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ABSTRACT

Exploration is a long-standing challenge in sequential decision problem in ma-
chine learning. This paper investigates the adoption of two theories of optimal
stimulation level - “the pacer principle” and the Wundt curve - from psychology
to improve the exploration challenges. We propose a method called exploration
with pleasure (EP) which is formulated based on the notion of pleasure as de-
fined in accordance with the above two theories. EP is able to identify the region
of stimulations that will trigger pleasure to the learning agent during exploration
and consequently improve on the learning process. The effectiveness of EP is
studied in two machine learning settings: curiosity-driven reinforcement learning
(RL) and Bayesian optimisation (BO). Experiments in purely curiosity-driven RL
show that by using EP to generate intrinsic rewards, it can yield faster learning.
Experiments in BO demonstrate that by using EP to specify the exploration pa-
rameters in two acquisition functions - Probability of Improvement and Expected
Improvement - it can achieve faster convergence and better function values.

1 INTRODUCTION

In psychology, theories of curiosity (Franken, 2006; Kidd & Hayden, 2015) seek to explain the
causes of organism’s exploratory behaviours. One research strand of theories of curiosity explains
that organism’s exploratory behaviours are motivated by stimulus’s properties such as novelty, sur-
prisingness. Theories of curiosity have been widely adopted by researchers to guide exploration in
learning systems, for example in intrinsically-motivated reinforcement learning (RL) (Still & Pre-
cup, 2012; Barto, 2013; Stadie et al., 2015; Mohamed & Jimenez Rezende, 2015; Houthooft et al.,
2016; Bellemare et al., 2016; Pathak et al., 2017; Achiam & Sastry, 2017; Burda et al., 2019a). These
approaches are known as curiosity-driven exploration. Theories of curiosity in psychology are com-
monly associated with theories of optimal stimulation level (Dember & Earl, 1957; Berlyne, 1966;
1978; Zuckerman, 2016) which are equivalently important in explaining organism’s exploratory be-
haviour. Theories of optimal stimulation level state that organism achieves maximum enjoyment
when the stimulation is at intermediate level, i.e. not too low that causes boredom, and not too
high that causes anxiety. These theories have been central to the study of infant and child curiosity
and learning (Dember & Earl, 1957; Berlyne, 1978; Kinney & Kagan, 1976; Kidd et al., 2012).
Nevertheless, theories of optimal stimulation level are less studied by machine learning researchers.

This paper investigates the adoption of two theories of optimal stimulation level from psychology
- “the pacer principle” (Dember & Earl, 1957) and the Wundt curve (Berlyne, 1978) - and studies
in what ways the adoption might help to enhance the exploration strategies in machine learning,
specifically in sequential decision problem. We present a method, known as exploration with plea-
sure (EP), which is formulated in accordance with the “pacer principle” and the Wundt curve. EP
is able to identify the region of stimulations that will invoke pleasure to the learning agent and
hence encourage exploration and learning. The effectiveness of EP is demonstrated in two machine
learning settings, i.e curiosity-driven reinforcement learning (RL) and Bayesian optimisation (BO).

2 BACKGROUND

Exploratory behaviour in psychology literature. Curiosity is a kind of intrinsic motivation (Sil-
via, 2012) that promotes exploratory and manipulatory behaviours. One strand of research regarding
the causes of curiosity explains that curiosity in organsim is aroused by external stimuli in the en-
vironment (Franken, 2006; Zuckerman, 2016). Berlyne’s theory of curiosity (Berlyne, 1960; 1966;
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1971; 1973; 1978) suggests that there are three classes of stimulus properties that will arouse cu-
riosity: psychophysiological properties (e.g. intensity, colour, and pitch), ecological properties, and
collative or structural properties (e.g. novelty-familiarity, simplicity-complicity, clarity-obscurity,
and expectedness-surprisingness). A stimulus property attracts an organism’s preference and brings
intangible or intrinsic rewards, such as pleasantness, to the organism. Such intangible rewards are
collectively known as hedonic value. In parallel with theories of curiosity, theories of optimal stim-
ulation level describe that there are certain optimal stimulation levels that will provide the organism
with maximum hedonic values (Zuckerman, 2016). Two influential theories are “the pacer principle”
proposed by Dember and Earl (Dember & Earl, 1957), and the Wundt curve proposed by Berlyne’s
(Berlyne, 1960; 1971). “The pacer principle” (Dember & Earl, 1957) states that when organisms
get used to a certain level of arousal potential (called an adaptation level), they will become bored
and will seek to explore stimuli with slightly higher level of stimulation than the adaptation level.
In other words, stimuli with increasing higher stimulation will invoke higher hedonic value. The
Wundt curve is an inverted U-shaped curve which explains that hedonic value increases with the
increase of stimulation up to a maximum point after which the hedonic value decreases with any
further increase of stimulation. The curve shows that high hedonic values are triggered by some
intermediate level of stimulation. In this paper, we adopt “the pacer principle” and the Wundt curve
to construct a method known as exploration with pleasure (EP).

