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ABSTRACT

This work establishes rigorous, novel and widely applicable stability guarantees
and transferability bounds for graph convolutional networks — without reference
to any underlying limit object or statistical distribution. Crucially, utilized graph-
shift operators (GSOs) are not necessarily assumed to be normal, allowing for the
treatment of networks on both directed- and for the first time also undirected graphs.
Stability to node-level perturbations is related to an *adequate (spectral) covering’
property of the filters in each layer. Stability to edge-level perturbations is related to
Lipschitz constants and newly introduced semi-norms of filters. Results on stability
to topological perturbations are obtained through recently developed mathematical-
physics based tools. As an important and novel example, it is showcased that
graph convolutional networks are stable under graph-coarse-graining procedures
(replacing strongly-connected sub-graphs by single nodes) precisely if the GSO is
the graph Laplacian and filters are regular at infinity. These new theoretical results
are supported by corresponding numerical investigations.

1 INTRODUCTION

Graph Convolutional Networks (GCNs) (Kipf & Welling, [2017; Hammond et al., 201 1; Defferrard
et all 2016) generalize Euclidean convolutional networks to the graph setting by replacing con-
volutional filters by functional calculus filters; i.e. scalar functions applied to a suitably chosen
graph-shift-oprator capturing the geometry of the underlying graph. A key concept in trying to
understand the underlying reasons for the superior numerical performance of such networks on graph
learning tasks (as well as a guiding principle for the design of new architectures) is the concept
of stability. In the Euclidean setting, investigating stability essentially amounts to exploring the
variation of the output of a network under non-trivial changes of its input (Mallat, 2012; Wiatowski
& Bolcskel, |2018). In the graph-setting, additional complications are introduced: Not only input
signals, but now also the graph shift operators facilitating the convolutions on the graphs may vary.
Even worse, there might also occur changes in the topology or vertex sets of the investigated graphs
— e.g. when two dissimilar graphs describe the same underlying phenomenon — under which graph
convolutional networks should also remain stable. This last stability property is often also referred
to as transferability (Levie et al., 2019a)). Previous works investigated stability under changes in
graph-shift operators for specific filters (Levie et al.| [2019b; |(Gama et al.| [2020) or the effect of
graph-rewiring when choosing a specific graph shift operator (Kenlay et al.| [2021)). Stability to
topological perturbations has been established for (large) graphs discretising the same underlying
topological space (Levie et al.|[2019a)), the same graphon (Ruiz et al., 2020; Maskey et al., [2021) or
for graphs drawn from the same statistical distribution (Keriven et al.,[2020; |Gao et al., 2021}).

Common among all these previous works are two themes limiting practical applicability: First and
foremost, the class of filters to which results are applicable is often severely restricted. The same is
true for the class of considered graph shift operators; with non-normal operators (describing directed
graphs) either explicitly or implicitly excluded. Furthermore — when investigating transferability
properties — results are almost exclusively available under the assumption that graphs are large and
either discretize the same underlying ’continuous’ limit object suffieciently well, or are drawn from
the same statistical distributions. While these are of course relevant regimes, they do not allow to
draw conclusions beyond such asymptotic settings, and are for example unable to deal with certain
spatial graphs, inapplicable to small-to-medium sized social networks and incapable of capturing
the inherent multi-scale nature of molecular graphs (as further discussed below). Finally, hardly any
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work has been done on relating the stability to input-signal perturbations to network properties such
as the interplay of utilized filters or employed non-linearities. The main focus of this work is to
provide alleviation in this situation and develop a ’general theory of stability’ for GCNs — agnostic
to the types of utilized filters, graph shift operators and non-linearities; with practically relevant
transferability guarantees not contingent on potentially underlying limit objects. To this end, Section
[2| recapitulates the fundamentals of GCNs in a language adapted to our endeavour. Sections [3]and
M| discuss stability to node- and edge-level perturbations. Section [5]discusses stability to structural
perturbations. Section [f]discusses feature aggregation and Section [7] provides numerical evidence.

2  GCNSs via COMPLEX ANALYSIS AND OPERATOR THEORY

Throughout this work, we will use the label GG to denote both a graph and its associated vertex set.
Taking a signal processing approach, we consider signals on graphs as opposed to graph embeddings:

Node-Signals: Node-signals on a graph are then functions from G to the complex numbers; i.e.
elements of C/C| (with |G| the cardinality of (). We allow nodes i € G in a given graph to have
weights 1; not necessarily equal to one and equip the space C!€| with an inner product according to
{fy9) = e F(i)g(i)pi to account for this. We denote the hence created Hilbert space by ¢2(G).

Characteristic Operators: Fixing an indexing of the vertices, information about connectivity
within the graph is encapsulated into the set of edge weights, collected into the adjacency matrix W

and (diagonal) degree matrix D. Together with the weight matrix M := diag ({ i} Lill), various

standard geometry capturing characteristic operators — such as weighted adjacency matrix M~
graph Laplacian A := M~(D — W) and normalized graph Laplacian £ := M~'D~2(D —
W)D_% can then be constructed. For undirected graphs, all of these operators are self-adjoint. On
directed graphs, they need not even be normal (T*T = TT*). We shall remain agnostic to the choice
of characteristic operator; differentiating only between normal and general operators in our results.

Functional Calculus Filters: A crucial component of GCNs are functional calculus filters, which
arise from applying a function g to an underlying characteristic operator 7'; creating a new operator
g(T). Various methods of implementations exist, all of which agree if multiple are applicable:

GENERIC FILTERS: If (and only if) 7" is normal, we may apply generic complex valued functions
g to T Writing normalized eigenvalue-eigenvector pairs of T" as (\;, fi%)ﬁ‘l one defines g(T)y =

52 9N )i ©)ezc) i For any ¢ € £2(G). One has |g(T)|op = subxco () lg(M)]. with o(T)
denoting the spectrum of T. If g is bounded, one may obtain the T-independent bound | g(T')||op <
|glleo- Keeping in mind that g being defined on all of o(T") (as opposed to all of C) is clearly sufficient,
we define a space of filters which will harmonize well with our concept of transferability discussed in
Section[5] The introduced semi-norm will quantify the stability to perturbations in coming sections.

Definition 2.1. Fix w € C and C > 0. Define the space .Z5% of continuous filters on C\{w, @},
to be the space of multilinear power-series’ g(z) = Zf’,j:O auy (w—2)" " (w—z)"" for which the
semi-norm [[g|zeone = X7, 1+ v|CH T ay, | s finite.

Denoting by B.(w) < C the open ball of radius € around w, one can show that for arbitrary § > 0 and
every continuous function g defined on C\(B(w) U B.(w)) which is regular at infinity — i.e. satisfies
lim,, ;o g(r2) = ¢ € C independent of which 2 # 0 is chosen — there is a function f € F5%!

so that | f(z) — g(2)] < d forall z € C\(B¢(w) U B¢(w)). In other words, functions in .Z %" can

w,C
approximate a wide class of filters to arbitrary precision. More details are presented in Appendix [B]

ENTIRE FILTERS: If T is not necessarily normal, one might still consistently apply entire (i.e.
everywhere complex differentiable) functions to T'. Detail details on the mathematical background are
given in Appendix [C] Here we simply note that such a function g is representable as an (everywhere
convergent) power series g(z) 1= >, a7 z" so that we may simply set g(7) = >;_, af - T*. For
the norm of the derived operator one easily finds ||g(T)]op < ey |af||T||%, using the triangle
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inequality. While entire filters have the advantage that they are easily and efficiently implementable —
making use only of matrix multiplication and addition — they suffer from the fact that it is impossible
to give a ||T'||op-independent bound for |g(T)|,, as for continuous filters. This behaviour can be
traced back to the fact that no non-constant bounded entire function exists (Bak & Newmanl, [2017).

