R and s′′ ≪ 1. Let G ∼ N (0, 1) and Y ∼
DG
[
0, 1, q, s′

]
.

•
∣∣∣E[hk(b+ aG)]− E[hk(b+ aY )]

∣∣∣ ≤ max(1, |b|k)max(1, |a|k)kO(k)e−
1

s′′2 .

• |E[|hk(b+ aG)|]|2 ≤ E[|hk(b+ aG)|2] ≤ kO(k) max(1, b2k)max(1, a2k).

• E[|hk(b+ aY )|2] ≤ kO(k) max(1, b2k)max(1, a2k).

Applying this result on (19) with b = µy, a = σ ≤ 1 and s′′ = s̃ = s′/σ = s/ρσ and plugging it in
(18) in combination with τ ≲ e−Ω(d), we get Lemma 3.10.

We now provide the proof of Lemma B.4

Proof. Defining the polynomial pk(x) := hk(b+ ax), we can apply Fact 2.10 to pk(·) to conclude
that the deviation in the first item is at most√

EG∼N (0,1)[h
2
k(b+ aG)]k!2O(k) exp(−Ω(1/s2)).

Hence, to establish both the first and the second items, it remains to show the upper bound√
EG∼N (0,1)[h

2
k(b+ aG)] ≲ kO(k) max(1, |b|k)max(1, |a|k). To that effect, we use the explicit

form of the Hermite polynomials:

hk(x) :=
√
k!

⌊k/2⌋]∑
ℓ=0

(−1)ℓ

ℓ!(k − 2ℓ)!

1

2ℓ
xk−2ℓ ,

which gives the following expression:

E[h2
k(b+ aG)] = k!E

 ⌊k/2⌋]∑
ℓ=0,ℓ′=0

(−1)ℓ

ℓ!(k − 2ℓ)!

1

2ℓ
(b+ aG)k−2ℓ (−1)ℓ′

ℓ′!(k − 2ℓ′)!

1

2ℓ′
(b+ aG)k−2ℓ′

 .

There are Θ(k2) terms in the expression above and by linearity of the expectation, it suffices to
control the maximum term above:

E[h2
k(b+ aG)] ≤ k2k! max

ℓ≤k/2,ℓ′≤k/2
E
[
(b+ aG)k−2ℓ(b+ aG)k−2ℓ′

]
(20)
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≤ k2k! max
ℓ≤k,ℓ′≤k

√
E[(b+ aG)2ℓ]

√
E[(b+ aG)2ℓ′ ]

≤ k2k! max
ℓ≤k

E[(b+ aG)2ℓ]

≤ k2k! max
ℓ≤k

E[22ℓb2ℓ + 22ℓa2ℓG2ℓ]

≤ 22kk2k! max
ℓ≤k

E[b2ℓ + a2ℓG2ℓ]

≤ 22kk2k! max
ℓ≤k

E[b2ℓ + (O(
√
k))ka2ℓ]

≤ kO(k) max(1, b2k)max(1, a2k),

which proves the desired result.

We now focus on the third item. Here, we again apply Fact 2.10 but this time to the polynomial p2k,
which would then imply that

E[|hk(b+ aY )|2] ≤ E[|hk(b+ aG)2] +
√

E[|hk(b+ aG)4](2k)O(k) exp(−Ω(1/s2))

≤ kO(k)
(
max(1, b2k)max(1, a2k) +

√
E[|hk(b+ aG)4]

)
.

To upper bound E[|hk(b + aG)4], we can use a similar series of arguments as in (21) to get
the desired result, wherein we replace the use of Cauchy-Schwarz inequality with the inequality
E[X1X2X3X4] ≤

∏4
i=1(E[X4

i ])
1/4.

We now provide the proof of Lemma B.4

Proof. Defining the polynomial pk(x) := hk(b+ ax), we can apply Fact 2.10 to pk(·) to conclude
that the deviation in the first item is at most√

EG∼N (0,1)[h
2
k(b+ aG)]k!2O(k) exp(−Ω(1/s2)).

