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ABSTRACT

Sounding video generation (SVG) is a challenging audio-video joint generation
task that requires both single-modal realism and cross-modal consistency. Previ-
ous diffusion-based methods tackled SVG within the original signal space, result-
ing in a huge computation burden. In this paper, we introduce a novel multi-modal
latent diffusion model (MM-LDM), which establishes a perceptual latent space
that is perceptually equivalent to the original audio-video signal space but drasti-
cally reduces computational complexity. We unify the representation of audio and
video signals and construct a shared high-level semantic feature space to bridge
the information gap between audio and video modalities. Furthermore, by utiliz-
ing cross-modal sampling guidance, we successfully extend our generative models
to audio-to-video and video-to-audio conditional generation tasks. We obtain the
new state-of-the-art results with significant quality and efficiency gains. In partic-
ular, our method achieves an overall improvement in all evaluation metrics and a
faster training and sampling speed 1.

1 INTRODUCTION

Sound Video Generation (SVG) is an emerging task in the field of multi-modal generation, which
aims to integrate auditory and visual signals for audio-video joint generation. This integrated sound-
ing video closely simulates real-life video formats, providing immersive audiovisual narratives. The
potential applications of SVG span multiple fields, including artistic creation, film production, game
development, virtual reality, and augmented reality, making it an area worth exploring in depth.

Compared to single-modal tasks like audio or video generation, SVG is more challenging since
it requires a deep understanding of the complex interactions between sound and visual content to
ensure audio-video cross-modal consistency. To be specific, generating a high-quality sounding
video requires depicting vivid object appearance and coherent movements, accompanied by realistic
audio that aligns with the video content. Two key factors exacerbate this challenge. First, both
video and audio are high-dimensional data, making it difficult to ensure the generation realism of
both modalities with limited computational resources. Second, cross-modal content consistency is
difficult to achieve due to the inherent differences in data representation and content information
between video and audio modalities. Specifically, in terms of data representation, videos are 3D
visual signals with RGB three color channels, whereas audios are 1D continuous auditory signals
with a single amplitude channel. From the perspective of content information, videos capture dense
visual dynamics that change over time, while audio captures sound waves made by various visible
or invisible sources. These inherent differences significantly increase the difficulty of obtaining
cross-modal consistency.

Inspired by the success of single-modal diffusion models (Villegas et al., 2023; Huang et al., 2023),
recent works have been proposed for SVG using the diffusion model. MM-Diffusion (Ruan et al.,
2023) introduced a multi-modal diffusion model designed to jointly generate audio and video, ef-
fectively capturing their joint distribution in their raw signal space. However, due to the high di-
mensionality of audio and video signals, this method demands substantial computational resources,
limiting its ability to produce high-resolution videos. Moreover, MM-Diffusion employs a small
cross-attention window with size no more than 8 for efficient calculation, which comes at the cost
of sacrificing the cross-modal consistency to some extent.

1Our codes will be released if accepted.

1



Under review as a conference paper at ICLR 2024

Figure 1: Sounding videos generated by our MM-LDM on the Landscape dataset (Lee et al., 2022).
We can observe vivid scene like (a) mountain, (c) diving man, (e) lake, and so on. Matched audios
are given like the sound of (b) wood burning, (d) sea wave, (f) raining, and so on. All presented
audios can be played in Adobe Acrobat by clicking corresponding wave figures. More playable
sounding video samples can be found in https://anonymouss765.github.io/MM-LDM.