Exploration in curiosity-driven reinforcement learning (RL). Curiosity-driven RL is a type of
intrinsically-motivated reinforcement learning (Barto, 2013) which adopts psychological theories of
curiosity. The key idea of curiosity-driven exploration in RL is to encourage the agent to explore
states (i.e. the stimuli) that exhibit arousing properties such as novelty, surprisingness etc. Upon
visiting these states, the agent is awarded some intrinsically-generated rewards known as intrinsic
rewards or exploration bonuses. In the RL literature, the most studied stimulus properties are novelty
and surprisingness. The main challenge is to quantify these properties within a state. Researchers
have proposed a range of methods to quantify the novelty of a state as: (1) visitation count (Belle-
mare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017), or (2) distance between a state and other
states (Fu et al., 2017; Savinov et al., 2019; Kim et al., 2019). Methods to quantify the surprisingness
of a state include the prediction error methods (Stadie et al., 2015; Pathak et al., 2017; Burda et al.,
2019a;b), and the information gain methods (Still & Precup, 2012; Houthooft et al., 2016; Achiam
& Sastry, 2017). Existing research on curiosity-driven exploration focus extensively on the methods
to quantify a state’s properties (i.e. novelty, surprisingness) that will arouse curiosity and compute
intrinsic reward as proportional to the quantification. These studies aim to seek as much novelty
and surprisingness as possible. Less attention has been paid to investigation concerning the strength
or “impact” of stimulation invoked by the state properties. This aspect is studied in this paper with
the adoption of the theories of optimal stimulation level. We demonstrate the use of EP to generate
intrinsic rewards in section 4.

Exploration in Bayesian optimisation (BO). BO (Brochu et al., 2010; Shahriari et al., 2016) is a
probabilistic and sample-efficient approach to global optimisation of black-box objective functions.
The goal of global optimisation is to find the maxima or the minima point of the objective func-
tion in a data efficient way, using a low number of function evaluations. Two main components in
BO are the surrogate model and the acquisition function. A surrogate model provides a probabilis-
tic belief for the objective function conditioned on a sequence of observed data. The role of the
acquisition function is to guide the search for the optimum. At each iteration of optimisation, the
acquisition function leverages the uncertainty in the posterior belief provided by the surrogate model
to select the next query point to evaluate. Two common types of acquisition functions are Probabil-
ity of Improvement (PI) (Kushner, 1964) and Expected Improvement (EI) (Močkus, 1975). These
acquisition functions use some exploration parameters to control the exploration during the selec-
tion of next query points in the optimisation procedure. The exploration parameters are commonly
set heuristically and left to the user. This paper proposes the use of EP to specify the exploration
parameters, as presented in section 5.

3 EXPLORATION WITH PLEASURE

This section presents a method of exploration with pleasure (EP) in accordance with “the pacer
principle” (Dember & Earl, 1957) and the Wundt curve (Berlyne, 1966; 1971) from psychology.
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Figure 1: (Left) An example of density plot of a history of stimulations. (Right) The reward, aversion
and Wundt curves as identified by using EP.

The goal of EP is to determine the range of stimulations that will invoke pleasure and to compute
the amount of pleasure to be enjoyed by a learning agent upon visiting a state and experiencing the
stimulation properties exhibited by the state.

Let s be a stimulus which exhibits a range of stimulation properties {u1, u2, . . . , un}. Each stimu-
lation property ui is defined as a random variable. In psychology, hedonic value of stimuli refers to
the pleasantness invoked by the stimuli properties (Laane, 2011). Hedonic value and pleasure are
used interchangeably in this paper. Let h(u) be the hedonic value invoked by a stimulation property
ui of a stimulus s. In a sequential decision process, an agent encounters a sequence of states when
interacting with the environment. A state corresponds to a stimulus. The stimulation properties of
a state determine the hedonic value of the state which motivates the exploratory behaviour of the
agent. In other words, the pleasure experienced by the agent upon visiting a state is a function of the
state’s stimulation properties. We consider a single stimulation property u in this paper. Algorithm
1 shows the steps of computing the hedonic value of a new stimulation conditioned on a history of
past stimulations. Each step is explained below.

Algorithm 1 Exploration with pleasure (EP)
Input: stimulations ut−K:t−1
Estimate probability density function φut−K:t−1

Determine adaptation level AL
Compute reward curve ΦR
Compute aversion curve ΦA
Compute hedonic value with Wundt curve: h(ut) = W (ut) = ΦR(ut)− ΦA(ut)

Definition 3.1. Stimulation density. A stimulation property is defined as a random variable
u ∈ R+. A probability density function φu, describes the density of the stimulation variable u.
A stimulation u with high density indicates high occurrences of that stimulation. u is analysed by
using method of high density regions (HDR), which is a method of selecting a region of the sam-
ple space covering a specified probability (Hyndman, 1996). The 100(1 − α)% HDR is the subset
R(φα) of the sample space of u such that: R(φα) = {u : φ(u) ≥ φα}, where φα is the largest
constant such that p(u ∈ R(φα)) ≥ 1− α. Figure 1 (left) shows the particular values of φ0.99, φ0.8
and φ0.1, which was used to construct the 1% HDR, 20% HDR and 90% HDR.

The pacer principle (Dember & Earl, 1957) states that when organisms get used to a certain level
of stimulus property (called an adaptation level), they will become bored and will seek to explore
stimuli with slightly higher level of stimulation than the adaptation level. In other words, stimuli
with increasing higher stimulation will invoke higher hedonic value. Formally, the adaptation level
(AL) is defined by Definition 3.2 below.

Definition 3.2. Adaptation level. Let ut−K:t−1 be the set of stimulations invoked by a sequence
of states visited by an agent from time t − K to time t − 1. Assuming an unimodal distribution,
an adaptation level AL is approximately equivalent to the 1% HDR (i.e. φ0.99) of the probability
density function φut−K:t−1

, with αAL = 0.99:

AL ≈ {u : φut−K:t−1
(u) ≥ φαAL

}
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The 1% HDR is the region of stimulations that an agent has had high familiarity and hence greater
boredom. The region of stimulations that is slightly higher than the 1% HDR is expected to trigger
pleasure to the agent.

