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Abstract

The application of rule-based reinforcement learning (RL) to multimodal large language
models (MLLMs) introduces unique challenges and potential deviations from findings in text-
only domains, particularly for perception-heavy tasks. This paper provides a comprehensive
study of rule-based visual RL using jigsaw puzzles as a structured experimental framework,
revealing several key findings. Firstly, we find that MLLMs, initially performing near to
random guessing on simple puzzles, achieve near-perfect accuracy and generalize to complex,
unseen configurations through fine-tuning. Secondly, training on jigsaw puzzles can induce
generalization to other visual tasks, with effectiveness tied to specific task configurations.
Thirdly, MLLMs can learn and generalize with or without explicit reasoning, though open-
source models often favor direct answering. Consequently, even when trained for step-by-step
reasoning, they can ignore the thinking process in deriving the final answer. Fourthly, we
observe that complex reasoning patterns appear to be pre-existing rather than emergent,
with their frequency increasing alongside training and task difficulty. Finally, our results
demonstrate that RL exhibits more effective generalization than Supervised Fine-Tuning
(SFT), and an initial SFT cold start phase can hinder subsequent RL optimization. Although
these observations are based on jigsaw puzzles and may vary across other visual tasks, this
research contributes a valuable piece of jigsaw to the larger puzzle of collective understanding
rule-based visual RL and its potential in multimodal learning.

1 Introduction

Post-training has emerged as a critical step for enhancing the performance of large language models (LLMs).
A significant contribution in this area is DeepSeek-R1 (Guo et al., 2025), which employs a simple yet effective
rule-based reinforcement learning (RL) strategy. This approach can mitigate reward hacking (Gao et al., 2023)
without relying on traditional scaffolding techniques (Lightman et al., 2024; Wang et al., 2024a; Xie et al.,
2024; Xin et al., 2025), and has shown robust generalization capabilities in LLMs across various domains
such as mathematics, coding, common-sense reasoning and logic puzzles (Chen et al., 2025b; Guo et al., 2025;
Liu et al., 2025a; Xie et al., 2025b).

Despite these advancements, the application of rule-based RL to multimodal contexts is still in its early stages.
Unlike purely textual environments such as DeepSeek-R1, multimodal large language models (MLLMs) face
the complex challenge of integrating and reasoning over both textual and visual information. This introduces
unique difficulties and potential deviations from findings in purely linguistic domains (Gandhi et al., 2025;
Guo et al., 2025; Lee et al., 2025; Liu et al., 2025d; Marjanović et al., 2025; Xie et al., 2025b).

For instance, a key insight from DeepSeek-R1 is the model’s natural achievement of test-time scaling (Snell et al.,
2025) through pure RL, evidenced by increased completion lengths and the emergence of complex reasoning
patterns (Gandhi et al., 2025), a phenomenon termed the aha moment. Nevertheless, perception-heavy tasks,
such as spatial reasoning, often permit concise answers derived directly from visual understanding. This
contrasts sharply with reasoning-intensive problems like mathematics and coding that benefit from extended,
step-by-step reasoning. In such perceptual domains, an explicit, lengthy thinking process—characteristic of
some rule-based RL successes in text—might even prove detrimental (Jiang et al., 2025).
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This paper presents a comprehensive study of rule-based RL within the visual domain. Rather than relying
on verifiable answers from existing MLLM benchmarks, we revisit a classic pretext task in computer vision:
solving jigsaw puzzles (Carlucci et al., 2019; Chen et al., 2023; Doersch et al., 2015; Du et al., 2020; Noroozi &
Favaro, 2016). This task (a visual illustration is presented Figure 1) offers a compelling testbed for studying
rule-based visual RL for several reasons:

Firstly, jigsaw puzzles inherently provide a ground truth. This allows for the direct generation of rule-based
rewards across various visual domains, eliminating the need for expensive human annotation.

Secondly, the complexity of these puzzles is readily adjustable by varying the number of pieces, facilitating a
structured experimental framework.

Lastly, solving jigsaw puzzles involves an interplay of step-by-step reasoning and visual perception. The
human approach—iteratively placing pieces while considering local and global visual coherence—provides a
rich analog for the complex decision-making processes we aim to explore in MLLMs.

Using jigsaw puzzles as our experimental framework, this research undertakes an in-depth exploration of
multifaceted aspects within rule-based visual RL. Our investigation yields findings that address the following
key research questions:

• Research Question #1: How do contemporary MLLMs perform on the classic pretext
task of jigsaw puzzles?

Without task-specific training, the performance of contemporary MLLMs on the simplest jigsaw
puzzles (i.e., 2x1) is comparable to random guessing. However, fine-tuning enables these models
to effectively solve such puzzles with near-perfect accuracy. Importantly, these learned abilities
generalize to more complex configurations (e.g., 3x1) not encountered during training.

• Research Question #2: Can MLLMs trained to solve jigsaw puzzles develop generalizable
abilities applicable to other visual tasks?

Training models on jigsaw puzzles enables generalization to downstream tasks. The effectiveness of
this generalization is dependent on specific task configurations, including puzzle size, question type
and training dataset.

• Research Question #3: Given that extended reasoning may be detrimental for some
perceptual tasks, is an explicit thinking process still beneficial when employing rule-based
visual RL to solve jigsaw puzzles?

MLLMs can learn and generalize with or without an explicit reasoning process. However, open-source
MLLMs typically show stronger performance in direct answering. As a result, even when trained
to employ step-by-step reasoning, they tend to disregard the thinking process in deriving the final
answer.

• Research Question #4: Considering that many visual tasks can be solved with concise
outputs, does the aha moment still emerge in MLLMs trained on jigsaw puzzles?

The aha moment, characterized by the sudden emergence of complex reasoning patterns, is not
observed. Instead, these patterns are pre-existing within MLLMs and are readily elicited by tasks
with inherent reasoning structures, like jigsaw puzzles. Furthermore, the frequency of these reasoning
patterns demonstrably increases throughout training and in response to greater task difficulty.

• Research Question #5: How does supervised fine-tuning (SFT) compare with RL in
terms of generalization?

