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Abstract

While neural networks with attention mech-
anisms have achieved superior performance
on many natural language processing tasks,
it remains unclear to which extent learned
attention resembles human visual attention.
We study the similarity between human vi-
sual and neural attention and analyze if neu-
ral attention-based methods perform better if
they mimic human attention. To this end,
we compare state-of-the-art networks based
on long short-term memory (LSTM), convolu-
tional neural (CNN) and XLNet Transformer
architectures on a question answering task. We
evaluate all methods on a novel 23-participant
dataset of eye tracking data recorded while
reading movie plots. We find that while higher
similarity to human attention and performance
significantly correlates to the LSTM and CNN
this does not hold true for the XLNet – despite
the fact that the XLNet performs best on this
challenging task. Our work not only shows
that different architectures seem to learn rather
different neural attention but also that similar-
ity of neural to human attention is not neces-
sarily helpful and hence desirable.

1 Introduction

Due to the high ambiguity of natural language, hu-
mans have to detect the most salient information
in a given text and allocate a higher level of atten-
tion to specific regions to successfully process and
comprehend it (Poesio, 1995; Shiffrin and Schnei-
der, 1977; Schneider and Shiffrin, 1977). Eye
tracking studies have been widely used in vari-
ous reading comprehension settings to reveal these
attentive strategies (Rayner, 2009) and have, as
such, helped to interpret cognitive processes and
behaviors during reading.

Recently, how the human attentive system
works has inspired attention mechanisms in neural
networks (Bahdanau et al., 2014; Hassabis et al.,

2017). Like with humans, attention mechanisms
allow networks to focus and allocate more weight
to relevant parts of the input sequence (Vaswani
et al., 2017; Xu et al., 2015; Chorowski et al.,
2015; Mnih et al., 2014). As such, neural atten-
tion can be viewed as a model of visual saliency
that makes predictions over the elements in the
network’s input, being a region in an image or a
word in a sentence (Frintrop et al., 2010). At-
tention mechanisms have gained significant pop-
ularity recently, and have boosted performance in
natural language processing tasks but also other
fields such as computer vision (Seo et al., 2016;
Veličković et al., 2017; Sun and Fisher, 2003; Ma
and Zhang, 2003).

Contrary to the sophisticated NLP advance-
ment, system performance degrades when models
are exposed to some inherent properties of natu-
ral language, such as semantic ambiguity, infer-
ring information, or out of domain data (Niven
and Kao, 2019; Blohm et al., 2018). These find-
ings encourage work towards enhancing network’s
generalizability, deterring reliance on the closed-
world assumption (Reiter, 1981). It has been pro-
posed, specifically within machine reading com-
prehension (MRC), the more similar systems are
to human behavior, the more suitable they become
for such a task (Trischler et al., 2016; Luo et al.,
2019; Zheng et al., 2019). As a result, much re-
cent work aims to build machines which read and
understand with human-level performance (Blohm
et al., 2018; Nguyen et al., 2016; Rajpurkar et al.,
2016; Hermann et al., 2015). To that end, by em-
ploying self-attention, researchers attempt to en-
hance comprehension by building models which
capture better deep contextual and salient informa-
tion (Devlin et al., 2018; Zhang et al., 2018; Shen
et al., 2018; Vaswani et al., 2017; Yu et al., 2018).

As neural attention allows us to “peek” inside
neural networks, it can help us better understand



how humans make predictions. We leverage this to
investigate the relationship between neural perfor-
mance and attention similarities to humans. Ad-
dressing the human-like proposal, by interpreting
and comparing the attention of three state of the art
MRC models, our research questions are the fol-
lowing: (i) Is there any correlation between a par-
ticular network’s performance and its similarity to
human visual attention? (ii) Do attention models
achieve state-of-the-art results on machine learn-
ing tasks in natural language processing because
machine attention emulates human attention?