Hence, to establish both the first and the second items, it remains to show the upper bound√
EG∼N (0,1)[h

2
k(b+ aG)] ≲ kO(k) max(1, |b|k)max(1, |a|k). To that effect, we use the explicit

form of the Hermite polynomials:

hk(x) :=
√
k!

⌊k/2⌋]∑
ℓ=0

(−1)ℓ

ℓ!(k − 2ℓ)!

1

2ℓ
xk−2ℓ ,

which gives the following expression:

E[h2
k(b+ aG)] = k!E

 ⌊k/2⌋]∑
ℓ=0,ℓ′=0

(−1)ℓ

ℓ!(k − 2ℓ)!

1

2ℓ
(b+ aG)k−2ℓ (−1)ℓ′

ℓ′!(k − 2ℓ′)!

1

2ℓ′
(b+ aG)k−2ℓ′

 .

There are Θ(k2) terms in the expression above. Moreover, By linearity of the expectation, it suffices
to control the maximum term above:

E[h2
k(b+ aG)] ≤ k2k! max

ℓ≤k/2,ℓ′≤k/2
E
[
(b+ aG)k−2ℓ(b+ aG)k−2ℓ′

]
(21)

≤ k2k! max
ℓ≤k,ℓ′≤k

√
E[(b+ aG)2ℓ]

√
E[(b+ aG)2ℓ′ ]

≤ k2k! max
ℓ≤k

E[(b+ aG)2ℓ]

≤ k2k! max
ℓ≤k

E[22ℓb2ℓ + 22ℓa2ℓG2ℓ]

≤ 22kk2k! max
ℓ≤k

E[b2ℓ + a2ℓG2ℓ]

≤ 22kk2k! max
ℓ≤k

E[b2ℓ + (O(
√
k))ka2ℓ]
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≤ kO(k) max(1, b2k)max(1, a2k),

which proves the desired result.

We now focus on the third item. Here, we again apply Fact 2.10 but this time to the polynomial p2k,
which would then imply that

E[|hk(b+ aY )|2] ≤ E[|hk(b+ aG)2] +
√

E[|hk(b+ aG)4](2k)O(k) exp(−Ω(1/s2))

≤ kO(k)
(
max(1, b2k)max(1, a2k) +

√
E[|hk(b+ aG)4]

)
.

To upper bound E[|hk(b + aG)4], we can use a similar series of arguments as in (21) with the
inequality E[X1X2X3X4] ≤

∏4
i=1(E[X4

i ])
1/4 instead of Cauchy-Schwarz inequality to get the

desired result.

B.6 Proof of Proposition 3.11

Proposition 3.11. Let {Tk,y}k∈N,y∈R be tensors with ∥Tk,y∥2 ≤ 1 for all k ∈ N, y ∈ R, and let t ∈
N be arbitrary . Then for any δ ∈ (0, 1), it holds with probability 1−δ over a random unit vector v that

Ey[
t∑

k=1

|⟨v⊗k,Tk,y⟩|] ≲ t and
∞∑

k>t+1

Ey
[
|⟨v⊗k,Tk⟩|

]
≲ dO(1)

( t log t
δ

d

)t/4
+ dO(1) · 1δ e

− Cd

log d
δ .

The result for k ≤ t follows by the claim that Tk,y has norm at most 1 almost surely. Hence, we will
focus on the second claim, for which we shall crucially use the concentration results from [DKRS23],
which we state in a different formulation below.

Lemma B.5 (Lemma 3.7 and Corollary 3.9 in [DKRS23]). Let Tk,y be a random k-tensor supported
with randomness y. For a random unit vector v independent of y, let Wk denote the random variable
Ey
∣∣⟨v⊗k,Tk,y⟩

∣∣. Let W ′ be the random variable v⊤w for a unit vector w ∈ Sd−1. Then for any
even p ∈ N,

∥Wk∥Lp ≤ (Ey∥Tk,y∥p2)1/p∥W ′∥k/2Lpk/2
. (22)

In particular, if ⟨Tk,y,Tk,y⟩ ≤ 1 almost surely, then there exists a constant C > 0 such that the
following conclusion holds for any even p ∈ N and k ∈ N:

1. ∥Wk∥Lp
≤
(
Cpk
d

)k/4
. (useful for moderate k: k = o(d))