SFT generally demonstrates less effective generalization compared to RL. Besides, initiating training
with a SFT cold start phase can make later RL optimization less effective.
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2 Related Work

2.1 Jigsaw Puzzles

Since their inception, jigsaw puzzles have been closely linked to learning. Around 1760, British cartographer
John Spilsbury created the first dissected map—an early jigsaw puzzle—specifically to teach geography. More
recently, the task of solving jigsaw puzzles has gained considerable attention within the computer vision
community as a pretext task. The central idea is that neural networks, by training to reassemble images from
shuffled patches, can develop rich feature representations transferable to various downstream applications.

For instance, Doersch et al. (2015); Noroozi & Favaro (2016) propose pre-training Convolutional Neural
Networks (CNNs) on jigsaw puzzles before fine-tuning them for downstream tasks such as image classification
and object detection. Subsequently, Carlucci et al. (2019) employ jigsaw puzzles as a self-supervised
regularization term, demonstrating strong domain generalization. Du et al. (2020) further advance this
area by incorporating jigsaw puzzles into a progressive training pipeline for fine-grained classification. Most
recently, Chen et al. (2023) investigate the efficacy of jigsaw puzzles in the context of vision transformers
(ViTs), highlighting the importance for architecture-specific modifications.

2.2 Rule-based Reinforcement Learning

In order to mitigate reward hacking (Gao et al., 2023), DeepSeek-R1 (Guo et al., 2025) adopts a simple
yet effective rule-based RL approach. This method diverges from traditional scaffolding techniques such as
process reward models (Lightman et al., 2024; Wang et al., 2024a) and Monte Carlo Tree Search (MCTS) (Xie
et al., 2024; Xin et al., 2025), and has proven effective in acquiring reasoning skills transferable across diverse
domains, including mathematics, coding, common-sense reasoning and logic puzzles (Chen et al., 2025b; Guo
et al., 2025; Liu et al., 2025a; Xie et al., 2025b).

Beyond the generalization capabilities, DeepSeek-R1 also demonstrates a natural achievement of test-time
scaling (Snell et al., 2025), evidenced by increased completion lengths and the sudden emergence of complex
reasoning patterns, a phenomenon termed the aha moment. However, Xie et al. (2024) find that longer
responses do not guarantee better reasoning and Liu et al. (2025d) challenge the notion of sudden emergence,
positing that these complex behaviors might be inherent in the base model rather than appearing abruptly.

Furthermore, its reasoning processes reportedly exhibit human-like language processing characteristics (Mar-
janović et al., 2025). Investigating these further, Gandhi et al. (2025) draw connections to human psychology,
developing a framework that categorizes these reasoning patterns into four key cognitive behaviors. Their find-
ings suggest that Qwen2.5 (Qwen et al., 2025) naturally exhibits these behaviors, whereas Llama3.2 (Grattafiori
et al., 2024) initially does not. Adding another dimension to this discussion, Lee et al. (2025) observe that
the data format has a significantly greater impact on reasoning behavior than the data domain. Their
analysis reveals that models trained on multiple-choice data produce concise answers, whereas those trained
on free-form data tend to be more verbose.

2.3 Rule-based Visual Reinforcement Learning

Applying rule-based RL to MLLMs is an emerging field. Unlike models that operate solely on text (e.g.,
DeepSeek-R1), MLLMs operate in a more complex environment by processing both textual and visual
information. This inherent complexity introduces unique difficulties and potential deviations from established
findings in purely linguistic domains. Recently, several contemporary studies have emerged, reporting varied
findings across diverse task settings.

A significant line of exploration, motivated by the success of DeepSeek-R1 in mathematical reasoning, involves
adapting these rule-based RL techniques to multimodal mathematical tasks (Chen et al., 2025a; Deng et al.,
2025; Liu et al., 2025b; Meng et al., 2025; Peng et al., 2025; Wang et al., 2025b; Yang et al., 2025). These
efforts have consistently demonstrated strong out-of-domain generalization. Notably, studies by Chen et al.
(2025a); Meng et al. (2025) have documented the emergence of the aha moment—the spontaneous exhibition
of sophisticated reasoning patterns like self-correction—arising from end-to-end RL training.
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Figure 1: An illustration of the task design.

However, the landscape appears different for visual perception tasks, including visual classification, visual
grounding and spatial reasoning. While research in this area (Bai et al., 2025b; Chen et al., 2025d; Lai et al.,
2025; Li et al., 2025b; Liao et al., 2025; Liu et al., 2025e;c; Shen et al., 2025; Yu et al., 2025a; Zhou et al., 2025)
also show robust out-of-distribution generalization, the aha moment has not been observed when employing
instruction-tuned models. Indeed, the necessity of explicit reasoning steps for these perception-intensive
tasks has been questioned, as direct answers may often suffice (Jiang et al., 2025). In fact, work by Lai et al.
(2025); Li et al. (2025b); Yu et al. (2025a) suggest that training models for direct answering often leads to
superior performance compared to models trained for explicit step-by-step reasoning.

3 Task Design

This section outlines the formulation of jigsaw puzzles in a format suitable for processing by MLLMs.
Subsequently, we introduce a rule-based reward system designed for RL training. All specific prompts are
detailed in Appendix D, and Figure 1 provides a conceptual overview.

3.1 Jigsaw Puzzle Images

The creation of jigsaw puzzles begins with an input image. The image is first partitioned into an m×n grid
of patches and the task’s difficulty can be readily adjusted by varying the values of m and n. Optionally,
a masked region can be added between patches to highlight the grid layout. If the image’s height is not
perfectly divisible by m, or its width by n, the image is trimmed from the bottom or right edges to ensure
its dimensions are exact multiples of the patch count. Subsequently, these patches are randomly shuffled to
create the jigsaw puzzle images. To uniquely identify each patch’s location within this grid, position indices
are assigned sequentially in row-major order, from 1 (top-left) to mn (bottom-right).
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3.2 Question Types

Based on these shuffled images, we formulate distinct question types. These questions either directly assess
the MLLM’s ability to reconstruct the original image or require it to reason about the relative positions
between the shuffled patches in the initial image.

Full. In this task, MLLMs are required to identify the initial position index for each shuffled patch, thereby
enabling the reconstruction of the original image. The answer is a list of mn numbers arranged in an m×n
grid, where each number corresponds to a shuffled patch and indicates its original position index. The
complexity of this task is therefore mn!.