HoLoMoORPHIC FILTERS: To define functional calculus filters that are both applicable to non-
normal 7" and boundable somewhat more controlably in terms of 7', one may relax the condition
that g be entire to demanding that g be complex differentiable (i.e. holomorphic) only on an
open subset U < C of the complex plane. Here we assume that U extends to infinity in each
direction (i.e. is the complement of a closed and bounded subset of C). For any g holomor-
phic on U and regular at infinity we set (with (zId — T)~! the so called reolvent of T at z)

1 —1 * » D
g(T) := g(0) - Id + e § g(z) - (zId —T)™"dz, () o(T) * aD
oD .
for any T" whose spectrum o (7') is completely contained in U. Here
we have used the notation g(c0) = lim,_, ;4 g(rz) and taken D to an U\D *
open set with nicely behaved boundary 0D (more precisely a Cauchy x o(T)n

domain; c.f. Appendix. We assume that D completely contains o (T")
and that its closure D is completely contained in U. The orientation  Figure 1: Set-Visualisations
of the boundary ¢D is the usual positive orientation on D (such that D ’is on the left’ of 0D; cf. Fig.
[1). Using elementary facts from complex analysis it can be shown that the resulting operator g(7") in
(1) is independent of the specific choice of D (Gindler}[1966)). While we will present results below in
terms of this general definition — remaining agnostic to numerical implementation methods for the
most part — it is instructive to consider a specific exemplary setting with definite and simple numerical
implementation of such filters: To this end, chose an arbitrary point w € € and set U = C\{w} in the
definitions above. Any function g that is holomorphic on U and regular at oo may then be represented
by its Laurent series, which is of the form g(z) = 3", b{(» —g’k (Bak & Newman,[2017). For
any T with o(T) € U (i.e. w ¢ o(T)) evaluating the integral in (1) yields (c.f. Appendix |C):

g(T) = > bl - (T —wld)™* )
k=0

Such filters have already been employed successfully, e.g. in the guise of Cayley filters (Levie et al.,

2019c), which are polynomials in 2£¢ = 1 + 2. We collect them into a designated filter space:

Definition 2.2. For a function g(z) = Y5~ b?(z — w) ™% on U := C\{w} define the semi-norm
lgll z e, == S, [b|kC*~1 for C' > 0. Denote the set of such g for which Hgng:j% < oo by ﬁu’}%

In order to derive |T'|,,,-independent bounds for | g(T')||op, we will need to norm-bound the resolvents
appearing in (1) and (2). If 7" is normal, we simply have |(zId — T)~!|,, = 1/dist(z,0(T)). In the
general setting, following Post(2012), we call any positive function vy satisfying ||(z1d—T)"1,, <
~vr (%) on C\o(T') a resolvent profile of T'. Various methods (e.g. |Szehr| (2014); MichaelGil| (2012))
to find resolvent profiles. Most notably Bandtlow| (2004b) gives a resolvent profile solely in terms of
1/dist(z, o (T')) and the departure from normality of 7. We then find the following result:

Lemma 2.3. For holomorphic g and generic T we have [ g(T)||op < |9(20)|+ 5= §, 1 19(2) |77 (2)d] 2.
Furthermore we have for any 1" with yr(w) < C, that |g(T)|op < [g] zne, aslongas g € ﬁ:}%

Lemma 2.3|(proved in Appendix D) finally bounds [|g(T") o, independently of 7', as long as appearing
resolvents are suitably bounded; which — importantly — does not force | T'||,, to be bounded.

Non-Linearities & Connecting Operators: To each layer of our GCN, we associate a (possibly)
non-linear and L,,-Lipschitz-continuous function p,, : C — C satisfying p,,(0) = 0 which acts
point-wise on signals in ¢?((,,). This definition allows to choose p,, = | - |, ReLu, Id or any sigmoid
function shifted to preserve zero. To account for recently proposed networks where input- and
"processing’ graphs are decoupled (Alon & Yahav, 2021} Topping et al.,2021)), and graph pooling
layers (Lee et al.;[2019), we also allow signal representations in the hidden network layers n to live in
varying graph signal spaces £2(G,,). Connecting operators are then (not necessarily linear) operators
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P, : 2(Gpo1) — £2(G) connecting the signal utilized of subsequent layers. We assume them to be
R, -Lipschitz-continuous (| P, (f) — Pn(9)|e2(c,_1) < Rulf — gle2(c,,)) and triviality preserving

(P,(0) = 0). For our original node-signal space we also write £(G) = €2 (Go).

Graph Convolutional Networks: A GCN with N layers is then constructed as follows:
Let us denote the width of the network at layer n
2(Gp) by K. The collection of hidden signals in this
layer can then be thought of a single element of

n gn = 82 Gn . 3

gZ(Gn)L

Further let us write the collection of functional

2(G) Pn 2(G) calculus filters utilized to generate the repre-

" "’ sentation of this layer by {gi(-) : 1 < j <

] K, _1;1 <i < K,,}. Further denoting the char-

Figure 2: Update Rule for a GCN acteristic operator of this layer by T},, the update

rule (c.f. also Fig. [2)) from the representation in .%,,_; to .%,, is then defined on each constituent in
the direct sum .%,, as

f - pn+1 <Z gm n+1 n+1(fn)> 5 VI < Z < Kn.

We also denote the initial signal space by .%, := % and the final one by % := %y . The hence
constructed map from the initial to the final space is denoted by ® : .}, — L.

3 STABILITY TO INPUT SIGNAL PERTURBATIONS

In order to produce meaningful signal representations, a small input signal change should produce
only a small variation in the output of our GCN. This property is quantified by the Lipschitz constant
of the map & associated to the network, which is estimated by our first result below.

Theorem 3.1. With the notation of Section [2|let ®x : 4, — Zou be the map associated to an
N-layer GCN. We have with B,, := \/sup)\eo(Tn) ek, 1 2k, 1955 (A)|? forall f,h € £, that

[@n(f) = O (P)] 22 < (H LnfnB ) 1 = bl
if T}, is normal. For general T,, we have for all {g;;} entire, holomorphic and in .#

PIRV/ S ST ONCR ot
Br= N\ [Ser, ) Siere, 1952 + 3 80 10 (D[S, Siere, 1955 (2)Pdlz]
\/ZjeKn,l ZiGKn ”gij H‘gfoclv

Appendix [E| contains the corresponding proof and discusses how the derived bound are not necessarily
tight for sparsely connected layers. After Lipschitz constants of connecting operators and non-
linearities are fixed, the stability constant of the network is completely controlled by the { B,, }; which
for normal 7}, in turn are controlled by the interplay of the utilized filters on the spectrum of 7},. This
allows to combine filters with sup .z, |97 (A)| = O(1) but supported on complimentary parts of

the spectrum of 7T, while still mamtammg B,, = O(1) instead of O(1/K,, - K,—1). In practice one
might thus penalize a *multiple covering’ of the spectrum by more than one filter at a time during
training in order to increase stability to input signal perturbations. If 7;, is not normal but filters are
holomorphic, an interplay persists — with filters now evaluated on a curve and at infinity.

Fhel, respectively:

4 STABILITY TO EDGE PERTURBATIONS

Operators capturing graph-geometries might only be known approximately in real world tasks; e.g.
if edge weights are only known to a certain level of precision. Hence it is important that graph
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convolutional networks be insensitive to small changes in the characteristic operators {7, }. Since we
consider graphs with arbitrary vertex weights { uq}qeg, we also have to consider the possibility that
these weights are only known to a certain level of precision. In this case, not only do the characteristic
operators T},, T,, differ, but also the the spaces 2(Q), KQ(G) on which they act. To capture this

setting mathematically, we assume in this section that there is a linear operator J : £?(G) — 62(6:')
facilitating contact between signal spaces (of not-necessarily the same dimension). We then measure
closeness of characteristic operators in the respective spaces by considering the generalized norm-
difference || (JT — TJ)|; with .J translating between the respective spaces. Before investigating the
stability of entire networks we first comment on single-filter stability. For normal operators we then
find the following result, proved in Appendix [A]building on ideas first developed in (Wihler, 2009).

Lemma 4.1. Denote by | - | the Frobenius norm and let 7" and 7' be normal on /%(G) and
(%(G) respectively. Let g be Lipschitz continuous with Lipschitz constant D,. For any linear
J: 3(G) — *(G) we have |g(T)J — Jg(T)|r < Dy||TJ — JT | F.