2. ∥Wk∥Lp
≲ min(d, k)1/p exp

(
−C kd

max(d,pk)

)
. (useful for large k: k ≍ d)

3. ∥Wk∥Lp
≤ C

(
d
pk

)d/p
. (useful for extremely large k: k = ω(d))

While (22) is established in [DKRS23, Lemma 3.7] for a fixed tensor T, the desired follows by
Jensen’s inequality: for any even p and error bound g(v, y), we have that Ev(Ey[g(v, y)])]p ≤
EvEy[g(v, y)p] = Ey(Ev[g(v, y)p]), where one can now use [DKRS23, Lemma 3.7].

We now couple Lemma B.5 with the simple fact that for any random variable X , with probability
1 − δ, |X| ≤ (1/δ)1/p∥X∥Lp

for any p ≥ 1. Therefore, for any k ≥ t, with probability 1 − δ/k2,
|Wk| is less than cmin(∥Wk∥Llog(k/δ)

,
√
k/δ∥Wk∥L2). We now calculate these bounds separately

for different k.

• (Small k and large p) Define pk ≍ log(k/δ). For any k such that k ≥ t and kpk ≤ C ′dpk,
we have

∥Wk∥Lpk
≤
(
Ct log (t/δ)

d

)t/4
+ exp

(
−C d

log2(d/δ)

)
.

This follows by considering the following two regimes separately:
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– (c′pkk ≤ d for a tiny enough constant c′) In this regime, the bound
(
Ckpk
d

)k/4
is

decreasing in k and thus the maximum is achieved at k = t.
– (C ′dpk ≥ c′pkk ≥ d for a large constant c′) In this regime, the second bound gives the

desired result by noting max(d, pkk) ≤ C ′dpk and k ≥ d/pk ≥ d/pd.

• (Large k and p = 2) Moreover, if k ≥ C ′d, then ∥Wk∥2 ≤ ( d2k )
d/2. Therefore, with

probability 1− δ/k2, |Wk| ≤
√
(k2/δ)(d/2k)d/2 ≤

√
d/δ(d/2k)d/4.

Taking a union bound, we obtain the following bound that holds with probability at least 1− δ,∑
k>t

|Wk| =
∑

k∈[t,C′d]

ka|Wk|+
∑

k∈[t,C′pk]

ka|Wk|

≲ (C ′d)1 ·

((
t log (t/δ)

d

)t/4
+ d exp

(
−C d

log(d/δ)

))
+
∑
k≥C′d

√
d/δ

(
d

2k

)d/2
.

The summation
∑
k≥C′d

(
d
2k

)d/2
can be upper bounded by a constant factor multiple of the first

expression in the sum (this can be seen by integrating
∫
x≥x0

x−adx for a > 2), and the first expression
is at most e−Ω(d) because C ′ is large enough.

B.7 Proof of Theorem 3.7

We are now ready to present the proof of Theorem 3.7.

Proof of Theorem 3.7. Combining Proposition 3.9 with Lemma 3.10 and Proposition 3.11 and the
fact that |µy| ≤ L for L ≥ 1, we obtain that for any t ∈ N and ℓ ∈ N with probability at least
1− d− log2 d,∣∣ETv

[f ]− EQv
[f ]
∣∣ ≲ e−Ω(L2) + e−Ω(d) + LttO(t)

(
e−Ω(ρ2/s2) + e−Ω(d)

)
t

+ ecL
2

(dt)O(1)
(
t log t log3 d

d

)t/4
+ ecL

2

e−d/polylog(d) +
∣∣ETv

[f̃>ℓ]− EQ̃v
[f̃>ℓ]

∣∣.
For L = log5 d, t = L6 and ρ = st2, the sum of all but the last term is at most O(e−L

2

) ≤
d− log2(d/α). For the last term, we show in Appendix B.8 that taking ℓ large enough suffices—this
argument uses Fact 2.1 and the truncation of Ay as per [DKRS23].