Pair. For this task, two patches are randomly selected, and the MLLM’s objective is to identify their
relative positions in the original image. If the image is divided into a single row (m = 1) or a single column
(n = 1), only two relative positions are possible (e.g. left/right or top/bottom, respectively). Otherwise, eight
distinct relative directions are possible (e.g., top-left, directly above, to the right, bottom-right). This task is
structured as a multiple-choice question, requiring the model to output a single letter corresponding to the
correct relative position. Consequently, the task complexity is either 2 or 8, depending on whether the image
is divided into a single row/column or not.

3.3 Thinking or Non-thinking

For any given question, regardless of its type, we investigate two prompting approaches for MLLMs. One
approach instructs MLLMs to include an explicit thinking process in their response, similar to the format
used in DeepSeek-R1 (Guo et al., 2025). The inclusion of explicit reasoning has been shown to improve
generalization across diverse downstream tasks (Hu et al., 2025; Xie et al., 2025b) and is considered valuable
for enhancing safety and transparency (Chen et al., 2025f; Wang et al., 2025a). Conversely, as explicit
step-by-step reasoning might be detrimental for tasks heavily reliant on visual perception (Jiang et al., 2025),
we also explore an alternative: prompting the MLLM to provide the final answer directly, without detailing
intermediate reasoning. In summary, we examine the following two distinct instructions:

Thinking. MLLMs are instructed to first output their thinking process, which should be enclosed within
<think> and </think> tags. Subsequently, they must provide the final answer, enclosed within <answer>
and </answer> tags.

Non-thinking. MLLMs are prompted to directly output the final answer to the posed question.

3.4 Rule-based Rewards

The reward serves as the primary training signal in rule-based RL. Our reward system consists of two
components: an accuracy reward and a format reward. The total reward is the sum of these two components.

Accuracy reward. This reward assesses the correctness of the response. For full questions, the reward
is calculated as the proportion of correctly identified position indices to the total number of indices (mn),
resulting in a fractional value between 0 and 1. For pair questions, the reward is binary: 1 for a correct choice
and 0 otherwise.

Format reward. The final answer must be extractable in the prescribed format: a list of mn integers
arranged in an m×n grid for full questions or a single letter for pair questions. With thinking instructions,
the answer is extracted from within the <answer> and </answer> tags. For non-thinking instructions, it is
extracted directly from the raw output.

Furthermore, for thinking, the model must adhere to the instruction of enclosing its reasoning process within
<think> and </think> tags and the final answer within <answer> and </answer> tags. Each tag must
appear exactly once and in the correct sequence (the thinking process before the final answer).

The format reward is 0.5 if the output adheres to all these requirements, and 0 otherwise.
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4 Experimental Setups

4.1 Datasets

COCO (Lin et al., 2014). This dataset serves as the foundation for training and evaluating jigsaw puzzles.
We exclusively use the images and randomly generate the ground truth permutations. For training, we employ
the train2014 split, and for testing, we randomly select 1,000 images from the test2014 split.

CV-Bench (Tong et al., 2024a). This benchmark repurposes standard vision datasets such as COCO
with a multimodal context, offering 2,638 test examples. It includes four distinct tasks: spatial relationship
and object counting for 2D understanding, and depth order and relative distance for 3D understanding.

MMVP (Tong et al., 2024b). Similar to CV-Bench, MMVP adapts classic vision datasets like Ima-
geNet (Deng et al., 2009) to create 300 multimodal questions. This benchmark assesses MLLMs on nine
fundamental visual patterns, such as orientation, perspective, and structural characteristics.

SAT (Ray et al., 2024). This synthetic dataset features indoor scenes, from which we exclusively use its
static split. We categorize the original questions into the four task types defined in CV-Bench. For testing,
we randomly sample 500 questions per task, yielding a total of 2,000 test questions. The remaining 96,924
questions constitute the training set.

Super-CLEVR (Li et al., 2023). This is another synthetic dataset containing various vehicle models like
cars and motorcycles. Following (Chen et al., 2025d), we select 200 images from the test split and adapt the
dataset as counting problems.

4.2 Models

Proprietary Models, We evaluate GPT-4.1 (OpenAI, 2025a), GPT-4.1-mini (OpenAI, 2025a), and Claude
3.5 Haiku (Anthropic, 2024).

Open-Source Models. We consider Qwen2-VL-2B-Base (Wang et al., 2024b) and several instruction-tuned
models: Qwen2.5-VL-72B/7B/3B (Bai et al., 2025a), Qwen2-VL-2B (Wang et al., 2024b), and InternVL2.5-
2B (Chen et al., 2024).

4.3 Implementation Details

We use GRPO (Shao et al., 2024) as the reinforcement learning algorithm. The GRPO iteration µ = 1, the
KL efficient β = 0.04 and the clipping value ϵ = 0.2. The number of training steps is 1,000 for thinking and
2,000 for non-thinking. In each training step, 64 unique prompts are processed, with each prompt being
sampled 8 times to calculate the advantages. The sampling temperature is set to 1, and top-k sampling is
used with k = 50. The learning rate initiates at 1e-6 and linearly decays to 0.

5 Experiments

This section presents results designed to address the proposed research questions. The main paper focuses on
instruction-tuned models; for a discussion regarding Qwen2-VL-2B-Base, please refer to Appendix B.

Research Question #1: How Do MLLMs Perform on Jigsaw Puzzles?

To answer the question, we first train models on 2x1 jigsaw puzzles using the training split of the COCO
dataset. To introduce task diversity for non-square puzzles, the piece order is randomly shuffled in 50% of
instances (e.g. 2x1 becomes 1x2 and vice verse). We then evaluate model performance on the same question
type but with varying puzzle sizes, utilizing the test split of the COCO dataset. Evaluation results for pair
questions are shown in Table 1, and comprehensive results for full questions are provided in Appendix A.
The training dynamics for pair jigsaw puzzles are illustrated in Figure 2.
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Table 1: Evaluation results on pair jigsaw puzzles with different sizes. For thinking and non-thinking of the
same model, the better result is underlined.