Berlyne’s Wundt curve is based on the psychology studies (Milner, 1991) which have recognised
that the reward and aversion systems of the brain assign a motivational valence to any stimuli by
determining whether they are rewarding and should be approached or are aversive and should be
avoided. The reward system, when activated, assigns positive hedonic values. The aversion system,
when activated, assigns negative hedonic values. The arousing properties of a stimulus will deter-
mine how intensely it will activate either the reward system or the aversion system. The activation
of the aversion system will inhibit the reward system. According to Berlyne’s ideas (Berlyne, 1966;
1971), the activation of the reward and aversion systems can be modelled as two cumulative distri-
bution functions, as shown in Figure 1 (right). The reward curve maps stimulus property to positive
hedonic value. The aversion curve works in opposite direction, mapping stimulus property to nega-
tive hedonic value, and it takes more stimulation to activate. The algebraic sum of the reward curve
and aversion curve produces an inverted U-shaped Wundt curve which specifies the region of stim-
ulations that will invoke pleasure to the agent. Formally, these three curves are given by Definition
3.3, 3.4 and 3.5 below.

Definition 3.3. Reward curve. The reward curve determines the region of stimulation that is
rewarding to the agent. The reward curve is represented by a normal cumulative density function
ΦR with mean µR and standard deviation σR. The parameters µR and σR are formalised as follows:

µR = sup {u : φut−K:t−1
(u) ≥ φαR

} (1)

σ2
R = Var (u| µR < u < µA) (2)

s.t. AL < µR < µA , αA < αR < αAL (3)

The mean of the reward curve µR is set to the supremum of the 100(1− αR)% HDR of φut−K:t−1
.

The value of µR is conditioned on AL < µR < µA and the value of αR is conditioned on αA <
αR < αAL, where αAL is the HDR of the adaptation level (see Definition 3.2), µA is the mean of the
aversion curve and αA is the HDR of the aversion curve as defined by Definition 3.4 below. Both of
the conditions insist that the region of rewarding stimulations is slightly higher than the adaptation
level and lower than the aversive region. The variance of the reward curve σ2

R is computed as the
variance of the truncated distribution between µR and µA.

Definition 3.4. Aversion curve. The aversion curve specifies the region of stimulations that will
invoke negative hedonic value to the agent. The aversion curve is represented by a normal cumulative
density function ΦA with mean µR and standard deviation σR formalised as follows:

µA = sup {u : φut−K:t−1
(u) ≥ φαA

} (4)

σ2
A = Var (u| µR < u < µA) (5)

s.t. AL < µR < µA , αA < αR < αAL (6)

The mean of the aversion curve µA is set to the supremum of the 100(1−αA)% HDR. The curve is
conditioned on AL < µR < µA and αA < αR < αAL, which means that the aversion curve covers
the region of stimulations that are higher than the adaptation level and the reward curve.

Definition 3.5. The Wundt curve. The Wundt curve W is the algebraic sum of the reward curve
ΦR and aversion curve ΦA. Conditioned on the stimulations ut−K:t−1 that have been experienced
by an agent, the hedonic value or pleasure that will be triggered by a stimulation at time t, ut, is
computed as:

h(ut) = W (ut) = ΦR(ut; µR, σR)− ΦA(ut; µA, σA) (7)

Figure 1 illustrates the definitions of the adaptation level, the reward curve, the aversion curve and
the Wundt curve. From the figure it is clearly seen that αR determines the distance of the Wundt
curve from the adaptation level; the smaller the αR, the larger the µR and hence the further the
Wundt curve is distanced from the adaptation level AL. In other words, smaller value of αR means
that higher stimulations are required to invoke pleasure. αA determines the width of the Wundt
curve; the smaller the αA, the larger the µA and hence the wider the Wundt curve is, i.e. the range
of stimulations that will invoke pleasure is wider.
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Algorithm 2 Computing intrinsic reward with EP
procedure EP(ut−K:t−1, ut)

Input: αR ← reward curve HDR, αA ← aversion curve HDR
Estimate probability density of ut−K:t−1: φut−K:t−1

Identify adaptation level AL at 1% HDR of φut−K:t−1
(Definition 3.2)

With φU , compute reward curve ΦR parameters: µR, σR (Definition 3.3)
With φU , compute aversion curve ΦA parameters: µA, σA (Definition 3.4)
Compute hedonic value ht(ut) = W (ut) = ΦR(ut)− ΦA(ut) (Definition 3.5)
return rit = ht

Discussion. The use of Wundt curve to guide an intelligent agent has been reported by Saunders
(2002) and Merrick (2013). In their studies, the parameters of the curves were pre-determined and
remained static over the course of learning. We distinguish EP from their work in two aspects: (1)
EP combines the adoption of “the pacer principle” and the Wundt curve; (2) the parameters of the
reward and aversion curves in EP are configured adaptively over the course of learning. The next
two sections present the applications of EP in curiosity-driven RL and BO.