Unfortunately, scalar Lipschitz continuity only directly translates to operator functions if they are
applied to normal operators and when using Frobenius norm (as opposed to e.g. spectral norm). For
general operators we have the following somewhat weaker result, proved in Appendix [F}

Lemma 4.2. Let 7,7 be operators on on €Z(G) , P2(G) with [T)op, [Tlep < C. Let J :
2(G) — (%(G) be linear. With K, = 2=§ |71‘7T(z)7:;(z)|g(z)|d|z| for g holomorphic and
Ky =Y, |al|kC*= for g entire, we have |[g(T)J — Jg(T)HOp <K, |JT - ZN“JHOP.

Each K itself is interpretable as a semi-norm. For GCNs we find the following (c.f. Appendix @:

Theorem 4.3. Let Oy, ® v be the maps associated to N-layer graph convolutional networks with the
same non-linearities and filters, but based on different graph signal spaces 22(G), 12 (G) characteristic

operators T, T and connecting operators P, Pn Assume B, Bn < Baswell as R, Rn <R
and L,, < L for some B,R,L > 0 and all n > 0. Assume that there are identification operators

In ZQ(G ) — £2(G,) (0 < n < N) commuting with non-linearities and connecting operators in
the sense of | P,J,_1 f — JnPanp(@) 0 and [|pn(Jnf) = Jnpn(f)l 2@, ,) = 0. Depending on
whether normal or arbitrary characteristic operators are used, define D? := > jeKn 1 Die K, sz;g-
or D i= Yk | Dk, KgQ%. Choose D such that D,, < D for all n. Finally assume that

| T T — TanH* < 4 and with * = F if both operators are normal and * = op otherwise. Then we
have for all f € %, and with _Z,, the operator that the K, copies of .J,, induce through concatenation

that [®(_Zof) — ZN®(f)| g, < N-DRL-(BRL)N™'-|f|, - 6.

The result persists with slightly altered constants, if identification operators only almost commute with
non-linearities and/or connecting operators, as Appendix [G]further elucidates. Since we estimated
various constants (B,,, D,,, ...) of the individual layers by global ones, the derived stability constant
is clearly not tight. However it portrays requirements for stability to edge level perturbations well:
While the (spectral) interplay of Section [3|remains important, it is now especially large single-filter
stability constants in the sense of Lemmata [.T|and [4.2] that should be penalized during training.

5 STABILITY TO STRUCTURAL PERTURBATIONS: TRANSFERABILITY

While the demand that |T"J — JT'|| be small in some norm is well adapted to capture some notions
of closeness of graphs and characteristic operators, it is too stringent to capture others. As an
illustrative example, further developed in Section[5.2]and numerically investigated in Section [7]below,
suppose we are given a connected undirected graph with all edge weights of order O(1/5). With the
Laplacian as characteristic operator (governing heat-flow in Physics (Colel 2011)), we may think
of this graph as modelling an array of coupled heat reservoirs with edge weights corresponding to
heat-conductivities. As 1/§ — oo, the conductivities between respective nodes tend to infinity, heat
exchange is instantaneous and all nodes act as if they are fused together into a single large entity — with
the graph together with its characteristic operator behaving as an effective one-dimensional system.
This *convergent’ behaviour is however not reflected in our characteristic operator, the graph Laplacian
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As: Clearly [As|op = 1/0 - [|Ay]op — o0 as 1/6 — oo. Moreover, we would also expect a Cauchy-
like behaviour from a ’convergent system’, in the sense that if we for example keep 1/d, — 1/8, = 1
constant but let (1/4,), (1/d,) — oo we would expect [As, — A, |op — 0 by a triangle-inequality
argument. However, we clearly have |As, — As, lop = [1/00 —1/0] - |A1op = |A1]0p, Which does
not decay. The situation is different however, when considering resolvents of the graph Laplacian.
An easy calculation (c.f. Appendix [H) yields |[(wId — As,) ™! — (wld — As,) " op = O(a - 65)
so that we recover the expected Cauchy behaviour. What is more, we also find the convergence
(wld — As)~! — Py - (w—0)71; where Py denotes the projection onto the one-dimensional lowest
lying eigenspace of the Ass (spanned by the vectors with constant entries). We may interpret (w—0) !
as the resolvent of the graph Laplacian of a singleton (since such a Laplacian is identically zero) and
thus now indeed find our physical intuition about convergence to a one-dimensional system reflected
in our formulae. Motivated by this example, Section [5.1|develops a general theory for the d1fference
in outputs of networks evaluated on graphs for which the resolvents R, := (wld — T)~! and
R, = (wld — T) of the respective characteristic operators are close in some sense. Subsequently,
Section [5.2then further develops our initial example while also considering an additional setting.

5.1 GENERAL THEORY

Throughout this section we fix a complex number w € C and for each operator T assume w, @ ¢ o (7T').
This is always true for w with |w| = |T'|,p, but if T is additionally self adjoint one could set w = 1.
If T' is non-negative one might choose w = (—1)). As a first step, we then note that the conclusion of
Lemma[4.T]can always be satisfied if we chose JJ = 0. To exclude this case — where the application
of J corresponds to losing too much information — we follow |Post| (2012) in making the following
definition:

Definition 5.1. Let J : 2(G) — 2(G) and J : £2(G) — (2(G) be linear, and let ' (T') be operators
on (2(@)) (12(G)). We say that J and .J are e-quasi-unitary with respect to 7', 7' and w if

HJf”zz(é) < QHfHZ?(G)a H(J - J*)fHﬁ(é) < EHfHﬁ(G)a
[(1d— TD)Ruflex < elfley 10d— TN Rl < elul ) )

The motivation to include the resolvents in the norm estimates (#) comes from the setting where
T = A is the graph Laplacian and w = (—1). In that case, the left equation in . is for example

automatically fulfilled when demanding ||(Id — JJ)f||£2(G < e(|fI? + Ea(f))2, with Ea(-) =
(-, A-)p2() the (positive) energy form induced by the Laplacian A (Post, 2012). This can thus be
interpreted as a relaxation of the standard demand ||(Id — .J.J) lop < €. Relaxing the demands of
Section[d] we now demand closeness of resolvents instead of closeness of operators:

Definition 5.2. If, for w € C and linear .J : £2(G) — ¢2(G) the resolvents R,, and R,, satisfy
(R = JRu)fl g2y < €llflez(c) forall f e ??(@), T and T are called w-e-close with identifica-

tion operator .J. If additonally | (E*.J — JRE) fleeey < €| flle2 (i) they are doubly w-e-close.

Our first result establishes that operators being (doubly-)w-¢-close indeed has useful consequences:

Lemma 5.3. Let T () be operators on £2(G) (/2(G)). If these operators are w-e-close with
identification operator J, and | Ry, | op, ||]§w|\op < Cwehave ||Jg(T) — g(T )JH(,p <K, (R T —
JR,)|op with Ky = 5= 8§, (1 + |z — w|yr(2))(1 + |2 — w|v7(2))]g(2)|d|z| for holomorphic g,
Ky =|glzne ifge Fhel and K, = |9l 7eope for T, T normal and doubly w-e-close.

