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Abstract
Online platforms and regulators face a continuing problem of de-

signing effective evaluation metrics. While tools for collecting and

processing data continue to progress, this has not addressed the

problem of unknown unknowns, or fundamental informational limi-

tations on part of the evaluator. To guide the choice of metrics in

the face of this informational problem, we turn to the evaluated

agents themselves, who may have more information about how

to measure their own outcomes. We model this interaction as an

agency game, where we ask: When does an agent have an incentive
to reveal the observability of a metric to their evaluator? We show

that an agent will prefer to reveal metrics that differentiate the

most difficult tasks from the rest, and conceal metrics that differ-

entiate the easiest. We further show that the agent can prefer to

reveal a metric garbled with noise over both fully concealing and

fully revealing. This indicates an economic value to privacy that

yields Pareto improvement for both the agent and evaluator. We

demonstrate these findings on data from online rideshare platforms.

CCS Concepts
• Information systems→ Incentive schemes; • Security and
privacy→ Economics of security and privacy.
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1 Introduction
“Only the wearer knows where the shoe pinches.” –Proverb

The design of effective evaluation metrics continues to be of cen-

tral concern to online platforms and their surrounding economies,

including regulators, engineers, and users. Indeed, the problem has

only grown in importance in recent years, as advances in the ability

of online platforms to collect and analyze data have led to a reliance

on data-driven evaluation metrics to steer decision-making. The

design problem becomes an adaptive and incentive-theoretic one.
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For instance, in the rapidly evolving AI marketplace, government

regulators are increasingly concerned with the evaluation of AI sys-

tems, focusing attention on the evaluation of safety, performance,

and liability, in the context of evolving law and policy [27]. Private

companies have demonstrated investment in improving evaluation

as well, from developing leaderboards [5, 21] to funding evaluation

efforts from third-party researchers [8]. Academic researchers are

at the forefront of efforts to develop new evaluation metrics that

target an ever-increasing spectrum of capabilities [23, 36].

Within the firms developing these technologies, evaluation has

also long been a core part of operations, where internal evaluation

metrics drive company decisions in all areas, from engineering to

advertising to pricing. Online platforms (like recommender systems,

digital marketplaces, and gig economy platforms) draw from rich

data sources to compute their internal evaluation metrics. Still,

significant challenges remain in the design and usage of these

metrics, from handling the limitations and biases of current “proxy”

metrics [9, 47], to identifying which aspects of the data are most

relevant to a given decision [15, 42].

We consider the development of evaluation metrics, where we
use the word “metric” to loosely refer to a variable that an evaluator
uses to infer the value or difficulty of a task under consideration.
For example, a score on an evaluation benchmark is a metric that

indicates the value of a LLM trained by a firm. The delivery time is

a metric that indicates both value and difficulty of a food delivery

completed by a driver. The h-index is a metric that some employers

may use to infer the productivity of a researcher. Metrics almost

never tell the whole story, and vary in informativeness, but are

nonetheless deeply embedded in online platforms and economies,

driving the evolution of technology and shaping its societal impact.

For both firms and regulators, the modern prevailing challenge

with the design of metrics is not necessarily with the ability to

collect large volumes of data, but of discerning which aspects of the

data are relevant to the task at hand. This knowledge in turn informs

allocation of resources for data-collection efforts, and downstream

decisions that affect users like pricing and auditing. We consider

evaluators who are powerful, but with a limited worldview: they

can verify and collect any data for metrics that they are aware of,

but their worldview is limited in that they are not aware of all

possible metrics that could be important.

A core perspective underlying this work is that while evaluators

might be limited by their worldviews, this does not mean that better

information does not exist in the wider socio-technical system. In

fact, those who know the most about a task are often none other

than the agents who perform it themselves. These evaluated agents

might both know and be willing to share better evaluation metrics.

Thus, in this work, we study the incentives for information transfer

from an evaluated agent to the evaluator.

More generally, there is a long history of eliciting information

and feedback from the wider socio-technical system for the pur-

poses of evaluation and design. For example, the subfield of partici-
patory design in human-computer interaction focuses on methods

1
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for designing technical systems with user input [45]. For AI eval-

uation, some of the biggest companies currently developing the

AI systems are also involved in the evaluation process, even cited

as direct collaborators in a recent White House briefing [27]. In

online content and labor platforms, there is often a rich reliance on

feedback channels like surveys and focus groups of creators and

workers on the platform.

We present a theoretical model of incentives for an agent to share
metrics across such channels. We characterize the incentives that

influence an evaluated agent to share metrics with an evaluator,

with a particular focus on the unique capabilities and limitations

of modern online platforms. Specifically, we consider a setting in

which there are significant asymmetries in data collection, data

verification, and price-setting power between the evaluator and

the evaluated agents. Yet, a key information asymmetry remains

in the other direction, where the evaluated agents hold unique

information about what features are most correlated with their

success. A core strategic dependence in ourmodel is the relationship

between the agent and the metrics—we consider the incentives an

agent may experience with respect to the revelation of metrics that

impact their own evaluation by an outside entity.

The incomplete nature of metrics has been discussed in the

seminal work of Holmström and Milgrom [26] on contracts with

multidimensional tasks, where a principal may observe only a sub-

set of dimensions that are relevant to their value or the agent’s

cost. When the principal is aware of which dimensions are missing,

Holmström and Milgrom [26] show how to optimally reward the

observed dimensions given properties of the agent’s cost struc-

tures. The distinguishing feature of our setting is that we consider

the unobserved dimensions to be unknown unknowns, yielding a

model that is in a sense inherently non-Bayesian. We focus on an

information-transfer mechanism where the agent has the power to

possibly reveal these hidden dimensions to the principal.

Specifically, we examine an agent’s incentives for information

sharing through the lens of an agency game with information trans-
fer. We build on a classical agency game where a principal contracts

an agent to complete a task, and the principal only has partial infor-

mation about the agent’s costs
1
when setting a contract. To capture

the agent’s additional information and opportunity to improve the

metrics by which they are evaluated, our model supposes that the

agent is privately aware of additional variables that correlate with

their cost of task completion, and further has the opportunity to

reveal these additional variables to the principal prior to the design

of the contract. We analyze when the agent prefers a contract that

depends on the revealed metrics over a contract that ignores them.

Importantly, our model deviates from the standard Bayesian

setup in persuasion games, since without the agent’s help, the prin-

cipal is not even aware of the existence of the metric. We also assume

the agent cannot lie about or selectively mask the metric depending

on its value, reflecting a common reality where online platforms

and regulators often have significant data collection power, and

can even compel an evaluated agent to report metrics [18].

While the principal is always better off knowing more metrics,

the incentives for the agent are nuanced—revealing a metric reduces

1
In addition to representing the difficulty of the task, the agent’s “cost” could also be

interpreted as the external market value for the task, or the price that the principal

has to beat for the agent to complete the task for them.

the amount of information rent the agent can extract when their

costs turn out to be low. However, better information also means

more high-cost tasks will go forward that the agent otherwise

would not have accepted, as the optimal contract would adequately

reward the agent when the metric indicates a high cost.

We prove that the agent prefers to reveal metrics that strongly

differentiate the highest cost settings from rest, and conceal metrics

that strongly differentiate the lowest cost settings from the rest.

For example, a university might want to reveal to a government

funder the number of low-income students that matriculate (indi-

cating higher operating costs), but conceal the amount of funding

they anticipate from private donations (indicating that they could

continue without additional funds).

Our analysis becomes richer when we expand the agent’s action

space to include the ability to garble or add noise to their metric be-

fore revealing it. We analyze a garbling mechanism that guarantees

a notion of local differential privacy for the metric, and show that

under a fairly wide set of conditions, the agent may prefer to reveal

a garbled metric over both fully concealing and fully revealing the

original metric. In fact, garbling can lead to Pareto improvement
for both the principal and agent. From a policy standpoint, this

demonstrates settings when both a principal and agent can derive

economic value from a privacy preserving mechanism, even before

considering the inherent social value of privacy.

Finally, we demonstrate an application of our theory to analyzing

feature discovery for pricing on rideshare platforms, using public

data scraped from Uber and Lyft.

Our contributions can be summarized as follows:
(1) We introduce a model for the elicitation of unknown met-

rics, via an agency game with information transfer.

(2) We present sufficient conditions under which an agent

would prefer to reveal or conceal a metric.

(3) We show that when the agent has the ability to reveal a

garbled metric, this can lead to Pareto improvement for

both the principal and agent.

(4) We leverage connections between our model and price dis-

crimination to analyze total welfare.

(5) We apply our model on real data to analyze feature discov-

ery on for pricing on rideshare platforms.

2 Related Work
Our model builds on literature from contract design and agency

games. It also fits into a large literature on information design, and

can be seen as an instance of information design with a specific

structure. Our model also overlaps with a large body of work on

price discrimination.

Agency games and contract design. We build from the well estab-

lished contract design problem of Laffont and Tirole [34], which

concerns a principal’s design of a contract when an agent’s effort

and cost type are privately held by the agent. Key to this setting

are asymmetries in values and information between the principal

and agent, and the literature explores issues of moral hazard and

adverse selection that arise from these asymmetries [24, 33, 40].

A fundamental result regarding signaling incentives in con-

tract theory is Holmström [25]’s sufficient statistic theorem, which

showed that it benefits an agent for the contract to be conditioned

2
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on any information that is independently informative of the agent’s

effort. Our setting models an agent’s incentive to share information

about its cost type, which yields different results from the analysis

of effort signaling, and is closer to some analyses of persuasion

games which we discuss in more detail below. Milgrom [39] also

classifies the “favorableness” of signals to an agent, presenting

monotonicity properties that we also leverage in this work.

Persuasion games and information design. The use of stakeholder-
supplied information for decision-making was introduced by Mil-

grom and Roberts [38] in their seminal work on persuasion games.
Milgrom and Roberts [38] give an example of analyzing a buyer’s

purchasing strategy when a seller can send a quality signal about

their product. While this broad motivation of information transfer

from interested parties is close to our setting of eliciting metrics

from evaluated agents, our model has a key distinction that without

the agent’s help, the principal could not even access a prior over

the metric. We also constrain the agent’s information revelation

strategy to not be able to depend on the realized value of the vari-

able. This brings our setting closer to a problem of metric discovery,
where the fundamental problem is a principal’s lack of awareness

of a metric’s observability, rather than a realized signal value [46].

More broadly, Bayesian persuasion and information design pro-

vides a general framework for analyzing the effects of the distribu-

tion of information on the outcomes of a game [13, 30]. Our model

can be seen as a specific instantiation of an information design

problem where the sender is the agent, the receiver is the principal,
and the contracting relationship determines the principal’s and

agent’s action spaces and equilibria. We impose a constraint over

the sender’s information transfer policy in order to capture the

incentives for an agent to reveal observability of a variable to the

principal. Notably, the agent cannot selectively mask or lie about

their signal based on its realized value, as our model is motivated by

settings where a principal has powerful data collection capabilities.

Price discrimination. Our model has analogies with classical price

discrimination, and thereby opens new avenues for applying the

well-developed tools from price discrimination to understanding

the metric design problem. It also uncovers new challenges that

extend existing price discrimination perspectives. These issues have

been anticipated by Bergemann et al. [12], who define a mapping

from third-degree price discrimination onto the class of agency

problems and establish the existence of market segmentations that

achieve all possible trade-offs between consumer and producer

surplus within some basic constraints. Our work complements

this analysis—instead of analyzing all possible segmentations, we

consider the agent’s information-revelation incentives as a function

of the properties of a specific segmentation induced by some cost-

correlated variable which is initially only available to the agent.

Our garbling setting also notably differs from the models of

price discrimination with transportation costs and arbitrage [52]

or restricted price discrimination [4]. While restricted price dis-

crimination mechanisms also effectively interpolate between full

discrimination and no discrimination, we prove a substantive dif-

ference between garbling and these mechanisms in Appendix G.5.

Sunspots and correlated equilibria. Our model is also connected

to the so-called sunspots literature [28, 51]. In this literature, there

are multiple steady-state equilibria and an observable random vari-

able produces a correlated equilibrium, with agents conditioning

their behavior on this otherwise extraneous variable not because it

matters to payoffs, but because it predicts others’ behaviors. The

literature is known as sunspots because, during the 19th century,

some people believed sunspot activity predicted agricultural yields

[29], and while it did not, it could predict the behavior of commod-

ity traders who believed it did. This literature is the polar opposite

of the problem we study: sunspots are a known, extraneous vari-

able believed to be relevant, while we study an unknown (to the

principal) relevant variable.

Preferences for privacy. Our model interacts with literatures on

privacy and information-hiding, by highlighting situations where

agents experience conflicting incentives both for and against shar-

ing information. The result can be that agents may prefer partial

sharing, which echoes the subtleties that arise elsewhere when

privacy and behavior interact [2, 17].

Several works have considered the interaction between privacy

and price discrimination in particular [3, 7, 16, 20, 22, 41]. Close

to our setting is Fallah et al. [20], who consider a noise addition

mechanism that distorts the principal’s view of the observed value

distributions per market segment. However, unlike our model, they

assume that the principal does not know the aggregate market (the

marginal distribution of costs in our setting), and their noise model

can distort the principal’s belief about the aggregate market. Our

garbling mechanism also differs from these other works in various

ways (including, e.g., that there is no cost to noise addition, that

the agent does not derive inherent value from garbling, and that

noise is only added to the metric). Still, these various models have

led to similar findings that privacy can yield economic benefits.

3 Agency Game with Information Transfer
To gain insight into the incentives surrounding the discovery of

metrics, we start with a standard agency game in which a principal

contracts an agent to complete a task. In such a game, we ask,

when does the agent have an incentive to reveal observability of a
cost-correlated variable to the principal?

Specifically, suppose a principal contracts the agent to complete a

task, where an agent may exert binary effort. Suppose the principal

receives value𝑏 if the agent exerts effort and completes the task, and

0 otherwise (we assume that the task is completed deterministically

if the agent exerts effort). Suppose the agent incurs cost𝐶 ∈ R+ for

exerting effort. The exact cost is unobserved to the principal, but

the principal is aware of a prior distribution over agent’s cost type,

denoted by the random variable 𝐶 . The agent observes both the

proposed price and their realized cost type before deciding whether

or not to exert effort. This maps onto the well-established agency

game setup where the principal must design a contract when the

agent’s cost and effort are private [34].

To model the agent’s additional knowledge of a metric, suppose

the agent is aware of a variable𝑋 ∈ X which is correlated with their

cost 𝐶 . However, 𝑋 is an unknown unknown to the principal. Prior

to the principal’s design of the contract, the agent has a choice

of whether or not to reveal 𝑋 , which entails revealing both the

observability of 𝑋 at the time of the design of the contract, and

the realized value of 𝑋 at the execution of the contract (which

the principal can verify). The fact that 𝑋 is not observable to the

principal without the agent revealing is a key distinction between

3
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our model and prior work in signaling games. That is, the principal

cannot rely on prior information over 𝐶 and 𝑋 , since they are not

even aware of the existence of𝑋 . This allows us to analyze a decision

problem that differs from that of the standard Bayesian framework,

which instead focuses on an agent’s decision to reveal their value
of 𝑋 after it is realized.

If the agent chooses to not reveal 𝑋 , then the rest of the game

proceeds as a standard agency game with private cost: the principal

designs a contract based on their knowledge of the prior distribu-

tion𝐶 . If the agent reveals 𝑋 , then the principal can offer a contract

that conditions on the realized value of 𝑋 . The timing of the full

agency game with the possibility of agent information transfer is

summarized in Figure 1. The text in black matches the standard

agency game [34], and the text in gray represents additional ele-

ments introduced by our model.

The principal’s contract design problem when 𝑋 is concealed

reduces to choosing a single price 𝑝 where the agent is paid 𝑝 if

the task is completed, and zero otherwise. If 𝑋 is revealed, then the

principal offers a contract with distinct prices 𝜌 (𝑥) for different
realized values of 𝑥 ∈ X. At the execution of the contract, the agent

receives payment 𝜌 (𝑥) if the task is completed and 𝑋 = 𝑥 , and

0 otherwise. We assume that the principal still receives the same

value 𝑏 if the task is completed, regardless of 𝑋 .

The key question in this work concerns the agent’s decision of

whether or not to reveal 𝑋 at time 𝑡 = 1. In Section 4, we treat this

as a binary decision of whether or not to reveal 𝑋 ; we will later

relax this in Section 5 to expand the agent’s action space to reveal

a garbled version of 𝑋 , thus interpolating between the concealed

and revealed settings.

3.1 Optimal Contracts
We begin by outlining the optimal contract and equilibrium utilities

of the principal and agent when the contract is agnostic of𝑋 , which

we refer to as the concealed information setting. Then, we outline

the optimal contract and equilibrium utilities when the principal

can condition on 𝑋 to determine payments to the agent, which we

refer to as the revealed information setting. We assume that both

principal and agent are risk neutral throughout.

Concealed information contract. If the metric 𝑋 is not revealed at

𝑡 = 1, then the rest of the game proceeds as a standard agency game

with private cost, where the principal chooses a single transfer 𝑝

based on their knowledge of the prior distribution over the agent’s

cost 𝐶 . The agent’s optimal policy at the execution of the contract

is to exert effort if their realized cost is less than or equal to the

payment. Thus, the agent’s best response to the principal’s choice

of transfer 𝑝 is to exert effort with probability 𝐹 (𝑝) = P(𝐶 ≤ 𝑝)
(the set where 𝐶 = 𝑝 has measure zero).

2

For a given choice of transfer 𝑝 , the principal’s expected util-

ity when 𝑋 is hidden is given by Πcon (𝑝) B 𝐹 (𝑝) (𝑏 − 𝑝). The
agent’s expected utility under the principal’s choice of transfer 𝑝

is given by 𝑉con (𝑝) B E[(𝑝 −𝐶) 1(𝐶 < 𝑝)]. The principal moves

first and chooses 𝑝∗ ∈ arg max𝑝≥0 Πcon (𝑝). The agent’s utility at

equilibrium is then 𝑉con (𝑝∗).