To address the above challenges, we propose a novel Multi-Modal Latent Diffusion Model (MM-
LDM) for SVG. First, we introduce a two-stage latent diffusion method to synthesize realistic audio
and video signals with limited computational resources, In the first stage, we employ a multi-modal
auto-encoder to map signals of each modality into a modal-specific perceptual latent space. These
latent spaces are perceptually equivalent to the original signal spaces but significantly reduce com-
putational complexity. In the second stage, a transformer-based diffusion model is adopted to per-
form SVG within the latent spaces. Second, to overcome the inherent differences between audio
and video modalities, which pose the largest obstacles to achieving cross-modal consistency, we
unify their data representations, allowing models to model their generation in a similar manner with
shared parameters. Besides, since audio and video convey different messages (i.e., auditory and
visual) even with a unified representation, we establish a shared high-level semantic feature space
to bridge the gap of content information between the two modalities, thereby obtaining more valu-
able cross-modal insights. During training, we introduce a classification loss and a contrastive loss
to optimize the high-level semantic feature space. Moreover, we can expand the applicability of
our learned cross-modal correlations using cross-modal sampling guidance, allowing our generative
diffusion model to perform cross-modal conditional generation tasks, including audio-to-video and
video-to-audio generation. As shown in Fig. 1, MM-LDM can synthesize high-resolution (2562)
sounding videos with vivid objects, realistic scenes, coherent motions, and aligned audios. We con-
duct extensive experiments on the Landscape and AIST++ datasets, achieving new state-of-the-art
generation performance with significant visual and auditory gains. For example, on the AIST++
dataset with 2562 spatial resolution, our MM-LDM outperforms MM-Diffusion by 114.6 FVD, 21.2
KVD, and 2.1 FAD. We also reduce substantial computational complexity, achieving a 10x faster
sampling speed and allowing a larger sampling batch size.

Our contributions: 1) We propose a novel multi-modal latent diffusion model that establishes
low-dimensional audio and video latent spaces for SVG, which are perceptually equivalent to the
original signal spaces but significantly reduce the computational complexity. 2) We derive a shared
high-level semantic feature space from the low-level perceptual latent spaces to provide cross-modal
information that is easier to use when decoding audio-video signals. 3) By utilizing cross-modal
sampling guidance, we successfully extend our SVG model to conditional generation tasks like
audio-to-video and video-to-audio generation. 4) Our method obtains new state-of-the-art results on
two benchmarks with significant audio and visual gains.

2 RELATED WORK

Sounding Video Generation SVG is a challenging multi-modal generation task since it requires:
1) synthesizing realistic high-dimensional video and audio signals with limited computational re-
sources, and 2) bridging the representation and information gap between video and audio modalities
to obtain content consistency. Several research works have been proposed to explore the challenging
task of SVG. Based on generative adversarial networks, HMMD (Kurmi et al., 2021) introduces mul-
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Figure 2: Overall illustration of our multi-modal latent diffusion model (MM-LDM) framework.
Modules with gray border consist of our multi-modal autoencoder, which compresses raw audio-
video signals into perceptual latent spaces. The module with orange border is our transformer-based
diffusion model that performs SVG in the latent space. The green rectangle depicts the modification
of inputs for unconditional audio-video generation (i.e. SVG), audio-to-video generation, and video-
to-audio generation, respectively.

tiple discriminators to guide the generator in producing sounding videos with aligned audio-video
content. Based on sequential generative models, UVG (Liu et al., 2023b) introduces a multi-modal
tokenizer to encode different modal signals into discrete tokens, and employs a Transformer-based
generator for SVG. Although these works have tackled the SVG task to some extent, their per-
formances are far from expectations. Recently, motivated by the remarkable success of diffusion
models (Ho et al., 2020; Song et al., 2021), MM-Diffusion (Ruan et al., 2023) is introduced to
address SVG in the signal space. To ensure cross-modal consistency, MM-Diffusion introduces a
random-shift method for efficient attention. However, this method suffers from a huge computa-
tional burden and uses a limited attention window size (typically no more than 8), resulting in sub-
optimal cross-modal consistency. In this paper, we propose MM-LDM that establishes a distinct
low-level latent space for each modality and a shared high-level feature space for both modalities.
The former spaces closely approximate the signal spaces while significantly reducing computational
complexity. Simultaneously, the latter space provides valuable cross-modal information to obtain
better cross-modal consistency.

Latent Diffusion Model Given that raw signal spaces for image, audio, and video modalities are
of high dimensions, extensive efforts have been devoted to modeling their generation using latent
diffusion models (Rombach et al., 2022; Liu et al., 2023a; Blattmann et al., 2023; Yu et al., 2023; He
et al., 2022). For the image modality, LDM (Rombach et al., 2022) is devised to construct a percep-
tual latent space for images. This approach employs a KL-VAE to encode images into image latents
and utilizes a latent diffusion model for text-to-image generation within the latent space. For the au-
dio modality, AudioLDM (Liu et al., 2023a) is introduced to facilitate text-to-audio generation in a
1D latent space. In particular, it utilizes a large text-audio pretrained model CLAP (Wu et al., 2023)
for extracting text and audio latent features. For the video modality, VideoLDM (Blattmann et al.,
2023) is proposed to extend the LDM (Rombach et al., 2022) to high-resolution video generation.
It introduces a temporal dimension into the LDM, and only optimizes these temporal layers while
maintaining fixed, pretrained spatial layers. Despite previous latent diffusion models have demon-
strated excellent performance on single-modal generation tasks, multi-modal generation tasks raise
higher requirements, including unifying data representation across different modalities and consider-
ing cross-modal correlations. Our proposed method introduces a multi-modal latent diffusion model
that synthesizes high-quality sounding videos with consistent audio-video content. It achieves new
SoTA results on multiple benchmarks and significantly enhances the computational efficiency.