To answer these questions we extend a QA
dataset - the MovieQA dataset (Tapaswi et al.,
2016) - with eye tracking and present a novel vi-
sualization tool1 to observe the real-time reading
of humans versus models, in split screen mode.
We extract human attention via gaze data which
has been used to interpret the inner workings of
the human mind (Lipton, 2016; Rouse and Mor-
ris, 1986; Van Hooft and Born, 2012; Milosavlje-
vic and Cerf, 2008; Wiegreffe and Pinter, 2019)
and interpret the relationship between three state-
of-the-art systems for this dataset namely CNN,
LSTM, and XLNet (Hochreiter and Schmidhuber,
1997; Yang et al., 2019) using Kullback-Leibler
Divergence (Kullback and Leibler, 1951). By do-
ing so, we are able to compare and better under-
stand neural attention behaviors on text across at-
tention models. To the best of our knowledge, we
are the first to compare neural attention to human
gaze data on text based tasks.

The main findings of our work are two-fold:
First, we show that there is a statistically signif-
icant correlation within the CNNs and LSTMs
model performances and similarity to human at-
tention. Second, we show statistical significance
that the LSTMs are more similar to humans atten-
tion, when compared to the XLNets, whereas they
perform best on the MovieQA dataset.

2 Related Work

2.1 Eye-tracking for Attention and
Comprehension

Eye tracking studies have been extensively used
in cognitive science research to investigate human
attention over time (Rayner, 1998). Importantly, it
has been demonstrated that attention and saccadic

1This tool can be used to qualitatively interpret the differ-
ences and similarity in attentive behaviors between any neural
and human black boxes.

movements must be intertwined (Deubel et al.,
2000; Kristjansson, 2011; Hoffman and Subrama-
niam, 1995). Identification of attentional focus
and eye movement can be evoked given intricate
information processing tasks such as reading (Pos-
ner et al., 1980; Posner, 1980; Henderson, 1992);
this is the connection between eye-tracking data,
attention and reading.

Just and Carpenter (1980) developed a theory
of reading comprehension (The Reading Model)
which was used as a basis for the cognitive the-
ory in this paper, in order to better understand
the relationship between eye fixations, attention,
and reading comprehension. In their eye track-
ing study, they measured cognitive processing load
via fixation duration. They found that participants
look longer or more often at items that are cogni-
tively more complex, in order to succesfully pro-
cess them. Cognitive load increases when readers
are “accessing infrequent words, integrating infor-
mation from important clauses and making infer-
ences at the ends of sentences” (Just and Carpen-
ter, 1980). This is the connection between atten-
tion and reading comprehension tasks.

2.2 Attention Mechanisms
In the attention-based encoder-decoder architec-
ture, rather than ignoring the internal encoder
states, the attention mechanism takes advantage of
these weights to generate a context vector, which
is used by the decoder at various time steps (Bah-
danau et al., 2014; Luong et al., 2015; Chorowski
et al., 2015; Wang and Jiang, 2016; Dzendzik
et al., 2017; Yang et al., 2016).

In transformer networks, the main differences
to previous attentive models, are that these net-
works are purely based on attention (there are not
LSTM or GRU units), and attention is applied via
self-attention and multi-headed attention (Vaswani
et al., 2017). Since the introduction of pre-trained
transformer networks, we have seen a rise in state-
of-the-art performance across a multitude of tasks
in NLP (Devlin et al., 2018; Yang et al., 2019;
Radford et al., 2018). Given this, much effort has
recently gone into interpreting these highly com-
plex models (Vig, 2019).

2.3 Question Answering and Machine
Comprehension

We use question answering tasks to evaluate hu-
man versus machine attention. Question answer-
ing tasks have been widely explored with neural



attentive models. Creating systems to comprehend
semantically diverse text documents and answer
related questions is still a difficult challenge (Qiu
et al., 2019). These models tend to fail when faced
with adversarial attacks, noise which humans can
often easily resolve (Jia and Liang, 2017; Yuan
et al., 2019; Blohm et al., 2018). These studies
uncovered the limitations of QA systems, suggest-
ing that models rely on pattern matching in lieu
of human decision making processes which are
required in comprehension tasks (Blohm et al.,
2018; Posner et al., 1980; Just and Carpenter,
1980). These models comprehend text differently
than humans.