2
We may also think of 𝐹 (𝑝 ) as the task completion “quantity” as a function of price 𝑝 ,

or the proportion of agents drawn uniformly at random from a population with costs

distributed as𝐶 that would complete the task for price 𝑝 .

Revealed information contract. If the metric 𝑋 is revealed at time

𝑡 = 1, then the principal can vary the payment amount depending

on 𝑋 , denoted as 𝜌 : X → R+. The agent’s best response to the

principal’s payment function 𝜌 (·) is to exert effort with probabil-

ity 𝐹𝑥 (𝜌 (𝑥)) when 𝑋 = 𝑥 . The principal’s expected utility in the

revealed setting is given by Πrev (𝜌) B E[𝐹𝑋 (𝜌 (𝑋 )) (𝑏 − 𝜌 (𝑋 ))],
maximized at 𝜌∗ ∈ arg max𝜌∈F Πrev (𝜌). The agent’s expected util-

ity under the principal’s choice of transfer function 𝜌 (·) is then
𝑉rev (𝜌) B E[(𝜌 (𝑋 ) − 𝐶) 1(𝐶 < 𝜌 (𝑋 ))]. The agent’s choice of

whether to reveal or conceal is ultimately determined by their util-
ity difference, 𝑉rev (𝜌∗) −𝑉con (𝑝∗).

4 Welfare Effects of Information Revelation
Our first central goal is to analyze the circumstances under which

the agent would prefer to either conceal or reveal the observability

of the metric 𝑋 at time 𝑡 = 1. We show that the agent prefers to

conceal 𝑋 when it strongly differentiates the lowest cost setting

from the rest, and reveal 𝑋 when it strongly differentiates the

highest cost setting from the rest. We also analyze the consequences

of the resulting decision on total welfare, connecting our model to

the literature on the effects of price discrimination on total welfare.

4.1 Agent’s Revelation Incentives
To understand the properties of a feature 𝑋 that would lead the

agent to either want to reveal or conceal, we begin with a family

of thresholding features, {𝑋 𝑡
: 𝑡 ∈ R+}, where 𝑋 𝑡 = 0 if 𝐶 > 𝑡 ,

and 𝑋 𝑡 = 1 if 𝐶 ≤ 𝑡 . That is, 𝑋 𝑡 = 1 indicates a low cost type,

and 𝑋 𝑡 = 0 indicates a low cost type, thresholded by 𝑡 . Our main

results are two theorems that indicate that if 𝑡 is small enough, the

agent will prefer to conceal, and if 𝑡 is large enough (relative to the

principal’s value 𝑣), then the agent will prefer to reveal. The main

intuitive takeaway is that the agent will prefer to conceal features
that strongly identify a low cost type, and will prefer to reveal features
that strongly identify a high cost type.

We now present precise conditions in which the agent prefers

to reveal or conceal a thresholding feature 𝑋 𝑡
. We begin with two

regularity conditions on the cost distribution 𝐶 .

Assumption 1 (Differentiable cost distribution). The cost 𝐶 has

density 𝑓 and CDF 𝐹 (𝑐) which is concave for 𝑐 ≥ 𝑝∗.

The concavity assumption on 𝐹 connects the optimal price 𝑝∗ to
first-order conditions on the principal’s utility.

Assumption 2 (Monotone reverse hazard rate). The ratio
𝐹 (𝑐 )
𝑓 (𝑐 ) is

strictly monotone increasing for 𝑐 > 0.

This assumption reflects the log-concavity of 𝐹 , and mirrors the

standard monotone hazard rate condition [10, 11, 37].

Under these assumptions, we show that the agent prefers to

reveal𝑋 𝑡
for sufficiently high 𝑡 , as long as the principal’s task value

𝑏 is not too low and not too high.

Theorem 1 (Agent prefers to reveal for high thresholds).

Under Assumptions 1 and 2, if the cost is bounded above by 𝐶 with

𝑓 (𝐶) > 0, and if 𝑏 ∈
(
𝐶,𝐶 + 1

𝑓 (𝐶 )

)
, then there exists a threshold 𝑡

such that for all 𝑡 > 𝑡 , the agent prefers to reveal 𝑋 𝑡 .
4
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𝑡 = 0

P and A share prior over 𝐶 .

A knows prior joint

distribution of 𝐶,𝑋 .

𝑡 = 1

A decides whether to reveal

observability of 𝑋 , including

joint distribution of 𝐶,𝑋 .

𝑡 = 2

P offers a contract,

which can depend

on 𝑋 if revealed.

𝑡 = 3

𝑋 is realized.

A learns their

cost type 𝐶 .

𝑡 = 4

A decides whether

or not to accept

the contract.

𝑡 = 5

The contract is

executed and

utilities realized.

Figure 1: Timing of the agency game with information transfer between principal (P) and agent (A).

To gain intuition for why the principal’s task value 𝑏 matters,

consider an extremely high task value of 𝑏 ≫ 𝐶 . In this case, the

principal’s optimal hidden price will already be 𝑝∗ = 𝐶 , and the

agent can only end up with lower prices from revealing information.

Thus, we need that 𝑏 is at least low enough that the optimal price

𝑝∗ < 𝐶 . On the other hand, if𝑏 is too low, the principal will not price

high enough to accommodate the highest cost agents, even after𝑋 𝑡

is revealed. Theorem 1 shows that for 𝑏 in a “sweet spot,” the agent

will prefer to reveal a thresholding feature 𝑋 𝑡
that differentiates

the highest cost agents from the rest of the crowd. We give a more

precise characterization of the exact threshold 𝑡 as a function of 𝑏

in Theorem 3 in the Appendix.

On the opposite end of the spectrum, we next show that the

agent will prefer to conceal any 𝑋 𝑡
which differentiates the lowest

cost agents from the rest. To illustrate this, let Δ(𝑡) be the difference
in the agent’s value between revealing and concealing 𝑋 𝑡

: Δ(𝑡) ≔
𝑉rev (𝜌∗) − 𝑉con (𝑝∗) for 𝑋 = 𝑋 𝑡

. The agent prefers to reveal 𝑋 𝑡

if and only if Δ(𝑡) is positive. Note that Δ(𝑡) must be zero at the

endpoints since 𝑋 𝑡
would be entirely uninformative about 𝐶 (See

Lemma 6 in the Appendix).

We next show that Δ(𝑡) initially decreases in 𝑡 , meaning that the

agent would prefer to conceal 𝑋 𝑡
for such sufficiently small 𝑡 . To

do this, we require one more assumption on the agent’s sensitivity

to price.

Assumption 3 (Price elasticity). The agent’s price elasticity for

task completion is high at the optimal hidden price: 𝜂 (𝑝∗) ≥ 1,

where 𝜂 (𝑝) = 𝑝𝑓 (𝑝 )
𝐹 (𝑝 ) .

The price elasticity 𝜂 (𝑝) measures the sensitivity of the agent’s

task completion quantity to the price offered by the principal. A

price elasticity of at least 1 indicates that a percentage change in

price affects the quantity at least as much. Under this assumption,

we now formalize the agent’s incentive to conceal for low 𝑡 .

Theorem 2 (Agent prefers to conceal for low thresholds).

Under Assumptions 1, 2, and 3, if 𝑓 (0) > 0, then Δ′ (0) < 0.

Theorem 2 completes the picture for 𝑡 sufficiently low. As 𝑡

increases marginally from zero, the agent’s value for revelation

decreases below zero, such that the agent prefers concealment.

In summary, the analysis of the thresholding features 𝑋 𝑡
gives

a picture of the types of features that the agent would prefer to

reveal or conceal: if the feature 𝑋 differentiates the highest cost

agents from the crowd, the agent prefers to reveal. If the feature

𝑋 differentiates the lowest cost agents from the crowd, the agent

prefers to conceal. For an illustration of these theorems using the

uniform distribution, see Figure 5 in the Appendix. In Section 6,

we show experiments with more realistic features from a rideshare

dataset that that reflect our theoretical findings here.

We give more general conditions the agent to prefer to reveal or

conceal for 𝑋 beyond thresholding features in Appendix D.2. These

more general conditions are less easy to interpret, but nonetheless

verifiable for any given feature distribution.

4.2 Total Welfare Consequences
We now consider whether revealing𝑋 increases total welfare, or the

sum of utilities of the principal and agent. Note that the principal

always benefits from revelation, which we formalize in Appendix

D.4. When 𝑋 is concealed, total welfare is given by𝑊con (𝑝) B
𝑉con (𝑝) + Πcon (𝑝), and when 𝑋 is revealed, total welfare is given

by𝑊rev (𝜌) B 𝑉rev (𝜌) + Πrev (𝜌).
The question of whether price discrimination increases total

welfare has been well studied [48]. Our comparison of the concealed

vs. revealed contracts has a direct isomorphism with third-degree

monopoly price discrimination. Specifically, our concealed setting

corresponds to monopoly pricing without price discrimination,

with the seller acting as principal and the buyer acting as agent.

Our revealed setting corresponds to a monopoly seller enacting

third-degree price discrimination over markets segmented by 𝑋 .

Thus, with minor adjustments, we can apply results from the

price discrimination literature that characterize the effects of third-

degree monopoly price discrimination on total welfare. Mirroring

Varian [48]’s seminal work, Lemma 1 shows that total welfare

increases only if the quantity of tasks completed also increases in

the revealed setting compared to the concealed setting.

Lemma 1. Total welfare increases under revelation (i.e.

𝑊rev (𝜌∗) >𝑊con (𝑝∗)) only if task completion quantity increases:

𝐹 (𝑝∗) < E[1(𝐶 < 𝜌∗ (𝑋 )].

Task completion quantity does not always increase under rev-

elation, and it is thus possible for total welfare to decrease under

revelation—we give an example of this in Appendix E.

5 Information Revelation with Garbling
So far, we have compared the settings when 𝑋 is either concealed

or revealed, focusing on the agent’s incentive to induce each set-

ting at time 𝑡 = 1. We now generalize the agent’s action space to

instead be able to reveal a garbled version of the variable 𝑋 . The

agent’s garbling action space interpolates between the concealed

and revealed settings. We consider a randomized response garbling
mechanism, which is a noise addition method that has been applied

in many settings, from statistical informativeness [14] to survey

experiment design [50] to differential privacy [19, 32]. In particular,

we formally show that our garbling mechanism guarantees a notion

of differential privacy with respect to an agent’s metric value 𝑋 .

As an overview of results in this section, we show that there

exist conditions under which the agent would prefer to garble over
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both concealment and revelation. Thus, having the option to garble

can benefit the agent, and even induce the agent to reveal more

information when they would otherwise fully opt to conceal 𝑋 ,

thus leading to a Pareto improvement for both the principal and

agent. We also show that garbling improves total welfare over the

concealed setting.

5.1 Agency Game with Garbling
Suppose the agent has the option to present the principal with a

different variable 𝑌 with noise added to the binary variable 𝑋 :

𝑌 =

{
𝑋 w.p. 𝜀

𝜉 w.p. 1 − 𝜀,

where 𝜉 ∼ Bernoulli(𝜃 ) is independent of𝑋 and𝐶 , for𝜃 = P(𝑋 = 1).
For ease of exposition, we focus on binary 𝑋 and 𝑌 , though further

extensions with different noise models can be made for continuous

𝑋 .

The game with garbling proceeds as before, but the agent selects

𝜀 ∈ [0, 1] at time 𝑡 = 1. The full timing is outlined in Figure 2. The

agency game with garbled information transfer is a generalization

of the previous game: in the previous timing in Figure 1, the agent’s

choice at 𝑡 = 1 would be equivalent to selecting 𝜀 from a more

restricted set {0, 1}. In other words, garbling interpolates between
the concealed and revealed settings in the previous game.

The principal treats the variable𝑌 as a revealed metric with prior

joint distribution 𝑌,𝐶 , and proceeds to design the optimal contract

conditioning on 𝑌 . This is optimal for the principal both in the case

where the principal has no knowledge of 𝜀 or 𝑋 , and in the case

where the principal knows 𝜀 and the joint distribution of 𝐶,𝑋 (but

not the realized value of 𝑋 ).

The game proceeds as delineated for the revealed information

contract in Section 3.1, but using the variable 𝑌 ∈ Y instead of 𝑋 .

Specifically, the principal designs a contract with prices 𝜌 : Y →
R+, and upon execution of the contract, the agent receives payment

𝜌 (𝑦) if they exert effort and 𝑌 = 𝑦.

The principal’s utility under revelation of a given garbled vari-

able 𝑌 is Π
garb

(𝜌) ≔ 𝐸 [(𝑏 − 𝜌 (𝑌 )) 1(𝐶 < 𝜌 (𝑌 ))], and the agent’s

utility is 𝑉
garb

(𝜌) ≔ 𝐸 [(𝜌 (𝑌 ) − 𝐶) 1(𝐶 < 𝜌 (𝑌 ))]. After 𝑌 is re-

vealed, the principal selects 𝜌∗ ∈ arg max𝜌∈F Π
garb

(𝜌).
For a given 𝜀 chosen at 𝑡 = 1, we denote the equilibrium utilities

as Π
garb

(𝜀) = Π
garb

(𝜌∗),𝑉
garb

(𝜀) = 𝑉
garb

(𝜌∗). The agent’s optimal

choice of 𝜀 at time 𝑡 = 1 is then 𝜀∗ ∈ arg max𝜀∈[0,1] 𝑉garb (𝜀). An
optimal choice of 𝜀∗ = 0 corresponds to full concealment, and 𝜀∗ = 1

corresponds to full revelation. In the following sections, we analyze

the effects of this optimal choice on welfare, and compare this to

the welfare effects of the agent’s optimal choice in the previous

game without the garbling option. We also formally connect the

garbling model to existing notions of differential privacy.

5.2 Agent’s Garbling Incentives
Our primary observation is that even for distributions satisfying

the regularity conditions from before, there exist cases when some

amount of garbling is preferred over both concealment and revela-

tion, for both orderings of concealment vs. revelation. That is, there

exist settings when𝑉
garb

(𝜀∗) > 𝑉rev (𝜌∗) > 𝑉con (𝑝∗) (a.k.a. garbled

> revealed > concealed), and settings when 𝑉
garb

(𝜀∗) > 𝑉con (𝑝∗) >
𝑉rev (𝜌∗) (garbled > concealed > revealed).

Both orderings are significant from a policy standpoint. The case

when garbled > revealed > concealed is interesting since it indicates

that the agent derives economic value from adding noise to their

data compared to fully revealing. Thus, even without any inherent
value for privacy, the agent still prefers the privatized setting.

The case when garbled > concealed > revealed is perhaps even

more interesting, since without the ability to only partially reveal

a garbled 𝑌 , the agent would have otherwise chosen to conceal.

Thus, allowing for garbling results in a strict Pareto improvement

for both the principal and agent; that is, both principal and agent
benefit from the option of privacy. This provides an incentive for

a platform to agree to maintain garbling of a feature, even if they

could otherwise discover 𝑋 after 𝑌 is revealed.

Figure 3 illustrates a continuum of distributions that contain both

of these orderings. Specifically, let 𝐶 be a mixture of exponentials

with 𝐶 |𝑋 = 0 ∼ Exp( 1

𝜆0

) and 𝐶 |𝑋 = 1 ∼ Exp( 1

𝜆1

), where 𝜆𝑥 is

the mean of the distribution. Fixing 𝜃 = 1

2
, 𝑏 = 1, and 𝜆0 = 0.5,

Figure 3 shows a range of 𝜆1 in which the agent prefers garbled

> concealed > revealed, and as 𝜆1 increases, this flips to garbled >

revealed > concealed. Thus, even within the same family of “nice”

distributions, both orderings can occur.

To give a more general theoretical characterization of the agent’s

garbling incentives, we give sufficient conditions for the agent to

prefer a nonzero amount of garbling over full revelation in Appen-

dix G.2. This can be seen as a softer version of the previous analysis

of when the agent prefers full concealment over full revelation.

5.3 Garbling and Total Welfare
We next show that garbling increases total welfare (𝑊

garb
(𝜀) B

Π
garb

(𝜀) +𝑉
garb

(𝜀)) relative to concealment. The principal always

benefits from more information, which we formalize in G.4. Opti-

mal garbling always increases total welfare over concealment. A

more subtle finding is that adding a marginal amount of garbling

compared to concealment also increases total welfare.
First, we show that the optimal amount of garbling chosen by the

agent also increases total welfare over the fully concealed setting.

Lemma 2 (Optimal garbling increases welfare over concealment).
Let 𝜀∗ ∈ arg max𝜀∈[0,1] 𝑉garb (𝜀). Then𝑊garb

(𝜀∗) ≥𝑊
garb

(0).

Intuitively, Lemma 2 follows from the fact that the principal is

never hurt by additional information (formalized in Appendix G.4).

Given that the agent benefits from their optimal garbling choice,

total welfare must increase.

Next, we show that relative to the fully concealed setting, the

marginal effect of revealing any information on total welfare is

initially positive relative to full concealment.

Lemma 3 (More information initially increases welfare). Increas-

ing 𝜀 from 0 marginally increases total welfare:𝑊 ′
garb

(0) ≥ 0. The

inequality is strict if Π′
garb

(0) > 0.

While the agent’s chosen amount of garbling 𝜀∗ improves total

welfare over concealment, the question remains of where 𝜀∗ falls
relative to the optimal amount of garbling that maximizes total

welfare. Lemma 4 shows that the optimal amount of garbling that
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𝑡 = 0

P and A share prior over 𝐶 .
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𝑡 = 1
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𝑡 = 2

P offers a
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𝑡 = 4

A decides whether

or not to accept

the contract.

𝑡 = 5

The contract is

executed and

utilities realized.

Figure 2: Timing of the agency game with garbled information transfer between principal (P) and agent (A).