3 METHOD

In this section, we present our multi-modal latent diffusion model (MM-LDM) in detail. This ap-
proach consists of two main components: a multi-modal autoencoder designed for the compression
of video and audio signals, and a multi-modal latent diffusion model for modeling SVG within
latent spaces. Cross-modal sampling guidance is used to extend our method to cross-modal condi-
tional generation tasks, including audio-to-video generation and video-to-audio generation tasks. A
comprehensive overview of MM-LDM is illustrated in Fig. 2

3.1 VIDEO AND AUDIO COMPRESSION VIA A MULTI-MODAL AUTOENCODER

The detailed structure of our multi-modal autoencoder is presented in Fig. 3, which is composed of
two modal-specific encoders, two signal decoders with shared parameters, two projector functions
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Figure 3: The detailed architecture of our multi-modal autoencoder. (a) Given a pair of audio and
video inputs, two modal-specific encoders learn their perceptual latents. Two projectors map from
two respective perceptual latent space to the shared semantic space. Lcl represents the classification
loss and Lco denotes the contrastive loss. Class information can be obtained from the classification
head during inference. (b) We share the decoder parameters and incorporate multiple conditional
information for signal decoding. For the video modal, we provide a specific input of frame index to
extract information of the target video frame.

mapping from each perceptual latent space to the shared semantic feature space, and two heads for
classification and contrastive learning, respectively.

Unifying Representation of Video and Audio Signals We employ the raw video signals v and
transformed audio images a to be our inputs. Video v ∈ RF×3×H×W can be viewed as a sequence
of 2D images (i.e. video frames), where F , 3, H , and W are frame number, channels, height,
and width, respectively. Given that raw audio signals are 1D-long continuous data, we transform
raw audio signals into 2D audio images to unify the representation of audio and video inputs. In
particular, given raw audio signals, we first obtain its Mel Spectrogram with values normalized,
which is denoted as araw ∈ RD×T , where D represents the number of audio channels and T is the
temporal dimension. Then, we treat araw as a grayscale image and convert it into an RGB image
using the PIL Python toolkit. Finally, we resize the Mel Spectrogram image to the same spatial
resolution as the video input, obtaining an audio image a ∈ R3×H×W .

Transforming raw audio signals into audio images is important for two key reasons. Firstly, as
discussed in prior work (Huang et al., 2023), dealing with long continuous raw audio signals involves
expansive computation complexity. Second, by unifying audio and video inputs into a shared image
representation, we can leverage pre-trained image diffusion models to be our signal decoders, which
not only reduces training consumption but also enhances decoding performance.

Encoding Inputs into 2D Perceptual Latent Space Given a pair of audio and video inputs, we
employ a pretrained KL-VAE (Rombach et al., 2022) to downsample the video frames and audio
image by a factor of f . Then, as depicted in Fig. 3(a), we introduce an audio encoder to compress
the audio image into an audio perceptual latent za ∈ RC×Ha×Wa , which further downsamples the
audio image by a factor of fa, where C is the number of channels, Ha and Wa denotes H

f×fa
and

W
f×fa

, respectively. Similarly, the video encoder compresses video frames into zv ∈ RC×Hv×Wv .

The audio encoder is constructed in a similar way to the encoder part of U-Net, which consists
of residual blocks and spatial attentions. Since video signals are temporally redundant (Sun et al.,
2023b), we uniformly select keyframes from the input video to feed our video encoder. The structure
of the video encoder differs from the audio encoder in two key aspects. Firstly, it adds a temporal
attention layer after each spatial attention layer to capture temporal relationships. Secondly, an ad-
ditional temporal pooling layer is employed before the final layer to integrate temporal information.