2.3.1 Eye Tracking and Neural Networks
In the past few years, researchers leveraging
human gaze data for attentive neural modeling
tasks. Hahn and Keller (2018) present a neural QA
network which combines both a task and atten-
tion module to predict and simulate human read-
ing strategies. The authors propose the trade-off
hypothesis: human reading behaviors are task spe-
cific and therefore evoke various specific strategies
for each of these tasks. To validate their hypoth-
esis, they use eye tracking data as their gold stan-
dard. Das et al. (2017) investigate the differences
between neural and humans attention over image
regions, given a visual question answering task
(i.e answering textual questions about a given im-
age). The authors use rank-order correlation and
visualizations in their analysis.

Recent work has even explored integrating gaze
data into neural attention as an additional variable
in the equation or as a regularization method (Qiao
et al., 2018; Sugano and Bulling, 2016; Barrett
et al., 2018).

2.4 Neural Interpretability

In order to further understand the black box, re-
search in neural interpretability has grown dramat-
ically in the recent years (Lipton, 2016; Gilpin
et al., 2018). Such methods include: intro-
ducing adversarial examples, error class analy-
sis, modeling techniques (e.g. self-explaining net-
works), and post-hoc analysis (Alvarez-Melis and
Jaakkola, 2018; Rudin, 2019; Lipton, 2016).

Many works have shed light on the deci-
sions taken by networks by investigating the out-
puts/predictions as well as by analyzing their be-
havior through loss visualization from various ar-
chitectures (Ribeiro et al., 2016). However these

interpretations might explain predictions with-
out explaining the mechanisms by which models
work (Lipton, 2016). There is still a limit to how
we can interpret the inner workings of these black
boxes (Gilpin et al., 2018).

3 Resources

3.1 MovieQA Dataset

The MovieQA dataset (Tapaswi et al., 2016), is
used for all experiments conducted in this work
(for the QA models and eye tracking experiments).

The dataset was comprised by a variety of avail-
able sources, however for the QA task we only use
the plot synopses. The authors crawled for the
plot synopsis on Wikipedia, retrieved the scripts
from IMDB (which were used for about half the
movies), and a small percentage of plot informa-
tion comes from the DVS transcriptions. The plots
vary between 1 to 20 paragraphs in size, and are
checked by annotators to ensure they consist of
movie relevant events and character relationships.
There are a total of almost 15,000 questions in this
dataset relevant for 408 movie plots. Of the 5 an-
swer candidates denoted for each question, there is
only 1 correct answer and the rest are deceptive in-
correct answers. The training set consists of plots
with their corresponding questions: 9,848 train-
ing, 1,958 development and 3,138 test questions,
respectively.

3.2 Extension with Eye Tracking

We present a novel reading comprehension eye
tracking dataset, for open use, which depicts how
answering a question in various conditions evokes
various comprehension strategies - indicated by
eye movement differences in 3 conditions for the
same document. Given the design of the eye track-
ing experiment, the dataset allows researchers
to observe changes in reading behavior in three
comprehension tasks, induce processing strategies
evoked by humans, and provides a gold standard to
compare and synchronize model versus human at-
tention in comprehension tasks. We build and use
our reading comprehension gaze dataset, as the
gold standard, to further advance neural network
interpretability in machine comprehension tasks.
Data collection Our corpus contains two studies:
in Study 1 we randomly select a set of 16 docu-
ments in which the majority of both LSTMs and
CNNs models failed to correctly answer the ques-
tions; in Study 2 we select a different set of 16



documents in which the majority of models suc-
ceed in predicting the correct answers.

In total, our corpus contains gaze data from 23
English native speakers who were recorded while
reading 32 documents (around 200-250 words
each) in three different comprehension tasks.

We used the Tobii 600Hz head-mount eye-
tracker. In total, each session last 45 minutes in-
cluding the time required for calibration and 5-
minutes breaks every 15 minutes.