Agent’s value difference for a mixture of exponentials
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garb> con> rev garb> rev >con

Vrev( *) Vcon(p*)
Vgarb( *) Vcon(p*)

Figure 3: Agent’s utility differences for revealing 𝑋 and gar-
bled 𝑌 when 𝐶 is a mixture of exponentials. We fix 𝜃 = 1

2
,

𝑏 = 1, and 𝜆0 = 0.5, and vary 𝜆1. The solid blue line shows the
agents utility difference upon revealing𝑋 for each value of 𝜆1.
The dashed orange line shows the agent’s utility difference
upon revealing the optimal garbled 𝑌 , for optimal garbling
parameter 𝜀∗ displayed above. This first lighter shaded re-
gion highlights settings where garbled > concealed > revealed.
The second darker shaded region highlights settings where
garbled > revealed > concealed .

maximizes total welfare must necessarily reveal at least as much

information as the optimal amount of garbling chosen by the agent.

Lemma 4 (More information increases total welfare relative to

agent optimal garbling). 𝑊 ′
garb

(𝜀) ≥ 𝑉 ′
garb

(𝜀) for all 𝜀 ∈ [0, 1]. The
inequality is strict if Π′

garb
(0) > 0.

The benefits of garbling to total welfare have interesting policy

implications, as the increase in total welfare means that a third party

designer could inject garbling noise (perhaps for privacy reasons),

and later redistribute surplus such that both principal and agent do

not end up with worse utilities. We next formalize the connection

between garbling and notions of differential privacy.

5.4 Garbling and Differential Privacy
As we model it, garbling directly induces a guarantee of local differ-

ential privacy for the agent’s feature value 𝑋 . Upon garbling, the

principal can still observe the marginal distribution of the feature𝑋 ,

but they have limited ability to identify any specific agent’s value

of 𝑋 . We formalize this below.

While randomized response and other differentially privatemech-

anisms are typically thought of as methods to preserve the confi-

dentiality of sensitive information motivated by the inherent value

of privacy, our model focuses on the possible economic benefits

to both principal and agent from such a mechanism. Our main

theorem shows that both the agent and the principal can derive

utility from the agent garbling 𝑋 , even without accounting for any

inherent value for privacy. In this section, we formally relate our

garbling mechanism to the literature on differential privacy.

Whenever an agent’s metric value 𝑋 is queried, it first passes

through the garbling mechanism. This acts as a local randomizer

Any adversary viewing the output of a local randomizer would

have limited ability to identify the agent’s original 𝑋 value.

Definition 1 (Local Randomizer [32]). A mechanismM : X → Y
is an 𝜀-local randomizer if for all 𝑥, 𝑥 ′ ∈ X and all 𝑦 ∈ Y,

P(M(𝑥) = 𝑦) ≤ 𝑒𝜀P(M(𝑥 ′) = 𝑦).

Anymechanism that only accesses the underlying data by way of

local randomizers is known to enjoy a guarantee of local differential
privacy [32] with a privacy parameter that reflects the composition

of the local randomizers’ 𝜀 parameters across multiple data accesses.

Our garbling mechanism is a local randomizer, and therefore any

prices that are based on 𝑋 solely through the garbling mechanism

are locally differentially private.

Lemma 5 (Privacy of garbling mechanism). For 𝜃 ∈ (0, 1), for
all 𝜀 ≤ 𝑂 (𝜃 ), the garbling mechanism is an 𝑂 (𝜀)-local randomizer

with respect to 𝑋 . A pricing algorithm that accesses 𝑋 only by way

of the garbling mechanism is 𝑂 (𝜀)-locally differentially private.

6 Experiments
To demonstrate how our theory can apply to real scenarios and

feature distributions, we turn to public data from the rideshare

platforms Uber and Lyft. Platforms like these employ algorithmic

pricing methods that depend on numerous ride metrics (or fea-

tures). We investigate an agent’s incentives to reveal features to

the platform that would affect their pricing in several hypothetical

scenarios. Our findings track with the intuition built by our theory,

and illustrate a variety of agent dynamics that can occur.

Dataset. We consider the Uber and Lyft data that is publicly

available on Kaggle [43]. This data was scraped using API queries

over the course of one week at the end of November, 2018 in Boston,

MA. The dataset includes a set of Uber rides and a set of Lyft rides,

and contains columns for price, distance, surge multiplier, and

others variables. Implementation details are given in Appendix I.

Scenario: revelation of a highly cost-correlated feature. Consider a
simple scenario inwhich a competing rideshare company (principal)

wants to win over drivers (agents) from Lyft. We use the price

column as an approximation for the price offered to the driver. The

cost variable 𝐶 is the price that Lyft offers for the ride, since this

is the price that the principal must beat for the driver to switch

to the principal’s platform. The agent gains utility if the principal

offers price 𝑝 > 𝐶 to induce the agent to switch; otherwise, the
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agent ignores the offer and is no worse off than before. Our central

question is whether the agent would be better off if the principal

offers prices as a function of𝑋 = distance, which is highly correlated

with 𝐶 . In other words, would the agent prefer to reveal a highly
cost-correlated feature to the initially naive principal?3

Results.We analyze the agent’s utilities for revealing, concealing,

and garbling, and compare with the predictions from our theory.

We present results when the principal’s value for the agent’s switch

is 𝑏 = 1.5𝐶 , such that the prices are not degenerate (e.g., always

offering the maximum cost or never offering above some amount).
4

First, the agent indeed prefers to reveal the distance feature 𝑋 ,

with the exact difference in the agent’s value between revelation

and concealment shown in Figure 4. This is particularly interesting

because a feature which exactly matches the cost 𝐶 would leave

the agent with a surplus of 0. This means that the distance feature

is correlated enough with 𝐶 to change the principal’s prices, but

adds enough noise to still leave the agent with some surplus. The

Pearson correlation between 𝑋 and 𝐶 is ≈ 0.36.

We now compare this to the agent’s incentive to reveal a coarser,

binarized version of the distance feature. Let 𝑍 𝑡 = 1 if 𝑋 ≤ 𝑡

and 0 otherwise. This binarized version tracks closely with our

theory on thresholding features, as 𝑍 𝑡
can be thought of as a noisy

thresholding of𝐶 . Figure 4 shows that for some 𝑡 , the agent actually

prefers to reveal 𝑍 𝑡
over the full feature 𝑋 . Figure 4 also shows that

the agent prefers to conceal 𝑍 𝑡
for 𝑡 very low, and reveal for 𝑡 is

very high, which matches Theorems 1 and 2.

If the agent is further given the chance to garble 𝑍 𝑡
, we show

that sometimes the agent prefers garbling over revelation. Figure

4 shows the agent’s optimal garbling amount 𝜀∗ for each 𝑍 𝑡
. For

the highest and lowest thresholds, the agent sticks to either full

revelation or full concealment; but for some 𝑡 in between, the agent

achieves even higher utility through garbling than full revelation.

As a practical implication, this constitutes a set of scenarios in

which an agent derives economic value from feature privacy.

Discussion and Limitations. The findings from this scenario give

a rough picture of the types of features that an agent would want to

reveal given this data. In Appendix I.1, we construct a second simi-

lar scenario in which the principal starts with a more sophisticated

baseline pricing model, which yields similar results. In general,

these are not intended as a characterization of real rideshare plat-

forms, but instead as a demonstration of how our model can be

applied to analyze metric elicitation incentives in practical settings.

For example, a collective action organization acting on behalf of dri-

vers might perform analysis like the above, and determine whether

it would be beneficial to reveal new, possibly garbled or thresh-

olded features to a rideshare platform. We encourage replication of

similar analyses by agencies with internal data sources.

7 Conclusions and Future Work
We have presented a model to analyze the discovery of metrics

in a setting of information asymmetry where relevant metrics are

3
Most real rideshare companies are likely aware of the importance of distance, but

for the purposes of this illustration, we consider distance as a stand-in for similarly

highly cost-correlated variables.

4
A high value of 𝑏 can be thought of as the principal receiving high reward for

winning users to their platform, which is often important to investors. We repeat this

for different values of 𝑏 in the Appendix.

Scenario 1: Agent’s utility difference for revealing distance

1 2 3 4 5
0

1
*

1 2 3 4 5
Threshold t for feature Zt

2

1

0

1

Vrev( *) Vcon(p*) for feature X
Vrev( *) Vcon(p*) for feature Zt

Vgarb( *) Vcon(p*) for feature Zt

Figure 4: Agent’s utility differences for revealing the distance
feature (positive means the agent prefers to reveal). The dot-
ted line is the agent’s value difference upon revealing the
full distance feature 𝑋 . The solid blue line shows the agents
value differences upon revealing 𝑍 𝑡 for different thresholds
𝑡 . The dashed orange line shows the agent’s value difference
upon revealing the optimal garbled version of𝑍 𝑡 , for optimal
garbling parameter 𝜀∗ displayed above (𝜀 = 1 corresponds to
full revelation, and 𝜀 = 0 to full concealment). In alignment
with our theory, the agent prefers to conceal for 𝑡 low enough,
and reveal for 𝑡 high enough. There also exist 𝑡 values in the
middle in which garbled > revealed > concealed.

unknown to a principal, but known to an evaluated agent. In char-

acterizing the conditions under which new metrics are revealed,

we have shown that an evaluated agent will prefer to reveal metrics

that differentiate their highest cost settings from the rest, and con-

ceal metrics that differentiate their lowest cost settings from the

rest. Furthermore, the agent may actually prefer to reveal a garbled
version of the metric over both fully concealing and fully revealing,

which demonstrates settings in which both agent and principal

may still derive economic value from the option of privacy, even

without adding their inherent value for privacy.

More broadly, this work was motivated by analyzing a mech-

anism by which one might discover unknown unknowns. Even as

data and computational methods become increasingly sophisticated

and widely available, this problem of discovery of which metrics

or variables to analyze continues to permeate the natural sciences,

social sciences, and engineering. In machine learning contexts in

particular, there has been growing recent work on markets for shar-

ing data [1, 6, 31], but the question of incentives for sharing features
is distinct, and can be analyzed using the model presented here.

Ultimately, there are many other possibilities for for formulating

the question of who holds relevant information, and when they

would be willing to share it. For example, one could model incen-

tives for third-party individuals to offer new metrics, or perhaps

bi-directional information transfer where a principal and agent

both hold distinct information. The key element of our work that

may be worth retaining in alternative information design frame-

works is the property that the variable itself may be unknown to

the information receiver.

8
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A Additional Notation
In the following proofs, we apply the following additional notation.

We define 𝐹𝑥 (𝑐) ≔ P(𝐶 ≤ 𝑐 |𝑋 = 𝑥) as the CDF of the conditional distribution of 𝐶 given 𝑋 . Let 𝑓𝑥 (𝑐) denote the corresponding density.
Let 1(·) denote an indicator function with

1(𝑥 ∈ 𝑆) =
{

1 if 𝑥 ∈ 𝑆

0 otherwise.

Let

Π𝑥 (𝑝) B 𝐹𝑥 (𝑝) (𝑏 − 𝑝).
Let

𝑉𝑥 (𝑝) B E[(𝑝 − 𝑐) 1(𝐶 < 𝑝) |𝑋 = 𝑥] .
Some of our analysis will focus on a one-dimensional binary feature: X = {0, 1}, where 𝑋 = 1 with probability 𝜃 . In these cases, we

simplify notation by parameterizing the principal’s decision problem as that of choosing 𝜌 (0) = 𝑝0 and 𝜌 (1) = 𝑝1.

The principal’s expected utility becomes

Πrev (𝑝0, 𝑝1) B (1 − 𝜃 )Π0 (𝑝0) + 𝜃Π1 (𝑝1),
and the agent’s utility becomes

𝑉rev (𝑝0, 𝑝1) B (1 − 𝜃 )𝑉0 (𝑝0) + 𝜃𝑉1 (𝑝1).
The principal moves first and chooses

𝑝∗
0
, 𝑝∗

1
∈ arg max

𝑝0,𝑝1

Πrev (𝑝0, 𝑝1),

resulting in an equilibrium where the agent’s utility is 𝑉rev (𝑝∗
0
, 𝑝∗

1
).

Without loss of generality, we will refer to the situation when 𝑋 = 1 as the “stronger” situation with generally lower cost for effort. That

is, 𝑝∗
0
> 𝑝∗

1
.

Under garbling for binary 𝑌 , we simplify notation by parameterizing 𝜌 as 𝜌 (0) = 𝑝0 and 𝜌 (1) = 𝑝1. Let 𝑝0 (𝜀), 𝑝1 (𝜀) denote the values of
these parameters that maximize Π

garb
for a given 𝜀.

B Proofs from Section 4
Here we give full proofs from Section 4.

B.1 Proofs of Theorems 1 and 2
To prove Theorem 1, we first prove the following more detailed theorem.

Theorem 3. For any cost distribution that satisfies Assumptions 1, 2, if the cost is bounded above by 𝐶 with 𝑓 (𝐶) > 0, then there exists an
instantiation of the principal’s task value 𝑏 and a thresholding feature 𝑋 𝑡 for which the agent prefers to reveal 𝑋 𝑡 . Specifically, the agent prefers

to reveal 𝑋 𝑡 if 𝑏 ∈
(
𝐶 + 1−𝐹 (𝑡 )

𝑓 (𝐶 ) , 𝑡 + 𝐹 (𝑡 )
𝑓 (𝑡 )

)
.

Proof. For thresholding feature 𝑋 𝑡
, we have the scaled conditional distributions:

𝑓0 (𝑝) =
𝑓 (𝑝)

1 − 𝐹 (𝑡) 1(𝑝 > 𝑡); 𝑓1 (𝑝) =
𝑓 (𝑝)
𝐹 (𝑝) 1(𝑝 ≤ 𝑡) .

From these, we can compute that

𝐹0 (𝑝) =
∫ 𝑝

0

𝑓0 (𝑐)𝑑𝑐 =
𝐹 (𝑝) − 𝐹 (𝑡)

1 − 𝐹 (𝑡) 1(𝑝 > 𝑡); 𝐹1 (𝑝) =
∫ 𝑝

0

𝑓1 (𝑐)𝑑𝑐 =
𝐹 (𝑝)
𝐹 (𝑡) 1(𝑝 ≤ 𝑡).

First, we show that for 𝑏 > 𝐶 + 1−𝐹 (𝑡 )
𝑓 (𝐶 ) , the optimal price in the high cost setting is 𝑝∗

0
= 𝐶 . The principal’s value is

Π0 (𝑝) = 𝐹0 (𝑝) (𝑣 − 𝑝) = 𝐹 (𝑝) − 𝐹 (𝑡)
1 − 𝐹 (𝑡) (𝑣 − 𝑝) 1(𝑝 > 𝑡) .

Concavity of 𝐹 (𝑝) in Assumption 1 for 𝑝 ≥ 𝑝∗ implies thatΠ0 (𝑝) is also concave for 𝑝 ≥ 𝑝∗. Since the function 𝑝+ 𝐹0 (𝑝 )
𝑓0 (𝑝 ) is monotone increasing

(Assumption 2), Π0 (𝑝) is either maximized for 𝑝∗
0
satisfying first order condition 𝑏 = 𝑝∗

0
+ 𝐹0 (𝑝∗

0
)

𝑓0 (𝑝∗
0
) if such a 𝑝∗

0
exists; or 𝑝∗

0
= 𝐶 if 𝑏 is sufficiently

large. Specifically, 𝑝∗
0
= 𝐶 if 𝑔−1

0
(𝑏) > 𝐶 , where 𝑔𝑥 (𝑝) ≔ 𝑝 + 𝐹𝑥 (𝑝 )

𝑓𝑥 (𝑝 ) . The lower bound on 𝑏 follows directly: 𝑔−1

0
(𝑏) > 𝐶 ⇐⇒ 𝑏 > 𝐶 + 1−𝐹 (𝑡 )

𝑓 (𝐶 ) .

Next, we show that for 𝑏 < 𝑡 + 𝐹 (𝑡 )
𝑓 (𝑡 ) , the price in the low cost setting is equal to price in the concealed setting: 𝑝∗

1
= 𝑝∗. The principal’s

value is

Π1 (𝑝) = 𝐹1 (𝑝) (𝑣 − 𝑝) = 𝐹 (𝑝)
𝐹 (𝑡) (𝑣 − 𝑝) 1(𝑝 ≤ 𝑡) .
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Concavity of 𝐹 (𝑝) in Assumption 1 at 𝑝∗ implies that Π1 (𝑝) is concave near 𝑝∗ as long as 𝑝∗ < 𝑡 . This is sufficient for Π1 (𝑝) to be concave
near its optimum 𝑝∗

1
, since the first order condition for Π1 (𝑝) is identical to that of Π(𝑝). Again since 𝑝 + 𝐹1 (𝑝 )

𝑓1 (𝑝 ) is monotone increasing,

𝑝∗
1
= 𝑔−1

1
(𝑏) if 𝑔−1

1
(𝑏) < 𝑡 ; otherwise 𝑝∗

1
= 𝑡 . The upper bound on 𝑏 follows as 𝑔−1

1
(𝑏) < 𝑡 ⇐⇒ 𝑏 < 𝑡 + 𝐹 (𝑡 )

𝑓 (𝑡 ) . Under this condition, the

optimal price 𝑝∗
1
= 𝑔−1

1
(𝑏) = 𝑔−1 (𝑏) = 𝑝∗.

Putting these together, when 𝑏 ∈
(
𝐶 + 1−𝐹 (𝑡 )

𝑓 (𝐶 ) , 𝑡 + 𝐹 (𝑡 )
𝑓 (𝑡 )

)
, the price in the high cost setting is 𝑝∗

0
= 𝐶 , and the price in the low cost setting

is 𝑝∗
1
= 𝑝∗. The total revealed agent value is 𝑉rev (𝑝∗,𝐶) > 𝑉rev (𝑝∗, 𝑝∗) =⇒ 𝑉rev (𝑝∗,𝐶) > 𝑉con (𝑝∗).