This result may then be extended to entire networks, as detailed in Theorem [SE] below whose
statement persists with slightly altered stability constants, if identification operators only almost
commute with non-linearities and/or connecting operators. Proofs are contained in Appendix

Theorem 5.4. Let @y, ® v be the maps associated to N-layer graph convolutional networks with
the same non-linearities and functional calculus filters, but based on different graph signal spaces

(G, KQ(G ,), characteristic operators T,, T, and connecting operators P, B,. Assume B, B,, <
B as well as R, Rn R and L, < L for some B,R,L > 0 and all n > 0. Assume that
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there are identification operators J,, : (*(G,) — 62( n) (0 < n < N) commuting with non-
linearities and connecting operators in the sense of | B, J,_1 f — J,, P S H (G, = 0and lon(Jnf) —
ann(f)HeQ(én) = 0. define D? := DijeK, ) Quick, K2 n With Kgn as in Lemma Choose D

such that D,, < D for all n. Finally assume that |.J,, (wld —T) " — (WId—T,) Y lop < e If
filters in .4 are used, assume additionally that |.J,,((wId—T,,)~')* — ((wld— 1) Y)*J, op <

Then we have for all f € 4, and with _#,, the operator that the K, copies of .J,, induce through
concatenation that |®x (_Zof) — Zn®n(f )z <N-DRL-(BRL)N'-|f|z

5.2 EXEMPLARY APPLICATIONS

Collapsing Strong Edges: We first pick our example from the beginning of section [5] up again
and generalize it significantly: We now consider the graph that we collapse to a single node to be a
sub-graph (of strong edges) embedded into a larger graph. Apart from coupled heat reservoirs, this
setting also e.g. captures the grouping of close knit communities within social networks into single
entities, the scale-transition of changing the description of (the graph of) a molecule from individual
atoms interacting via the coulomb potential Z; Z5/R (with R the distance and Z7, Z, atomic charges)
to the interaction of (functional) groups comprised of closely co-located atoms, or spatial networks if
weights are set to e.g. inverse distances. In what follows, we shall consider two graphs with vertex
sets G and G. We consider G to be a subset of the vertex set G and think of the graph corresponding
to GG as arising in a collapsing procedure from the ’larger’ graph G.

More precisely, we assume that the vertex set G can be split into a b

three disjoint subsets G = Gruin U G Greek (U{*} (c.f. also Fig. .
We assume that the adjacency matrix W when restricted to Latin ¢
vertices or a Latin vertex and the exceptional node ’«’ is of order
unity (W?:b, T/IN/'G* = O(1),Ya,b e C:’me). For Greek indices, we
assume that we may write V[Nfag =~w§3 and Wa* = % such that d
(Wap;wWax = O(1) for all o, B € Ggreer- We also assume that the
sub-graph corresponding to vertices in G‘Gmk {x} is connected.
We then take G = G ruin (U{*} (c.f. again Fig. . The adjacency ma- *
trix W on this graph is constructed by defining W, = VNVM,7 Va,b € Wi =Waa+Wa
G Larin and setting (with W, = W,o) Wie = Wi
N N N Wae = Wae B
Wia := Was + Z Wap (Va € GLalin) : mmm = edge-weight O(1/06)
G Great — = edge-weight O(1)

We also allow our graph G to posses node-weights {ﬁﬁ}ae & that are Figure 3: Collapsed (left) and
not necessarily equal to one. The Laplace operator A acting on the = original (right) Graphs

graph signal space KQ(C:') induces a positive semi-definite and convex

energy form on this signal space via E(u) := {u, A@u%z(@) =D g hel Wgh|u(g) —u(h)|?. Using
this energy form, we now define a set comprised of |G| signals, all of which live in £2(G). These
signals are used to facilitate contact between the respective graph signal spaces ¢?(G) and EQ(CNJ).

Definition 5.5. For each g € G, define the signal wg e (2 (C:' ) as the unique solution to the convex
optimization program

min Eg(u) subjectto u(h) = opg forall h e G Latin U{*} )

Given the boundary conditions, what is left to determine in the above optimization program are the
’Greek entries’ 1/)2 () of each 1/12. As Appendix |J|further elucidates, these can be calculated explicitly
and purely in terms of the inverse of A x restricted to Greek indices as well as (sub-)columns of the
adjacency matrix . Node-weights on G are then defined as ,ug = D el wg(h) - fi,. We denote

the corresponding signal space by ¢?(G). Importantly, one has u$ — i, for any Latin index and
pd — Ji, + D oe Coneat o as 0 — 0; which recovers our physical intuition about heat reservoirs. To
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translate signals from (*(G) to 2(G) and back, we define two identification operators J : £2(G) —
C(G) and J : £2(G) — 2(G) via Jf = X o F(9) - ¥) and (Ju)(g) = {u, 92/ g for all
fe (@), ue %(G)and g € G. Our main theorem then states the following:

Theorem 5.6. With definitions and notation as above, there are constants K, Ko > 0 such that the
operators .J and J are (K1+/)-quasi-unitary with respect to Ag, Ag and w = (—1). Furthermore,
the operators Ay and Ag are (—1)-(K /0) close. with identification operator .J.

Appendix [J] presents the (fairly involved) proof of this result. Importantly, the size of the constants
K, K5 is independent of the cardinality (or more precisely the total weight) of G4, implying that
Theorem 5.6 also remains applicable in the realm of large graphs. Finally we note, that this stability
result is contingent on the use of the (un-normalized) graph Laplacian (c.f. Appendix [K):

Theorem 5.7. In the setting of Theorem denote by T’ (T) adjacency matrices or normalized
graph Laplacians on £2(G) (¢2(G)). There are no functions 71,7z : [0,1] — Rxq with 7;(6) — 0
as & — 0 (i = 1,2), families of identification operators .J°, J® and w € C so that .J® and J° are
11 (8)-quasi-unitary with respect to 7', T and w while the operators 7' and T remain w-1(8) close.

The Realm of Large Graphs: In order to relate our transferability
framework to the literature, we consider an ’increasing’ sequence
of graphs (G,, € G,+1) approximating a limit object, so that the
transferability framework of |Levie et al.|(2019a) is also applicable.
We choose the limit object to be the circle of circumference 27 and
our approximating graphs to be the closed path-graph on N vertices Figure 4: Closed Path-Graphs
equidistantly embedded into the circle (c.f. Fig E]) With h = 27/N the node-distance, we set weights
to 1/h?; ensuring consistency with the ’continuous’ Laplacian in the limit N' — oo. More details are
presented in Appendix [[] which also contains the proof of the corresponding transferability result:

Theorem 5.8. In the above setting choose all node-weights equal to one and N to be odd for
definiteness. There exists constants K, K5 = O(1) so that for each N > 1, there exist identification

operators .J,.J mapping between ¢2(G ) and £2(G 1) so that .J and .J are (K, /N )-quasi-unitary
with respect to Ag,, Agy,, and w = (—1). Furthermore, the operators A, and Ag,,, are
(—1)-(K2/N) close with identification operator .J.

Lemma |5.3|then implies an O(+)-decay of ||g(T)J — Jg(T)H(,p for fixed g. This reduces to an

O(@)—decay for|Levie et al.|(2019a) (ibid. Theorem 5, pt. 3) assuming a similar decay of operator-
distances. Our framework might this capture transferability properties other approaches could miss.

6 GRAPH LEVEL STABILITY

To solve tasks such as graph classification or regression over multiple graphs, graphs of varying sizes
need to be represented in a common feature space. Here we show that aggregating node-level features

into such graph level features via p-norms (| f|l¢» (@) := (X e | fol” 11g)*/P) preserves stability. To

2@ )H ller(Gou) R this end, let .%,,; be a target space of a GCN in the sense of .
N (G On each of the (in total Koy,) 0?(Gyyr) summands of %, we
Cl— *(Gou)— "R may apply the map f; — | fi]¢»(c,.)- Stacking these maps, we
éz(Gout)mR build a map from .%,,; to R Ko, Concatenating the map @y
associated to an N-layer GCN with this map yields a map from

Figure 5: Graph Level Aggregation %, to R¥#. We denote it by ¥%; and find:

Theorem 6.1. For p > 2 we have in the setting of Theorem [3.1| that || TR (f) — ¥R () |rrwn <
(I LaRuBy) - If = hl,. Tn the setting of Theorem
assumption that the ’final’ identification operator Jy satisfies HJNfiHEk(éN) - ||fz’Hgk(GN)| <

6 K - | filez(cy) forall f; € £2(Gy), we have U (f) — U2 (_Zof)|gxo < (N -DRL + K -
(BRL)) - (BRL)M | f| 2, - 0.

4.3| or and under the additional

Derived stability results thus persist (under mild assumptions) if graph level features are aggregated
via p-norms. Appendix |M|contains the corresponding proof.
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7 NUMERICAL RESULTS