Study 1 16-documents were read by the partici-
pants in 3 different reading comprehension con-
ditions. Our 3 conditions are designed as such:
1) regular QA where the subjects have access to
the plot, the question, and 5 answer candidates; 2)
open-ended answer generation where the subjects
see the plot and the question but have to generate
their own responses; and 3) QA by memory where
the participants can first read the plot and then an-
swer to the question (5 possible answers) without
having the plot available. In condition 3, partici-
pants have to recover information from memory in
order to answer the question. Participants are ran-
domly distributed among the different conditions:
5-5-6 in schema A, 5-6-5 in schema B, and 6-5-5
in schema C. In order to maintain that every partic-
ipant had the same number of data-points and that
documents were seen in various conditions (avoid-
ing a bias effect), we created 3 schemes and ran-
domly assigned participants into these schemes. In
schema A participants saw conditions ordered as
C1, C2, C3, in schema B ordered as C2, C3, C1,
and in schema C orders as C3, C1, C2. There are
16 documents, all were made for all three condi-
tion types (such that, for example, participant A
in schema C read document 66 in condition 3, but
participant D in condition 1 read the same docu-
ment 66 in condition 1). This way we can see how
the same task of generating an answer, in various
conditions, evoked various comprehension strate-
gies indicated by eye moment difference in condi-
tions for the same document; hence our study is in
accordance with a Latin Square Design.

Study 2 We conduct a follow up study in which
we took only the plots that both the majority of
CNN and LSTM models predicted correctly. We
hypothesize that such items that are, on average,
easier for the models are also easier for the hu-
mans (higher correlation score). In this study, we
only collect data for the regular QA task (condi-
tion 1). The experiment was performed by 5 new

Study Schema No. Doc No. Participants IAA Acc

Study1 A 5 1-6 83.3% 93%
Study1 B 5 6-12 100% 100%
Study1 C 6 12-18 100% 100%
Study2 No-Schema 16 5 89.0% 95%

Table 1: Distribution in MovieQA with Eye Tracking.

participants. Each participant saw all the 16 plots
in a randomised order.

2

Data agreement We only use data from the reg-
ular QA task as we have an equal number of data
samples for both Study 1 and 2. (where we can
compare attention and performance for difficult
versus easy cases). Across both studies, we use 23
participants data total as they had the highest per-
formance and agreement; accuracy and Pairwise
Inter-annotator agreement was measured by Co-
hen’s Kappa. The agreement is between 89-94%
and the average accuracy is 95%.

4 Neural Models

4.1 Two Staged Attention Models

In this work, we re-implement both the CNN
and LSTM QA ensemble models with two staged
attention from Blohm et al. (2018) that pro-
vides state-of-the-art results on the MovieQA
dataset (Tapaswi et al., 2016). These models are
based on the compare-aggregate framework that
achieves 85.12% on the test set and 84.37% on
the validation set. In the multiple choice QA task,
each datum contains the plot of a movie as well as
its corresponding question and 5 potential answer
candidates.

In the hierarchical structure, the models com-
pare the plot to the respective question and aggre-
gates this comparison into one vector representa-
tion to obtain a confidence score after applying the
softmax, for each answer candidate. The best re-
sults were obtained from the majority vote of the
nine best performing models.

The two-staged attention is performed twice,
on the word and sentence level, where the plot is
weighted with respect to the question or a possible

2To note, we have a reduced number of overall partici-
pants for study 1 however we do have the same amount of
data samples as the participants read 16 documents for the
same condition each.



answer candidate.

G = softmax
(
XTP

)
(1)

H = XG (2)

The word level X indicates the answer candi-
date (5 total) or the question. Subsequently, when
computing sentence level attention, the question or
answer candidate are represented as such. Blohm
et al. (2018) apply the dot-product computation for
the attention mechanism. The two variations of
this model with CNN and LSTM models provided
state-of-the-art results on the MovieQA dataset
with an average of 84.5% on validatation set and
an average of 85.0% on evaluation set.

The authors perform a case study to further
investigate the comprehension limitations of the
models compared to human inference. In their
analysis, they compared both networks against
human performance in order to infer processing
strategies which human possess but are shown by
the models. They investigate the most difficult
cases, where the majority of both 9-best models
failed to correctly answer the question. This moti-
vates why we use the difficult and easy documents
for the CNN and LSTM models (Blohm et al.,
2018), as they are the only paper to date which
both as SOTA results and offered qualitative anal-
ysis on the gap between human and model per-
formance. We deem difficult for the network via
performance, when the majority of the models fail
to correctly answer the question, we classify these
documents as difficult cases for the two networks;
vice versa for the easy documents.