To complete the proof, we show that there exists 𝑡 such that the set

(
𝐶 + 1−𝐹 (𝑡 )

𝑓 (𝐶 ) , 𝑡 + 𝐹 (𝑡 )
𝑓 (𝑡 )

)
is nonempty. The set is nonempty if

𝐶 + 1 − 𝐹 (𝑡)
𝑓 (𝐶)

< 𝑡 + 𝐹 (𝑡)
𝑓 (𝑡) ⇐⇒ 𝐶 − 𝑡 < − 1

𝑓 (𝐶)
+ 𝐹 (𝑡)
𝑓 (𝐶)

+ 𝐹 (𝑡)
𝑓 (𝑡) ⇐⇒ 𝐶 − 𝑡 <

1

𝑓 (𝐶)

((
1 + 𝑓 (𝐶)

𝑓 (𝑡)

)
𝐹 (𝑡) − 1

)
(1)

First, let 𝛿1 > 0, and 𝛿1 𝑓 (𝐶) < 1, and choose 𝑡1 sufficiently large such that 𝐶 − 𝑡1 < 𝜀. Next, choose 𝛿2 > 0 sufficiently small such that

𝛿1 < 1

𝑓 (𝐶 ) (1−𝛿2), and choose 𝑡2 sufficiently large such that

((
1 + 𝑓 (𝐶 )

𝑓 (𝑡 )

)
𝐹 (𝑡) − 1

)
> 1−𝛿2. Finally, choose 𝑡3 = max(𝑡1, 𝑡2). Then 𝑡3 satisfies

Equation (1). □

Intuitively, the specific bounds hold for 𝑡 sufficiently high relative to 𝑏: for a fixed 𝑏 not too much higher than 𝐶 , the bound 𝑏 < 𝑡 + 𝐹 (𝑡 )
𝑓 (𝑡 )

holds for 𝑡 sufficiently high under Assumption 2. Similarly, the lower bound on 𝑏 is equivalent to 𝐹 (𝑡) > 1 − 𝑓 (𝐶) (𝑏 −𝐶), which also holds

for 𝑡 sufficiently high. We summarize this more simply in Theorem 1 below.

Theorem 1 (Agent prefers to reveal for high thresholds). Under Assumptions 1 and 2, if the cost is bounded above by 𝐶 with 𝑓 (𝐶) > 0, and

if 𝑏 ∈
(
𝐶,𝐶 + 1

𝑓 (𝐶 )

)
, then there exists a threshold 𝑡 such that for all 𝑡 > 𝑡 , the agent prefers to reveal 𝑋 𝑡

.

Proof. This proof follows directly from Theorem 3. Fix 𝑏 ∈
(
𝐶,𝐶 + 1

𝑓 (𝐶 )

)
. Choose 𝑡1 sufficiently large that the lower bound holds:

𝑏 > 𝐶 + 1−𝐹 (𝑡1 )
𝑓 (𝐶 ) ⇐⇒ 𝑏 −𝐶 >

1−𝐹 (𝑡1 )
𝑓 (𝐶 ) . This is possible since 𝑏 > 𝐶 and 𝑓 (𝐶) > 0. This lower bound will hold for any 𝑡 > 𝑡1.

Choose 𝑡2 sufficiently large such that 𝑏 < 𝑡2 + 𝐹 (𝑡2 )
𝑓 (𝑡2 ) the upper bound holds: 𝑏 < 𝑡2 + 𝐹 (𝑡2 )

𝑓 (𝑡2 ) . This is possible since 𝑏 < max𝑡 ∈[0,𝐶 ] 𝑡 +
𝐹 (𝑡 )
𝑓 (𝑡 )

(under Assumption 2). By Assumption 2, this upper bound will hold for any 𝑡 > 𝑡2. Choose 𝑡 = max(𝑡1, 𝑡2). □

Lemma 6. For 𝑡 ∈ {0,𝐶}, Δ(𝑡) = 0.

Proof. When 𝑡 = 0, 𝑋 𝑡 = 0 with probability 1. Therefore, 𝐹0 (𝑐) = 𝐹 (𝑐), 𝑝∗
0,𝑡

= 𝑝∗, and 𝜃 = 1, so 𝑉 𝑡
rev

(𝑝∗
1,𝑡
, 𝑝∗

0,𝑡
) = 𝑉con (𝑝∗) (for any 𝑝∗

1,𝑡
).

A similar argument holds for 𝑡 = 𝐶 . □

Theorem 2 (Agent prefers to conceal for low thresholds). Under Assumptions 1, 2, and 3, if 𝑓 (0) > 0, then Δ′ (0) < 0.

Proof. For notational convenience, let the superscript 𝑡 represent all principal and agent values defined in Section 3.1, but with 𝑋 = 𝑋 𝑡
:

𝐹 𝑡
0
(𝑐) = 𝑃 (𝐶 ≤ 𝑐 |𝑋 𝑡 = 0), 𝐹 𝑡

1
(𝑐) = 𝑃 (𝐶 ≤ 𝑐 |𝑋 𝑡 = 1), etc.

Let 𝑝0 (𝑡), 𝑝1 (𝑡) be defined as the principal’s optimal prices under revealed 𝑋 𝑡
,

𝑝0 (𝑡), 𝑝1 (𝑡) ∈ arg max

𝑝0,𝑝1

Π𝑡
rev

(𝑝0, 𝑝1).

With a bit of abuse of notation, let 𝑉rev (𝑡) ≔ 𝑉 𝑡
rev

(𝑝0 (𝑡), 𝑝1 (𝑡)). Then Δ(𝑡) = 𝑉rev (𝑡) −𝑉con (𝑝∗). Since 𝑉con (𝑝∗) does not depend on 𝑡 , we

need only show that 𝑉 ′
rev

(0) < 0. Differentiating this, we have

𝑉 ′
rev

(0) = 𝜕

𝜕𝑡

(
𝑉 𝑡

1
(𝑝1 (𝑡))𝐹 (𝑡)

) ���
𝑡=0

+ 𝜕

𝜕𝑡

(
𝑉 𝑡

0
(𝑝0 (𝑡)) (1 − 𝐹 (𝑡))

) ���
𝑡=0

The first term is 0:

𝜕

𝜕𝑡

(
𝑉 𝑡

1
(𝑝1 (𝑡))𝐹 (𝑡)

) ���
𝑡=0

= 𝐹 (0) 𝜕
𝜕𝑡
𝑉 𝑡

1
(𝑝1 (𝑡))

���
𝑡=0

+ 𝑓 (0)𝑉 𝑡
1
(𝑝1 (𝑡))

��
𝑡=0

= 0

Note that lim𝑡→0 𝑝1 (𝑡) = 0, which implies that 𝑉 𝑡
1
(𝑝1 (𝑡))

��
𝑡=0

= 0. Thus,

𝑉 ′
rev

(0) = 𝜕

𝜕𝑡

(
𝑉 𝑡

0
(𝑝0 (𝑡)) (1 − 𝐹 (𝑡))

) ���
𝑡=0

= (1 − 𝐹 (0)) 𝜕
𝜕𝑡
𝑉 𝑡

0
(𝑝0 (𝑡))

���
𝑡=0

− 𝑓 (0)𝑉 𝑡
0
(𝑝0 (𝑡))

���
𝑡=0

=
𝜕

𝜕𝑡
𝑉 𝑡

0
(𝑝0 (𝑡))

���
𝑡=0

− 𝑓 (0)𝑉con (𝑝∗) (2)

We solve for the above using the chain rule, substituting 𝑝 = 𝑝0 (𝑡):
𝜕

𝜕𝑡
𝑉 𝑡

0
(𝑝0 (𝑡))

���
𝑡=0

=
𝜕

𝜕𝑝
𝑉 𝑡

0
(𝑝)

���
𝑡=0

𝑝′
0
(0) + 𝜕

𝜕𝑡
𝑉 𝑡

0
(𝑝)

���
𝑡=0

(3)

Solving for each of the terms in this expression:
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𝜕

𝜕𝑝
𝑉 𝑡

0
(𝑝)

���
𝑡=0

= 𝐹 𝑡
0
(𝑝)

��
𝑡=0

= 𝐹 (𝑝∗) (4)

𝜕

𝜕𝑡
𝑉 𝑡

0
(𝑝)

���
𝑡=0

= 𝑝∗
𝜕

𝜕𝑡
𝐹 𝑡

0
(𝑝)

���
𝑡=0

− 𝜕

𝜕𝑡

∫ 𝑝

0

𝑐 𝑓 𝑡
0
(𝑐)𝑑𝑐

���
𝑡=0

𝜕

𝜕𝑡
𝐹 𝑡

0
(𝑝)

���
𝑡=0

=
𝜕

𝜕𝑡

𝐹 (𝑝) − 𝐹 (𝑡)
1 − 𝐹 (𝑡)

���
𝑡=0

=
𝑓 (𝑡) (𝐹 (𝑝) − 1)
(1 − 𝐹 (𝑡))2

���
𝑡=0

= 𝑓 (0) (𝐹 (𝑝∗) − 1)

𝜕

𝜕𝑡

∫ 𝑝

0

𝑐 𝑓 𝑡
0
(𝑐)𝑑𝑐

���
𝑡=0

= 𝐸 [1(𝐶 < 𝑝∗)𝐶] 𝑓 (0)

=⇒ 𝜕

𝜕𝑡
𝑉 𝑡

0
(𝑝)

���
𝑡=0

= 𝑓 (0)
(
𝑝∗ (𝐹 (𝑝∗) − 1) − 𝐸 [1(𝐶 < 𝑝∗)𝐶]

)
= 𝑓 (0)

(
𝑉 (𝑝∗) − 𝑝∗

)
(5)

Finally, to solve for 𝑝′
0
(𝑡), we either have 𝑝′

0
(𝑡) = 0 for 𝑏 >> 𝐶 , in which case the proof is complete and it immediately follows that

Δ′ (0) < 0; or, we suppose 𝑝0 (𝑡) satisfies the first order condition: 𝑝0 (𝑡) + 𝐹 (𝑝0 (𝑡 ) )−𝐹 (𝑡 )
𝑓 (𝑝0 (𝑡 ) ) = 𝑣 . Differentiating on both sides of this first order

condition, we have

𝑝′
0
(𝑡) = 𝑓 (𝑡) 𝑓 (𝑝0 (𝑡))

2𝑓 (𝑝0 (𝑡))2 − 𝐹 (𝑝0 (𝑡)) 𝑓 ′ (𝑝0 (𝑡)) + 𝐹 (𝑡) 𝑓 ′ (𝑝0 (𝑡))
=⇒ 𝑝′

0
(0) = 𝑓 (0)

2𝑓 (𝑝∗) − 𝐹 (𝑝∗ )
𝑓 (𝑝∗ ) 𝑓

′ (𝑝∗)
(6)

We now combine Equations (4), (5), and (6) with Equation (3) to get that

𝜕

𝜕𝑡
𝑉 𝑡

0
(𝑝0 (𝑡))

���
𝑡=0

= 𝑓 (0) ©­« 𝐹 (𝑝∗)
2𝑓 (𝑝∗) − 𝐹 (𝑝∗ ) 𝑓 ′ (𝑝∗ )

𝑓 (𝑝∗ )

−
(
𝑉con (𝑝∗) − 𝑝∗

)ª®¬ .
Putting this all together with Equation (2), 𝑉 ′

rev
(0) < 0 if and only if

𝑓 (0) ©­« 𝐹 (𝑝∗)
2𝑓 (𝑝∗) − 𝐹 (𝑝∗ ) 𝑓 ′ (𝑝∗ )

𝑓 (𝑝∗ )

−
(
𝑉con (𝑝∗) − 𝑝∗

)
−𝑉con (𝑝∗)ª®¬ < 0

⇐⇒ 1 − 𝐹 (𝑝∗)
𝑝∗ 𝑓 (𝑝∗) +

𝜕

𝜕𝑝

𝐹 (𝑝)
𝑓 (𝑝)

���
𝑝=𝑝∗

> 0

This holds by Assumptions 2 and 3. Therefore, Δ′ (0) < 0.

□

B.2 Proofs from Section 4.2
Lemma 1. Total welfare increases under revelation (𝑊rev (𝜌∗) −𝑊con (𝑝∗)) only if task completion quantity increases under revelation,

𝐹 (𝑝∗) < E[1(𝐶 < 𝜌∗ (𝑋 )] .

Proof. Let X ⊆ X be the set of 𝑥 values for which 𝜌 (𝑥) < 𝑝∗, and let X = X \ X.

𝑊rev (𝜌∗) −𝑊con (𝑝∗) = E[1(𝐶 < 𝜌∗ (𝑋 )) (𝑏 −𝐶)] − E[1(𝐶 < 𝑝∗) (𝑏 −𝐶)]

= E[1(𝐶 < 𝜌∗ (𝑋 )) (𝑏 −𝐶) |𝑋 ∈ X]P(𝑋 ∈ X) + E[1(𝐶 < 𝜌∗ (𝑋 )) (𝑏 −𝐶) |𝑋 ∈ X]P(𝑋 ∈ X) − E[1(𝐶 < 𝑝∗) (𝑏 −𝐶)]

= E[(1(𝐶 < 𝜌∗ (𝑋 )) − 1(𝐶 < 𝑝∗)) (𝑏 −𝐶) |𝑋 ∈ X]P(𝑋 ∈ X)
− E[(1(𝐶 < 𝑝∗) − 1(𝐶 < 𝜌∗ (𝑋 ))) (𝑏 −𝐶) |𝑋 ∈ X]P(𝑋 ∈ X)

≤ E[(1(𝐶 < 𝜌∗ (𝑋 )) − 1(𝐶 < 𝑝∗)) (𝑏 − 𝑝∗) |𝑋 ∈ X]P(𝑋 ∈ X)
− E[(1(𝐶 < 𝑝∗) − 1(𝐶 < 𝜌∗ (𝑋 ))) (𝑏 − 𝑝∗) |𝑋 ∈ X]P(𝑋 ∈ X)

=⇒ 𝑊rev (𝜌∗) −𝑊con (𝑝∗) ≤ (𝑏 − 𝑝∗) (E[1(𝐶 < 𝜌∗ (𝑋 )] − E[1(𝐶 < 𝑝∗)])
Since (𝑏 − 𝑝∗) > 0, if (E[1(𝐶 < 𝜌∗ (𝑋 )] − E[1(𝐶 < 𝑝∗)]) ≤ 0, then𝑊rev (𝜌∗) −𝑊con (𝑝∗) ≤ 0. □

C Proofs from Section 5
Here we give proofs for results for the garbling model presented in Section 5.
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C.1 Proofs from Section 5.4
Lemma 5 (Privacy of garbling mechanism). For 𝜃 ∈ (0, 1), for all 𝜀 ≤ 𝑂 (𝜃 ), the garbling mechanism is an 𝑂 (𝜀)-local randomizer with

respect to 𝑋 .

Proof. Suppose without loss of generality that 𝜃 < 1

2
(i.e., 𝑋 = 0 with higher probability).

max

𝑦,𝑥∈{0,1}

P(𝑌 = 𝑦 |𝑋 = 𝑥)
P(𝑌 = 𝑦 |𝑋 = 1 − 𝑥) ≤ P(𝑌 = 1|𝑋 = 1)

P(𝑌 = 1|𝑋 = 0) =
𝜃 (1 − 𝜀) + 𝜀

𝜃 (1 − 𝜀) ≤ 𝑒𝑂 (𝜀 )

The last inequality holds for 𝜀 sufficiently small: 𝜀 ≤ 𝜃
𝜃+1

=⇒ 𝜀
𝜃 (1−𝜀 ) ≤ 1.

A pricing mechanism that accesses 𝑋 only through this garbling mechanism is therefore locally differentially private with a corresponding

privacy parameter. □

C.2 Proofs from Section 5.3
Lemma 3 (Reducing garbling initially increases total welfare). Relative to full concealment with 𝜀 = 0, revealing 𝑌 with some garbled

noise initially does not decrease total welfare:𝑊 ′
garb

(0) ≥ 0. The inequality is strict if Π′
garb

(0) > 0, which is true under strict concavity of

Π0 (𝑝),Π1 (𝑝) (Assumption 4) and the MLRP (Assumption 6).

Proof.

𝑊 ′
garb

(𝜀) = 𝑉 ′
garb

(𝜀) + Π′
garb

(𝜀)
𝑉 ′
garb

(0) = 0, so𝑊 ′
garb

(0) ≥ 0. The strict inequality comes from applying Lemma 13 that Π′
garb

(0) > 0. □

Lemma 2 (Optimal garbling increases welfare over concealment). Let 𝜀∗ ∈ arg max𝜀∈[0,1] 𝑉garb (𝜀). Then𝑊garb
(𝜀∗) ≥𝑊

garb
(0).

Proof.

𝑊
garb

(𝜀∗) = 𝑉
garb

(𝜀∗) + Π
garb

(𝜀∗)
Lemma 12 implies Π

garb
(𝜀∗) ≥ Π

garb
(0). By optimality of 𝜀∗, 𝑉

garb
(𝜀∗) ≥ 𝑉

garb
(0). □

Lemma 4 (More information increases total welfare relative to agent optimal garbling). 𝑊 ′
garb

(𝜀) ≥ 𝑉 ′
garb

(𝜀) for all 𝜀 ∈ [0, 1]. The inequality
is strict if Π′

garb
(0) > 0, which is true under strict concavity of Π0 (𝑝),Π1 (𝑝) (Assumption 4) and the MLRP (Assumption 6).

Proof. Lemma 12 implies that Π′
garb

(𝜀) > 0, which implies that𝑊 ′
garb

(𝜀) ≥ 𝑉 ′
garb

(𝜀). The inequality is strict under the conditions of

Lemma 13. □

D Additional Results on Welfare Effects of Information Revelation
D.1 Uniform Simulation for Thresholding Features
To illustrate Theorems 1 and 2 on thresholding features, let𝐶 ∼ Unif(0, 1). Let 𝑋 𝑡

be a thresholding feature for𝐶 , where 𝑋 𝑡 = 1 if𝐶 ≤ 𝑡 , and

0 otherwise. Figure 5 shows the agent’s utility difference between revealing and concealing 𝑋 𝑡
for all pairs of 𝑏 ∈ (0, 2), 𝑡 ∈ (0, 1).

D.2 Agent’s Revelation Incentives: General Conditions
We give more general conditions the agent to prefer to reveal or conceal for 𝑋 beyond thresholding features.

We first show that the agent prefers the hidden information setting if the cost conditional on 𝑋 is close to zero for some values of 𝑋 , and

still not very high for other values of 𝑋 . Theorem 1 shows a general hazard rate condition that leads to this conclusion.