Mapping Perceptual Latents to High-level Semantic Space When decoding video and audio la-
tents using a shared decoder, cross-model information is required to maintain consistency between
these two modalities. In our experiments, we observed a significant performance drop when we
directly used one perceptual latent as condition input to provide cross-modal information when de-
coding another perceptual latent. This performance drop reveals that the signal decoder is hard to
extract useful cross-modal information from perceptual latents. This can be attributed to two key
factors. Firstly, perceptual latents are dense representation of low-level information, thus presenting
challenges for the decoder to comprehend. Secondly, video frames and audio images exhibit distinct

4



Under review as a conference paper at ICLR 2024

patterns - the former encompassing real-world object images while the latter are typical images in
physics, thus the gap between their perceptual latents is too large for the decoder to bridge. To feed
the video decoder with useful cross-modal information, specialized modules are required to extract
high-level information from perceptual latents and narrow the gap between video and audio features.

To this end, as depicted in Fig. 3(a), we introduce an audio projector and a video projector that estab-
lish a shared high-level semantic space based on the low-level perceptual latents. In particular, the
audio and video projectors extract semantic audio and video features sa and sv from their perceptual
latents. To ensure the extracted features are of high-level semantic information, we employ a clas-
sification head fcl that takes a pair of audio and video features as inputs and predicts its class label,
which is optimized using a classification cross-entropy loss. A contrastive loss is employed with a
specified contrastive head to bridge the gap between video and audio features. The contrastive head
fco maps sa and sv to 1D features respectively and calculates their contrastive loss with matched
pairs of audio-video features being positive samples and all unmatched pairs of audio-video features
as negative samples. Following (Radford et al., 2021), we define the contrastive loss as follows:

Lco =− 1

2

B∑
i=1

log
exp(τ · sim(fco(s

i
a), fco(s

i
v)))∑B

j=1 exp(τ · sim(fco(sia), fco(s
j
v))))

− 1

2

B∑
i=1

log
exp(τ · sim(fco(s

i
v), fco(s

i
a)))∑B

j=1 exp(τ · sim(fco(siv), fco(s
j
a))))

(1)

where sim(∗) calculates the dot product of input features, B and τ denote the batch size and a
learnable parameter, respectively.

Signal Decoding As illustrated in Fig. 3(b), when reconstructing video signals, the signal decoder
takes multiple factors into account, including the video perceptual latent zv , frame index i, audio
semantic feature sa, learnable modality embedding, and learnable class embedding. The video per-
ceptual latent provides spatial information for the i-th video frame using residual blocks, and content
information through pooling. The audio semantic features are sequentialized and concatenated with
the learnable modality embedding as well as the class embedding. Then they are fed to cross-
attention layers to provide rich conditional information. When dealing with audio reconstruction,
the signal decoder employs similar inputs, except for the frame index. More detailed explanations
are presented in the appendix. To reduce training time and enhance the quality of reconstruction, we
initialize our signal decoder with parameters of a pretrained image diffusion model (Rombach et al.,
2022) and open all parameters during training.

Training Targets Following (Ho et al., 2020), we utilize the ϵ-prediction to optimize our signal
decoder, which involves the noise mean square error loss LMSE . Since the audio and video percep-
tual latents will be modeled for generation using MM-LDM, which will be specified in Sec. 3.2,
we incorporate additional KL losses La

KL and Lv
KL to punish the distributions of audio and video

latents towards an isotropic Gaussian distribution, which are similar to (Rombach et al., 2022). Pre-
vious works have proven the effectiveness of adversarial loss in training single-modal autoencoders
(Esser et al., 2021; Sun et al., 2023a). Here, we introduce a novel adversarial loss to improve the
quality of reconstructed multi-modal signals in terms of both single-modal realism and multi-modal
consistency. Following (Sun et al., 2023a), we first obtain a pair of decoded video frames ⟨v̄i, v̄j⟩
with i < j and corresponding audio image ā. Then, for the optimization of the discriminator, we
select ⟨a, vi, vj⟩ as the real sample and ⟨ā, v̄i, v̄j⟩, ⟨ā, v̄i, vj⟩, ⟨ā, vi, v̄j⟩, and ⟨ā, v̄j , v̄i⟩ to be the
fake samples. ⟨ā, v̄i, v̄j⟩ is viewed as the real sample for our autoencoder. Our adversarial loss can
be formulated as LD