4.2 XLNet Models
We use the pre-trained XLNet model, and fine-
tune it for our QA task (Yang et al., 2019; Tapaswi
et al., 2016). XLNet is a recently released
transformer network for language understanding,
which achieves state-of-the-art results on many
NLP tasks (Yang et al., 2019). It was trained on
large corpora with training objectives which are
compatible with unsupervised learning and can be
fine-tuned to new tasks and datasets.

XLNet is based on an auto-regressive approach
in which the model uses observations from pre-
vious time steps in order to predict the weight
for the next time step. Advancing from the tradi-
tional auto-regressive approach, such as a Bidirec-
tional LSTM, the authors also combine their net-
work with an auto encoding approach seen with

the BERT model (Devlin et al., 2018). By com-
bining both approaches, XLNet introduces permu-
tations on both sides. Moreover, the self-attention
network (Vaswani et al., 2017) uses three compo-
nents, queries, keys and values, all of which are
calculated from their respective embeddings. The
output is a weighted sum of the values, in which
the values are weighted with a score calculated as
the dot product of the respective queries and keys.
Its is important to note that the queries are related
to the output and the keys are related to the given
input.

During fine-tuning, however, the model is es-
sentially the Transformer-XL (Dai et al., 2019;
Yang et al., 2019; Vaswani et al., 2017). The
auto regressive language model estimates the joint
probability over the input elements (in XLNet this
x is language agnostic, i.e it is a subtoken).

P (X) =
∏
t

P (xt|X<t) (3)

The input sequence is the concatenation of each
x in the plot with the question and a potential an-
swer candidate (there are 5 possible answer candi-
dates and one correct answer).

We are fine-tuning on the task of question an-
swering, where the model objective is multi-label
classification given an input sequence. Note, the
permutation language model is the component
which helps XLNet capture longer dependencies
between elements in a given input sequence (Yang
et al., 2019). In our method, we fine-tune the XL-
Net with 24 attention layers and 16 attention heads
(Yang et al., 2019). The fine-tuned model makes a
prediction by applying the argmax over the soft-
max, selecting the potential y-label, or answer
candidate, with the highest confidence scores.

Finetuning pretrained XLNet outperforms all
other results on the validation set, obtaining the
new highest accuracy of 91%3.

5 Method

5.1 Evaluation Metric
In order to compare the human and neural at-
tention distributions, we identified the Kullback-
Leibler Divergence (Kullback and Leibler, 1951)
to be the most suitable comparison method.

This method is used to compare two probability
distributions, akin to relative entropy. We need to

3in progress for evaluating on the test-set to be added to
the Leaderboard



ensure we compare the two distributions in a spe-
cific and consistent order; meaning we can com-
pare either H to M or M to H, but we cannot inter-
change this direction. Additionally, the informa-
tion we gain from this measure is an understand-
ing of the differences in probability distribution
between two variables (cf. Equation 4).

DKL(H ‖M) =
∑
x∈X

P (x) log

(
H(x)

M(x)

)
. (4)

Concretely, we calculate the KL divergence for
average-human to average-model along the word
level attention distributions.

5.2 Human Gaze-Attention Extraction

We convert the raw gaze counts into a probabil-
ity distribution by dividing each gaze count by the
sum of all gaze counts. These token level fre-
quency counts obtained in our hit testing method,
reflect gaze duration; the more often a token of
the text is attended to, the more important it is for
humans to correctly answer the question (Just and
Carpenter, 1980).

We extract word level attention weights and av-
erage over documents, thereby doing document
level comparison given the word attention, be-
cause for humans the task is to look at the en-
tire short document and then answer the question
given the entire context, all items within the con-
text are interconnected, and it would be mislead-
ing to only analyze attention over 1 sentence/parts
of the document. To that extent, is not cognitively
plausible to limit comparison to sentences or part
of the documents as we given human access to the
entire context. Therefore we compare attention
given the entire context, i.e word attention weights
over each document.