We focus on investigating structural perturbations, as correspond- 12, — Aolon
ing results are most involved and novel: o

We first consider a graph on 5 nodes with an adjacency matrix A

with O(1)-entries (c. f B0]in Appendix [N). We then scale A by - e
1/, and 1/8,, (with 5~ — i = 1) respectively and consider the - Operator Differences

norm-difference between assomated Laplacians and resolvents. *”
Fig.[6] (a) then illustrate the theoretical result (c.f. Section[5) that **
resolvent- instead of Laplacian-differences capture the conver- **
gence behaviour. Embedding the considered graph into a larger (a) © B © 175, © o 0
graph (W € R®*8; c.f. in Appendix [N, we consider the - el =
collapsing edge setting of Section[5.2]in Fig. [6](b). As expected, .- w: E
the corresponding resolvents do approach each other as § — 0. - —
Contrary to the theoretical bound in Lemma[5.3] differences of -

resolvent-monomials decrease as their power k increases. 10 \
Beyond small graphs — inaccessible to traditional asymptotic ,,. \k
methods — our method is also applicable to the large-graph setting: .. K

Fig [7] picks up the example of an ’increasing” graph sequence . N
"approximating’ the circle again. As predlcted in Sectlon@, the

difference in resolvents decays (oc N) Fig. in Appendix [N|

shows how the difference in Laplacians diverges instead. Hence Figure 6: Edge-Collapse Stability
our framework might capture stability properties traditional ap-

~1(86,) = B-1(As,)llop

5

20 w0 1/5 60 80 100

107 proaches could miss.
10 Finally, we investigate the transferability of a two-layer GCN
o 1Fr (D) — TR (B, | With 16 nodes per hidden Layer combined with the aggregation

method of Section |§| into a graph-level map W%, Filters are of
the form (2) up to order k = 11. Coefficients {7} are sampled
uniformly from [—100, 100]. Feature vectors are generated on
the QM7 dataset. There each graph represents a molecule; nodes
correspond to individual atoms. Adjacency matrices are given by
f/IV/ij = Z;Z;/|x; — x;|| with Z; (x;) the atomic charge (equilib-
rium position) of atom i. We choose node-weights as j1; = Z;
and the Laplacian as characteristic operator. Leading up to Fig. [§]
we consider the graph of methane (5 Nodes; one Carbon (Z; = 6)

Resolvent Differes
°

0 250 500 750 1})60 1250 1500 1750 2000

Figure 7: The Large-N Regime

[F5(Tf) = W(P)llmes — 52

drogen atoms (¢ = 2) out of equilibrium and along a straight line “ ——

—p=

and four Hydrogen nodes (Z;~1 = 1)) and deflect one of the Hy- ) — ng

towards the Carbon atom. We then consider the transferability of :
the entire GCN between the resulting graph and an effective graph £*
combining Carbon and deflected Hydrogen into a single node :
"x" with weight u, = Z7 + Z5 = 7 located at the equilibrium »-
position of Carbon. With .J translating from effective to original
description, we consider | U5 (f) — U5 (J f)||r1s (averaged over

100 random unit-norm choices of f) as a function of |71 —z2 |71 " L oo disane
At equilibrium the transferability error is O(1). It decreases fast

with decreasing Carbon-Hydrogen distance, with the choice of ~ Figure 8: GCN Transferability
representation (effective vs. original) quickly becoming insignificant for generated feature vectors.

8 DISCUSSION

A theoretically well founded framework capturing stability properties of GCNs was developed. We
related node-level stability to (spectral) covering properties and edge-level stability to introduced
semi-norms of employed filters. For non-normal characteristic operators, tools from complex analysis
provided grounds for derived stability properties. We introduced a new notion of stability to structural
perturbations, highlighted the importance of the resolvent and detailed how the developed line of
thought captures relevant settings of structural changes such as the collapse of a strongly connected
sub-graph to a node. There — precisely if the graph Laplacian was employed — the transferability error
could be bounded in terms of the inverse characteristic coupling strength on the sub-graph.
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Hilbert Spaces: To us, a Hilbert space — often denoted by H — is a vector space over the complex
numbers which also has an inner product — often denoted by (-, -)3;. Prototypical examples are

given by the Euclidean spaces C¢ with inner product {z, y)¢a := 27:1 T;y;. Associated to an inner
product is a norm, denoted by || - |3 and defined by |z« := 4/{x, x)3 for z € H.

Direct Sums of Spaces Given two potentlally different Hilbert spaces ‘H and H one can form

their direct sum H ® 7—[ Elements of H ® 7-[ are vectors of the form (a, b), with a € H and b € ’H.
Addition and scalar multiplication are defined in the obvious way by

(a,0) + Ac,d) := (a + Ac,b + Ad)
fora,ce H,b,de # and A € C. The inner product on the direct sum is defined by
{(a,b), (c, d>>H@ﬁ = {a, )y + (b, d)g.

As is readily checked, this implies that the norm | - |7 on the direct sum is given by

[(a, )35 = lall3, + 1Bl

Standard examples of direct sums are again the Euclidean spaces, where one has C? = C" @ C™ if
m+n = d, as is easily checked. One might also consider direct sums with more than two summands,
writing C¢ = @, C for example. In fact, one might also consider infinite sums of Hilbert spaces:
The space @2 ;H,; is made up of those elements a = (a1, az, as, ...) with a; € H; for which the
norm

[00]
lale s, = 3 lail,
i=1

is finite. This means for example that the vector (1,0,0,0, ...) is in @2, C, while (1,1,1,1,...) is
not.

Direct Sums of Maps:  Suppose we have two collections of Hilbert spaces {#;}_,, {H;}I_, with
I'e NorI' = o0. Suppose further that for each ¢ < I' (resp. ¢ < I') we have a (not necessarily linear)

map J; : H; — 7—~lz Then the collection {J;}!_; of these ’component’ maps induce a ’composite’
map

I @ Hi — @5:17‘771

between the direct sums. Its value on an element a = (ay, as, as, ...) € ®I_;H,; is defined by

(a) = (Ji(a1), J2(az), J3(as), ...) € ®_, Hi.

Strictly speaking, one has to be a bit more careful in the case where I' = o0 to ensure that
|7 (a)|g= #, # . This can however be ensured if we have |J;(a;)|z, < , for all
i=1""

1 < i and some C independent of all 4, since then || 7 (a)[q- 5, < Claleoz,n, < o0.If each Ji is
i1 i

a linear operator, such a C' exists precisely if the operator norms (defined below) of all .J; are smaller
than some constant.

Operator Norm: LetJ : H — H be a linear operator between Hilbert spaces. We measure its
’size’ by what is called the operator norm, denoted by | - |, and defined by

1A% 5
ver | vlr=1 [¥ln

I llop =

Adjoint Operators LetJ: H — H be a linear operator from the Hilbert space H to the Hilbert

space H. Its adjoint J* : H — Hisan operator mapping in the opposite direction. It is uniquely
determined by demanding that

holds true for arbitrary f € H and u € H.

12



Under review as a conference paper at ICLR 2023

Normal Operators: If a linear operator A : { — 7 maps from and to the same Hilbert space,
we can compare it directly with its adjoint. If AA* = A*A, we say that the operator A is normal.
Special instances of normal operators are self-adjoint operators, for which we have the stronger
property A = A*. If an operator is normal, there are unitary maps U : H — H diagonalizing A as

U*AU = diag(\1, ... M),

with eigenvalues in C. We call the collection of eigenvalues the spectrum o (A) of A. If dim H = d,
we may write 0(A) = {A\}¢_,. It is a standard exercise to verify that each eigenvalue satisfies
|Ai] < |A]op. Associated to each eigenvalue is an eigenvector ¢;. The collection of all (normalized)
eigenvectors forms an orthonormal basis of . We may then write

d
Af =D Xilbi, Hrudi.

i=1
Resolvent of an Operator: Given an operator 7' on some Hilbert space 7, we have by definition
that the operator (T — z) : H — H is invertible precisely if z # o (T'). In this case we write

R.(T) = (21d—T)"
and call this operator the resolvent of 7" at z.