GAN for the discriminator and LAE
GAN for our autoencoder:

LD
GAN =log(1−D(⟨a, vi, vj⟩)) + logD(⟨ā, v̄i, v̄j⟩) + logD(⟨ā, v̄i, vj⟩)

+ logD(⟨ā, vi, v̄j⟩) + logD(⟨ā, v̄j , v̄i⟩)
LAE
GAN =log(1−D(⟨ā, v̄i, v̄j⟩))

(2)

Our discriminator is constructed by several spatio-temporal modules that consist of residual blocks
and cross-modal full attentions. Our final training loss for the multi-modal autoencoder becomes:

LAE = LMSE + λclLcl + λcoLco + λkl(La
KL + Lv

KL) + λganLAE
GAN (3)

where λcl, λco, λkl and λgan are predefined hyper-parameters. Lcl and Lco are the classification
and contrastive losses, respectively.
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3.2 MULTI-MODAL LATENT DIFFUSION MODEL

As illustrated in Fig. 2, our approach independently corrupts audio and video latents during the
forward diffusion process, whereas in the reverse denoising diffusion process, we employ a unified
model that jointly predicts noise for both modalities. In particular, during forward diffusion, we
corrupt audio and video latents, which are denoted as z0a and z0v (i.e. za and zv), by T steps using a
shared transition kernel. For simplicity, we use z0 to represent both z0a and z0v in the subsequent sec-
tion. Following prior works (Ho et al., 2020; Ruan et al., 2023), we define the transition probabilities
as follows:

q(zt|zt−1) = N (zt;
√
1− βtz

t−1, βtI); q(zt|z0) = N (zt;
√
ᾱtz

0, (1− ᾱt)I) (4)

where {βt ∈ (0, 1)}Tt=1 is a set of shared hyper-parameters, αt = 1 − βt, and ᾱt =
∏t

i=1 αi.
Utilizing Eq. (4), we obtain corrupted latents zt at time step t as follows:

zt =
√
ᾱtz

0 + (1− ᾱt)n
t (5)

where nt ∼ N (0, I) represents noise features nt
a and nt

v for zta and ztv respectively. the reverse dif-
fusion processes of audio and video latents q(zt−1|zt, z0) have theoretically traceable distributions:
To capture correlations between audio and video modalities and ensure content consistency, we in-
troduce a unified denoising diffusion model θ. This model takes both corrupted audio and video
latents (zta, z

t
v) as input and jointly predicts their noise features (nt

a, n
t
v). The reverse diffusion

process of corrupted audio and video latents is formulated as:

q((zt−1
a , zt−1

v )|(zta, ztv)) = N ((zt−1
a , zt−1

v )|µθ(z
t
a, z

t
v), β̃tI) (6)

During training, we minimize the mean square error between the predicted and original noise fea-
tures of matched audio-video pairs, known as ϵ-prediction in the literature (Kingma et al., 2021):

Lθ =
1

2
∥ña

θ(z
t
a, z

t
v, t)− nt

a∥2 +
1

2
∥ñv

θ(z
t
a, z

t
v, t)− nt

v∥2 (7)

Here, ña
θ(z

t
a, z

t
v, t) and ñv

θ(z
t
a, z

t
v, t) are the predicted audio and video noise features, respectively.

Given that our audio and video latents za and zv possess relatively small spatial resolution, we
employ a Transformer-based diffusion model known as DiT (Peebles & Xie, 2022) as our backbone
model. During training, we sequentialize audio and video latents and independently add positional
embeddings (Vaswani et al., 2017) to each latent. Then, two learnable token embeddings, [EOSa]
and [EOSv], are defined and inserted before the audio and video latents, respectively. Finally, audio
and video latents are concatenated and fed to DiT for multi-modal generation.