5.3 Extracting LSTM and CNN Word Level
Attention

The sentence level attention for the CNN and
LSTM models have very low entropy, where es-
sentially almost all of the attention is distributed
to one sentence and the rest of the sentence atten-
tion weights are almost 0. Given this is a property
of the two-staged attention, which XLNet does not
have. Therefore, we only analyze word level atten-
tion across humans and the three model types.

During evaluation, we extract token attention
weights for each of the 9-best models. We then

average the neural attention weights, given the se-
lected answer candidate, across the same 32 plots
used in the eye tracking study. We extract the at-
tention from the selected answer candidate to en-
sure comparability to human attention. From the
human data, we can only obtain attention given the
answer they selected, thus to keep the neural vs.
human attention comparable, we also only extract
neural attention weights given the selected answer
candidate.

5.4 Extracting XLNet Word and Sentence
Level Attention

The attention weights from 9-best XLNet models
are extracted from the output of the last hidden
layer which contains token level weights for each
plot-answer candidate pairing. In order to make
the 1024-dimensional attention weights compara-
ble to the human gaze attention, we only take
the maximum value of each token attention (Htut
et al., 2019) and normalize them by the sum of the
weights we obtain this way.

6 Results

6.1 Analysis Results — Within Models

9-Best Model Val Accuracy Spearman p−value

LSTM 84.37% -0.73 < 0.001
CNN 82.58% -0.72 < 0.001

XLNet 91.00% -0.16 0.381

Table 2: Correlation within each model and perfor-
mance, ensembles.

In Table 2, we show the within model type anal-
ysis. We report majority vote ensemble accuracy
scores for each of the 9-best models, Spearman’s
rank correlation coefficient against human scores,
and the corresponding p-values. Though ensem-
bling methods are generally used to boost perfor-
mance, for our experiments we performance anal-
ysis over ensembled networks for each type as
well. We assert that just as we average each par-
ticipants attention scores for a given document,
we also average the models for each type, treating
the 9-models for each model type as 9 participants
(9 LSTM participants, 9 CNN participants, and 9
XLNet participants).

There are two statistically significant negative
correlation results within the traditional attentive
LSTM and CNN models, -0.73 and -0.72 with



p < 0.001, respectively. These correlation results
indicate that for each of the 9-best model types,
as the performance in answering each document-
question correctly increases, the divergence to hu-
man visual attention decreases.
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Figure 1: KL Divergence(Word Level): LSTM -
All/Each Documents Ordered by the Sum of Diver-
gence Scores and Number of Correct Models.

These correlations can be seen in Figures 1,
where we plot the LSTM model performance for
each document. The same behavior is observed
with the CNN model. Performance, i.e. correct-
ness, refers to how many models within the en-
semble correctly answered each of the 32 ques-
tions. The y-axis represents the KL divergence and
correctness, while the x-axis represents the docu-
ments (32 total), and the legend indicates which
models the datapoints refer to. The documents on
the left are part of the easier class and the diver-
gence scales up as document difficult increases.
Following the results we hypothesize, we can ob-
serve the relationship between higher performance
and more similarity to humans attention (on mod-
els using traditional attention mechanisms).

Interestingly, XLNets models show a very weak
correlation of -0.16 and p = 0.381 (cf. Table 2,
cf. Figure 2). As most XLNet models correctly
answer the questions, but divergence increases in
the same scaled pattern as with the CNNs and
LSTMs (cf. Figure 1, 2), we do not observe the
same significant correlation between performance
and similarity to human attention. We hypoth-
esize this is may be because: the XLNet mod-
els are pre-trained on various domains, the self-
attention component plays a role in these results,
and/or elements within the permutation language
model with varied factorization orders (Yang et al.,

2019).
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Figure 2: KL Divergence(Word Level): XLNet -
All/Each Documents Ordered by the Sum of Diver-
gence Scores and Number of Correct Models.