B.8 Handling f̃>ℓ

We now show that for any f : Rd × R → [0, 1] and any δ ∈ (0, 1), there exists ℓ ∈ N, depending
only on (f, d, δ, L, σ, ρ, s, α) such that with 1− δ, |EQv

[f̃>ℓ]− ETv
[f̃>ℓ]| is smaller than γ for a γ

appropriately small.

First by Fact 2.1, we know that there exists an ℓ(γ′) so that ∥f̃>ℓ∥L2(P ) ≤ γ′. Since χ2(P, Tv) is
finite (as established in (10)), this implies that ∥f̃>ℓ∥L2(Tv) is also sufficiently small. By Cauchy-
Schwarz, we get that for every γ and v ∈ Sd−1, there exists an ℓ′(δ, d, γ) so that |ETv [f̃

>ℓ]| ≤ γ.

Thus, it remains to argue about EQv
[f̃>ℓ]. By a Markov inequality, it suffices to show that

Ev[|EQv [f̃
>ℓ]|] ≤ EvEQv [|f̃>ℓ|] ≤ γ/δ. Let D be the distribution of (x, y) obtained over (x, y) as

follows: first y ∼ R and then v ∼ Sd−1 and x ∼ P
Ãy
v . Let Dy be the conditional distribution of x

given y under D. Thus EvEQv
[|f̃>ℓ|] ≤ γ/δ = ED[|f̃>ℓ|]. We will now show that χ2(D,P ) <∞,

which would suffice for our result. Observe that

χ2(D,P ) : =

∫
y∼R

∫
x

R2(y)D2
y(x)

R(y)G(x)
dxdy

=

∫
y∼R

R(y)

∫
x

D2
y(x)

G(x)dx
=

∫
y∼R

R(y)χ2(Dy,N (0, Id)) .
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Observe that Dy is obtained from P
Ãy
v where Ã is supported only on {x : |x| ≤ d}. [DKRS23,

Lemma 3.1] implies that χ2(Dv,N (0, Id)) is uniformly upper bounded by Od(1). Integrating this
uniform upper bound by Od(1), we get the desired conclusion of χ2(D,P ) <∞.

B.9 Formal version of Theorem 1.6

We are now ready to state and prove the formal version of Theorem 1.6.
Theorem B.6 (SQ Hardness of Testing Problem 1.3). Consider the testing problem in Testing
Problem 1.3 with E = DG

[
0, σ, 0, s

]
for s ≍ α and σ = 1. Furthermore, assume that

• α≫ 1
dpolylog(d) (i.e., it is not too tiny)

• ρ2 ≍ α2polylog(d/α) and ρ ≤ ρ0 for a sufficiently small absolute constant ρ0.

Then we have the following guarantees:

1. PE(z = 0) ≥ α (i.e., it is a valid instance).

2. Any SQ algorithm that solves the testing problem with probability at least 2/3 either uses
q≳q0 := dlog

2(d/α) many queries or uses a single query which is as powerful as VSTAT(m)

for m ≳
√
d

α2polylog(d,1/α) .

Proof. Since σ ≥ 1/2, we get that P(z = 0) ≥ α (recall that P
Z∼DG

[
0,σ,0,s

](z = 0) = Θ(s/σ)),

which satisfies the first claim of Theorem B.6.

To establish the second claim about the SQ complexity, using Proposition 2.6, it suffices to show that
the probability of success of f on distinguishing Qv and P with m simulation complexity is at most
1/q0. Recall that the success event Ef,v,m is defined as the following event:

|EQv
[f ]−EP [f ]| ≥ max

( 1

m
,min

(√ (EP [f ])(1− EP [f ])
m

,

√
(EQv

[f ])(1− EQv
[f ])

m

))
, (23)

and our goal is to show that for any fixed bounded query f : Z → [0, 1], we have Pv∼Sd−1 [Ef,v,m] ≤
1
q for q ≍ dlog

2(d/α) and m ≳ m0 := σ2
√
d

ρ2polylog(d/α) .

We now define the following events:

• First, E ′f,v,m is defined as:
∣∣EQv

[f(x, y)]− ETv
[f(x, y)]

∣∣ ≥ 1
4m2 .