If T' is normal it can be proved that the norm of the resolvent satisfies
1
dist(z,0(A))’

where dist(z,0(A)) denotes the minimal distance between z and any eigenvalue of A. For non-
normal operators, one can prove

IR (T)op =

1R-(T)op < vr(2)
with
vr(2) = exp [2|T[1/d(z,0(T))] /d(z, o(T))
as is proved in [Bandtlow| (2004a)).

Frobenius Norm: Given two finite dimensional Hilbert spaces /{1 and Ho with orthonormal bases
{p114 | and {¢}}% |, the Frobenius norm | - | of an operator A : H; — Ho may be defined as

ds di

1415 := D] >, 14yl

i=1j=1
with A;; the matrix representation of A with respect to the bases {¢}}%*, and {¢}}9*,. Ttis a
standard exercise to verify that this norm is indeed independent of any choice of basis and hence
invariant under multiplying A with a unitary on either the left or the right side. More precisely, if
U:He — Hoand V : ‘Hy — H; are unitary, we have

|UAV[E = | Al

Frobenius norms can be used to transfer Lipschitz continuity properties of complex functions to the
setting of functions applied to normal operators:

Lemma A.1. Let g : C — C be Lipschitz continuous with Lipschitz constant D,. This implies
lg(X)J = Jg(YV)|r < Dg - |X = Y|p.
for normal operators X on Hs, Y on ‘H; and any linear map J : Hy; — Ho.
Proof. This proof is a modified version of the proof in Wihler (2009). Let U, W be unitary (with
respect to the inner product (-, -)3;) operators diagonalizing the normal operators X and Y™ as
V*XV = diag(\, ... Aq,) =: D(X)
W*YW = diag(p1, ..-pta, ) =: D(Y).
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Since the Frobenius norm is invariant under unitary transformations we find
lg(X)J = Jg(W)|7 = llg(VD(X)V*) — g(WD(Y)W*)| %
= [Vg(D(X))V*J — JWg(D(Y))W*|3
= [g(D( ))V*JW — V*IWg(D(Y))|7
—Z| DV*IW —V*IWg(D(Y))il’

2

_ Z Z ik [VEIW i = [VFIW Li[g(D(Y )]k,
- 2| V*W 15 lg(A) — (i)l
Zl (VWi * DI, = il

= D?HX ~ Y%

B APPROXIMATING BOUNDED CONTINUOUS FILTERS

Let us recall Definition 2Tt

Definition B.1. Fix w € C and C' > 0. Define the space Z %" of continuous filters on C\{w, &},
to be the space of multilinear power-series’ g(z) = ZZOV 0 am, (w —2)" " (w — %) " for which the
norm || g| zeon: := ZIMV:O w4+ v|C* 17 |a,,, | is finite.

We now prove that upon denoting by B (w) € C the open ball of radius ¢ around w, one can show
that for arbitrary ¢ > 0 and every continuous function g defined on C\(B.(w) u B(w)) which is
regular at infinity — i.e. satisfies lim,_, o, g(r2z) = ¢ € C independent of which z # 0 is chosen —
there is a function f € .Z5%" so that | f(2) — g(z)| < 6 forall z € C\(Bc(w) U B(W)).

Making use of the Stone-Weierstrass theorem for complex functions, it suffices to prove that for every
point 2 in C\(Bc(w) U B,()) there are functions f and g in FZ5°4" for which

f(2) # 9(2).

! is injective on C\(Be(w) U Be(W)).

But this is obvious since (w — z)~

C COMPLEX ANALYSIS

A general reference for topics discussed in this section isBak & Newman|(2017).
For a complex valued function f of a single complex variable, the derivative of f at a point zy € C in
its domain of definition is defined as the limit

f(z) — f(20)

Z—20 Z— 20
For this limit to exist, it needs to be independent of the ’direction’ in which z approaches z(, which is
a stronger requirement than being real-differentiable. A function is called holomorphic on an open set
U if it is complex differentiable at every point in U. It is called entire if it is complex differentiable at
every point in C. Every entire function has an everywhere convergent power series representation

e}
z) = Z a?zk. (6)
k=0
If a function g is analytic (i.e. can be expanded into a power series), we have
L [ g(2)
A) = —— d 7
O e )
S

14



Under review as a conference paper at ICLR 2023

for any circle S < C encircling A by Cauchy’s integral formula.

In fact, the integration contour need not be a circle S, but may be the boundary of any so called
Cauchy domain containing A:

Definition C.1. A subset D of the complex plane C is called a Cauchy domain if D is open, has a
finite number of components (the closure of two of which are disjoint) and the boundary of 0D of D
is composed of a finite number of closed rectifiable Jordan curves, no two of which intersect.

Equation (/) forms the backbone of complex analysis. Since the integral

I:= —i g(2)(zId —T) 'dz ®)
27
oD

is well defined for holomorphic g(+) and any operator 1" for which o (T") and 0D are disjoint (c.f. e.g.
Post| (2012) for details), we can essentially take () as a defining equation through which one might
apply holomorphic functions to operators.

While functions that are everywhere complex differentiable have a series representation according
to (@), complex functions that are holomorphic only on C\{w} have a series representation (called
Laurent series) according to

g(z) = Z ap(z —w)*.
k=—o0

If these functions are assumed to be regular at infinity, no terms with positive exponent are permitted
and (changing the indexing) we may thus write

9(z) = Y an(z —w) .
k=0

Motivated by this, we now prove the following consistency result:
Lemma C.2. With the notation of Section 2] we have for any k£ > 1 and w ¢ o(7') that

(w-Id—T)7": (w—2)"% (20d — T) dz,

T omi
oD

where we interpret the left hand side of the equation in terms of inversion and matrix powers.

Proof. We first note that we may write
0
RA(T) = Y (A= w)"(=1)"Ro(t)" "
n=0

for |\ — w| < || R, (T)|| using standard results in matrix analysis (namely the ’Neumann Characteri-
sation of the Resolvent’ which is obtained by repeated application of a resolvent identity; c.f. [Post
(2012) for more details). We thus find

k k o
1 1 1 1 1 " nal
2mi (w—z) zId—TdZ 2 § (w—z) Z(w ) R (T)
oD oD

n=0
0

Using the fact that

1
3 (z—w)"F Yz = G
oD

then yields the claim. O

15
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D PROOF OF LEMMA 23]

We want to prove the following:

Lemma D.1. For holomorphic ¢ and generic 7' we have |[g(T)|o,, < |g(0)] +
5= & 19(2)|yr(2)d|z|. Furthermore we have for any 7" with vy (w) < C, that ||g(T) [ op < ”g‘|9~£f)é
aslongas g € Zc .

Proof. We first note

1
o) 14+ 5 ) (1A= T) s < g(er) Ty + |5 o) - (210~ T) s
YIWA
oD op oD

<lg)| + 5= § lo( [-(z1d 1), di.
oD

op

The first claim thus follows together with | R.(T")|op < yr(2). The second claim can be derived as

follows:
a0 e} e} o0
Z < 2T =), < X e @) < ) BEIC.
k=0 op k=0 k=0 k=0

O

l9(T)llop =

E PROOF OF THEOREM [3.I]AND TIGHTNESS OF RESULTS
. We want to prove the following:

Theorem E.1. With the notation of Section 2|let & : £, — Zu be the map associated to an
N-layer GCN. We have

N
|[®n(f) — @ (h)| 2, < (H LanBn> f = bl
n=1

with B,, := \/supAGU(Tn) Djek,  2ick, |95 (A)[? if T, is normal. For general T;, we have for all

{gi;} entire, holomorphic and in .%,, ¢ respectively:
0
kZO Sk Dierc, 1@l )ul? - ITullE,

\ Bsern s Biere, 95O + 32§ v () Dyere, ., Diexe, 1955 (2)Pdle]
\/ZjeKn_l ZiEKTL ”gij w,C

Proof. Given input signals f, h" € %, let us — sticking to the notation introduced in Section 2] -
denote the intermediate signal representations in the intermediate layers .%,, by f", h" € .Z,,. With
the update rule described in Section [2]and the norm induced on each .%, as described in Appendix
we then have

[ =,

n+1
Kn+
= Z Pr+1 (Z gw n+1 n+1(f ) — Pn+1 <Z gw n+1 n+1(h?)>
i=1

2

= 2(Gnt1)
K1 || K, K., 2
<Li+1 Z Z 9 1) P ( Z QU Tos1) Prva(h])
=1 llj=t 2(Gpi1)
Knt1 | Ky 2
:ng+1 Z Z 917;+1 n+1) PnJrl(f]n) - PnJrl(h;'l)]
i=1 |j=1

£2(Gni1)

16
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‘We next note

M+

Tos1) [Pos1(f]) = Pasa(h})]

i=1

2(Gpt1)
Knt1

2
Z (Z 5 (Tt ) lopll [Prs1(£]7) = Paga (B})] ||£2(Gn+1)>
Kni1 K,
(z 3 14 1 )2| ()~ Paa )] B
n+1 Ky
R, ( DT g (T2 > If™ = B3 %,

=1 j=1

where the second to last step is an application of the Cauchy Schwarz inequality.