Thinking

Method 2x1 3x1 4x1 2x2 AVG
Random 50.00 50.00 50.00 12.50 40.63
GPT-4.1 54.10 53.40 54.70 20.70 45.73

GPT-4.1-mini 61.90 54.50 54.80 20.30 47.88
Claude 3.5 Haiku 61.00 49.10 51.30 15.20 44.15
Qwen2.5-VL-72B 43.40 50.20 52.80 18.00 41.10

Qwen2.5-VL-7B 49.40 48.70 50.60 15.80 41.12
+ Jigsaw-R1 97.80↑48.40 61.70↑13.00 54.80↑4.20 15.20↓−0.60 57.38↑16.26

Qwen2.5-VL-3B 48.50 47.50 48.80 12.20 39.25
+ Jigsaw-R1 96.80↑48.30 58.80↑11.30 52.20↑3.40 13.10↑0.90 55.22↑15.97

Qwen2-VL-2B 32.80 33.90 32.10 10.30 27.27
+ Jigsaw-R1 70.30↑37.50 56.50↑22.60 48.10↑16.00 10.70↑0.40 46.40↑19.13

InternVL2.5-2B 44.90 41.90 48.60 9.70 36.28
+ Jigsaw-R1 99.30↑54.40 63.00↑21.10 53.00↑4.40 13.70↑4.00 57.25↑20.97

Non-thinking

Method 2x1 3x1 4x1 2x2 AVG
Random 50.00 50.00 50.00 12.50 40.63
GPT-4.1 53.80 49.70 50.90 16.50 42.73

GPT-4.1-mini 62.50 52.70 53.90 16.20 46.32
Claude 3.5 Haiku 31.30 42.40 43.00 13.20 32.47
Qwen2.5-VL-72B 52.50 51.60 55.60 14.20 43.48

Qwen2.5-VL-7B 50.40 49.60 54.20 13.20 41.85
+ Jigsaw-R1 98.90↑48.50 65.90↑16.30 53.90↓−0.30 14.90↑1.70 58.40↑16.55

Qwen2.5-VL-3B 52.20 48.30 48.60 13.70 40.70
+ Jigsaw-R1 98.80↑46.60 66.00↑17.70 53.20↑4.60 16.80↑3.10 58.70↑18.00

Qwen2-VL-2B 50.90 53.60 46.90 9.60 40.25
+ Jigsaw-R1 98.60↑47.70 65.00↑11.40 53.50↑6.60 12.30↑2.70 57.35↑17.10

InternVL2.5-2B 51.00 48.50 53.50 10.90 40.98
+ Jigsaw-R1 99.30↑48.30 63.20↑14.70 53.40↓−0.10 12.90↑2.00 57.20↑16.22

Finding 1.1: MLLMs struggle with jigsaw puzzles before fine-tuning. As demonstrated in Tables 1
and 7, jigsaw puzzles are notably difficult for MLLMs without task-specific training. Prior to fine-tuning,
even powerful proprietary models perform at levels comparable to random guessing, struggling even with the
simplest jigsaw puzzles (i.e., 2x1).

Finding 1.2: MLLMs exhibit efficient learning and generalization for jigsaw puzzles after fine-
tuning. Despite the initial difficulty, MLLMs show a strong capacity to learn and solve these puzzles after
fine-tuning. For example, the reward progression for Qwen2.5-VL-3B, depicted in Figure 2, indicates rapid
convergence to near-perfect accuracy. Notably, models trained exclusively on 2x1 jigsaw puzzles successfully
generalize their learned abilities to larger puzzle sizes beyond the training distribution (e.g., 3x1).

Takeaways #1. Without task-specific training, modern MLLMs perform no better than random
guessing on the simplest jigsaw puzzles (i.e., 2x1). Nevertheless, after fine-tuning, they can solve these
puzzles almost perfectly and can generalize the learned abilities to more complex configurations (e.g.,
3x1) unseen during training.
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Figure 2: The training dynamics of Jigsaw-R1. Left: Rewards of Qwen2.5-VL-3B (thinking). Middle:
Rewards of Qwen2.5-VL-3B (non-thinking). Right: The completion length of various models. All curves are
exponentially smoothed for visualization.

Research Question #2: How Do Jigsaw Puzzles Generalize to Downstream Tasks?

To address this question, we evaluate the performance of models trained on jigsaw puzzles across several
downstream tasks, including CV-Bench, MMVP, SAT, and Super-CLEVR. Further details regarding these
datasets can be found in Section 4.1.

Finding 2.1: Jigsaw puzzles generalize. Our primary investigation (Table 2) reveals that models
trained on jigsaw puzzles generally achieve improved performance on downstream tasks, indicating robust
generalization. Notably, despite being trained exclusively on the COCO dataset for jigsaw puzzles, these
models successfully adapt to spatial reasoning tasks on synthetic image datasets such as SAT and Super-
CLEVR. Nevertheless, the improvements seen in thinking models might be superficial. They learn to neglect
the reasoning process (further discussed in Research Question #3), and their performance after fine-tuning
remains inferior to that of non-thinking models that have not undergone fine-tuning.

Finding 2.2: Jigsaw puzzle configuration impacts generalization. To understand the factors
influencing generalization, we analyze the performance of Qwen2.5-VL-3B under various jigsaw puzzle
configurations:

Puzzle size: The choice of jigsaw puzzle size significantly affects downstream performance (Table 3). For the
non-thinking setting, training on a larger, more challenging jigsaw puzzle size leads to better generalization.
Furthermore, employing a curriculum learning approach that mixes different puzzle sizes (e.g. 3x1→4x1)
proves more effective than training exclusively with a single size.

Question type: Pair jigsaw puzzles result in superior generalization on downstream tasks compared to full
jigsaw puzzles (Table 4). We believe that this advantage stems from the analogy of pair jigsaw puzzles to
downstream tasks (e.g. requiring models to answer multi-choice questions and explicitly asking them to
reason about spatial relationships between visual elements).

Training dataset: As demonstrated in Table 5, aligning the training dataset with the target domain yields
improved performance. For example, training directly on the SAT dataset enhances performance on SAT
tasks. Given that jigsaw puzzles are label-free, it is even feasible to train on the test set of SAT for further
performance gains.

Takeaways #2. Training on jigsaw puzzles can induce generalization to downstream tasks. The
degree of generalization is affected by specific task configurations, including puzzle size, question type
and training dataset.
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Table 2: Evaluation results on downstream tasks. For thinking and non-thinking of the same model, the
better result is underlined.