Next, we give sufficient conditions for the agent to conceal and reveal under general 𝑋 , applying identities related to the analysis done by

Aguirre et al. [4].

D.2.1 Concealment condition with one zero-cost type. We present a sufficient condition for the agent to prefer to conceal 𝑋 when one of the

agent types is anchored at zero. That is, 𝑋 = 1 implies that the agent incurs zero cost. Proposition 1 gives a sufficient condition on 𝐹0 for the

agent to prefer for the environmental variable 𝑋 to remain concealed.

Proposition 1 (Sufficient concealment condition with zero-cost type). Suppose 𝐹0 is a concave and continuously differentiable CDF. Suppose

𝐶 |𝑋 = 1 takes value 0 with probability 1. Suppose the ratio
𝐹0 (𝑝 )
𝑓0 (𝑝 ) is strictly monotone increasing for 𝑝 > 0. Then 𝑉con (𝑝∗) > 𝑉rev (𝑝∗

0
, 𝑝∗

1
) if

𝜃 > (1 − 𝜃 ) 1

𝜂 ((1 − 𝜃 )𝑝∗
0
) −

1

𝜂0

(
𝑝∗

0

) , (7)

where 𝜂 (𝑝) = 𝑝 (1−𝜃 ) 𝑓0 (𝑝 )
(1−𝜃 )𝐹0 (𝑝 )+𝜃 and 𝜂0 (𝑝) = 𝑝𝑓0 (𝑝 )

𝐹0 (𝑝 ) are the respective price elasticities for task completion quantity for the mixture distribution

𝐶 and the conditional distribution 𝐹0.
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Figure 5: Difference between agent’s utility in the revealed setting and concealed settings when 𝐶 ∼ Unif(0, 1), and 𝑋 = 𝑋 𝑡 is a
thresholding feature. For a given pair (𝑏, 𝑡), a positive utility difference means the agent prefers to reveal 𝑋 𝑡 , and a negative
utility difference means the agent prefers to conceal 𝑋 𝑡 . The agent always prefers to conceal for 𝑡 sufficiently close to 0, which
matches Theorem 2. For 𝑏 ∈ (1, 2), the agent prefers to reveal for 𝑡 > 𝑏

2
, which matches Theorem 1. At 𝑏 = 2, the agent always

prefers to conceal. For 𝑏 < 1, the agent actually prefers to conceal for sufficiently high 𝑡 .

Intuitively, the elasticity 𝜂 captures the sensitivity of task completion to the offered price. Thus, the inequality in equation (7) corresponds

to a scenario when the sensitivity of the task completion to price when 𝑋 = 0 does not differ too strongly from that of the concealed setting.

For example, this arises when 𝐹0 is close to the constant function 1. We give another example using the exponential distribution in Section

D.3 below, where equation (7) holds if the mean of 𝐹0 is low enough. In summary, the agent prefers concealment if the higher cost type still

has relatively low cost.

D.2.2 Concealment and revelation conditions under a decreasing ratio assumption. To give additional sufficient conditions for concealment

and revelation for variables more general than thresholding features, we apply an analysis technique similar to that of Aguirre et al. [4], who

analyzed the effects of third degree monopoly price discrimination on total welfare.

Suppose the principal, on knowing 𝑋 , is constrained to choose transfers 𝑝0, 𝑝1 subject to the constraint that 𝑝0 − 𝑝1 < 𝑟 for some 𝑟 ≥ 0.

Let 𝑝0 (𝑟 ), 𝑝1 (𝑟 ) denote the principal’s optimal transfers under this constraint:

𝑝0 (𝑟 ), 𝑝1 (𝑟 ) ∈ arg max

𝑝0,𝑝1

Πrev (𝑝0, 𝑝1)

s.t. 𝑝0 − 𝑝1 ≥ 𝑟 .
(8)

For notational convenience, let 𝑉const (𝑟 ) B 𝑉rev (𝑝0 (𝑟 ), 𝑝1 (𝑟 )). In a similar structure to Aguirre et al. [4], the results in this section come

from considering the “marginal effect of relaxing the constraint” on the agent’s value.

Under the following closely analogous assumptions to those invoked by Aguirre et al. [4], we derive properties of 𝑉const (𝑟 ).

Assumption 4 (Concave principal utility). The principal’s utility in each realized environment is strictly concave: Π′′
0
(𝑝) < 0, Π′′

1
(𝑝) < 0.

Assumption 5 (Decreasing ratio condition (DRC)). The ratios

𝑉 ′
0
(𝑝 )

Π′′
0
(𝑝 ) and

𝑉 ′
1
(𝑝 )

Π′′
1
(𝑝 ) are both decreasing in 𝑝 .

Assumption 5 is analogous to the “increasing ratio condition” assumption from Aguirre et al. [4], which instead has the derivative of

total welfare in the numerator. Our analysis naturally extends this to focus on agent utility. Assumption 5 holds in almost the same set

of conditions as the assumption on total welfare from Aguirre et al. [4], and we discuss the subtleties of the differences between these

assumptions in Appendix F.3.

Lemma 7. Under Assumptions 4 and 5, 𝑉const (𝑟 ) is strictly quasi-convex for 𝑟 ∈ [0, 𝑝∗
0
− 𝑝∗

1
]. That is, if there exists 𝑟 ∈ [0, 𝑝∗

0
− 𝑝∗

1
] such

that 𝑉const (𝑟 ) = 0, then 𝑉 ′′
const

(𝑟 ) > 0.

The strict quasi-convexity of the agent’s utility in 𝑟 makes it possible to derive sufficient conditions for revelation and concealment by

differentiating 𝑉const and evaluating the sign of the derivative at extreme values of 𝑟 . Adapting this machinery from Aguirre et al. [4], but

focusing on the agent’s value instead of total welfare, we give such sufficient conditions for the agent to prefer concealing or revealing 𝑋

below.
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Proposition 2 (Sufficient concealment condition under DRC). Under Assumptions 4 and 5, 𝑉con (𝑝∗) > 𝑉rev (𝑝∗
0
, 𝑝∗

1
) if

(1 − 𝜃 ) (𝑏 − 𝑝∗
0
)

2 − 𝜎0 (𝑝∗
0
) <

𝜃 (𝑏 − 𝑝∗
1
)

2 − 𝜎1 (𝑝∗
1
) , (9)

where 𝜎𝑥 (𝑝) = 𝐹𝑥 (𝑝 ) 𝑓 ′𝑥 (𝑝 )
𝑓 2

𝑥 (𝑝 ) is the curvature of the inverse of the task completion quantity function 𝐹𝑥 (𝑝).

Proposition 2 implies that a high enough difference in curvature between 𝜎0 (𝑝∗
0
) and 𝜎1 (𝑝∗

1
) implies that the agent will prefer the concealed

contract over the revealed contract. That is, inverse task completion quantity when 𝑋 = 0 is more convex than the inverse task completion

quantity when 𝑋 = 1 at the revealed transfers 𝑝∗
0
, 𝑝∗

1
. This is exactly the flipped version of the condition in Aguirre et al. [4]’s Proposition 2,

which implied that total welfare is higher under price discrimination. We next give a sufficient condition for the agent to prefer revelation.

Proposition 3 (Sufficient revelation condition under DRC). Under Assumptions 4 and 5, 𝑉con (𝑝∗) < 𝑉rev (𝑝∗
0
, 𝑝∗

1
) if

2 + 𝐿(𝑝∗)𝛼1 (𝑝∗)
2 + 𝐿(𝑝∗)𝛼0 (𝑝∗)

>
𝜃𝐹1 (𝑝∗)/𝑓1 (𝑝∗)

(1 − 𝜃 )𝐹0 (𝑝∗)/𝑓0 (𝑝∗)
, (10)

where 𝐿(𝑝) = 𝑏−𝑝
𝑝 is the Lerner index [35], and 𝛼𝑥 (𝑝) = −𝑝𝑓 ′𝑥 (𝑝 )

𝑓𝑥 (𝑝 ) is the curvature of the task completion quantity function 𝐹𝑥 (𝑝),

Intuitively, Proposition 3 says that if the curvatures of 𝐹0 and 𝐹1 are different enough (relative to the ratio of the CDFs themselves), then

the agent will prefer to reveal the environmental variable 𝑋 .

Remark. An important property analyzed by Milgrom [39] is the monotone likelihood ratio property (MLRP), which here would say that

𝑓0 (𝑐 )
𝑓1 (𝑐 ) is increasing for all 𝑐 . The MLRP would imply that both sides of the inequality in equation (10) are greater than 1. However, this does

not necessarily imply an order between these ratios, and there exist distributions that satisfy the MLRP that yield either of the inequality

directions above. We give a specific example of this using the Weibull distribution in Section D.3 below.

D.3 Example: Exponential and Weibull Distributions
To concretely illustrate the conditions in Propositions 1, 2, and 3, we parameterize the conditional cost distributions using the exponential

distribution and the more general Weibull distribution.

First, to illustrate the condition in Proposition 1, let 𝐶 |𝑋 = 0 ∼ Exp( 1

𝜆0

), where 𝜆0 represents the scale parameter and is also the mean of

the distribution. Specifically,

𝐹0 (𝑐) =
{

1 − 𝑒
− 1

𝜆
0

𝑐
𝑐 ≥ 0

0 𝑐 < 0.
(11)

Then the condition in Equation (7) is equivalent to 𝜆0 < 𝑏𝜓 (𝜃 ), where 𝜓 (𝜃 ) = 𝜃(
( 1

1−𝜃 )
1

𝜃 −( 1

1−𝜃 )
1−𝜃
𝜃 −𝜃

) is monotone decreasing function

bounded between 0 and 1 for 𝜃 ∈ [0, 1]. Thus, as long as the average cost 𝜆0 is less than a 𝜃 -dependent scaling of the task completion value 𝑏,

the condition in Proposition 1 holds. In other words, if the average cost when 𝑋 = 0 is not too high, then the agent will prefer concealment.

Beyond fixing 𝐹1 at zero cost, let 𝐶 be a mixture of exponential distributions with 𝐶 |𝑋 = 0 ∼ Exp( 1

𝜆0

) and 𝐶 |𝑋 = 1 ∼ Exp( 1

𝜆1

), where

𝐹𝑥 (𝑐) =
{

1 − 𝑒
− 1

𝜆𝑥
𝑐

𝑐 ≥ 0

0 𝑐 < 0.
(12)

Figure 6 plots the difference 𝑉rev (𝑝∗
0
, 𝑝∗

1
) −𝑉con (𝑝∗) for all 𝜆0, 𝜆1 ∈ [0, 𝑏]. As seen in Proposition 1, if 𝜆1 = 0, then the agent prefers to hide if

𝜆0 is sufficiently low. This continues to hold for 𝜆1 sufficiently close to 0. More generally, Figure 6 shows that the agent prefers to reveal if

the means 𝜆0, 𝜆1 are sufficiently far apart.

For the exponential mixture, the inequalities in Propositions 2 and 3 do not hold for any combinations of 𝜆0, 𝜆1. Thus, the condition in

Proposition 1 covers cases not covered by Proposition 2. However, we see Propositions 2 and 3 take effect for the more general Weibull

distribution, with

𝐹𝑥 (𝑐) =
1 − 𝑒

(
− 1

𝜆𝑥
𝑐

)𝑘𝑥
𝑐 ≥ 0

0 𝑐 < 0.

(13)

For example, for a fixed 𝜆0, 𝜆1, increasing 𝑘 = 𝑘0 = 𝑘1 increases the difference in curvature between 𝐹0 and 𝐹1 at 𝑝∗, yielding a set of values

of 𝑘 > 1 in which the condition in Proposition 3 holds. For Proposition 2, the condition holds if 𝑘1 is sufficiently small, and 𝑘0 is sufficiently

large for 𝜆0 > 𝜆1.
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Figure 6: Difference between agent’s utility in the revealed setting and concealed settings when 𝐶 is distributed as a mixture of
exponentials. For each pair (𝜆0, 𝜆1), a positive value indicates that the agent prefers revelation, and a negative value indicates
that the agent prefers concealment. The contour line shows all (𝜆0, 𝜆1) for which 𝑉rev (𝑝∗

0
, 𝑝∗

1
) −𝑉con (𝑝∗) = 0. The parameters

𝑏 = 1 and 𝜃 = 1

2
are fixed, and 𝜆0 and 𝜆1 are varied up to 𝑏.

D.4 Principal’s Revelation Preferences
While the agent might sometimes prefer the hidden setting over the revealed setting, we next show that the principal always prefers

revelation. First, Lemma 8 shows that the principal is never worse off under revelation.

Lemma 8 (Principal prefers revelation). Revealing 𝑋 never decreases the value of the principal: Πrev (𝜌∗) ≥ Πcon (𝑝∗), where 𝜌∗ ∈
arg max𝜌 Πrev (𝜌). Revealing 𝑋 strictly increases the value of the principal only if 𝑋 and 𝐶 are not independent.

The principal strictly benefits from information revelation if the monotone likelihood ratio property (MLRP) is satisfied between the

revealed distributions.

Assumption 6 (Monotone likelihood ratio property (MLRP) [39]). The ratio
𝑓0 (𝑐 )
𝑓1 (𝑐 ) is strictly increasing in 𝑐 .

Lemma 9 (Principal strictly benefits from revelation). Let 𝐹0 and 𝐹1 be continuously differentiable CDFs. If the MLRP holds (Assumption 6),

then the principal strictly benefits when 𝑋 is revealed: Πrev (𝑝∗
0
, 𝑝∗

1
) > Πcon (𝑝∗).

Intuitively, as the first mover, the principal will never be hurt by having additional freedom to condition on 𝑋 when selecting prices that

maximize their utility. Lemma 9 gives the MLRP as a sufficient condition for revelation of 𝑋 to yield a strict benefit for the principal.

E Example Where Total Welfare Decreases under Revelation
It is still possible for total welfare to decrease under information revelation. Mirroring an example from Varian [48], we provide an illustrative

example here where total welfare decreases when task completition quantity does not increase.

Suppose 𝐶 |𝑋 = 1 ∼ Unif(0, 1), and 𝐶 |𝑋 = 0 ∼ Unif( 1

2
, 3

2
). Suppose 𝜃 = 1

2
. Suppose 𝑏 = 1. Then the optimal payments for each of 𝐹, 𝐹0, 𝐹1

all fall in the “interior” of 𝐹 (𝑥):
1

2

≤ 𝑝∗
1
< 𝑝∗ < 𝑝∗

0
≤ 1.

When the solutions all fall in the interior, we have 𝑝∗ =
𝑝∗

1
+𝑝∗

0

2
, and 𝐹 (𝑝∗) = 𝐹1 (𝑝∗

1
)+𝐹0 (𝑝∗

0
)

2
. This now violates the necessary condition in

Lemma 1, since the output does not increase under revelation, but the payments change. Total welfare decreases as long as 𝑝∗
0
≠ 𝑝∗

1
.

F Proofs from Section D
Here we give full proofs from Section D.

F.1 Proof of Proposition 1
To prove Proposition 1, we first reorganize the difference between the agent’s concealed and revealed utilities:

𝑉con (𝑝∗) −𝑉rev (𝑝∗1, 𝑝
∗
1
) = 𝜃Δ𝑉1 − (1 − 𝜃 )Δ𝑉0
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1927

1928

1929
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1931
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1937
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1941
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1944

1945

1946

1947

1948
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1950
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1958

1959

1960
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where

Δ𝑉0 B 𝑉0 (𝑝∗0) −𝑉0 (𝑝∗); Δ𝑉1 B 𝑉1 (𝑝∗) −𝑉1 (𝑝∗1) .
We begin with Lemma 10 below which upper bounds Δ𝑉0.

Lemma 10. For any concave and continuously differentiable CDF 𝐹0, Δ𝑉0 ≤ 𝑝∗
0
− 𝑝 for any 𝑝 < 𝑝∗

0
.

Proof. Δ𝑉0 ≤ 𝑝∗
0
− 𝑝 if

𝑉0 (𝑝∗
0
) −𝑉0 (𝑝)

𝑝∗
0
− 𝑝

≤ 1.

We upper bound this difference by differentiating 𝑉0:

𝑉 ′
0
(𝑝) = 𝑑

𝑑𝑝

∫ 𝑝

0

(𝑝 − 𝑐) 𝑓0 (𝑐)𝑑𝑐 = 𝐹0 (𝑝)

Since 𝐹0 is a concave and continuously differentiable CDF, by the mean value theorem,

𝑉0 (𝑝∗
0
) −𝑉0 (𝑝)

𝑝∗
0
− 𝑝

≤ sup

𝑝
𝑉 ′

0
(𝑝) = sup

𝑝
𝐹0 (𝑝) ≤ 1.

□

We now leverage Lemma 10 to prove the full proposition.

Proposition 1 (Sufficient concealment condition with zero-cost type). Suppose 𝐹0 is a concave and continuously differentiable CDF. Suppose

𝐶 |𝑋 = 1 takes value 0 with probability 1. Suppose the ratio
𝐹0 (𝑝 )
𝑓0 (𝑝 ) is strictly monotone increasing for 𝑝 > 0. Then 𝑉con (𝑝∗) > 𝑉rev (𝑝∗

0
, 𝑝∗

1
) if

𝜃 > (1 − 𝜃 ) 1

𝜂 ((1 − 𝜃 )𝑝∗
0
) −

1

𝜂0

(
𝑝∗

0

)
where 𝜂 (𝑝) = 𝑝 (1−𝜃 ) 𝑓0 (𝑝 )

(1−𝜃 )𝐹0 (𝑝 )+𝜃 and 𝜂0 (𝑝) = 𝑝𝑓0 (𝑝 )
𝐹0 (𝑝 ) are the respective price elasticities for task completion quantity for the mixture distribution

𝐶 and the conditional distribution 𝐶 |𝑋 = 0.