Proceeding inductively and using our previously established estimates, this proves the claim for all
settings in which 7, is nor normal (using an additional application of the triangle inequality for the
case of holomorphic filters).

To prove the claim for normal 7, as well, we note that in this setting we have (writing (¢, /\u)lanll
for a normalozed eigenvalue-eigenvector sequence of 7, 1) that we have

2

Kni1 || Ky
2 9 (Tga) [Pasa () = Pasa (0]
=t =t 2(Gnr1)
Knt1 | Ky 2
= Z Z ZQZ-H a){Pas [ n+1(fgn) - Pn+1(h;'l)]>l2(Gn,+1)¢a
=1 =1« £2(Gnt1)
Kni1 K,

= ZZ P )P Das [Prst (1) = Prst (K Dz

1=

—_

=1 «

< Z <Z gij(/\a)|2> an K(ﬁaa I:Pn+1(f_;L) - Pn+1(h;‘l)]>22(Gn+1)|2

< BuaaRuga|If" = 13, -

Here we applied Cauchy Schwarz once more in the second to last step and bounded
Z'gij()\(x)|2 < sup Z‘gu .
i, XEU(T

To see that these bounds are not necessarily tight, we may simply note that if we have a simple
one-layer Network as depicted in Fig. [9]below, the stability can be tightened to

[N (f) = PN (h)| 2 < LRB - [[f — I,

O

with with By, := IEa}z(SHPAGU(T) lg:(\)]) as opposed to with B, := \/sup)\eg(T) Diicaplgi(NV[? if

T is normal; as an easy calculation shows.

F PROOF OF LEMMA

We want to prove the following:

17
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P
B(Cin) == Gz, O (Gouw) = L(Go)
\8
P 6\\\

C(Gin) ——L2(Cou) /S ™ 2(Cont) 2 (G or)

Figure 9: Sparsely connected Layer

Lemma F.1. Let 7,7 be operators on on (2(G) , (2(G) with 1Tl ops HTHOP < C. Let J :
(2(G) — £2(G) be arbitrary but linear. With K, = >, [a]|kC*~! for g entire and K, =
=& Lyp(2)v#(2)|9(2)|d|z| for g holomorphic, we have

l9(T)T = Tg(Dlop < Ky - [IT =TT
Proof. Let us first verify the claim for entire g. We first note that
T+J — JT% = TFY(TJ — JT) + (T**J — JT* T
—T*YTJ —JT) + T*>(TJ — JT)T + (T*~2J — JT"2)17?
Thus, with | T|op, |Top < C we find
|T%T = TT*|op < kCEHTT = JTop.

The claim now follows from applying the triangle inequality.
Now let us prove the bound for holomorphic g. We first note the following:

1 ~ 1 1 1 1 z
= (T—z)J—f—N_Z]T - = [T (T—z)J+T ]

T— 2 T -z T-—z —Zz -z
1 1
=z JT—Z_T_ZJ>'
Thus we have
1 1
lg(T)J—Jg(T Mop < 5~ jg |HR T)|op| R(T) | oplg(2)1d] 2] < j€Z| r(2)v3(2)]g(2)]d| 2]
oD

O

G PROOF OF THEOREM 4.3]

We prove the following generalization of Theorem [£.3}

Theorem G.1. Let &y, dy be the maps associated to [NV-layer graph convolutional networks with
the same non-linearities and functional calculus filters, but based on dlfferent graph s1gnal spaces
(2(G), 12(G), characteristic operators T}, , T, and connecting operators P,,, P,,. Assume B,,, B, < B
as well as R,,, R < Rand L, < L for some B R,L > 0and all n > 0. Assume that there are
identification operators J, : (2(G,) — £2(G,) (0 < n < N) almost commuting with non-
linearities and connecting operators in the sense of | P,.J,,_1 f — JuPof] exe < 02| fle2(c,) and
lon (Tnf)—=Tnpn(f)] G S 1/l flle2(c,,)- Depending on whether normal or arbltrary characterlstlc
operators are used, define D2 := Z]eKn,l Yick, D!?Z} or D} =Y Dick, Kjn . Choose

D such that D,, < D for all n. Finally assume that ||J,,T,, — fnJHH* < 6 and with * = F if both

18
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operators are normal and * = op otherwise. Then we have for all f € %}, and with _#Z the operator

that the K copies of Jy induced through concatenation that

[®(Jof) = In@(f)l 7, <

N -[RLDS + §;BR + 6,BL] - (BRL)N~

e

in*

Proof. For simplicity in notation, let us denote the hidden representation of .Jy f in Z by f . We
then note the following

” /n-&-l]ﬂH—l

Kn+1

-2

i=1

Knt1

(3

i=1

Kn+1

2

i=1

+L

Knt1

i=1

K,
+LB (Z

=1

Jn+1pn+1 (Z gz]

TL+1 Z glj

We can bound the first term by 61 B - R - (BRL)"

n+1
"z,

Ky
Jns1Pn+1 <Z gzanrl(

j=1

j=1

n+1 Z glj

K,

Z ”+1gm

Jn+1Pn+1(fjn) -

n+1

Tn+1 n+

n+1 n+

n+1

n+1

n+1)

n+
955

Pn+1(fn)

)
1)

n+1

2

Pr+1 <Z gzg n+1 ~n+1(']?]n)>
— Pn+1 < n+1 2 gw Tnv1) n+1(fn)>

n+1 71+1(fN )

Z 9i;"!

1
2
62(G7L+1)>

~

n+1 P

NTous1) Tns1) Pasa (f7)

1
2 2

£2(Gnt1)

- || f|l.«,- For the second term we find

2

()

02(Gr+1)

1
2 2

£2(Gny1)

2

D=

2

-

n+1)
2

Z2(Gn+1)

Arguing as in the proof of [3.1| we can bound the first term by LD - §R - (BRL)"| f|.,. For the
second term we find,

LB <§

j=1
< LBO(BRL)" + || fuf™ —

Jn+1Pn+1

(f") =

f)n+1(f~n)

Mz

£2(Gny1)

arguing as above. Iterating from n = N to n = 0 then yields the claim.

H TRANSFERABILITY: GENERAL CONSIDERATIONS

We first prove the statement made at the beginning of Section [5]that

[(wld - As)~" -

’

(wId — As,)  op = O(84 - 0p).

To this end denote the increasing sequence of eigenvalues (counted without multiplicity) of A; by
{\i }L o- Recall that A\g = 0 Denote the sequence of projections on the corresponding eigenspaces by

{P}L

1

~o- We have for the resolvent that

1

wld — A5

T wld—0-A,

19
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Thus we have for d,, d, small enough that

H 1 1 1|, i
wId—A(;a w[d—Agb op W—%/M w_i/\l = 1((«0—%/\1)(00—%)\1)
1
=\ O(8q - )

[CEESHICEEDWI

Next we note the convergence (wld — As)~! — Py - (w—0)~L. But this is obvious, since for \; # 0
we have

as 6 — 0.