Thinking

Method CV-Bench MMVP SAT Super-CLEVR AVG

GPT-4.1 83.69 88.66 73.70 52.00 74.52
GPT-4.1-mini 84.42 82.00 72.00 60.50 74.73

Claude 3.5 Haiku 73.38 71.33 59.30 48.00 63.00
Qwen2.5-VL-72B 82.98 76.33 71.00 72.00 75.57

Qwen2.5-VL-7B 64.89 72.66 65.85 59.00 65.60
+ Jigsaw-R1 75.97↑11.08 77.00↑4.34 69.15↑3.30 66.00↑7.00 72.03↑6.43

Qwen2.5-VL-3B 63.87 61.66 57.05 48.00 57.64
+ Jigsaw-R1 69.48↑5.61 65.00↑3.34 61.95↑4.90 47.00↓−1.00 60.86↑3.22

Qwen2-VL-2B 51.55 63.33 45.75 55.00 53.91
+ Jigsaw-R1 59.36↑7.81 61.33↓−2.00 53.15↑7.40 66.00↑11.00 59.96↑6.05

InternVL2.5-2B 56.02 54.66 47.60 15.50 43.44
+ Jigsaw-R1 60.73↑4.71 63.67↑9.01 56.25↑8.65 46.00↑30.50 56.66↑13.22

Non-thinking

Method CV-Bench MMVP SAT Super-CLEVR AVG

GPT-4.1 81.95 86.33 73.30 55.75 74.33
GPT-4.1-mini 81.46 80.66 69.90 65.50 74.38

Claude 3.5 Haiku 63.87 67.00 56.90 37.00 56.19
Qwen2.5-VL-72B 82.83 78.00 72.00 97.50 82.58

Qwen2.5-VL-7B 79.87 78.00 69.55 92.50 79.98
+ Jigsaw-R1 80.44↑0.57 77.67↓−0.33 69.80↑0.25 92.50 80.10↑0.12

Qwen2.5-VL-3B 70.35 66.00 65.50 76.50 69.59
+ Jigsaw-R1 73.57↑3.22 70.00↑4.00 65.65↑0.15 83.50↑7.00 73.18↑3.59

Qwen2-VL-2B 64.89 66.33 61.65 72.00 66.21
+ Jigsaw-R1 67.40↑2.51 66.00↓−0.33 64.70↑3.05 72.50↑0.50 67.65↑1.44

InternVL2.5-2B 65.84 66.00 61.50 51.00 61.09
+ Jigsaw-R1 67.36↑1.52 72.00↑6.00 61.30↓−0.20 83.50↑32.50 71.03↑9.94

Table 3: Averaged downstream task performance of Qwen2.5-VL-3B when trained on different jigsaw puzzle
sizes. 2x1→3x1 (3x1→4x1): Mixing 2x1 and 3x1 (3x1 and 4x1) jigsaw puzzles in a curriculum setting. For
thinking and non-thinking of the same model, the better result is underlined.

Thinking

2x1 3x1 4x1 2x2 2x1→3x1
60.86 58.86 59.05 58.79 61.92

Non-thinking

2x1 3x1 4x1 2x2 3x1→4x1
73.18 74.95 73.03 72.68 75.29

Table 4: Evaluation results on downstream tasks when Qwen2.5-VL-3B (non-thinking) is trained on different
question types.

Question Type CV-Bench MMVP SAT Super-CLEVR AVG

Full 71.76 69.67 65.20 84.00 72.65
Pair 73.57↑1.81 70.00↑0.33 65.65↑0.45 83.50↓−0.50 73.18↑0.53
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Table 5: Evaluation results on downstream tasks when trained on different datasets.

Training Dataset CV-Bench MMVP SAT Super-CLEVR AVG

COCOtrain 73.57 70.00 65.65 83.50 73.18
SATtrain 72.29↓−1.28 68.00↓−2.00 67.00↑1.35 82.00↓−1.50 72.32↓−0.86

SATtrain + SATtest 72.46↓−1.11 68.33↓−1.67 67.40↑1.75 81.00↓−2.50 72.29↓−0.89

Research Question #3: Thinking or Non-thinking?

Finding 3.1: MLLMs can learn from jigsaw puzzles and generalize to downstream tasks with
or without explicit reasoning. As demonstrated by the jigsaw puzzle results (Tables 1 and 7), models
can effectively learn with rule-based visual RL, whether or not an explicit reasoning chain is generated.
Importantly, these learned capabilities can be generalized to various downstream tasks (Table 2).

Finding 3.2: Open-source MLLMs often benefit from direct answering, while proprietary models
tend to perform better with explicit reasoning. Consistent with observations in (Jiang et al., 2025),
our results on jigsaw puzzles (Tables 1 and 7) and downstream tasks (Table 2) confirm that open-source
models tend to achieve stronger results when prompted to output the answer directly. Indeed, even after
fine-tuning, models that adopt a reasoning process show weaker generalization on downstream tasks than
direct-answering models that have not undergone fine-tuning. Conversely, we find that proprietary models
generally demonstrate improved performance when an explicit reasoning process precedes the final answer. It
is important to note, however, that this does not necessarily mean proprietary models are inherently stronger.
For example, Claude 3.5 Haiku performs comparably to Qwen2.5-VL-3B on downstream tasks.

Finding 3.3: MLLMs can neglect the reasoning process after fine-tuning. As illustrated in Figure 2
(Right), the completion length of InternVL2.5-2B significantly decreases during training. This occurs because
the model increasingly circumvents step-by-step reasoning and often includes only the final answer in its
thinking process (see examples in Appendix F). Conversely, while Qwen models do present explicit reasoning
steps, these steps may not consistently inform the derivation of the final answer (examples are provided
in Appendix E). To quantify this, we utilized GPT-4.1 to assess the consistency between the reasoning process
of Qwen2.5-VL-3B and its final answer. As Figure 3 (Left) demonstrates, although the model’s final answer
becomes more accurate with training, its reasoning chain becomes progressively more inconsistent.

Takeaways #3. MLLMs can learn and generalize, irrespective of whether an explicit reasoning
process is included. Nevertheless, open-source MLLMs usually excel at direct answering. Consequently,
even when trained to utilize step-by-step reasoning, they may ignore the thinking process when
deiriving the final answer.