4 APPLICATION IN CURIOSITY-DRIVEN REINFORCEMENT LEARNING

4.1 PRELIMINARIES

Consider a purely curiosity-driven RL setting with infinite horizon. At time step t, the agent interacts
with the environment by visiting a state st, executing an action at sampled from its current policy
π and moving into next state st+1. Extrinsic reward re is not available, learning is to be driven
exclusively by intrinsic reward ri. Consider surprisingness as the single type of stimulation property
u exhibited by a state. The surprisingness of state st+1, denoted by ut, is quantified by using the
prediction-error-based method. The prediction-error-based method is used in this paper because it
has been shown to perform well in purely curiosity-driven RL experiments by Burda et al. (2019a).
By using the same method as Burda et al. (2019a), ut is quantified as the prediction error for a
problem related to the agent’s transitions. A network is used to encode a state st into a feature
vector v(st). A forward dynamics network parameterised by β, Dβ : S×A→ S, is used to predict
the encoded next state v̂(st+1) given the current encoded state v(st) and action at. Surprisingness
ut is computed as the prediction error of the forward model, i.e. the error between the predicted next
state v̂(st+1) and the ground truth next state v(st+1), i.e. ut = ‖Dβ(v(st), at) − v(st+1)‖2. The
algorithm of the purely curiosity-driven RL can be found in Alg. 5 in App. A.1.

4.2 METHOD

Algorithm 2 show the steps of using EP to generate intrinsic reward rit conditioned on a range of pre-
vious surprisingness ut−K:t−1. A double-ended buffer U is used to store the last K surprisingness
that have been experienced by the agent in the last Nu rollouts of length J , where K = Nu × J . At
time t, upon encountering surprisingness ut, the hedonic value invoked by ut is computed by using
EP. EP relates ut to hedonic value, i.e. the pleasure to be enjoyed by the agent, by analysing the
history of surprisingness contained in buffer U with respect to probability density. Let φut−K:t−1

be
the probability density of the history of surprisingness in buffer U . Kernel density estimation (KDE)
is used to estimate φut−K:t−1

, which is then analysed with high density region (HDR) method to
specify the adaptation level (AL), the parameters of the reward curve ΦR and aversion curve ΦA in
accordance with Definitions 3.2, 3.4, 3.5. The hedonic value ht invoked by ut is computed by the
Wundt curve as defined in Definition 3.6. Hedonic value ht is used as intrinsic reward, i.e. rit = ht.

4.3 EXPERIMENTS

We evaluated the effectiveness of the EP agent on the Arcade Learning Environment (ALE) (Belle-
mare et al., 2013). We chose a set of 4 Atari games: Pong, SpaceInvaders, Riverraid and Asterix.
These games were chosen because the surprisingness experienced by the agent in these games ex-
hibit four distinguished patterns of density, as described in App. A.2. Our experiments were to
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Figure 2: Comparing PE and PE+EP on Pong, Riverraid, SpaceInvaders and Asterix.

Table 1: Results against baseline on Pong, Riverraid, SpaceInvaders and Asterix.

Method Pong Riverraid SpaceInvaders Asterix

PE -8.8±1.8 2791.4±562.8 294.8±48.7 551.3±124.3
PE+EP -1.1±1.6 4215.3±383.5 523.1±82.8 912.9±210.9

investigate the ability of EP in handling these different types of surprisingness density patterns. All
experiments used the Proximal Policy Optimisation (PPO) RL algorithm (Schulman et al., 2017)
and the prediction-error-based surprise quantification method. We adopted the same core architec-
ture as that used by Burda et al. (2019a). The hyperparameters of the PPO agent and the surprise
quantification method are given in App. A.3. All learning curves are the average of three runs with
different seeds over 5 millions time steps. The performance of the agent was measured by the ex-
trinsic rewards achieved by the agent. It is important to note that the extrinsic reward is only used
for evaluation, not for training; training is driven exclusively by intrinsic reward.

We conducted experiments to compare prediction-error surprise quantification methods with and
without EP. PE denotes method without EP; PE+EP denotes methods with EP. Hyperparameters
used in EP are: αR ∈ {0.9, 0.8}, αA ∈ {0.05, 0.07, 0.01}, K = 512. These hyperparameters
are chosen following a coarse grid search over a range of values, as detailed in App. A.4. Figure
2 illustrates the learning curves and Table 1 summarises the results. It is clearly seen that PE+EP
outperformed PE across all 4 games. One significant observation is found in the Pong and Riverraid
experiments. In contrast to Burda et al. (2019a) who used 128 parallel environments with 200
million frames, PE+EP was able to achieve similar results by using only 32 parallel environments
with 5 million time steps, i.e. 20 million frames, which are 10 times less than Burda et al. (2019a).
We conclude two points from our results. First, hedonic value is a better signal to be used as intrinsic
reward because EP computes the hedonic value by analysing the impact of surrprisingness. Second,
our results enhance the findings of Burda et al. (2019a), who highlighted that there is a high degree of
alignment between the intrinsic curiosity objective and the hand-designed extrinsic rewards of many
game environments; our results indicate that intrinsic curiosity objective governed by EP is better
aligned with the game-designers’ extrinsic rewards in the four games we evaluated. Nevertheless,
further experiments are required in order to confirm this finding on more Atari games.

5 APPLICATION IN BAYESIAN OPTIMISATION

5.1 PRELIMINARIES

Algorithm 3 Bayesian optimisation (BO)
Input: f - unknown objective function, X - input domain
Input: at - acquisition function, T - fixed query budget
Initialise: D0 ← (x0, y0)
for t = 1, 2, . . . , T do