• Next, the event E ′′f,v,m is defined as: for a large constant C (which can be deduced from the
proof of Claim B.7),∣∣ETv

[f ]−EP [f ]
∣∣ ≥ max

( 1

Cm
,min

(√ (EP [f ])(1− EP [f ])
Cm

,

√
(ETv [f ])(1− ETv [f ])

Cm

))
.

Next, we show in Claim B.7 that Ef,v,m ⊂ E ′f,v,m ∪ E ′′f,v,m. By the union bound and Claim B.7, it
suffices to establish that the probabilities of these events individually is at most 1

2q .

• (E ′f,v,m) Theorem 3.7 implies the desired bound for any m ≤ (d/α)log
2(d/α) and q ≤

dlog
2(d/α).

• (E ′f,v,m) This inequality was established in Proposition 3.6 for any m ≲ m0 with m0 ≍
σ2

√
d

ρ2
√

log(1/q)
. Taking q = dlog

2(d/α) and σ = Θ(1) leads to m0 ≍
√
d

ρ2polylog(d/α) .

This completes the proof of Theorem B.6.

We now provide the statement and the proof of Claim B.7.
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Claim B.7. We have that Ef,v,m ⊂ E ′f,v,m ∪ E ′′f,v,m.

Proof of Claim B.7. Indeed, we have that∣∣EQv
[f(x, y)]−EP [f(x, y)]

∣∣
≤
∣∣EQv [f(x, y)]− EQ′

v
[f(x, y)]

∣∣+ ∣∣EQ′
v
[f(x, y)]− EP [f(x, y)]

∣∣
≤ 1

4m2
+max

(
1

Cm
,min

(√
(EP [f ])(1− EP [f ])

Cm
,

√
(ETv [f ])(1− ETv [f ])

Cm

))
.

Observe that on E ′f,v,m, |ETv
[f ]− ETv

[f ]| ≤ τ for τ = O(1/m2). Since the expectations are close,
the standard deviations are also close: |

√
(ETv

[f ])(1− ETv
[f ])− (EQv

[f ])(1−EQv
[f ])| = O(

√
τ).

Therefore, the second term above is at most

max

(
1

Cm
,min

(√
(EP [f ])(1− EP [f ])

Cm
,

√
(EQv

[f ])(1− EQv
[f ])

Cm

))
+
√
O(τ) .

Since τ ≳ 1/m2, the overall term is at most

1

Cm
+max

(
1

Cm
,min

(√
(EP [f ])(1− EP [f ])

Cm
,

√
(EQv

[f ])(1− EQv
[f ])

Cm

))
.

We now claim that this is less than the threshold for Ef,v,m in (23). Towards that goal, define
a =

√
EP [f ] · EP [1− f ] and b for the corresponding term with Qv. Consider the case when

min(a, b)/
√
Cm ≤ 1/Cm. Then the left hand side above is 2

Cm , which is less than the quantity in
Ef,v,m, which is at least 1/m. Suppose now that min(a, b) ≥ 1/(Cm). Then the term above is at
most 1

Cm + min(a,b)√
Cm

≤ 2min(a,b)
Cm , which is less than the quantity in Ef,v,m, which is at least min(a,b)

m .

Thus, we have shown that Ef,v,m ⊂ E ′f,v,m ∪ E ′′f,v,m.

C Computationally-Efficient Reduction from Testing to Estimation

Suppose there is an algorithm A with the following guarantees: given n i.i.d. samples
(x1, y1), . . . , (xn, yn) in Rd × R from Definition 1.1 with inlier probability α and regressor β ∈ Rd,
computes an estimate β̂ such that ∥β̂ − β∥2 ≲ τ .

Consider the following (randomized) algorithm A′ that takes 2n samples S =
{(x1, y1), . . . , (xn, yn)} and S′ = {(x′

1, y
′
1), . . . , (x

′
n, y

′
n)} and perform the following oper-

ation:

• Sample a random rotation matrix U ∈ Rd×d.

• Let β̂1 be the output of A on S.

• Define S′′ := {(Ux′
1, y

′
1), . . . , (Ux′

n, y
′
n)}

• Let w be the output of A on S′′.

• Let β̂2 = U⊤w.