0 200 400 600 800 1000
Training Step

50

60

70

80

90

Ac
cu

ra
cy

Accuracy
Consistency

0 200 400 600 800 1000
Training Step

0

10

20

30

40

50

60

Ke
yw

or
d 

Fr
eq

ue
nc

y

2x1 3x1 4x1 2x2
Jigsaw Puzzle Size

3400

3600

3800

4000

4200

4400

4600

4800

Ke
yw

or
d 

Fr
eq

ue
nc

y

48

50

52

54

56

58

60

62

64

C
on

si
st

en
cy

Figure 3: Left: Accuracy of the final answer and consistency of the reasoning process during training.
Middle: Evolution of keyword frequency throughout the training process. Right: Comparison of keyword
frequency when trained on different jigsaw puzzle sizes. All results are demonstrated using Qwen2.5-VL-3B.
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Research Question #4: Does the Aha Moment Emerge?

Finding 4.1: Complex reasoning patterns are pre-existing in MLLMs. The aha moment is often
associated with the emergence of complex reasoning patterns Guo et al. (2025). While contemporary studies
focusing on perception-heavy tasks like visual classification, visual grounding and spatial reasoning (Bai
et al., 2025b; Chen et al., 2025d; Lai et al., 2025; Li et al., 2025b; Liao et al., 2025; Liu et al., 2025e;c; Shen
et al., 2025; Yu et al., 2025a; Zhou et al., 2025) typically do not observe these patterns in instruction-tuned
models, our investigation into jigsaw puzzles reveals a distinct phenomenon. Although the completion length
is not increasing, as illustrated in Figure 2 (Right), we find that all these models, including InternVL2.5-2B
and also Qwen2-VL-2B-Base (see Appendix B), exhibit complex reasoning patterns, such as verification and
backtracking, even before training starts. Indeed, throughout the training process, we successfully identify all
four cognitive behaviors as defined in (Gandhi et al., 2025).

Examples of the Four Cognitive Behaviors When Solving Jigsaw Puzzles

Verification: "Let me check the numbers ..."
Backtracking: "After re-evaluating the patches, I observe the following ..."
Subgoal Setting: "Let’s try to match the descriptions of the patches to ..."
Backward Chaining: "I can work backwards to find the correct placement ..."

Finding 4.2: Complex reasoning patterns evolve during fine-tuning. To monitor the evolution
of these behaviors, we track the frequency of keywords indicative of backtracking and backward chaining
(detailed in Appendix C). As depicted in Figure 3 (Middle), the occurrence of these keywords demonstrates a
steady and significant increase throughout the training process.

Finding 4.3: Complex reasoning patterns emerge more frequently with harder jigsaw puzzles.
To further investigate these reasoning patterns, we plot the frequency of these keywords as the Qwen2.5-VL-3B
model is trained on jigsaw puzzles of varying sizes, as shown in Figure 3 (Right). Our analysis reveals a clear
trend: the frequency of these keywords increases when the model is trained on more challenging (i.e., larger)
jigsaw puzzles.

Takeaways #4: Rather than emerging abruptly, complex reasoning patterns are intrinsic within
MLLMs. Tasks that inherently require structured reasoning, such as jigsaw puzzles, readily activate
these pre-existing patterns. Furthermore, they become demonstrably more prominent both throughout
the training process and when MLLMs face more challenging jigsaw puzzles.

Research Question #5: SFT or RL?

This section evaluates the generalization capabilities of SFT in comparison to RL. For these experiments,
SFT data for thinking is curated via rejection sampling, while non-thinking utilizes ground-truth data.

Finding 5.1: SFT exhibits weaker generalization than RL. As demonstrated in Table 6, applying
SFT to either the reasoning chain (thinking) or directly to ground-truth answers (non-thinking) can yield
some generalization. However, it is generally less effective than RL.

Finding 5.2: A cold start phase with SFT preceding RL can be detrimental. Compared to a
single-stage RL process, a two-stage pipeline that incorporates a cold start phase with SFT prior to RL can
help models learn specific output formats (Guo et al., 2025). However, this is not essential in our experimental
setting, as indicated by the rapid increase in rewards (Figure 2). More importantly, we observe that this cold
start phase can diminish the effectiveness of subsequent RL optimization (Table 6).

Takeaways #5. SFT typically shows weaker generalization compared to RL. Additionally, initiating
the training process with a SFT cold start phase may limit the efficacy of subsequent RL optimization.
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Table 6: Evaluation results of SFT and RL models on downstream tasks. For thinking and non-thinking of
the same model, the better result is underlined.

Thinking

Method CV-Bench MMVP SAT Super-CLEVR AVG

Qwen2.5-VL-3B 63.87 61.66 57.05 48.00 57.64
+ Jigsaw-R1 69.48↑5.61 65.00↑3.34 61.95↑4.90 47.00↓−1.00 60.86↑3.22

+ SFT 66.41↑2.54 64.00↑2.34 58.85↑1.80 42.00↓−6.00 57.81↑0.17

+ SFT + Jigsaw-R1 68.96↑5.09 63.66↑2.00 60.05↑3.00 43.00↓−5.00 58.91↑1.27

Non-thinking

Method CV-Bench MMVP SAT Super-CLEVR AVG

Qwen2.5-VL-3B 70.35 66.00 65.50 76.50 69.59
+ Jigsaw-R1 73.57↑3.22 70.00↑4.00 65.65↑0.15 83.50↑7.00 73.18↑3.59

+ SFT 71.27↑0.92 67.73↑1.73 62.20↓−3.30 76.75↑0.25 69.48↓−0.11

+ SFT + Jigsaw-R1 71.04↑0.69 66.67↑0.67 62.00↓−3.50 80.00↑3.50 69.92↑0.33

Limitations and Future Work

Visual reasoning models. Recent advancements from OpenAI, particularly the o3 and o4-mini mod-
els (OpenAI, 2025b), have shown significant promise in reasoning with images for enhanced perception. While
our work does not incorporate these visual reasoning models (Li et al., 2025a; Liu et al., 2025f; Qi et al., 2025;
Su et al., 2025; Wang et al., 2025c), we believe jigsaw puzzles are an ideal candidate for exploring rule-based
visual RL in this context due to their inherent reliance on image-based reasoning. For an early exploration, we
conduct small-scale experiments using the ChatGPT console, where these models are equipped with tool-use
capabilities. Our preliminary experiments indicate that OpenAI o3 can effectively solve 2x2 jigsaw puzzles,
substantially outperforming other models considered in this paper. However, it still faces challenges with
more complex puzzles (e.g. 3x3), highlights areas for further investigation.