Proof. We consider the extreme case where 𝐶 |𝑋 = 1 has value 0 with probability 1. For this distribution of 𝐶 |𝑋 = 1, we show that

Equation (7) implies that

𝜃Δ𝑉1 > (1 − 𝜃 )Δ𝑉0 . (14)

First, for any nonzero 𝐶 |𝑋 = 0, we have that 𝑝∗ < 𝑝∗
0
. Thus, Lemma 10 gives that

(1 − 𝜃 )Δ𝑉0 ≤ (1 − 𝜃 ) (𝑝∗
0
− 𝑝∗) .

Next, we further upper bound this by showing that for any 𝐹0 that satisfies Equation (7),

(1 − 𝜃 ) (𝑝∗
0
− 𝑝∗) < 𝜃𝑝∗ . (15)

Equation (14) then follows from the fact that Δ𝑉1 = 𝑝∗ when 𝐶 |𝑋 = 1 is always zero.

We now prove that equation (15) holds under equation (7). First, note that

(1 − 𝜃 ) (𝑝∗
0
− 𝑝∗) < 𝜃𝑝∗ ⇐⇒ (1 − 𝜃 )𝑝∗

0
< 𝑝∗ .

Since 𝐹0 is concave and continuously differentiable, 𝑝∗ satisfies the following first-order condition:

𝑝∗ + (1 − 𝜃 )𝐹0 (𝑝∗) + 𝜃
(1 − 𝜃 ) 𝑓0 (𝑝∗)

= 𝑏. (16)

Since
𝐹0 (𝑝 )
𝑓0 (𝑝 ) is strictly monotone increasing for 𝑝 > 0 and 𝐹0 (𝑝) is concave, 𝑝 + (1−𝜃 )𝐹0 (𝑝 )+𝜃

(1−𝜃 ) 𝑓0 (𝑝 ) is also strictly monotone increasing for 𝑝 > 0.

Therefore, (1 − 𝜃 )𝑝∗
0
< 𝑝∗ if and only if

(1 − 𝜃 )𝑝∗
0
+
(1 − 𝜃 )𝐹0 ((1 − 𝜃 )𝑝∗

0
) + 𝜃

(1 − 𝜃 ) 𝑓0 ((1 − 𝜃 )𝑝∗
0
) < 𝑏.

We also have that 𝑝∗
0
satisfies the first-order condition

𝑝∗
0
+
𝐹0 (𝑝∗

0
)

𝑓0 (𝑝∗
0
) = 𝑏.

Therefore, (1 − 𝜃 )𝑝∗
0
< 𝑝∗ if and only if

(1 − 𝜃 )𝑝∗
0
+
(1 − 𝜃 )𝐹0 ((1 − 𝜃 )𝑝∗

0
) + 𝜃

(1 − 𝜃 ) 𝑓0 ((1 − 𝜃 )𝑝∗
0
) < 𝑝∗

0
+
𝐹0 (𝑝∗

0
)

𝑓0 (𝑝∗
0
) ,
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which is equivalent to the condition in equation (7).

□

F.2 Proofs for Propositions 2 and 3
Here we give proofs for Propositions 2 and 3. These analyses parallel those of Aguirre et al. [4] for the effects of price discrimination on total

welfare.

We first prove Lemma 7, which follows from Assumption 4 and 5.

Lemma 7. Under Assumptions 4 and 5, 𝑉const (𝑟 ) is strictly quasi-convex for 𝑟 ∈ [0, 𝑝∗
0
− 𝑝∗

1
]. That is, if there exists 𝑟 ∈ [0, 𝑝∗

0
− 𝑝∗

1
] such

that 𝑉const (𝑟 ) = 0, then 𝑉 ′′
const

(𝑟 ) > 0.

Proof. The constraint in equation (8) is binding when 𝑟 ∈ [0, 𝑝∗
0
− 𝑝∗

1
]. Therefore, the optimization problem in equation (8) can be

rewritten as

max

𝑝1

Π1 (𝑝1) + Π0 (𝑝1 + 𝑟 ),

yielding a first-order condition that Π′
1
(𝑝1) + Π′

0
(𝑝1 + 𝑟 ) = 0. Further differentiating this first-order condition, as done by Aguirre et al. [4],

yields that

𝑝′
1
(𝑟 ) =

−Π′′
0
(𝑝0 (𝑟 ))

Π′′
0
(𝑝0 (𝑟 )) + Π′′

1
(𝑝1 (𝑟 ))

.

A similar method shows that

𝑝′
0
(𝑟 ) =

Π′′
1
(𝑝1 (𝑟 ))

Π′′
0
(𝑝0 (𝑟 )) + Π′′

1
(𝑝1 (𝑟 ))

.

Thus, we have that

𝑉 ′
const

(𝑟 ) = (1 − 𝜃 )𝑉0 (𝑝0 (𝑟 ))𝑝′0 (𝑟 ) + 𝜃𝑉1 (𝑝1 (𝑟 ))𝑝′1 (𝑟 )

=

( −Π′′
1
(𝑝1 (𝑟 )Π′′

0
(𝑝0 (𝑟 )))

Π′′
0
(𝑝0 (𝑟 )) + Π′′

1
(𝑝1 (𝑟 ))

) (
𝜃𝑉 ′

1
(𝑝1 (𝑟 ))

Π′′
1
(𝑝1 (𝑟 ))

−
(1 − 𝜃 )𝑉 ′

0
(𝑝0 (𝑟 ))

Π′′
0
(𝑝0 (𝑟 ))

)
=

( −Π′′
1
(𝑝1 (𝑟 )Π′′

0
(𝑝0 (𝑟 )))

Π′′
0
(𝑝0 (𝑟 )) + Π′′

1
(𝑝1 (𝑟 ))

)
(𝜃𝑤1 (𝑝1 (𝑟 )) − (1 − 𝜃 )𝑤0 (𝑝0 (𝑟 ))) ,

(17)

where𝑤𝑥 (𝑝) B 𝑉 ′
𝑥 (𝑝 )

Π′′
𝑥 (𝑝 ) .

Taking the second derivative, we have that

𝑉 ′′
const

(𝑟 ) =
( −Π′′

1
(𝑝1 (𝑟 )Π′′

0
(𝑝0 (𝑟 )))

Π′′
0
(𝑝0 (𝑟 )) + Π′′

1
(𝑝1 (𝑟 ))

) (
𝜃𝑤 ′

1
(𝑝1 (𝑟 ))𝑝′1 (𝑟 ) − (1 − 𝜃 )𝑤 ′

0
(𝑝0 (𝑟 ))𝑝′0 (𝑟 )

)
+ (𝜃𝑤1 (𝑝1 (𝑟 )) − (1 − 𝜃 )𝑤0 (𝑝0 (𝑟 )))

𝜕

𝜕𝑟

( −Π′′
1
(𝑝1 (𝑟 )Π′′

0
(𝑝0 (𝑟 )))

Π′′
0
(𝑝0 (𝑟 )) + Π′′

1
(𝑝1 (𝑟 ))

)
.

The first term

( −Π′′
1
(𝑝1 (𝑟 )Π′′

0
(𝑝0 (𝑟 ) ) )

Π′′
0
(𝑝0 (𝑟 ) )+Π′′

1
(𝑝1 (𝑟 ) )

)
is positive by strict concavity given by Assumption 4.

If 𝑉 ′
const

(𝑟 ) = 0, then 𝜃𝑤1 (𝑝1 (𝑟 )) − (1 − 𝜃 )𝑤0 (𝑝0 (𝑟 )) = 0. By the DRC,𝑤 ′
1
(𝑝1 (𝑟 ))𝑝′

1
(𝑟 ) > 0 since𝑤 ′

1
(𝑝1 (𝑟 )) < 0 and 𝑝′

1
(𝑟 ) < 0. Similarly,

𝑤 ′
0
(𝑝0 (𝑟 ))𝑝′

0
(𝑟 ) < 0. Therefore, 𝑉 ′′

const
(𝑟 ) > 0.

□

Given Lemma 7, we now prove Propositions 2 and 3 by signing the derivative 𝑉 ′
const

(𝑟 ) for extreme values of 𝑟 .

Proposition 2 (Sufficient concealment condition under DRC). Under Assumptions 4 and 5, 𝑉con (𝑝∗) > 𝑉rev (𝑝∗
0
, 𝑝∗

1
) if

(1 − 𝜃 ) (𝑏 − 𝑝∗
0
)

2 − 𝜎0 (𝑝∗
0
) <

𝜃 (𝑏 − 𝑝∗
1
)

2 − 𝜎1 (𝑝∗
1
) ,

where 𝜎𝑥 (𝑝) = 𝐹𝑥 (𝑝 ) 𝑓 ′𝑥 (𝑝 )
𝑓 2

𝑥 (𝑝 ) is the curvature of the inverse of the task completion quantity function 𝐹𝑥 (𝑝).

Proof. If 𝑉const (𝑟 ) is strictly monotone decreasing in 𝑟 , then 𝑉con (𝑝∗) > 𝑉rev (𝑝∗
0
, 𝑝∗

1
). Since 𝑉const (𝑟 ) is strictly quasi-convex, a sufficient

condition for 𝑉const (𝑟 ) to be strictly monotone decreasing is 𝑉 ′
const

(𝑝∗
0
− 𝑝∗

1
) < 0.

By equation (17), we have that 𝑉 ′
const

(𝑝∗
0
− 𝑝∗

1
) < 0 if 𝜃𝑤1 (𝑝∗

1
) − (1 − 𝜃 )𝑤0 (𝑝∗

0
) < 0. By the first-order condition that

𝑏 − 𝑝∗𝑥 =
𝐹𝑥 (𝑝∗𝑥 )
𝑓𝑥 (𝑝∗𝑥 )

, (18)
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we have that

𝑤𝑥 (𝑝∗𝑥 ) =
𝐹𝑥 (𝑝∗𝑥 )
Π′′
𝑥 (𝑝∗𝑥 )

=
𝑏 − 𝑝∗𝑥

Π′′
𝑥 (𝑝∗𝑥 )/𝑓𝑥 (𝑝∗𝑥 )

Note that

Π′′
𝑥 (𝑝) = −2𝑓𝑥 (𝑝) + 𝑓 ′𝑥 (𝑝) (𝑏 − 𝑝) .

Therefore, also applying the first-order condition from equation (18), we have

Π′′
𝑥 (𝑝∗𝑥 )/𝑓𝑥 (𝑝∗𝑥 ) = −2 + 𝐹𝑥 (𝑝) 𝑓 ′𝑥 (𝑝)

𝑓 2

𝑥 (𝑝)
= −2 + 𝜎𝑥 (𝑝).

□

A similar argument yields Proposition 3.

Proposition 3 (Sufficient revelation condition under DRC). Under Assumptions 4 and 5, 𝑉con (𝑝∗) < 𝑉rev (𝑝∗
0
, 𝑝∗

1
) if

2 + 𝐿(𝑝∗)𝛼1 (𝑝∗)
2 + 𝐿(𝑝∗)𝛼0 (𝑝∗)

>
𝜃𝐹1 (𝑝∗)/𝑓1 (𝑝∗)

(1 − 𝜃 )𝐹0 (𝑝∗)/𝑓0 (𝑝∗)
,

where 𝐿(𝑝) = 𝑏−𝑝
𝑝 is the Lerner index, and 𝛼𝑥 (𝑝) = −𝑝𝑓 ′𝑥 (𝑝 )

𝑓𝑥 (𝑝 ) is the curvature of the task completion quantity function 𝐹𝑥 (𝑝).

Proof. If 𝑉const (𝑟 ) is strictly monotone increasing in 𝑟 , then 𝑉con (𝑝∗) < 𝑉rev (𝑝∗
0
, 𝑝∗

1
). Since 𝑉const (𝑟 ) is strictly quasi-convex, a sufficient

condition for 𝑉const (𝑟 ) to be strictly monotone increasing is 𝑉 ′
const

(0) > 0.

By equation (17), we have that 𝑉 ′
const

(0) > 0 if 𝜃𝑤1 (𝑝∗) − (1 − 𝜃 )𝑤0 (𝑝∗) > 0.

𝑤𝑥 (𝑝∗) =
𝐹𝑥 (𝑝∗)/𝑓𝑥 (𝑝∗)

−2 + (𝑏 − 𝑝∗) (𝑓 ′𝑥 (𝑝∗)/𝑓𝑥 (𝑝∗))
=

𝐹𝑥 (𝑝∗)/𝑓𝑥 (𝑝∗)
−2 − 𝐿(𝑝∗)𝛼𝑥 (𝑝∗)

Therefore, 𝜃𝑤1 (𝑝∗) − (1 − 𝜃 )𝑤0 (𝑝∗) > 0 if

𝜃𝐹1 (𝑝∗)/𝑓1 (𝑝∗)
2 + 𝐿(𝑝∗)𝛼1 (𝑝∗)

<
(1 − 𝜃 )𝐹0 (𝑝∗)/𝑓0 (𝑝∗)

2 + 𝐿(𝑝∗)𝛼0 (𝑝∗)
.

□

F.3 Comparison of Decreasing Ratio Condition to Increasing Ratio Condition
The results in Section D.2.2 depend on the decreasing ratio condition (DRC) given in Assumption 5. This is analogous to the “increasing ratio

condition (IRC)” from Aguirre et al. [4], which says that the ratio
𝑊 ′

𝑥 (𝑝 )
Π′′
𝑥 (𝑝 ) is increasing in 𝑝 . We now discuss in more detail the relationship

between the DRC and the IRC, including sufficient conditions under which the DRC holds. In introducing the IRC, Aguirre et al. [4] describe

a “very large set of demand functions” for which the IRC holds. Aguirre et al. [4] give sufficient conditions for the IRC to hold in Appendix B

from their paper, which includes linear functions and exponential and constant elasticity functions.

For all of the sufficient conditions that Aguirre et al. [4] proposes for the IRC, these are also sufficient conditions for the DRC if paired

with the additional condition that
𝐹𝑥 (𝑝 )
𝑓𝑥 (𝑝 ) is increasing in 𝑝 for 𝑥 ∈ {0, 1}. For example, a specific sufficient condition for the DRC, which also

implies the IRC, is the following: Let 𝜎 (𝑝) = 𝐹 (𝑝 ) 𝑓 ′ (𝑝 )
𝑓 (𝑝 )2

. If 𝜎 (𝑝) ≤ 1, and 𝛼 (𝑝) = −𝑝𝑓 ′ (𝑝 )
𝑓 (𝑝 ) is non-decreasing and positive in 𝑝 , then the DRC

holds. The IRC would also hold. A similar analogy can be made for all other conditions given in Appendix B of Aguirre et al. [4].

F.4 Proofs from Section D.4
Lemmas 8 and 9 show that the principal always benefits from more information being revealed. Assumption 6 further implies that the

principal strictly benefits from revelation.

Lemma 8 (Principal prefers revelation). Revealing 𝑋 never decreases the value of the principal: Πrev (𝜌∗) ≥ Πcon (𝑝∗), where 𝜌∗ ∈
arg max𝜌 Πrev (𝜌). Revealing 𝑋 strictly increases the value of the principal only if 𝑋 and 𝐶 are not independent.

Proof. Assuming that the principal’s feasible set of payments does not change between markets, the solution 𝜌 (𝑥) = 𝑝∗ is in the feasible

set of the principal’s optimization problem with information revealed. Therefore,

max

𝜌
Πrev (𝜌) ≥ Πrev (𝜌) = Πcon (𝑝∗).

If 𝑋 and 𝐶 are independent, we have 𝐹𝑥 = 𝐹 for all 𝑥 ∈ X, so

max

𝜌
Πrev (𝜌) = max

𝜌
E[𝐹 (𝜌 (𝑋 )) (𝑏 − 𝜌 (𝑋 ))]

By Jensen’s inequality, we have

max

𝜌
E[𝐹 (𝜌 (𝑋 )) (𝑏 − 𝜌 (𝑋 ))] ≤ E[max

𝜌
𝐹 (𝜌 (𝑋 )) (𝑏 − 𝜌 (𝑋 ))] = E[𝐹 (𝑝∗) (𝑏 − 𝑝∗)] = Πcon (𝑝∗).
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Therefore, if 𝑋 and 𝐶 are independent, then Πrev (𝜌∗) ≤ Πcon (𝑝∗). □

Lemma 9 (Principal strictly benefits from revelation). Let 𝐹0 and 𝐹1 be continuously differentiable CDFs. If the MLRP holds (Assumption 6),

then the principal strictly benefits when 𝑋 is revealed: Πrev (𝑝∗
0
, 𝑝∗

1
) > Πcon (𝑝∗).

Proof. Since 𝐹0, 𝐹1 are continuously differentiable, the first-order necessary conditions hold for the optimal payments 𝑝∗
0
, 𝑝∗

1
in

equation (18). By these conditions, 𝑝∗
0
= 𝑝∗

1
only if there exists a value 𝑝 such that

𝑝 + 𝐹0 (𝑝)
𝑓0 (𝑝)

= 𝑝 + 𝐹1 (𝑝)
𝑓1 (𝑝)

= 𝑏.

Such a value 𝑝 cannot exist if
𝐹0 (𝑝 )
𝑓0 (𝑝 ) ≠

𝐹1 (𝑝 )
𝑓1 (𝑝 ) for all 𝑝 . The MLRP implies that

𝐹0 (𝑝 )
𝑓0 (𝑝 ) <

𝐹1 (𝑝 )
𝑓1 (𝑝 ) for all 𝑝; therefore, 𝑝∗

0
≠ 𝑝∗

1
, and maximum

value for Πrev is strictly greater than the maximum value for Πcon. □

G Additional Results on Information Revelation with Garbling
G.1 Garbling and Prices
First, we analyze the effects of the information revelation amount 𝜀 on the equilibrium prices set by the principal. Specifically, we show that

both 𝑝0 (𝜀), 𝑝1 (𝜀) are monotone with respect to 𝜀.

Lemma 11 (Monotonic price changes). Suppose 𝜃 = 1

2
. Suppose the principal’s utility is strictly concave as a function of price (Assumption

4). Suppose the MLRP holds (Assumption 6). Then 𝑝′
0
(𝜀) > 0 and 𝑝′

1
(𝜀) < 0 for all 𝜀 ∈ [0, 1].