3.3 CONDITIONAL GENERATION

Initially designed for class-conditioned image generation (Ho & Salimans, 2022), the classifier-free
guidance has demonstrated its effectiveness in the more difficult text-to-image generation task (Sa-
haria et al., 2022; Ramesh et al., 2022). Inspired by this success, we introduce the cross-modal sam-
pling guidance that targets both audio-to-video and video-to-audio generation tasks. Our approach
involves training the single MM-LDM to simultaneously learn three distributions: an unconditional
distribution denoted as ñθ(z

t
a, z

t
v, t) and two conditional distributions represented as ñθ(z

t
v, t; za)

and ñθ(z
t
a, t; zv), corresponding to the SVG, audio-to-video and video-to-audio generation tasks

respectively. To accomplish this, we incorporate a pair of null audio and video latents, defined as
(0a, 0v) with 0a = 0 and 0v = 0. Then, the unconditional distribution ñθ(z

t
a, z

t
v, t) can be re-

formulated to be ñθ(z
t
a, z

t
v, t; 0a, 0v). The conditional distribution ñθ(z

t
v, t; za) can be reformed as

ñθ(z
t
a, z

t
v, t; za, 0v), where zta can be obtained directly given za ant t according to Eq. (5). Sim-

ilarly, ñθ(z
t
a, t; zv) is reformulated as ñθ(z

t
a, z

t
v, t; 0a, zv). As depicted in Fig. 2, the conditional

inputs are added to the input latents after zero convolution layers (which are ignored in the figure
for conciseness) to provide conditional information. We randomly select 5% training samples for
each conditional generation task. Finally, taking audio-to-video generation as an example, we per-
form sampling utilizing the following linear combination of the conditional and unconditional noise
predictions, defined as follows:

n̄v
θ(z

t
v, t; za) = ϕ · ñv

θ(z
t
a, z

t
v, t; za, 0v)− (1− ϕ) · ñv

θ(z
t
a, z

t
v, t; 0a, 0v) (8)

where ϕ serves as a hyper-parameter that controls the intensity of the conditioning.
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Table 1: Efficiency comparison with MM-Diffusion (Ruan et al., 2023) on a V100 32G GPU, which
models SVG within the signal space. MBS denotes the Maximum Batch Size.

Method Resolution Training Inference
MBS One Step Time MBS One Sample Time

MM-Diffusion 642 4 1.70s 32 33.1s
MM-Diffusion 1282 1 2.36s 16 90.0s

MM-LDM (ours) 2562 9 0.46s 4 70.7s
MM-LDM* (ours) 2562 12 0.38s 33 8.7s

4 EXPERIMENT

In this section, we first introduce our experimental setups and implementation details in Sec. 4.1.
Then we present the quantitative and qualitative comparison between our MM-LDM and prior works
in Sec. 4.2 and Sec. 4.3. Finally, we conduct ablation studies in Sec. 4.4.

4.1 EXPERIMENTAL SETUPS

Dataset Following (Ruan et al., 2023), we conduct experiments on two distinct and high-quality
sounding video datasets, namely Landscape (Lee et al., 2022) and AIST++ (Li et al., 2021). The
former comprises videos recording nature scenes and the latter encompasses videos recording street
dances. More detailed introduction of each dataset is presented in the appendix.

Baseline Models We compare our MM-LDM against four state-of-the-art methods: (1) TATS (Ge
et al., 2022): a sequential generative model for video generation; (2) DIGAN (Yu et al., 2022): a gen-
erative adversarial network for video generation; (3) Diffwave (Kong et al., 2021): a diffusion-based
method for audio generation; (4) MM-Diffusion (Ruan et al., 2023): a diffusion-based method for
sounding video generation. MM-Diffusion initially synthesizes sounding videos with 642 resolution
and then utilizes a Super-Resolution (SR) model to obtain 2562 resolution.

Evaluation Metrics For video evaluation, we follow previous settings (Ge et al., 2022; Yu et al.,
2022; Ruan et al., 2023) that employ the Fréchet Video Distance (FVD) and Kernel Video Distance
(KVD) metrics for video evaluation and Fréchet Audio Distance (FAD) for audio evaluation. Our
implementation for these evaluations is based on the resources provided by (Ruan et al., 2023). Our
MM-LDM synthesize all videos at a 2562 resolution. We resize the synthesized videos when testing
the metrics in the 642 resolution.

Implementation Details When training our multi-modal autoencoder, we utilize pretrained KL-
VAE (Rombach et al., 2022) with the downsample factor being 8. Both video frames and audio
images are resized to a 2562 resolution, and video clips have a fixed length of 16 frames (F = 16).
The audio and video encoders use downsample factors of fa = 4 and fv = 2, yielding latents of
spatial size 82 and 162, respectively. The number of latent channels is 16 for both modalities. The
loss weights λcl, λco, and λgan are 1e-1, 1e-1, and 1e-1, respectively. The loss weight λkl is set as
1e-9 for Landscape and 1e-8 for AIST++. Further details can be found in the appendix.