Multimodal generative models. Our study does not consider models capable of both understanding and
generating multimodal content (Chen et al., 2025c;e; Hurst et al., 2024; Team, 2024; Wu et al., 2024; Xie
et al., 2025a). A promising future research direction involves integrating our approach with these advanced
models. Enabling them to generate their own inputs could reduce dependence on external datasets like
COCO and create an autonomous environment to learn from experience (Silver & Sutton, 2025).

Test-time training. We have demonstrated that aligning the training dataset with the target domain can
yield enhanced performance. Jigsaw puzzles inherently provide readily available annotations, making them
suitable for direct training on the test set during test time. Therefore, exploring the use of jigsaw puzzles as
a technique for test-time training (Akyurek et al., 2024; Behrouz et al., 2024; Zhu et al., 2024; Zuo et al.,
2025) presents an interesting avenue for future work.

Other pretext tasks. While this work primarily focuses on jigsaw puzzles as the pretext task, numerous
alternatives exist and worth exploration (Gidaris et al., 2018; Gui et al., 2024). In particular, future research
could extend our approach to pretext tasks in other modalities, including text (Lan et al., 2020), video (Ahsan
et al., 2019; Kim et al., 2019; Wang et al., 2020), audio (Carr et al., 2021), point clouds (Poursaeed et al.,
2020), and tabular data (Lee et al., 2024).

Other RL algorithms. We exclusively employ GRPO in our current experiments, leaving other promising
algorithms such as PPO (Schulman et al., 2017), DPO (Rafailov et al., 2023) and Reinforce++ (Hu, 2025)
unexplored. Furthermore, investigating recent advancements and variations of GRPO, including DAPO (Yu
et al., 2025b), Dr. GRPO (Liu et al., 2025d), GPG (Chu et al., 2025), and NoisyRollout (Liu et al., 2025b),
could offer valuable insights and potential performance gains.
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A Full Jigsaw Puzzles

Table 7: Evaluation results on full jigsaw puzzles with different sizes. For thinking and non-thinking of the
same model, the better result is underlined. Claude 3.5 Haiku† fails to output answers in the required grid
format.

Thinking

Method 2x1 3x1 4x1 2x2 AVG
Random 50.00 16.67 4.17 4.17 18.75
GPT-4.1 79.00 27.30 8.20 6.40 30.23

GPT-4.1-mini 60.80 26.60 8.40 6.20 25.50
Claude 3.5 Haiku 69.40 19.00 5.30 6.50 25.05
Qwen2.5-VL-72B 53.40 20.40 5.10 5.60 21.13

Qwen2.5-VL-7B 25.60 15.80 3.10 4.20 12.18
+ Jigsaw-R1 97.30↑71.70 31.20↑15.40 8.20↑5.10 7.80↑3.60 36.12↑23.94

Qwen2.5-VL-3B 45.90 11.30 2.60 3.40 15.80
+ Jigsaw-R1 97.20↑51.30 31.40↑20.10 7.30↑4.70 6.50↑3.10 35.60↑19.80

Qwen2-VL-2B 46.90 5.30 0.60 4.00 14.20
+ Jigsaw-R1 98.00↑51.10 30.60↑25.30 8.40↑7.80 4.80↑0.80 35.45↑21.25

InternVL2.5-2B 16.00 8.60 2.90 2.70 7.55
+ Jigsaw-R1 99.30↑83.30 30.10↑21.50 4.50↑1.60 0.00↓−2.70 33.48↑25.93

Non-thinking

Method 2x1 3x1 4x1 2x2 AVG
Random 50.00 16.67 4.17 4.17 18.75
GPT-4.1 68.50 17.30 7.00 7.30 25.03

GPT-4.1-mini 49.50 18.80 3.80 5.60 19.43
Claude 3.5 Haiku† 0.00 0.00 0.00 0.00 0.00
Qwen2.5-VL-72B 91.70 26.40 9.20 8.00 33.83

Qwen2.5-VL-7B 30.10 17.40 1.50 0.50 12.38
+ Jigsaw-R1 99.20↑69.10 30.40↑13.00 8.60↑7.10 9.00↑8.50 36.80↑24.42

Qwen2.5-VL-3B 51.60 16.70 4.40 3.70 19.10
+ Jigsaw-R1 98.80↑47.20 29.70↑13.00 9.10↑4.70 7.70↑4.00 36.32↑17.22

Qwen2-VL-2B 11.40 2.00 0.20 0.00 3.40
+ Jigsaw-R1 99.00↑87.60 32.10↑30.10 7.30↑7.10 3.50↑3.50 35.47↑32.07

InternVL2.5-2B 20.90 11.30 3.40 2.80 9.60
+ Jigsaw-R1 99.20↑78.30 31.40↑20.10 7.10↑3.70 7.30↑4.50 36.25↑26.65
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B Qwen2-VL-2B-Base

The training dynamics of Qwen2-VL-2B-Base on 2x1 pair jigsaw puzzles are illustrated in Figure 4. While
rewards show a rapid initial increase, mirroring trends seen in instruction-tuned models, the improvement in
accuracy reward is largely superficial. It primarily reflects the model learning to adhere to the specified output
format, which allows for the extraction of a final answer, rather than indicating a genuine enhancement in its
capabilities to solve jigsaw puzzles. Subsequently, the accuracy reward stagnates, not surpassing 0.5, which is
equivalent to the performance of random guessing. This leads us to hypothesize that jigsaw puzzles present a
significant challenge for the base model, potentially requiring a substantially extended training period to
achieve meaningful performance gains.

Furthermore, the completion length also shows a swift initial growth. This parallels the reward behavior:
the model initially tends to provide direct answers but then learns to include the required explicit reasoning
process within the specified format, leading to longer outputs. After this adjustment period, the completion
length remains relatively stable.