6.2 Analysis Results — Across Models

In Table 3, we make a pairwise comparison of the
average KL divergence for the three neural models
using a linear regression model with Tukey’s alpha
adjustment method (Sinclair et al., 2013). Interest-
ingly, there is a statistically significant difference
between the KL divergence of LSTMs compared
to XLNets (β = −0.003, p < 0.01). Though the
performance of the XLNets are better with respect
to accuracy, LSTMs are significantly more similar
to human visual attention.

When analyzing across model types, we show
statistical significance that the LSTMs are more
similar to humans compared to the XLNets (cf.
Table 3). In addition, the LSTMs depict a trend
of modeling human visual attention more than the
CNN models (cf. Figure 1, 2, cf. Figure 3)

The interesting findings from our analysis on
XLNet network attention when compared to the
other attentive models, shows that for these trans-
former networks, perhaps human attention is not
particularly helpful or advantageous.

Alternatively, we can see that though the XL-
Net outperforms the CNN and LSTM networks,
achieving the newest val-set SOTA results of 91%
accuracy, the KL divergence is significantly higher
(from human attention) compared to the LSTM.
This could show that the pre-training or self-
attention method may cause this difference.

Though aiming to interpret the black box via
comparison to human performance provides in-
sight, it does not mean we should be aiming to



9-Best Avg KL Combo Estimate Std. Error t-value p-value

LSTM 0.018 LSTM vs. XLNet -0.003 0.001 -2.835 < 0.01
CNN 0.020 LSTM vs. CNN -0.001 0.001 -1.098 0.27

XLNet 0.022 CNN vs. XLNet -0.001 0.001 -1.736 0.17

Table 3: Pairwise comparison of the average KL divergence for the three models.

force all model types to perform as human do on
the same task; after all these are two very different
neural systems with varying assumptions made on
tasks in order to achieve high performance.

6.3 Qualitative Analysis

For the qualitative analysis, we show attention
maps of the three model types and humans, over
two samples from each document class (cf. Fig-
ure 3). Moreover, we show example images of
our scan path visualization tool (cf. Figure 4) in
which we show the human reading behavior on a
portion of two sample documents from our exper-
iments. In these results, we visualize the observed
relationships uncovered in the quantitative analy-
sis, gaining more insight on how the models and
humans perform on the same comprehension task.

Furthermore, we observe that attention distri-
bution over the easier documents (as defined by
most models predicting the correct answer candi-
date) tend to be less diverged from human atten-
tion compared to the harder documents, and this
applies across all model types. This result is inter-
esting as it shows the relationship between perfor-
mance and similarity to human attention.

Laszlo orders the house band to defiantly play "La Marseillaise".

When the band looks to Rick, he nods his head.

cnn

Laszlo orders the house band to defiantly play "La Marseillaise".

When the band looks to Rick, he nods his head.

lstm

Laszlo orders the house band to defiantly play "La Marseillaise".

When the band looks to Rick, he nods his head.

xlnet

Laszlo orders the house band to defiantly play "La Marseillaise".

When the band looks to Rick, he nods his head.

human
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Figure 3: Example attention distributions of the three
models and humans. Shown are the attention distribu-
tions over two sentences from one of the plots in the
validation set.

7 Conclusion

Our core contribution is the comparative analysis
between human versus various SOTA text-based

Figure 4: Example 66, scan path from our visualiza-
tion tool. Shown are the reading patterns over three
sentences from one of the plots in the val set.

attentive QA systems. To the best our knowledge,
we are the first to compare human attention to neu-
ral attention, leveraging gaze data on text-based
tasks. Our findings show that CNNs and LSTMs
have a statistically significant negative correlation
with human performance. Interestingly, the same
is not true for XLNet. Moreover, the LSTM atten-
tion weights are significantly more similar to hu-
man attention compared to the XLNet. Although
the pre-trained transformer networks are less simi-
lar to human visual attention, our fine-tuned model
obtains the new SOTA on the MovieQA bench-
mark dataset with 91% accuracy on the validation
set. In addition, we present our attentive reading
visualization tool, to allow for qualitative analysis
when comparing human versus neural attention.
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