• Let W =
〈

β̂1

∥β̂1∥
, β̂2

∥β̂2∥2

〉
. If |W | > 1/9, output “alternate”, otherwise output “null”.

Theorem C.1. If τ ≤ ρ/4 and d ≳ log(1/δ), then A′ solves the testing problem in Testing
Problem 1.3 with probability at least 1− 2δ.

Proof. We will argue the success probabilities separately.
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Alternate Distribution Consider the case when the underlying distribution is alternate and let the
latent hidden direction be v. Conditioned on v and U, the samples S and S′′ satisfy the conditions
of Definition 1.1 with the underlying regressor β and Uβ, where β := ρv; here we use that
Gaussian distribution is rotationally invariant and Ux is again distributed as isotropic Gaussian.
Thus, the guarantees of A imply that with probability 1 − 2δ, we have that ∥β̂1 − β∥2 ≤ τ and
∥β̂2 − β∥2 = ∥w −Uβ∥2 ≤ τ . Since τ ≤ ρ/4, we have that β̂1∥2 ≤ 1.5ρ and the same for ∥β̂2∥.
Since 〈

β̂1, β̂2

〉
− ⟨β, β⟩ = −

〈
β̂1 − β, β̂2 − β

〉
− ⟨β, β̂2 − β⟩ − ⟨β, β̂1 − β⟩,

the closeness guarantee implies that∣∣∣〈β̂1, β̂2

〉
− ⟨β, β⟩

∣∣∣ ≤ τ2 + 2ρτ ≤ 3ρ2/4 .

Hence, with probability 1−2δ, we have that |W | ≥ (ρ2/4)/(3ρ/2)2 ≥ 1/9, and hence the algorithm
would correctly output “alternate”.

Null Distribution We will argue that w is independent of U. Indeed, for any U, the distribution
of the samples in S′′ is i.i.d. from N (0, Id) × R, where R is the marginal distribution of y (recall
that y is independent of X under the null). Hence, S′′ and w are independent of U. Therefore, β̂2

∥β̂2∥2

is distributed uniformly over the unit sphere (independent of β1). Hence, W is distributed as the

product of two unit vectors, implying that with probability 1− δ, |W | ≲
√

log(1/δ)
d , and hence the

algorithm correctly outputs “null” for d large enough.

D Inefficient SQ Algorithm with Correct Sample Complexity

In this section, we mention an SQ algorithm that uses q = exp(Õ(d/τα)) queries from VSTAT(m)

with m = Θ(1/α) and outputs an estimate β̃ such that ∥β̂−β∥2 ≲ τ . Furthermore, this SQ algorithm
can be simulated from O

(
d log(1/α)

α

)
i.i.d. samples from distribution Pβ∗,E .

Theorem D.1. Let ∥β∗∥2 ≤ 1 and α ∈ (0, 1) and let the underlying distribution be Pβ∗,E for an
unknown E and known α. There exists an SQ algorithm that uses q ≤ exp(O(d log(1/τα)) many
queries to VSTAT(m) for m ≲ 1/α and outputs an estimate β̃ such that ∥β̂ − β∗∥ ≲ τ .

Furthermore, with high probability, the VSTAT(m) oracle for this SQ algorithm can be simulated
using m′ = Õ

(
d
α

)
many i.i.d. samples from Pβ∗,E .

Proof. Let C be a τ ′-cover of {x : ∥x∥2 ≤ 1} with respect to the Euclidean norm for τ ′ = 0.01τα.
We know such a cover exists with log |C| ≲ d log(1/τ ′). Furthermore, let β′ ∈ C be τ ′-close to β∗.
For each β ∈ C, define the query fβ(x, y) = 1|x⊤β−y|≤τ ′ .

The SQ algorithm is as follows:

• For each β ∈ C, let vβ ← VSTAT(fβ ,m).

• Output β̂ = argmaxβ∈C vβ .

Correctness. To show correctness, we shall show that for β that is τ -far from β∗, it must be the
case that vβ < vβ′ , which would imply that any such β can not be the output.