Similar to observations with instruction-tuned models, the keywords are already present in the model before
training begins (at step 0). This aligns with findings in textual domain (Liu et al., 2025d). Besides, while these
keywords appear more often as training progresses, their overall occurrence remains relatively infrequent.
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Figure 4: The training dynamics of Jigsaw-R1 using Qwen2-VL-2B-Base.
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C Keywords

A key characteristic in our setting is that MLLMs often describe image content when answering the question.
Consequently, many keywords may appear in these descriptions rather than reflecting the cognitive behaviors
(e.g., the word "wait" in "two people waiting for trains"). To address this, after carefully examining model
outputs, we select keywords specifically indicative of backtracking and backward chaining. While this targeted
selection minimizes false positives, it inherently increases false negatives, resulting in a relatively low observed
frequency. Specifically, they might appear only once in hundreds of samples.

Selected Keywords

Backtracking: recheck, reverify, reevaluate, reexmamine
Backward Chaining: work backwards
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D Prompts

This section provides prompts for different variants of jigsaw puzzles, using a 2x2 puzzle as an example.

2x2 Full Jigsaw Puzzle (thinking)

The input image is divided into 2x2 patches that have been randomly permuted from their original
positions. Your task is to solve this 2x2 jigsaw puzzle and reconstruct the original image.

Consider a 2x2 grid, where each number represents a position index ranging from 1 (top-
left) to 4 (bottom-right):

1 2
3 4

For each patch, determine its correct position index in the original image. If a patch cur-
rently at position X should belong at position Y, place "Y" at position X.

First, output the thinking process within <think> </think> tags. Then, provide the final
answer within <answer> </answer> tags. The final answer should be the position indexes arranged
in a 2x2 grid.

2x2 Full Jigsaw Puzzle (non-thinking)

The input image is divided into 2x2 patches that have been randomly permuted from their original
positions. Your task is to solve this 2x2 jigsaw puzzle and reconstruct the original image.

Consider a 2x2 grid, where each number represents a position index ranging from 1 (top-
left) to 4 (bottom-right):

1 2
3 4

For each patch, determine its correct position index in the original image. If a patch cur-
rently at position X should belong at position Y, place "Y" at position X.

Directly output the final answer. The final answer should be the position indexes arranged
in a 2x2 grid.
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2x2 Pair Jigsaw Puzzle (thinking)

The input image is divided into 2x2 patches that have been randomly permuted from their original
positions. Your task is to solve this 2x2 jigsaw puzzle and reconstruct the original image.

Consider a 2x2 grid, where each number represents a position index ranging from 1 (top-
left) to 4 (bottom-right):

1 2
3 4

For patches currently at positions 3 and 2, determine their relative position in the original
image.

Select the correct answer from the following 8 choices:

(A) 3 is on the upper right of 2
(B) 3 is on the lower left of 2
(C) 3 is on the upper left of 2
(D) 3 is directly to the right of 2
(E) 3 is directly below 2
(F) 3 is directly above 2
(G) 3 is directly to the left of 2
(H) 3 is on the lower right of 2

First, output the thinking process within <think> </think> tags. Then, provide the final
answer within <answer> </answer> tags. The final answer should be a single letter.

22



Under review as submission to TMLR

2x2 Pair Jigsaw Puzzle (non-thinking)

The input image is divided into 2x2 patches that have been randomly permuted from their original
positions. Your task is to solve this 2x2 jigsaw puzzle and reconstruct the original image.

Consider a 2x2 grid, where each number represents a position index ranging from 1 (top-
left) to 4 (bottom-right):

1 2
3 4

For patches currently at positions 3 and 2, determine their relative position in the original
image.

Select the correct answer from the following 8 choices:

(A) 3 is on the upper right of 2
(B) 3 is on the lower left of 2
(C) 3 is on the upper left of 2
(D) 3 is directly to the right of 2
(E) 3 is directly below 2
(F) 3 is directly above 2
(G) 3 is directly to the left of 2
(H) 3 is on the lower right of 2

Directly output the final answer. The final answer should be a single letter.
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E Qwen2.5-VL-3B Examples

In this section, we present two illustrative examples of Qwen2.5-VL-3B where the model’s final answer, while
correct, is inconsistent with its preceding reasoning process. In the first example, the model’s reasoning chain
indicates that the patch containing rice should be placed on the left, yet it chooses option A, which is indeed
the correct outcome. Similarly, in the second instance, the model’s rationale suggests that patch 2 should be
positioned directly above patch 1; nevertheless, it again selects option A, also the correct answer.

Qwen2.5-VL-3B Example 1

Prompt: ... Select the correct answer from the following 2 choices:

(A) 2 is directly to the left of 1
(B) 2 is directly to the right of 1
...

Output:
<think>
The image on the left shows a bowl of rice with a spoon and fork placed next to it. The image on the
right shows a plate of mixed vegetables in a sauce. If we consider the typical layout of a meal tray,
the rice would typically be served first, followed by the main dish. Therefore, the image on the left
should be positioned to the left of the image on the right.
</think>

<answer>A</answer>

Ground truth: A
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Qwen2.5-VL-3B Example 2

Prompt: ... Select the correct answer from the following 2 choices:

(A) 2 is directly below 1
(B) 2 is directly above 1
...

Output:
<think>
The image shows a scene of a game being played on a sandy surface with spectators in the background.
The patch labeled "2" appears to be the top part of the image, showing the upper body of a player
and the frisbee in motion. The patch labeled "1" seems to be the lower part of the image, showing the
lower body of the same player and the ground.

Given the layout of the image, it is clear that the top part (patch 2) is above the bottom
part (patch 1). Therefore, the correct answer is that patch 2 is directly above patch 1.
</think>

<answer>A</answer>

Ground truth: A
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F InternVL2.5-2B Examples

This section includes two illustrative examples from InternVL2.5-2B. In both cases, the model’s thinking
process merely contains the final answer, instead of providing a detailed step-by-step reasoning.

InternVL2.5-2B Example 1

Prompt: ... Select the correct answer from the following 2 choices:

(A) 2 is directly to the left of 1
(B) 2 is directly to the right of 1
...

Output:
<think>
2 is directly to the left of 1.
</think>

<answer>A</answer>

Ground truth: A
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InternVL2.5-2B Example 2

Prompt: ... Select the correct answer from the following 2 choices:

(A) 2 is directly below 1
(B) 2 is directly above 1
...

Output:
<think>
2 is directly below 1.
</think>

<answer>A</answer>

Ground truth: A
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