Fit model M to current data D0:t−1
Select query point: xt ← argmaxX at(x|D0:t−1)
Evaluate objective function to obtain yt ← f(xt)
Augment the data D0:t ← {D0:t−1, (xt, yt)}

return x∗T
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Algorithm 3 shows the steps of the BO strategy. Consider a minimisation problem which is to find
the minimum point x∗ ∈ X of an objective function f : X → Y by solving x∗ ∈ arg minx∈Xf(x).
The goal is to find the minima point with a low number of function evaluations. D = {(xi), yi}
denotes the available data regarding f , assuming noiseless observation y = f(x). BO constructs a
prior belief of the f with a surrogate model M . First evaluate the objective function f with a few
initial points and fit the surrogate model with the initial observations y via Bayesian posterior updat-
ing. At each iteration t, an acquisition function a is used to score a set of sampled query points and
the query point with highest score is chosen for the next function evaluation. The new observation
is used to update the surrogate model. The selection of next query point and the update of surrogate
model are repeated iteratively until a stopping criteria is met. Gaussian Procecss (GP) (Rasmussen
& Williams, 2006) is the most widely used surrogate model in BO. In this paper, GP is used ex-
clusively. Two commonly used acquisition functions in BO are the probability of improvement (PI)
(Kushner, 1964) and the expected improvement (EI) (Močkus, 1975) methods. Both PI and EI are
heuristic approaches. PI and EI compute the score of a query point as follows:

aPIt (x) = p(f(x) < τ) = Φ
(τ − µt−1(x)

σt−1(x)

)
(8)

aEIt (x) = (τ − µt−1(x)) Φ(
τ − µt−1(x)

σt−1(x)
) + σt−1(x) φ(

τ − µt−1(x)

σt−1(x)
) (9)

where Φ(z) is the standard Gaussian cumulative density function, φ(z) is the standard Gaussian
probability density function, and τ is a threshold value. Both PI and EI have different units of
measure: PI measures the probability that a query point x improves upon target τ ; EI computes
the magnitude of improvement that a query point x is likely to make upon target τ . In practice, a
common choice is setting τ to the best observed value, i.e. τ = ymin := mini=1:t−1 yi, or the
current best incumbent, i.e. τ = µmint := mini=1:t−1 µt−1(xi). To encourage more exploration,
a small exploration parameter ξ is commonly added such that τ = ymin − ξ, τ = µmint−1 − ξ. The
value of ξ is left to the user.

5.2 METHOD

This section presents an approach which uses EP to specify the parameter τ and eliminate the pa-
rameter ξ in the standard PI and EI approaches. Consider the selection of next query point xt as a
sequential decision problem. The selection algorithm is conditioned on the last K minimum obser-
vations yt−K:t−1 at points xt−K:t−1. In this context, the observations yt−K:t−1 corresponds to the
stimulations that have been experienced by the agent in the pastK time. Posterior samples ỹt−K:t−1
are drawn from the GP’s posterior belief over f at points xt−K:t−1. Kernel density estimation (KDE)
is used to estimate the probability density of the posterior samples, φỹt−K:t−1

. Algorithm 4 shows
the steps for specifying τ by using EP. For a minimisation problem, τ is identified by applying EP
to the lower quantiles of φỹt−K:t−1

(see App. B.1 for further explanation). φỹt−K:t−1
is analysed to

identify the adaptation level, the parameters of the reward curve ΦR and the aversion curve ΦA in
accordance with Definition 3.2, 3.3 and 3.4. However, in this application, µR, µA and the Wundt
curve W are computed by negating its values as follows:

µR = inf {ỹ : φỹt−K:t−1
(ỹ) ≥ φαR

} (10)
µA = inf {ỹ : φỹt−K:t−1

(ỹ) ≥ φαA
} (11)

ht(ỹi) = −W (ỹi) = −(ΦR(ỹi;µR, σR)− ΦA(ỹi;µA, σA)) (12)

where µR is computed as the infimum of 100(1 − αR) HDR, and µA is computed as the infimum
of 100(1 − αA) HDR. τ is identified to be the stimulation that invokes the maximum pleasure, i.e.
τ = arg maxỹt−K:t−1

ht(ỹi).

5.3 EXPERIMENTS

We evaluated our approach with four standard test functions taken from the literature (Jamil & Yang,
2013): Branin, Six-hump camel, Goldstein-Price, Alpine-1. With Alpine-1 function, three types of
dimensionality are evaluated: 3D, 5D, and 10D. All functions are typically minimisation problems,
continuous, bounded and multi-modal. The key characteristics and formulae of the functions are
given in App. B.2. All the experiments used Gaussian process priors for f with zero mean function
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Algorithm 4 Specifying τ with EP
procedure EP(yt−K:t−1)

Input: αR ← reward curve HDR, αA ← aversion curve HDR
Draw posterior samples ỹt−K:t−1 and estimate probability density φỹt−K:t−1

Identify adaptation level AL at 1% HDR of φŷt−K:t−1

With φỹt−K:t−1
, compute reward curve ΦR parameters: µR, σR

With φỹt−K:t−1
, compute aversion curve ΦA parameters: µA, σA

Compute hedonic value ht(ỹ) = −(W (ỹ)) = −(ΦR(ỹ)− ΦA(ỹ))
Compute τ = arg maxỹt−K:t−1

ht(ỹ)
return τ

Figure 3: Comparing five acquisition methods - PI, EI, LCB, PI+EP, EI+EP - on six standard test
functions.

and Matérn kernels. Each experiment was repeated for 50 trials and each trial runs 50 or 100 function
evaluations. Performance was measured by the best function value observed so far.

Figure 3 compares the performance of five acquisition methods - PI, EI, LCB, PI+EP, EI+EP. PI and
EI denote the standard PI and EI acquisition methods. LCB denotes the Lower Confidence Bound
acquisition method (Cox & John, 1997). PI+EP and EI+EP denote our proposed methods. PI and EI
used parameter ξ = 0.01 as suggested by Lizotte (2008). Following Cox & John (1997), LCB used
parameter κ = 2. Hyperparameters used in EP are: αR ∈ {0.9, 0.8}, αA = 0.01, K ∈ {10, 20}.
These hyperparameters are chosen following a coarse grid search over a range of values, as detailed
in App. B.3. The horizontal solid black line indicates the function minimum. Figures in the bracket
are the minimum function value achieved by each method. As we can observe, on Branin and Six-
Hump Camel, which are easy functions, PI+EP and EI+EP performed comparably to the baseline
methods. On difficult function (i.e. Goldstein-Price) and high dimensional functions (i.e. Alpine-1
3D, 5D, 10D), PI+EP outperformed other methods. Overall, our results show that by using EP to
specify the parameter τ , the function landscape is being searched more effectively and this accounts
for the faster convergence and better function values.