Let us start by analyzing E[fβ ]. Let the distribution E be αδ0+(1−α)E′ for an arbitrary distribution
E′, where δ0 is the point mass at origin. Then observe that for G ∼ N (0, 1):

E[fβ ] = αEx[1|x⊤(β−β∗)|≤τ ′ ] + (1− α)Ex,z∼E′ [1|x⊤(β−β∗)+z|≤τ ′ ]

= αP(|G| ≤ τ ′/∥β − β∗∥) + (1− α)PG,z∼E′ (|G · ∥β − β∗∥2 + z| ≤ τ ′) .
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In particular, for β′, E[fβ′ ] ≥ 0.5α because ∥β′ − β∗∥ ≤ τ ′ and P(|G| ≤ 1) ≥ 0.5. It can then

be checked maxβ∈C ≥ vβ′ ≥ E[fβ′ ]− 1
m −

√
E[fβ′ ]

m , which is bigger than E[fβ′ ]/2 if m ≳ 1
E[fβ′ ]

,

which is satisfied since m ≥ 1
α and E[qβ ] ≥ 0.5α.

Now consider any β such that ∥β − β∗∥ = r ≥ τ = 100τ ′/α. Then

E[fβ ] = αP(|G| ≤ τ ′/r) + (1− α)PG,z∼E′ (|Gr + z| ≤ τ ′)

≤ αP(|G| ≤ τ ′/r) + (1− α)max
z′∈R

PG (|Gr + z′| ≤ τ ′)

≤ ατ ′

r
+ (1− α)

τ ′

r

≤ τ ′

r
≤ 0.01α .

Therefore, for any such β, vβ ≤ E[fβ′ ] + 1
m +

√
E[fβ′ ]

m ≤ 0.02α if m ≳ 1/α. Therefore, any such

β can not be β̂ and hence ∥β̂ − β∗∥2 ≤ τ .

Simulation with samples We implement the VSTAT(m) oracle by taking a set S of i.i.d. samples
and returning the empirical mean of qβ over S. Observe that all of the queries fβ are halfspaces and
hence have VC Dimension O(d). For i ∈ {1, . . . , log(1/α0)}, letAi = {β : E[qβ ] ∈ [2iα, 2i+1α]∪
[1− 2i+1α, 1− 2iα]}. Let A0 = {β : E[qβ ] ∈ [0, α] ∪ [1− α, 1]}.
By uniform concentration [BLM13, Theorem 13.7] and [BLM13, Theorem 12.5], if n ≥
d log(1/2i+1α)

2i+1α , then with probability 1− δ/J for J = log(1/α), for all β ∈ Ai for i ∈ N ∪ {0}, we
have∣∣ES [fβ ]− EPβ∗,E

[qβ ]
∣∣

≲
√
2iα

√
d log(1/2iα)

n
+
√
2iα ·

√
log(J/δ)

n
+

log(J/δ)

n

≲
√

EPβ∗,E
[qβ ] · (1− EPβ∗,E

[qβ ]) ·
√

dJ + log(J/δ)

n
+
√
α ·
√

dJ + log(J/δ)

n
+

log(J/δ)

n
,

where we use that α+ E[fβ ] · (1− E[fβ ]) ≳ 2iα for all i ∈ N ∪ {0}.

By a union bound over Ai’s, this uniform concentration holds for all β ∈ Rd. That is, if n ≥
dJ+log(J/δ)

α , then with probability 1− δ, for all β ∈ Rd, we have∣∣ES [fβ ]− EPβ∗,E
[qβ ]
∣∣

≲
√

EPβ∗,E
[qβ ] · (1− EPβ∗,E

[qβ ]) ·
√

dJ + log(J/δ)

n
+
√
α ·
√

dJ + log(J/δ)

n
+

log(J/δ)

n

≤
√
EPβ∗,E

[qβ ] · (1− EPβ∗,E
[qβ ]) ·

√
1

m
+

1

m
,

if n ≳ (dJ + log(J/δ)) ·
(
m+ αm2

)
+m log(J/δ). On this event, we get that the empirical ap-

proximation is a VSTAT(m/4) oracle. Since we need m = Θ(1/α), the required sample complexity
for failure probability δ is at most d log(1/α)+log(log(1/α)/δ

α .