Lemma 11 acts as a sanity check that as the principal is aware of more information, the degree of differentiation between prices also

increases. Furthermore, with less noise, the price in the higher-cost environment will only increase, and the price in the lower-cost

environment will only decrease.

G.2 Agent’s Garbling Incentives: General Conditions
G.2.1 Garbling condition under one zero-cost type. As in Section D.2.1, we first analyze the restricted case where one of the agent types is

anchored at zero-cost: suppose 𝐶 |𝑋 = 1 takes value 0 with probability one. Proposition 4 gives a sufficient condition for the agent to prefer a

non-zero amount of garbling over full revelation.

Let the conditional distribution of the cost 𝐶 given 𝑌 be distributed with CDF P(𝐶 ≤ 𝑐 |𝑌 = 𝑦) = 𝐺𝑦 (𝑐). When 𝜃 = 1

2
,

𝐺0 (𝑐) =
1 + 𝜀

2

𝐹0 (𝑐) +
1 − 𝜀

2

𝐹1 (𝑐); 𝐺1 (𝑐) =
1 + 𝜀

2

𝐹1 (𝑐) +
1 − 𝜀

2

𝐹0 (𝑐) .

Let 𝑔𝑦 (𝑐) be denote the PDF.

Proposition 4 (Sufficient garbling condition with zero-cost type). Suppose 𝛾 = 𝜃 = 1

2
. Suppose 𝐶 |𝑋 = 1 takes value 0 with probability 1.

Suppose 𝐹0 is continuously differentiable and 𝑓0 (𝑐) is bounded. 𝑉garb (𝜀) is maximized at 𝜀∗ < 1 if

𝑏 − 𝑝∗
0

2 − 𝜎0 (𝑝∗
0
) < 𝑔0 (𝑝∗0), (19)

where 𝑔0 (𝑝) =
∫ 𝑝

0
(1− 𝐹0 (𝑐))𝑑𝑐 is the restricted mean cost of task completion, and 𝜎0 (𝑝) =

𝐹0 (𝑝 ) 𝑓 ′
0
(𝑝 )

𝑓0 (𝑝 )2
is the curvature of the inverse quantity

function.

Notably, the inequality in equation (19) captures distributions that are not captured by Proposition 1. Thus, comparing Proposition 4 to

Proposition 1 shows that the agent might want to garble, even if they may not always want to hide. In fact, the condition in equation (19) is

quite general, and we show in the example in Section G.3 below that equation (19) applies to any log-concave Weibull distribution.

G.2.2 General garbling condition. Generalizing beyond the anchored setting, Proposition 5 gives a sufficient condition for the agent to

prefer garbling over revelation for general 𝐹0, 𝐹1, which depends on similar identities. First, we generalize the restricted mean cost function

𝑔0 (𝑝) to a comparison of agent utilities.

Definition 2 (Agent utility dominance). Let Δ(𝑝0, 𝑝1) B (𝑉1 (𝑝0) −𝑉1 (𝑝1)) − (𝑉0 (𝑝0) −𝑉0 (𝑝1)) denote the difference in sensitivities to the

price change from 𝑝0 to 𝑝1 in each environment.

When 𝐹1 exhibits first order stochastic dominance over 𝐹0, we have that Δ(𝑝0, 𝑝1) > 0 for 𝑝0 > 𝑝1. The greater the dominance of 𝑉1 (𝑝)
over 𝑉0 (𝑝) for all 𝑝 , the greater the difference Δ. Thus, we refer to Δ(𝑝0, 𝑝1) as agent utility dominance. Using this definition, we now

generalize the sufficient garbling condition from the anchored setting.
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Proposition 5 (Sufficient garbling condition). Suppose 𝛾 = 𝜃 = 1

2
. Suppose 𝐹0, 𝐹1 are continuously differentiable. 𝑉

garb
(𝜀) is maximized at

𝜀∗ < 1 if

−Π′
1
(𝑝∗

0
)
(

𝑏 − 𝑝∗
0

2 − 𝜎0 (𝑝∗
0
)

)
− Π′

0
(𝑝∗

1
)
(

𝑏 − 𝑝∗
1

2 − 𝜎1 (𝑝∗
1
)

)
< Δ(𝑝∗

0
, 𝑝∗

1
), (20)

where 𝜎𝑥 (𝑝) = 𝐹𝑥 (𝑝 ) 𝑓 ′𝑥 (𝑝 )
𝑓𝑥 (𝑝 )2

is the curvature of the inverse quantity function.

The left hand side of the inequality in equation (20) is a weighted version of the difference

𝑏−𝑝∗
0

2−𝜎0 (𝑝∗
0
) −

𝑏−𝑝∗
1

2−𝜎1 (𝑝∗
1
) , which arises repeatedly

in Aguirre et al. [4]’s analysis of the effects of price discrimination on total welfare, and also previously arose in Proposition 2. In cases

where Π′
0
(𝑝∗

1
) > −Π′

1
(𝑝∗

0
), the condition in Proposition 2 (equation (7)) would imply the condition in Proposition 5 (equation (20)), since

Δ(𝑝∗
0
, 𝑝∗

1
) ≥ 0.

G.3 Example: Exponential and Weibull Distributions
We first illustrate the condition in Proposition 4 using an exponential distribution. Suppose 𝐶 |𝑋 = 1 takes value 0 with probability one,

and suppose 𝐶 |𝑋 = 0 ∼ Exp( 1

𝜆0

), with 𝐹0 defined as in equation (11). In this case, 𝑔0 (𝑝∗
0
) = 𝜆0𝐹0 (𝑝∗

0
), and 𝑏−𝑝∗

0

2−𝜎0 (𝑝∗
0
) = 𝜆0𝐹0 (𝑝∗

0
) 1

2−𝐹0 (𝑝∗
0
) .

Therefore, the inequality in equation (19) holds for all 𝜆0 > 0.

The significance of this example is that if one agent type is anchored at 0, and the non-zero-cost environment induces an exponential

distribution, the agent will always have an incentive to garble, regardless of the mean of the non-zero-cost distribution. Consider this in

comparison to the exponential example from Section D.3, where the condition in Proposition 1 showed that agent prefers to fully conceal 𝑋

when 𝜆0 is small enough.

For a Weibull distribution with 𝐹0 given by equation (13), we have for 𝑘0 ≥ 1,

𝑔0 (𝑝) =
𝜆

𝑘0

(
Γ

(
1

𝑘0

)
− Γ

(
1

𝑘0

,
𝑝𝑘0

𝜆
𝑘0

0

))
.

If 𝑘0 ≥ 1, then the inequality in equation (19) from Proposition 4 holds for all 𝜆0. This encompasses all log-concave Weibull distributions.

If 𝑘0 < 1, then equation (19) does not necessarily hold, and fully flips for 𝑘0 < 0.5.

Similarly to Figure 6, we can also consider simulations beyond the zero-cost anchored setting by considering all combinations of 𝜆0, 𝜆1

when 𝐶 |𝑋 = 0 ∼ Exp( 1

𝜆0

) and 𝐶 |𝑋 = 1 ∼ Exp( 1

𝜆1

), with 𝐹𝑥 given by equation (12). Figure 7 illustrates the combinations of 𝜆0, 𝜆1 for which

the agent prefers some amount of garbling over full revelation. Figure 7 shows that 𝑉 ′
garb

(1) < 0 as long one of the conditional means 𝜆0 or

𝜆1 is small enough. That is, as long as one of the revealed settings has low enough cost, the agent always prefers to garble, regardless of how

high the cost of the other setting goes. This contrasts the revelation example in Section D.3, where even if 𝜆1 is close to 0, high enough 𝜆0

leads to the agent being willing to reveal.

𝑉 ′
garb

(1)

𝜆1

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.00
0.0270

0.0225

0.0180

0.0135

0.0090

0.0045

0.0000

0.0045

𝜆0

Figure 7: Plot of 𝑉 ′
garb (1) for a mixture of exponential distributions with means 𝜆0, 𝜆1. A negative value indicates that the agent

prefers some amount of garbling over full revelation. As long as one of the revealed settings has low enough average cost, the
agent always prefers some amount of garbling over full revelation, regardless of how high the mean is of the other setting.
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Finally, Figure 8 show a case in which the agent would prefer to reveal some amount of information via garbling over both concealment

and revelation, but if not given the option to garble, then they would otherwise prefer concealment over revelation in the game from Figure

1.

G.4 Principal’s Garbling Preferences
Similarly to Section D.4, the principal always prefers for more information to be revealed. In fact, the garbling parameter 𝜀 directly interpolates

between the concealed and revealed utilities for the principal.

Lemma 12. Πcon (𝑝∗) ≤ Π
garb

(𝜀) ≤ Πrev (𝜌∗) for all 𝜀.
Also similarly to the comparison of full concealment and revelation settings, revealing less noisy information yields a strict improvement

in the principal’s utility if the MLRP holds.

Lemma 13 (Strict principal improvement). Suppose 𝜃 = 1

2
. Suppose the principal’s utility is strictly concave (Assumption 4). If the MLRP

holds (Assumption 6), then Π′
garb

(𝜀) > 0 for all 𝜀 ∈ [0, 1].

G.5 Garbling vs. Restricted Price Discrimination
Our garbling model expands the agent’s action space from a binary choice between full concealment and full revelation for a given 𝑋 to a

continuous choice of revealing a garbled version parameterized by 𝜀. Thus, 𝜀 interpolates between the full concealment and full revelation

settings.

Garbling is not the only way to interpolate between the full concealment and full revelation settings. In the price discrimination literature,

there is an established model that interpolates between full price discrimination and no price discrimination by restricting that price

difference between market segments can be no greater than some parameter 𝑟 . Wright [52] models this restriction as arising from a “cost of

transport” or arbitrage between two markets. Aguirre et al. [4] apply this interpolation by analyzing the marginal effect of 𝑟 on total welfare.

We refer to this interpolation using 𝑟 as a restricted price discrimination model. We also leveraged this technique to analyze the agent’s utility

in Section D.2.2.

We now discuss in detail how the garbling model that we have introduced compares with this restricted price discrimination model.

Specifically, we consider how the interpolation between concealment and revelation introduced through varying 𝜀 in our garbling model

compares to interpolation using a constraint parameter 𝑟 .

In fact, the trajectory of the principal and agents’ utilities as 𝑟 varies is different from the trajectory of the principal and agents’ utilities

as 𝜀 varies. Most importantly to our setting, there is a qualitative difference between the functions 𝑉const (𝑟 ) and 𝑉garb (𝜀). Lemma 7 shows

that the value of 𝑟 that maximizes 𝑉const (𝑟 ) always corresponds with either full concealment or full revelation. However, under the same

conditions, the value of 𝜀 that maximizes𝑉
garb

(𝜀) is not always at the extremes, and is often somewhere in between 0 and 1. This is significant

in our setting since the agent’s power to choose 𝜀 is directly built into the game, and the existence of an optimal 𝜀 ∈ (0, 1) means that the

agent benefits from the additional degree of freedom in their action space.

To visualize this difference between these interpolation methods, we can further map the combinations of principal and agent value onto

the surplus triangle from Bergemann et al. [12]. Figure 8 shows an example where there exists an intermediate value 𝜀 that the agent prefers

over both concealment and revelation. In summary, both this example and Lemma 7 show that while there sometimes exist intermediate

values 𝜀 that the agent prefers over both concealment and revelation, this is notably not true for intermediate restrictions 𝑟 to the amount of

price discrimination.

H Proofs from Section G
Here we give proofs for results for the garbling model presented in Section G.

H.1 Proofs from Section G.1
Lemma 11 (Monotonic price changes). Suppose 𝜃 = 1

2
. Suppose 𝐹0, 𝐹1 are continuously differentiable CDFs, the principal’s utility is strictly

concave (Assumption 4), and the MLRP holds (Assumption 6). Then 𝑝′
0
(𝜀) > 0 and 𝑝′

1
(𝜀) < 0 for all 𝜀 ∈ [0, 1].

Proof. 𝑝0 (𝜀), 𝑝1 (𝜀) must satisfy first-order necessary conditions for optimality:

𝑝0 (𝜀) +
1+𝜀

2
𝐹0 (𝑝0 (𝜀)) + 1−𝜀

2
𝐹1 (𝑝0 (𝜀))

1+𝜀
2
𝑓0 (𝑝0 (𝜀)) + 1−𝜀

2
𝑓1 (𝑝0 (𝜀))

= 𝑏; 𝑝1 (𝜀) +
1+𝜀

2
𝐹1 (𝑝1 (𝜀)) + 1−𝜀

2
𝐹0 (𝑝1 (𝜀))

1+𝜀
2
𝑓1 (𝑝1 (𝜀)) + 1−𝜀

2
𝑓0 (𝑝1 (𝜀))

= 𝑏

Differentiating these first-order conditions, we have:

𝑝′
0
(𝜀) =

Π′
0
(𝑝0 (𝜀)) − Π′

1
(𝑝0 (𝜀))

−2Π
′′
𝑌=0

(𝑝0 (𝜀))
; 𝑝′

1
(𝜀) =

Π′
1
(𝑝1 (𝜀)) − Π′

0
(𝑝1 (𝜀))

−2Π
′′
𝑌=1

(𝑝1 (𝜀))
, (21)

where

Π𝑌=0 (𝑝) =
1 + 𝜀

2

Π0 (𝑝) +
1 − 𝜀

2

Π1 (𝑝); Π𝑌=1 (𝑝) =
1 + 𝜀

2

Π1 (𝑝) +
1 − 𝜀

2

Π0 (𝑝) .
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Figure 8: Trajectories of principal and agent utilities over 𝜀 and 𝑟 , mapped onto the triangle of possible combinations of principal
and agent utilities from Bergemann et al. [12]. Here, cost is distributed as a mixture of exponentials with 𝐶 |𝑋 = 1 ∼ Exp( 1

𝜆1

),
𝐶 |𝑋 = 0 ∼ Exp( 1

𝜆0

), with 𝜆0 = 0.5, 𝜆1 = 0.01. The point 𝐴 corresponds to the concealed setting (𝑉con (𝑝∗),Πcon (𝑝∗)), and the point 𝐹
corresponds to the revealed setting (𝑉rev (𝑝∗

0
, 𝑝∗

1
),Πrev (𝑝∗

0
, 𝑝∗

1
)). The solid blue line shows all combinations of Πgarb (𝜀),𝑉garb (𝜀) for

𝜀 ∈ [0, 1]. The dashed orange line shows all combinations of 𝑉const (𝑟 ),Πconst (𝑟 ) for 𝑟 ∈ [0, 𝑝∗
0
− 𝑝∗

1
]. First, note that the agent’s

utility at 𝐴 is higher than at 𝐹 , so the agent prefers concealment over revelation for this particular 𝑋 . However, there exists a
point along the 𝜀 trajectory in which 𝑉garb (𝜀) achieves higher agent utility than the point 𝐴. However, this is not true of the 𝑟
trajectory. In general, Lemma 7 shows that intermediate values of 𝑟 will always be dominated by either the fully concealed or
fully revealed settings.

Strict concavity from Assumption 4 makes both denominators of 𝑝′𝑥 (𝜀) positive.
The MLRP also implies that 𝑝0 (𝜀) < 𝑝∗

0
and 𝑝1 (𝜀) > 𝑝∗

1
for any 𝜀. Therefore, by strict concavity of Π𝑥 (𝑝), we have Π′

0
(𝑝0 (𝜀)) > 0, and

Π′
1
(𝑝0 (𝜀)) < 0, implying that 𝑝′

0
(𝜀) > 0. Similarly, Π′

1
(𝑝1 (𝜀)) < 0, and Π′

0
(𝑝1 (𝜀)) > 0, implying that 𝑝′

1
(𝜀) < 0. □

H.2 Proofs from Section 5.2
We first expand 𝑉

garb
(𝜀) for 𝜃 = 1

2
.

𝑉
garb

(𝜀) = 1

2

(
1 + 𝜀

2

𝑉0 (𝑝0 (𝜀)) +
1 − 𝜀

2

𝑉1 (𝑝0 (𝜀)) +
1 + 𝜀

2

𝑉1 (𝑝1 (𝜀)) +
1 − 𝜀

2

𝑉0 (𝑝1 (𝜀))
)
. (22)

To prove Proposition 4, we first give Lemma 14 to handle the anchored zero-cost agent.

Lemma 14. Suppose 𝐶 |𝑋 = 1 takes value 0 with probability 1. Suppose 𝑓0 is bounded: 𝑓0 (𝑝) < 𝐵 for all 𝑝 in the support. Then for any fixed

value 𝑏 > 0, there exists 𝛿 > 0 such that for any 𝜀 > 𝛿 , 𝑝1 (𝜀) = 0.

Proof. Define ℎ(𝑝, 𝜀) = 𝑝 + 1

𝑓0 (𝑝 )
1+𝜀
1−𝜀 + 𝐹0 (𝑝 )

𝑓0 (𝑝 ) . By choosing 𝛿 close to 1, we can make the term
1+𝛿
1−𝛿 arbitrarily large, and consequently

1

𝑓0 (𝑝1 )
1+𝛿
1−𝛿 arbitrarily large, since 𝑓0 (𝑝) > 0. Then for any 𝑏, we choose 𝛿 close enough to 1 such that

1

𝐵
1+𝛿
1−𝛿 > 𝑏. □

Proposition 4 (Sufficient garbling condition with zero-cost type). Suppose 𝛾 = 𝜃 = 1

2
. Suppose 𝐶 |𝑋 = 1 takes value 0 with probability 1.

Suppose 𝐹0 is continuously differentiable and 𝑓0 (𝑐) is bounded. 𝑉garb (𝜀) is maximized at 𝜀∗ < 1 if

𝑣 − 𝑝∗
0

2 − 𝜎0 (𝑝∗
0
) < 𝑔0 (𝑝∗0),

where 𝑔0 (𝑝) =
∫ 𝑝

0
(1− 𝐹0 (𝑐))𝑑𝑐 is the restricted mean cost of task completion, and 𝜎0 (𝑝) =

𝐹0 (𝑝 ) 𝑓 ′
0
(𝑝 )

𝑓0 (𝑝 )2
is the curvature of the inverse quantity

function.