6 CONCLUSION

This paper proposes a method of exploration with pleasure (EP) which is formulated in accordance
with “the pacer principle” and the Wundt curve from psychology. We present two demonstration
implementation of EP in purely curiosity-driven RL and Bayesian optimisation. Our experiments
show that EP do produce improvements in performance in both of the applications. In this paper, EP
is constructed considering only one type of stimulation property. Our future work is to extend EP to
handle multiple stimulation properties and study how this would improve the learning performance
in curiosity-driven RL.
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A APPLICATION IN PURELY CURIOSITY-DRIVEN RL

A.1 PURELY CURIOSITY-DRIVEN RL ALGORITHM

Alg. 5 shows the steps of purely curiosity-driven RL with the intrinsic rewards generated by using
EP. We use the same algorithm as reported in Burda et al. (2019a), with the only difference being
that we compute the intrinsic reward by using EP.

A.2 SURPRISINGNESS DENSITY OF ATARI GAMES

The four Atari games used in our experiments are Pong, Riverraid, SpaceInvaders and Asterix. These
four games were chosen because the surprisingness experienced by the agent in these games exhibit
distinguished patterns of density. Figure 4 shows the density plot of the surprisingness contained in
the surprisingness buffer U at time steps 1e6, 2e6, 3e6 and 4e6.

A.3 RL HYPERPARAMETERS

For the application of EP in purely curiosity-driven RL, all of the experiments used the Proximal
Policy Optimisation (PPO) RL algorithm (Schulman et al., 2017). The embedding network and
policy networks had identical architectures and were based on the standard convolutional networks
used in Atari experiments as suggested in Mnih et al. (2015). The feature layer in the embedding
network had a dimension of 512. A learning rate of 0.0001 was used for all networks. All experi-
ments used 32 parallel environments, rollouts of length 128, three optimisation epochs per rollout.
For pre-processing, all game images were converted to grayscale and resized to to size 84 × 84.
All agents’ policy, value network and forward dynamics functions used a stack of 4-frame historical
observation [xt−3, xt−2, xt−1, xt].

11
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Algorithm 5 Purely curiosity-driven RL with EP
Input: N ← number of rollouts, J ← length of rollout
Input: Nopt ← number of optimisation steps, Nts ← number of time steps
Initialize: t = 0, double-ended buffer U = {} of size K
Sample state s0 ∼ p0(s0)
for n = 1 to N do

for j = 1 to J do
Sample at ∼ π(at|st)
Sample st+1 ∼ p(st+1|st, at)
Quantify surprisingness ut
Compute intrinsic reward rit = EP(U, ut)
Add st, st+1, at, ut to optimisation batch Bn
t = t+ 1

Add {u}Jj=1 to buffer U
Normalise the intrinsic rewards contained in Bn
Calculate returns Rn and advantages An for intrinsic rewards
for j = 1 to Nopt do

Optimise θπ wrt PPO loss on batch Bn, Rn, An using Adam
if t > Nts then

break

(a) Pong

(b) Riverrraid

(d) Asterix

(c) SpaceInvaders

Figure 4: Density plots of surprisingness contained in the surprisingness buffer U at time steps 1e6,
2e6, 3e6, 4e6 (from left to right) in Pong (first row), Riverrraid (second row), SpaceInvaders (third
row) and Asterix (fourth row).

Prediction-error-based surprise quantification method is used in the experiments. State st is encoded
into a feature vector v(st) by using a fix, randomly initialised convolutional network, which has
been reported to perform well in purely curiosity-driven RL by Burda et al. (2019a;b). Given the
current encoded state v(st) and action at, a forward dynamics network is used to predict the encoded
next state v̂(st+1). Surprisingness ut is computed as the prediction error of the forward dynamics
network, i.e. the error between the predicted next state v̂(st+1) and the ground truth next state
v(st+1).
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The implementation of PPO, feature network and forward dynamics network are adopted from the
codes released by Burda et al. (2019a;b)1 2.

A.4 EP HYPERPARAMETERS

Ablations for reward HDR αR and aversion HDR αA. The best combination of αR and αA
is selected by a grid search. The effects of αR and αA were examined with a range of values as
follows: αR ∈ {0.9, 0.8}, αA ∈ {0.05, 0.03, 0.01}. We performed the ablations and analysed the
performance of the EP agent on four Atari games: Pong, Riverraid, SpaceInvaders and Asterix.
Figure 5 shows the learning curves of different variants of EP. All learning curves are the average of
three runs; confidence intervals are omitted in the figure for clearer presentation. Tab. 3 shows the
results for all the ablations we performed on 4 games. On Pong, the densities of the surprisingness
history are consistent unimodal distributions (see Figure 4 (a)). In this game, an EP agent with a
narrow Wundt curves as specified by αR = 0.8 and αA = 0.05 performed particularly well. In
contrast, the surprisingness densities in Riverraid and SpacceInvaders are skewed, sharply peaked
bimodal distributions (see Figure 4 (b), (c)), which are not able to be handled well by EP. As we can
observe, the improvement produced by EP on these two games are less pronounced. On Riverraid,
EP with αR = 0.8, αA = 0.01 performed the best. On SpaceInvaders, all variants of EP showed
unstable performance; the best learning curve was yielded by EP with αR = 0.9, αA = 0.03. On
Asterix, all variants of EP performed well with the best learning curve being achieved by EP with
αR = 0.9 and αA = 0.03.