E Efficient SQ Algorithm with Matching Accuracy

We now show that there exists an efficient SQ algorithm that solves Definition 1.1 and the hard
instance in Theorem 1.6 with polynomially number of VSTAT(d/α2) queries. Let β∗ be the unknown
regressor with ∥β∗∥2 ≤ 1. In this section, we use u as a shorthand for (x, y).
Theorem E.1. Let α ∈ (0, 1) and β∗ ∈ B, where B := {β : ∥β∥2 ≤ 1}. For any ϵ ∈ (0, 1), there is
an SQ algorithm that takes these α, ϵ as input, makes poly(d) number of queries to VSTAT

(
d
ϵα2

)
on

Pβ∗,E , and (iii) computes an estimate β̂ ∈ Rd such that ∥β̂ − β∗∥2 ≲ ϵα.
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Observe that we do not need ϵ to be very small to solve the hard instance of Testing Problem 1.3, i.e.,
we can set ϵ = ρ/α = Θ̃(1) and still solve Testing Problem 1.3 with polynomial number of queries
to VSTAT(Θ̃(d/α2)).

Proof. Define the function g(x) : X → {0, 1} to be function such that g(x) = 0 if and only if ∥x∥2 ≥
L
√
d for L = polylog(d/αϵ). Consider the loss function ℓ(β, u) := g(x) · ℓHuber

(
y − x⊤β

)
; here

ℓHuber(·) is the Huber loss with the gradient h(z) = z1z∈[−1,1] + sgn(z)1|z|>1. Consider the
averaged loss L(β) := Eu∼Pβ∗,E

[ℓ(β, u)].

We claim the following:

1. L is κ-strongly convex on B for κ = Θ(α).

2. L is L1 smooth (Lipschitz continuous gradient) on B for L1 = O(1).

3. For every z ∈ Z , the function ℓ(·, z) is convex, and it is L0-Lipschitz for L0 ≲ L
√
d.

4. β∗ is the unique minimizer of L.

Therefore, we can apply [FGV17, Corollary 4.12] with parameters L0, L1, and κ to find an αϵ-close
estimate β̂ such that ∥β̂ − argminL(β)∥2 ≲ αϵ with O

(
dL1 log(L1diam(B)/αϵ)

κ

)
= O

(
d log(1/αϵ)

α

)
many queries to VSTAT

(
O
(
L2

0

αϵκ

))
= VSTAT

(
d·polylog(d/α)

α2ϵ

)
. We get the desired conclusion by

noting that β∗ uniquely minimizes L(β).
We now give the details omitted earlier:

1. For any unit vector v, v⊤∇2Lv is equal to Eu[g(x)∇2ℓHuber(y − x⊤β)(x⊤u)2]. The
convexity follows by non-negativity of the Huber loss.

v⊤∇2Lv = Eu[g(x)∇2ℓHuber(y − x⊤β)(x⊤v)2] = Eu[g(u)I|y−x⊤β|≤1(x
⊤v)2]

≥ α · Ex∼N (0,Id)[g(x)I|x⊤β∗−x⊤β|≤1(x
⊤v)2] ≳ α .

The last inequality follows because g(x)I|x⊤β∗−x⊤β|≤1(x
⊤v)2 ≳

1∥x∥2≤L
√
d1|x⊤w|≤11|x⊤v|≥0.5 for some unit vector w. Using triangle inequality, we

obtain that its probability is lower bounded by P[1|x⊤w|≤11|x⊤v|≥0.5]− P((1− g(x))) ≳
1− d−100 ≳ 1.

2. The smoothness follows from the same arguments as above by upper bounding g(x) and
∇2ℓHuber by 1.

3. Observe that the gradient satisfies ∇ℓ(β, z) = g(x)h(y − x⊤β)x and therefore
∥∇ℓ(β, z)x∥2 ≤ L

√
d, where we use that ∥xg(x)∥ ≤

√
Ld and the gradient of Huber

loss is bounded by 1.

4. By strong convexity on B, it suffices to show that β∗ has zero gradient.

∥∇L(β∗)∥2 = ∥∇E[g(x)h(z)x]∥2 = 0,

where we use that xg(x) is a symmetric random variable and independent of z.
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