4.2 QUANTITATIVE COMPARISON

Efficiency We quantitatively compared the efficiency of our MM-LDM and MM-Diffusion and pre-
sented the results in Table. 1. MM-LDM incorporates both the auto-encoder and the DiT generator,
while MM-LDM* only tests the DiT generation performance by preprocessing and saving all latents.
We fix the batch size being 2 when testing the one-step time during training and the one sample time
during inference, and DDIM sampler is used with 50 steps for both methods.

Since MM-Diffusion operates in the signal space, it demands huge computational complexity when
the spatial resolution of synthesized videos increases. In particular, it struggles to model high-
resolution (2562) video signals on a 32G V100, leading to the out-of-memory error. We evaluate
the efficiency of MM-Diffusion with two spatial resolution settings: 642 and 1282. MM-LDM
demonstrates improved efficiency with higher video resolutions (2562 vs. 1282) during the training
process. When employing the same batch size (i.e., 2), our MM-LDM outperforms MM-Diffusion
by 6x speed for each training step, allowing a much bigger training batch size with the higher video
resolution. During inference, our diffusion generative model DiT, which performs SVG within the
latent space, achieves a 10x faster sampling speed and allows a larger sampling batch size.
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Table 2: Quantitaive comparison on the Landscape and AIST++ datasets for SVG, audio-to-video,
and video-to-audio generation. Results noted with ∗ are reproduced with their released checkpoints.

Method Resolution Sampler Landscape AIST++
FVD ↓ KVD ↓ FAD ↓ FVD ↓ KVD ↓ FAD ↓

Ground Truth 642 - 16.3 -0.015 7.7 6.8 -0.015 8.4
Ground Truth 2562 - 22.4 0.128 7.7 11.5 0.043 8.4

Single-Modal Generative Models

DIGAN 642 - 305.4 19.6 - 119.5 35.8 -
TATS-base 642 - 600.3 51.5 - 267.2 41.6 -
MM-Diffusion-v 642 dpm-solver 238.3 15.1 - 184.5 33.9 -
Diffwave 642 - - - 14.0 - - 15.8
MM-Diffusion-a - dpm-solver - - 13.6 - - 13.3

Multi-Modal Generative Models on Audio-to-Video Generation

MM-Diffusion* 642 dpm-solver 237.9 13.9 - 163.1 28.9 -
MM-Diffusion-SR* 642 dpm-solver+DDIM 225.4 13.3 - 142.9 24.9 -
MM-LDM (ours) 642 DDIM 89.2 4.2 - 71.0 10.8 -

MM-Diffusion-SR* 2562 dpm-solver+DDIM 347.9 27.8 - 225.1 51.9 -
MM-LDM (ours) 2562 DDIM 123.1 10.4 - 128.5 33.2 -

Multi-Modal Generative Models on Video-to-Audio Generation

MM-Diffusion* - dpm-solver - - 9.6 - - 12.6
MM-LDM (ours) - DDIM - - 9.2 - - 10.2

Multi-Modal Generative Models on Sounding Video Generation

MM-Diffusion 642 DDPM 117.2 5.8 10.7 75.7 11.5 10.7
MM-Diffusion 642 dpm-solver 229.1 13.3 9.4 176.6 31.9 12.9
MM-Diffusion+SR* 642 dpm-solver+DDIM 211.2 12.6 9.9 137.4 24.2 12.3
MM-LDM (ours) 642 DDIM 77.4 3.2 9.1 55.9 8.2 10.2

MM-Diffusion+SR* 2562 dpm-solver+DDIM 332.1 26.6 9.9 219.6 49.1 12.3
MM-LDM (ours) 2562 DDIM 105.0 8.3 9.1 105.0 27.9 10.2

Quality We quantitatively compare our method with prior works for the audio-to-video generation,
video-to-audio generation, and sounding video generation tasks. The results are reported in Table.
2. We first evaluate model performance on the single-modal conditional generation tasks like audio-
to-video and video-to-audio generation. On the landscape dataset, our MM-LDM outperforms MM-
Diffusion by 136.2 FVD and 55.9 KVD at the 642 resolution, 224.8 FVD and 17.4 KVD at the
2562 resolution, and 0.4 FAD. On the AIST++ dataset, our MM-LDM outperforms MM-Diffusion
by 71.9 FVD and 14.1 KVD at the 642 resolution, 96.6 FVD and 18.7 KVD at the 2562 resolution,
and 2.4 FAD. These results demonstrate that our MM-LDM captures more insightful cross-modal
information and demonstrates the effectiveness of our cross-modal sampling guidance.