Figure 5: Ablation results for reward HDR αR and aversion HDR αA, with αR ∈ {0.9, 0.8},
αA ∈ {0.05, 0.03, 0.01}, as evaluated on Pong, Riverraid, SpaceInvaders and Asterix.

Ablations for surprisingness buffer sizeK. The effect of the size of surprisingness bufferK was
examined with values {128, 256, 512, 1024} . With a rollout of length 128, a buffer size of 128, 256,
512, 1024 means storing the last one, two, four and eight rollouts of surprisingness, respectively. We
performed ablations and analysed the performance of the EP agent on two Atari games: Pong and
Riverraid. Results are shown in Figure 6. The results indicate that increasing the buffer size from
K = 128 to K = 512 produced increasingly better learning curves. But further increase of buffer

1https://github.com/openai/large-scale-curiosity.
2https://github.com/openai/random-network-distillation
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Table 2: Ablation results on Pong, Riverraid, SpaceInvaders and Asterix.

Method Pong Riverraid SpaceInvaders Asterix

PE -8.8±1.8 2791.4±562.8 294.8±48.7 551.3±124.3
PE+EP - αR = 0.9, αA = 0.05 -3.7±1.8 3242.6±216.8 415.1±110.6 795.4±144.5
PE+EP - αR = 0.9, αA = 0.03 -2.9±1.9 3452.2±475.8 523.1±82.8 912.9±210.6
PE+EP - αR = 0.9, αA = 0.01 -2.4±1.7 3764.0±377.6 415.6±74.5 752.6±164.7
PE+EP - αR = 0.8, αA = 0.05 -1.1±1.6 3289.1±580.8 351.7±66.5 705.4±175.4
PE+EP - αR = 0.8, αA = 0.03 -2.7±1.5 3403.9±613.9 368.0±69.4 761.6±130.1
PE+EP - αR = 0.8, αA = 0.01 -8.8±3.7 4215.3±383.5 318.8±66.7 804.2±169.7

size to K = 1024 did not yield any better performance. The optimal choice for K is 512. The
results show that EP does not require a large buffer of surprisingness history to work well.

Figure 6: Ablation results for surprisingness buffer size K, with K ∈ {128, 256, 512, 1024}, as
evaluated on Pong and Riverraid,.

B APPLICATION IN BAYESIAN OPTIMISATION

B.1 EP IN MINIMISATION PROBLEM

Figure 7 shows an example of using EP to specify the parameter τ . For a minimisation problem, τ
is identified by applying EP to the lower quantiles of φỹt−K:t−1

.

B.2 STANDARD TEST FUNCTIONS

The application of EP in BO was evaluated on four standard test functions: Branin, Six-hump camel-
back, Goldstein-Price and Alpine-1. The formulae of the functions are as follows.

Branin. This function is two-dimensional given by:

fBR(x1, x2) = (x2 − (
5.1

4π2
)x21 + (

5

π
)x1 − 6)2 + 10(1− 1

8π
) cos(x1) + 10 (13)

x1 ∈ [−5, 10] (14)
x2 ∈ [0, 15] (15)

The function has three identical global minima of 0.397887 at x = (−3.1416, 12.275), x =
(3.1416, 2.275) and x = (9.42478, 2.475). The Branin function is an easy optimisation as the
function has three identical global minima, each of which lies in a wide and shallow basin.
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Figure 7: For a minimisation problem in BO, τ is identified by applying EP to the lower quantiles
of φỹt−K:t−1

.

Six-hump camel-back. This function takes a two-dimensional input given by:

f6H(x1, x2) = (4− 2.1x21 + x32) · x21 + x1x2 + (−4 + 4x22) · x22 (16)
x1 ∈ [−2, 2] (17)
x2 ∈ [−1, 1] (18)

The function has two identical global minima of -1.0316 at x = (−0.0898, 0.7126) and x =
(0.0898,−0.7126).

Goldstein-Price. This is a two-dimensional function of the form:

fGP (x1, x2) = (1 + (x1 + x2 + 1)2 g1(x1, x2)) · (30 + (2x1 − 3x2)2 g2(x1, x2)) where (19)

g1(x1, x2) = 19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22 (20)

g2(x1, x2) = 18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22 (21)
x1, x2 ∈ [−2, 2] (22)

The global minimum of this function is 3.0 at x = (0,−1). The Goldstein-Price function presents
a more difficult optimisation because the function’s single minimum lies in a small convex basin
surrounded by steep sides (Lizotte, 2008).

Alpine N. 1 function. This function is with n-dimensional input given by:

fA1(x1, . . . , xn) =

n∑
i=1

|xi sin(xi) + 0.1xi| (23)

xn ∈ [0, 10] (24)

This function can be defined on any positive input domain but it is usually evaluated on xi ∈ [0, 10]
for i = 1, . . . , n. The function has a global minimum of 0 located at x = (0, . . . , 0).

Table 3 summarises the key characteristics of the standard test functions.
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Table 3: Key characteristics of the standard test functions: Branin, Six-hump camel-back, Goldstein-
Price and Alpine-1.