Proof. We show that the condition in equation (19) implies that 𝑉 ′
garb

(1) < 0.

For 𝐶 |𝑋 = 1 taking value 0 with probability 1, we have 𝑉1 (𝑝) = 𝑝 . Substituting this into equation (22),

𝑉
garb

(𝜀) = 1

2

(
1 + 𝜀

2

𝑉0 (𝑝0 (𝜀)) +
1 − 𝜀

2

𝑝0 (𝜀) +
1 + 𝜀

2

𝑝1 (𝜀) +
1 − 𝜀

2

𝑉0 (𝑝1 (𝜀))
)
.
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Differentiating this, we have

2𝑉 ′
garb

(𝜀) =𝑝′
0
(𝜀)

(
1 + 𝜀

2

𝐹0 (𝑝0 (𝜀)) +
1 − 𝜀

2

)
+ 𝑝′

1
(𝜀)

(
1 + 𝜀

2

+ 1 − 𝜀

2

𝐹0 (𝑝1 (𝜀))
)

+ 1

2

((𝑉0 (𝑝0 (𝜀)) −𝑉0 (𝑝1 (𝜀))) − (𝑝0 (𝜀) − 𝑝1 (𝜀)))

Evaluating this derivative at 𝜀 = 1, Lemma 14 implies that 𝑝1 (𝜀) = 0 and 𝑝′
1
(1) = 0.

2𝑉 ′
garb

(1) = 𝑝′
0
(1)𝐹0 (𝑝∗0) +

1

2

(𝑉0 (𝑝∗0) − 𝑝∗
0
).

𝑉0 (𝑝∗0) − 𝑝∗
0
= 𝐸 [(𝑝∗

0
−𝐶) 1(𝐶 < 𝑝∗

0
) |𝑋 = 0] − 𝑝∗

0
= −1

2

𝑔0 (𝑝∗0).

=⇒ 4𝑉 ′
garb

(1) = −𝑔0 (𝑝∗0) + 2𝐹0 (𝑝∗0)𝑝
′
0
(1)

Simplifying 2𝐹0 (𝑝∗
0
)𝑝′

0
(1):

2𝐹0 (𝑝∗0)𝑝
′
0
(1) =

𝐹0 (𝑝∗
0
) 𝑓0 (𝑝∗

0
)

2𝑓0 (𝑝∗
0
)2 − 𝐹0 (𝑝∗

0
) 𝑓 ′

0
(𝑝∗

0
)

=

𝐹0 (𝑝∗
0
)

𝑓0 (𝑝∗
0
)

2 − 𝐹0 (𝑝∗
0
) 𝑓 ′

0
(𝑝∗

0
)

𝑓0 (𝑝∗
0
)2

=
𝑣 − 𝑝∗

0

2 − 𝜎0 (𝑝∗
0
)

Therefore,

𝑉 ′
garb

(1) < 0 ⇐⇒ −𝑔0 (𝑝∗0) +
𝑣 − 𝑝∗

0

2 − 𝜎0 (𝑝∗
0
) < 0.

□

Proposition 5 (Sufficient garbling condition). Suppose 𝛾 = 𝜃 = 1

2
. Suppose 𝐹0, 𝐹1 are continuously differentiable. 𝑉

garb
(𝜀) is maximized at

𝜀∗ < 1 if

−Π′
1
(𝑝∗

0
)
(

𝑏 − 𝑝∗
0

2 − 𝜎0 (𝑝∗
0
)

)
− Π′

0
(𝑝∗

1
)
(

𝑏 − 𝑝∗
1

2 − 𝜎1 (𝑝∗
1
)

)
< Δ(𝑝∗

0
, 𝑝∗

1
).

Proof. Differentiating with respect to 𝜀, we have

2𝑉 ′
garb

(𝜀) =𝑝′
0
(𝜀)

(
1 + 𝜀

2

𝐹0 (𝑝0 (𝜀)) +
1 − 𝜀

2

𝐹1 (𝑝0 (𝜀))
)
+ 𝑝′

1
(𝜀)

(
1 + 𝜀

2

𝐹1 (𝑝1 (𝜀)) +
1 − 𝜀

2

𝐹0 (𝑝1 (𝜀))
)

+ 1

2

((𝑉0 (𝑝0 (𝜀)) −𝑉0 (𝑝1 (𝜀))) − (𝑉1 (𝑝0 (𝜀)) −𝑉1 (𝑝1 (𝜀)))) .

Substituting in the price derivatives from equation (21) and the agent utility dominance identity from Definition 2,

2𝑉 ′
garb

(𝜀) =
(
Π′

0
(𝑝0 (𝜀)) − Π′

1
(𝑝0 (𝜀))

−2Π
′′
𝑌=0

(𝑝0 (𝜀))

) (
1 + 𝜀

2

𝐹0 (𝑝0 (𝜀)) +
1 − 𝜀

2

𝐹1 (𝑝0 (𝜀))
)

+
(
Π′

1
(𝑝1 (𝜀)) − Π′

0
(𝑝1 (𝜀))

−2Π
′′
𝑌=1

(𝑝1 (𝜀))

) (
1 + 𝜀

2

𝐹1 (𝑝1 (𝜀)) +
1 − 𝜀

2

𝐹0 (𝑝1 (𝜀))
)

+ 1

2

(−Δ(𝑝0 (𝜀), 𝑝1 (𝜀))) .

Let

𝑧𝜀
0
(𝑝) =

𝑉 ′
𝑌=0

(𝑝)
Π

′′
𝑌=0

(𝑝)
=

1+𝜀
2
𝐹0 (𝑝) + 1−𝜀

2
𝐹1 (𝑝)

Π
′′
𝑌=0

(𝑝)
,

𝑧𝜀
1
(𝑝) =

𝑉 ′
𝑌=1

(𝑝)
Π

′′
𝑌=1

(𝑝)
=

1+𝜀
2
𝐹1 (𝑝) + 1−𝜀

2
𝐹0 (𝑝)

Π
′′
𝑌=1

(𝑝)
.
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Then

4𝑉 ′
garb

(𝜀) =
(
Π′

0
(𝑝0 (𝜀)) − Π′

1
(𝑝0 (𝜀))

)
(−𝑧𝜀

0
(𝑝0 (𝜀))) +

(
Π′

1
(𝑝1 (𝜀)) − Π′

0
(𝑝1 (𝜀))

)
(−𝑧𝜀

1
(𝑝1 (𝜀)))

− Δ(𝑝0 (𝜀), 𝑝1 (𝜀)) .

Evaluating this at 𝜀 = 1, we have

4𝑉 ′
garb

(1) =
(
Π′

0
(𝑝∗

0
) − Π′

1
(𝑝∗

0
)
)
(−𝑧0 (𝑝∗0)) +

(
Π′

1
(𝑝∗

1
) − Π′

0
(𝑝∗

1
)
)
(−𝑧1 (𝑝∗1))

− Δ(𝑝∗
0
, 𝑝∗

1
),

where

𝑧𝑥 (𝑝) =
𝑉 ′
𝑥 (𝑝)

Π
′′
𝑥 (𝑝)

.

Note that 𝑉 ′
𝑥 (𝑝∗𝑥 ) =𝑊 ′

𝑥 (𝑝∗𝑥 ), so at 𝑝∗, this is identical to the 𝑧 function from Aguirre et al. [4]. By first-order optimality conditions,

−𝑧𝑥 (𝑝∗𝑥 ) =
𝑏 − 𝑝∗𝑥

2 − 𝜎𝑥 (𝑝∗𝑥 )
.

Therefore, 𝑉 ′
garb

(1) < 0 if (
−Π′

1
(𝑝∗

0
)
) (

𝑏 − 𝑝∗
0

2 − 𝜎0 (𝑝∗
0
)

)
+

(
−Π′

0
(𝑝∗

1
)
) (

𝑏 − 𝑝∗
1

2 − 𝜎1 (𝑝∗
1
)

)
< Δ(𝑝∗

0
, 𝑝∗

1
).

□

H.3 Proofs from Section G.4
Lemma 12. Πcon (𝑝∗) ≤ Π

garb
(𝑝0 (𝜀), 𝑝1 (𝜀)) ≤ Πrev (𝑝∗

0
, 𝑝∗

1
) for all 𝜀.

Proof. For 𝜀 ∈ {0, 1}, the inequalities clearly hold. Fix 𝜀 ∈ (0, 1). For the lower bound,

Π
garb

(𝑝0 (𝜀), 𝑝1 (𝜀)) ≥ Π
garb

(𝑝∗, 𝑝∗) = Πcon (𝑝∗).

For the upper bound, since the noise 𝜉 is independent of 𝑋 and 𝐶 ,

Π
garb

(𝑝0, 𝑝1) = 𝜙 (𝜃,𝛾)Πrev (𝑝0, 𝑝1) +𝜓 (𝜃,𝛾)Πrev (𝑝1, 𝑝0) ≤ Πrev (𝑝∗0, 𝑝
∗
1
)

where 𝜙,𝜓 are some positive functions of 𝜃,𝛾 . □

Lemma 13 (Strict principal improvement). Suppose 𝛾 = 𝜃 = 1

2
. Suppose the principal’s utility is strictly concave (Assumption 4). If the

MLRP holds (Assumption 6), then Π′
garb

(𝜀) > 0 for all 𝜀 ∈ [0, 1].

Proof.

Π
garb

(𝜀) = 1

2

(𝑏 − 𝑝0 (𝜀))
(

1 + 𝜀

2

𝐹0 (𝑝0 (𝜀)) +
1 − 𝜀

2

𝐹1 (𝑝0 (𝜀))
)

+ 1

2

(𝑏 − 𝑝1 (𝜀))
(

1 + 𝜀

2

𝐹1 (𝑝1 (𝜀)) +
1 − 𝜀

2

𝐹0 (𝑝1 (𝜀))
)
.

Differentiating with respect to 𝜀:

4Π′
garb

(𝜀) =𝐹0 (𝑝0 (𝜀)) (𝑏 − 𝑝0 (𝜀)) − 𝐹0 (𝑝1 (𝜀)) (𝑏 − 𝑝1 (𝜀))
+ 𝐹1 (𝑝1 (𝜀)) (𝑏 − 𝑝1 (𝜀)) − 𝐹1 (𝑝0 (𝜀)) (𝑏 − 𝑝0 (𝜀))

By the MLRP and strict concavity of Π0 (𝑝),Π1 (𝑝), we have that 𝑝1 (𝜀) < 𝑝0 (𝜀) < 𝑝∗
0
. Strict concavity of Π0 (𝑝) and the optimality of 𝑝∗

0

for Π1 then implies that

𝐹0 (𝑝1 (𝜀)) (𝑣 − 𝑝1 (𝜀)) < 𝐹0 (𝑝0 (𝜀)) (𝑣 − 𝑝0 (𝜀)) .
Similarly, by the MLRP and strict concavity of Π0 (𝑝),Π1 (𝑝), we have that 𝑝∗

1
< 𝑝1 (𝜀) < 𝑝0 (𝜀). Strict concavity of Π1 (𝑝) and the optimality

of 𝑝∗
1
for Π1 implies that

𝐹1 (𝑝0 (𝜀)) (𝑣 − 𝑝0 (𝜀)) < 𝐹1 (𝑝1 (𝜀)) (𝑣 − 𝑝1 (𝜀)) .
□

I Further Uber and Lyft Experiment Details
Here we provide additional details on the experiment setup and implementation using the Uber and Lyft dataset.

25



2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

I.1 Scenario 2: Revelation to Refine an Existing Pricing Model.
As an additional scenario, we suppose that the principal starts with a slightly more sophisticated pricing model as a baseline. Suppose

Uber decides to offer a non-negative price adjustment 𝑝 on top of their existing pricing model as an incentive for drivers to switch to their

platform. The agent can choose to reveal 𝑋 = Lyft’s surge multiplier (which Uber is otherwise unable to observe), in which case Uber’s price

adjustment would depend on 𝑋 . To approximate Uber’s initial pricing model, we train a linear model targeting Uber’s price over all features

in Uber’s dataset.
5
Let 𝐶 be the difference between Uber’s estimated price (on the Lyft dataset) and Lyft’s price.

I.1.1 Results. We present results with the same switching value 𝑏 as earlier. Figure 9 shows that the agent also prefers to reveal 𝑋 = Lyft’s

surge multipler. Letting 𝑍 𝑡
be a binarized version of the surge multiplier, Figure 9 also shows that there exist at least one value of 𝑡 for which

the agent prefers garbling over revelation. Since the surge multiplier is never less than 1 in the data, and the agent already prefers to reveal

for 𝑡 = 1, we do not observe any thresholds for which the agent strictly prefers to conceal. However, the agent’s value for revelation still

decays to 0 as the threshold increases to its maximum. In this case, the agent does not gain any value from additional garbling on top of

revelation. Overall, this scenario showed that a cost-correlated feature like the surge multiplier was beneficial to an agent to reveal, even

when the principal platform’s existing pricing model already depended on other features like distance.

Scenario 2: Agent’s utility difference for revealing surge multiplier

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1
*

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Threshold t for feature Zt

0.4

0.2

0.0

0.2

0.4

Vrev( *) Vcon(p*) for feature X
Vrev( *) Vcon(p*) for feature Zt

Vgarb( *) Vcon(p*) for feature Zt

Figure 9: Differences between the agent’s revealed and concealed utilities in Scenario 2, with 𝑋 = Lyft’s surge multiplier. The
labels are the same as Figure 4.

I.2 Estimating the Principal’s and Agent’s Utilities
For binarized features: For a binarized feature 𝑍 𝑡

, we directly estimate the conditional pdfs 𝑓0 and 𝑓1 using kernel density estimation

over the data conditioned on 𝑍 𝑡 = 0, 1 respectively. Specifically, we use the Scipy gaussian_kde method with default bandwidth [49]. The

principal and agents’ revealed values are built directly on 𝑓0, 𝑓1, and the empirical estimate for 𝜃 . The hidden cost distribution is given by

𝑓 (𝑐) = (1 − 𝜃 ) 𝑓0 (𝑐) + 𝜃 ∗ 𝑓1 (𝑐).

For full features: When estimating the agent’s value difference for revealing a full non-binarized feature 𝑋 , we substitute the empirical

expectation over the dataset for both the principal and the agent’s values. That is, for a dataset with points {(𝐶𝑖 , 𝑋𝑖 )}𝑛𝑖=1
, we estimate the

principal’s revealed value as

Πrev (𝜌) = E[1(𝐶 < 𝜌 (𝑋 )) (𝑏 − 𝜌 (𝑋 ))] ≈ 1

𝑛

𝑛∑︁
𝑖=1

1(𝐶𝑖 < 𝜌 (𝑋𝑖 )) (𝑏 − 𝜌 (𝑋𝑖 )).

Similarly, we estimate the agent’s revealed value as

𝑉rev (𝜌) = E[1(𝐶 < 𝜌 (𝑋 )) (𝜌 (𝑋 ) −𝐶)] ≈ 1

𝑛

𝑛∑︁
𝑖=1

1(𝐶𝑖 < 𝜌 (𝑋𝑖 )) (𝜌 (𝑋𝑖 ) −𝐶𝑖 ) .

The principal and agents’ hidden values are also estimated empirically using only the points {𝐶𝑖 }𝑛𝑖=1
.

These estimates are then used to compute the optimal hidden price 𝑝∗, revealed price function 𝜌∗, and the agent’s value differences.

5
A linear model is, of course, still far from Uber’s actual pricing methodology, but the purpose of this illustration is to have a model that depends on more features initially.
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I.3 Parameterizing 𝜌 (𝑥) for Continuous 𝑋
When the variable 𝑋 revealed is continuous, we parameterize the principal’s pricing function 𝜌 (𝑥) as linear for simplicity and tractability.

This is more restrictive than any non-parametric and arbitrarily expressive 𝜌 (𝑥), though not uncommon in practice. In the experiments, the

agent also operates under the assumption that 𝜌 (𝑥) would be linear. For the purposes of our model, the most important assumption is that

the agent is aware of the family of the pricing functions over which the principal is optimizing, 𝜌 ∈ F . The value difference for the agent

between revealing and concealing will ultimately also depend on the family F .

I.4 Garbling Amounts
For each 𝑍 𝑡

, we compute the optimal garbling amount

𝜀∗ = arg max

𝜀∈[0,1]
𝑉
garb

(𝜀).

Notably, for the garbling distribution 𝜉 , we set 𝛾 = 𝜃 = 𝑃 (𝑍 𝑡 = 1) for each 𝑍 𝑡
. This ensures that the marginal distribution of the garbled

variable 𝑌 matches the marginal distribution of 𝑍 𝑡
for each 𝑡 .

I.5 Scenario 2 Costs
To construct the cost variable 𝐶 for Scenario 2, we first estimate Uber’s pricing model by training an ordinary least squares linear regression

model on Uber’s dataset using the price column as the target, and all features other than the surge multiplier as inputs. The 𝑅2
score on the

training data is 0.1131. We use Scikit Learn’s linear_model function [44].

The column representing the cost 𝐶 is then computed on the Lyft dataset as max(0,Uber’s predicted price − Lyft’s price). This produces
a non-negative cost variable.

Note that the principal optimizing its price using this non-negative cost variable is equivalent to the principal solving the constrained

optimization problem for price restricted to non-negative prices only.

I.6 Results for Different Values of 𝑏
Figures 4 and 9 show results when the principal’s value is 𝑏 = 150, or 1.5𝐶 , where 𝐶 = 100. Figures 10 and 11 show the same analysis for

𝑏 ∈ {50, 100, 200}.
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Scenario 1: Agent’s utility difference for revealing distance

𝑏 = 200
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Figure 10: Differences between the agent’s revealed and concealed utilities in the Scenario from Section 6, with 𝑋 = distance, for
different values of 𝑏. The labels are the same as Figure 4.
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Scenario 2: Agent’s utility difference for revealing surge multiplier

𝑏 = 200
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Figure 11: Differences between the agent’s revealed and concealed utilities in Scenario 2, with 𝑋 = Lyft’s surge multiplier, for
different values of 𝑏. The labels are the same as Figure 4.
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