For the multi-model joint generation task (i.e., SVG) at the 642 resolution, we achieve a 39.8 FVD,
2.6 KVD and 1.6 FAD improvement on the Landscape dataset and a 19.8 FVD, 3.3 KVD and 0.5
FAD improvement on the AIST++ dataset compared to MM-Diffusion. At the 2562 resolution, we
achieve a 227.1 FVD, 18.3 KVD, and 0.8 FAD improvement on the Landscape dataset and a 114.6
FVD, 21.2 KVD and 2.1 FAD improvement on the AIST++ dataset. It can be seen that our method
enhances the generation quality more significantly when the resolution increases, demonstrating
the necessity of establishing perceptual latent spaces for high-resolution sounding video generation.
Notably, when using the DDPM sampler, MM-Diffusion requires 1000 diffusion steps to synthesize
a sounding video sample, taking approximately 8 minutes for a single sample. In contrast, our MM-
LDM synthesizes higher-resolution videos with only 50 sampling steps using the DDIM sampler.
Furthermore, our research reveals that cross-modal generation yields a substantial enhancement in
the quality of each single modality, demonstrating the potential of multi-modal generation tasks.

4.3 QUALITATIVE COMPARISON

We qualitatively compare the generative performance of our MM-LDM and MM-Diffusion in Fig.
4, using the provided checkpoints for MM-Diffusion when sampling. All images are at a resolution
of 2562. Videos synthesized by MM-Diffusion produce blurry appearances with deficient details,
whereas our MM-LDM yields more clear samples with better audio-video alignments.
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Figure 4: Qualitative comparison of sounding video samples: MM-Diffusion vs. MM-LDM (ours).
All presented audios can be played in Adobe Acrobat by clicking corresponding wave figures.

Table 3: Ablation study on the multi-modal autoencoder on the Landscape dataset.
Learnable Latent Learnable Semantic Finetune Adversarial

rFVD ↓ rKVD ↓ rFAD ↓Modality Average Class Cross-Modal KL-VAE Training
Prompt Pooling Embedding Feature Decoder Loss

110.7 6.9 9.3
✓ 105.5 6.8 9.0
✓ ✓ 94.4 5.7 9.2
✓ ✓ ✓ 87.7 5.1 9.1
✓ ✓ ✓ ✓ 80.1 4.3 9.1
✓ ✓ ✓ ✓ ✓ 75.7 3.9 8.9
✓ ✓ ✓ ✓ ✓ ✓ 53.9 2.4 8.9

4.4 ABLATION STUDIES

We conduct ablation studies on our multi-modal autoencoder and report the results in Table. 3. Our
base autoencoder independently decodes signals for each modality based on the respective spatial
information from perceptual latents. To reduce computational complexity, we share the diffusion-
based signal decoder for both modalities while using a learnable embedding to prompt each modal-
ity, obtaining improved performance. For a more comprehensive content representation, we apply
average pooling to each perceptual latent, adding the latent feature to the timestep embedding and
further enhancing the model performance. By incorporating the classification and contrastive losses,
we leverage prior knowledge of class labels and extract high-level cross-modal information, which
significantly boosts model performance. Since the KL-VAE was originally trained on natural images
and is unfamiliar with physical images like audio images, we finetune its decoder on each dataset
for better performance. Finally, after training with the adversarial loss, our autoencoder attains its
best reconstruction performance, achieving 53.9 rFVD, 2.4 rKVD, and 8.9 rFAD.

5 CONCLUSION

This paper introduces MM-LDM, a novel diffusion-based method for SVG. Our method reduces the
computational complexity of SVG by constructing low-dimensional latent spaces that faithfully cap-
ture the perceptual characteristics of the original signal spaces. To obtain cross-modal consistency,
we unify the audio-video data representation and bridge the gap of content information between the
two modalities. Extensive experiments demonstrate that our method excels at generating sounding
videos with enhanced single-modal realism and cross-modal consistency, achieving new state-of-
the-art results on multiple benchmarks with better training and inference efficiency.
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