Test function No of dimensions No of global minima Global minima
Branin 2 3 0.397887
Six-hump camel 2 2 -1.0316
Goldstein and Price 2 1 3.0
Alpine-1 3D 3 1 0
Alpine-1 5D 5 1 0
Alpine-1 10D 10 1 0

Table 4: Ablation results on Branin, Six-hump Camel-back and Goldstein-Price.

Branin Six-hump Goldstein
Camel Price

Method (0.397887) (-1.0316) (3.0)

PI 0.4238±0.0231 -1.0286±0.0006 8.178±2.952
EI 0.4139±0.0042 -1.0295±0.0010 5.143±1.125
LCB 0.3979±0.0000 -1.0316±0.0000 4.242±1.157
PI+EP - αR = 0.9, αA = 0.01, K = 10 0.3982±0.0005 -1.0316±0.0000 3.584±1.048
PI+EP - αR = 0.9, αA = 0.01, K = 20 0.3988±0.0011 -1.0310±0.0010 4.614±2.300
PI+EP - αR = 0.8, αA = 0.01, K = 10 0.3982±0.0006 -1.0316±0.0000 3.225±0.262
PI+EP - αR = 0.8, αA = 0.01, K = 20 0.3985±0.0010 -1.0298±0.0020 6.746±6.490
PI+EP - αR = 0.7, αA = 0.01, K = 10 0.3982±0.0004 -1.0315±0.0003 4.030±1.977
PI+EP - αR = 0.7, αA = 0.01, K = 20 0.3990±0.0017 -1.0300±0.0023 7.907±7.938
EI+EP - αR = 0.9, αA = 0.01, K = 10 0.3983±0.0006 -1.0316±0.0000 11.733±6.389
EI+EP - αR = 0.9, αA = 0.01, K = 20 0.3985±0.0013 -1.0313±0.0008 7.054±3.407
EI+EP - αR = 0.8, αA = 0.01, K = 10 0.3983±0.0007 -1.0316±0.0001 6.331±3.542
EI+EP - αR = 0.8, αA = 0.01, K = 20 0.3990±0.0019 -1.0283±0.0030 13.355±8.791
EI+EP - αR = 0.7, αA = 0.01, K = 10 0.3987±0.0009 -1.0315±0.0003 10.509±2.681
EI+EP - αR = 0.7, αA = 0.01, K = 20 0.3996±0.0029 -1.0306±0.0022 4.438±1.159

B.3 EP HYPERPARAMETERS

EP has three hyperparameters: the reward HDR αR, the aversion HDR αA and the history buffer
size K. The effects of these hyperparameters were examined with the six standard test functions. A
coarse grid search was done with a range of values as follows: αR ∈ {0.9, 0.8, 0.7}, αA ∈ {0.01},
K ∈ {10, 20}. Figures 8 shows the results of the ablations. PI+EP denotes BO using the PI
acquisition function with EP. EI+EP denotes BO using the EI acquisition function with EP. The
horizontal solid black line indicates the function minimum. Each curve is the averaged results over
50 trials. Tables 4 and 5 list the best function values achieved by the PI, EI, LCB and different
variants of PI+EP, EI+EP as evaluated on six standard test functions. We observed that EPs with
αR ∈ {0.9, 0.8}, αA ∈ {0.01}, K = 10 performed consistently well on low dimensional functions
as can be seen in Branin, Six-Hump Camel and Goldstein-Price. For higher dimensional functions,
i.e. Alpine-1 3D, 5D and 10D, EP requires a larger history buffer with K = 20 to perform well.
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Figure 8: Effects of reward HDR αR ∈ {0.9, 0.8}, aversion HDR αA ∈ {0.01} and history buffer
size K ∈ {10, 20} on the performance of PI+EP and EI+EP as evaluated on six standard test func-
tions.
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Table 5: Ablation results on Alpine-1 3D, Alpine-1 5D and Alpine-1 10D.

Alpine-1 3D Alpine-1 5D Alpine-1 10D
Method (0.0) (0.0) (0.0)

PI 0.527±0.435 2.135±1.037 6.970±2.979
EI 0.907±0.529 1.742±0.880 7.734±2.280
LCB 1.101±0.628 2.272±1.019 7.771±2.977
PI+EP - αR = 0.9, αA = 0.01, K = 10 0.517±0.341 2.856±1.813 8.119±2.921
PI+EP - αR = 0.9, αA = 0.01, K = 20 0.246±0.161 2.399±1.116 4.132±1.781
PI+EP - αR = 0.8, αA = 0.01, K = 10 0.391±0.249 1.559±1.004 7.845±2.749
PI+EP - αR = 0.8, αA = 0.01, K = 20 0.501±0.339 1.111±0.606 5.917±2.252
PI+EP - αR = 0.7, αA = 0.01, K = 10 0.473±0.352 1.999±1.206 7.122±2.428
PI+EP - αR = 0.7, αA = 0.01, K = 20 0.364±0.328 2.442±1.259 6.925±3.371
EI+EP - αR = 0.9, αA = 0.01, K = 10 0.587±0.319 2.477±1.388 7.707±3.758
EI+EP - αR = 0.9, αA = 0.01, K = 20 0.341±0.228 1.909±1.108 4.385±1.661
EI+EP - αR = 0.8, αA = 0.01, K = 10 0.540±0.382 1.904±0.853 7.189±2.696
EI+EP - αR = 0.8, αA = 0.01, K = 20 0.433±0.338 1.468±0.826 5.503±2.054
EI+EP - αR = 0.7, αA = 0.01, K = 10 0.596±0.357 2.084±1.019 6.243±2.896
EI+EP - αR = 0.7, αA = 0.01, K = 20 0.273±0.292 2.389±1.386 7.339±3.052
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