I PROOFS OF LEMMA [3.3]AND THEOREM [5.4]

Lemma L1. Let T and T be characteristic operators on ¢2(G) and 762(@ ) be respectively. If these
operators are w-d-close with identification operator J, and | Ry, | op, Re|op < C we have

[79(T) = g(T) Jllop < Ky - [(Bod = JRe)lop
with K, = §,,(1 + |z — w|'yT( N1+ |z — w|v4(2))|g(2)|d|z] if g is holomorphic and K, =
Hg“y)zol ifge gzh"l If T and T are normal as well as doubly w-§-close and g € .7 F o, we have

Hg\lgﬂom

Proof. We first deal with the statement concerning holomorphic g. To this end we note that Lemma
4.5.9 of [Post| (2012) proves

|Rod = JR:]op < (14 |2 = whyr () (L + |2 = wlyz(2)) - [Rud = TRulop.

The claim then follows from

N 1 N
19(T) = 9T < 5 § Lo = TRz,
oD

For g € 7%, the claim is proved exactly as in the proof of Lemma
For g € Z5% ot we note that

(o) (BE)"T = T (Ro)" (RS)” = (Ro)" | (BT — J (BE)" | + ()T — J(RL)!] (RE)”
Together with the result

|T5.T =TT |op < KC*HTT = JT|op.
established in the proof of Lemma4.2] the claim then follows from the triangle inequality together

with the definition of the semi-norm g zcon:.

O

As in the previous section, we state a slightly more general version of our main theorem of this
section:

Theorem 1.2. Let @, ® be the maps associated to N-layer graph convolutional networks with
the same non- lmearltles and functional calculus filters, but based on different graph signal spaces
(2(G), £2(G,,), characteristic operators T}, , T}, and connecting operators P, P,. Assume B,,, B, <
B as well as R,,, R < Rand L,, < L for some B,R,L > 0and all n > 0. Assume that there
are identification operators .J,, : (2(G,,) — £2(G,,) (0 < n < N) almost commuting with non-
linearities and connecting operators in the sense of || P, Jn 1 f — Jn P fllpe (G < %l fle@,)

and ||pn (Jnf) = Jnpn(f)l 2@, 011/ le2(c.,)- define D? .= DjeK, ) ek, K2 o, with Kgr as in
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Lemma|5.3] Choose D such that D,, < D for all nn. Finally assume that | J,, (wId —T},) ™! — (wId —
o) M nlop < 0. If filters in F 8! are used, assume additionally that | J,, ((wld — T,,)~1)*
((wld — fn)_l) Inllop < 6. Then we have for all f € %, and with ¢ the operator that the Ky
copies of Jy induced through concatenation that

|®(Jof) = IN®(f)| 7, <N -[RLDS + 61 BR + 6,BL] - (BRL)N - | |,

Proof. The proof proceeds in complete analogy to the one of Theorem {.3] O

J COLLAPSING STRONG EDGES: PROOFS AND FURTHER DETAILS

We utilize the notation introduced in Section Beyond this, we denote the positive semi-definite
form induced by the energy functional Ex by

Ee(u,v) = (u, Agv)p )

We further use the notation Ep(u) := Eg(u, u). With

Y Waglula) —u(B)?
aGC}u»wk
BEGGreek

+ Y Walu(a) — u(b)?
GGGme
bEGLa/in

+ Y, Waglu(a) —u(B)?
aEC:;Lurin
BEG Greek

+ Y Waslu(e) —u(b)?

@€G Greek
b€ G rarin ©)

+ D) Wadu(e) — u(+)]?

€GGreek

+ Y Waglu(») —u(B)?

BEGGmek

+ Y Wadlua) — u(x)?
Y Walu(e) —u(®)P

beG Latin

Similar considerations apply when G is replaced by G.
Let us next solve the convex optimization program () introduced in Definition 5.5} restated here for
convenience:

Definition J.1. For each g € GG, define the signal z/Jg € EQ(CNYv ) as the unique solution to the convex
optimization program

min Eg(u) subjectto u(h) = opg forall h e G Latin U{*}

As a first step we note that all entries of 7, are real and non-negative, which follows since each
summand in (9) is non-increasing under the map u — |u| due to the reverse triangle ||a|—|b|| < [a—b].

To find the explicit form of ¢y, fix g € G Latin (J{*} and denote by x, € EQ(CNJ) the signal defined by
setting it to x"'(h) = Opg for h € Grain | J{*} and ng(a) = ng with {ng} 5 asetof |Ggreek|
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free parameters in R<(. We then have

Eg(xg) =2 ), Wag+2 >, Wogll=ngPP+2 Y, Waslngl?
aeél,arin aEéGmk CLGéGmk
beGrain U{*}

+ ), Waglng —njl*.

o, BEGGreek

By definition, X, depends smoothly on the parameters {7} . Geonen,.- Finding the minimizer of the
convex optimization program (5) is then equivalent to finding the values {ng } L at which we

have
aEé (Xq)
ong

a€GGree

=0.

We note
10B5(xg) | & W W W W
Z%z Woet D Woet 33 Wag [ng = 3 Wagni — Wee
g

a€G Laiin Uf*} €GGreek €GGreek
a#g

Collecting these equations for all parameters into a matrix equation, we find that the *Greek entries’
of the vector v, are given explicitly by

~ ~ -1 —
Pg(a) do —Wap ... Wya

with degrees in G denoted by Ja. Let us denote the restriction of 1/)3 to Greek entries, thought of as a
vector in Cl¢Greetl by 770,
Given the degree d,, corresponding to a Greek index, we decompose it as
da:dg,‘i’Wa*‘i’Va

with Jg accounting for edges from « to other greek vertices

~ ~ 1

dg = Z Wa B = g Z Wap,

ﬁEéGreek BEéGreek

and V,, accounting for edges from « to Latin vertices

Vo= >, Waa
aEéLan‘n
Recall that we also may write
~ 1
Wa* - Wax
i
We may then write
do  —Wap ... dr,  —Wap ... War 0 ... Vo 0
~ ~ . ~ ~ . 1 .
~Wsa dg = —Wsa dg I 3 0w« S+ 10 Vg

1 . .
=: Ef + gdzag(w*) +V,

where we made the obvious definitions for the matrices .2 and V' and denoted by &, the vector with
entries wq«. Let us also use the notation

h:= % + diag(w,).

22



Under review as a conference paper at ICLR 2023

Next we want to establish that A is invertible. For this we first note that that % is the graph Laplacian
of the subgraph G g, .ccr; Which we assume to be connected. Hence & is positive semi-definite with
the eigenspace corresponding to the eigenvalue zero being spanned by (entry-wise) constant vectors.
Since all entries of w, are non-negative, the operator h is also positive semi-definite. Since we assume
that the vertex * is connected to at least one other vertex in G eek, there is at least one entry in
W, that is strictly greater than zero. We show that this already implies that A is in fact also positive

definite and hence invertible. Indeed, for any v’ € ClGareer| we have

W, L Diaareen = U b 01660 T U, diag(@a) - V)16, 0unl -

Both terms on the right hand side are non-negative. If ' is a constant (non-zero) vector, the first term
vanishes, but since at least one entry of w, is strictly positive, with all others being non-negative, the
second term on the right hand side is strictly positive. If ¢ is non-constant, the first term on the right
hand side is larger than zero. Hence h is positive definite and thus invertible. Similarly one proves
that (for any 6 > 0) the operator h + 0V is positive definite and hence invertible. Thus we now know
that the operator

CTa _Na,B
1 ~ ~
S(h + 5‘/) = —Wﬁa d@

utilized in 1i is indeed invertible. We note (again with the restriction of /% to Greek entries thought
1 é ree | 70 1 1
of as a vector in C/Gcreet| denoted by 17,) that we may equivalently write |i as

—

(h+8V)7li = 6W, (11)
and ~
. Woa
Ir/f/—;g = WQ,B

thought of as an element of ClGareerl To proceed, we now first focus on the case g = *, for which
we may write (TI) equivalently as
(h+6V)7'i = &,. (12)

Since W, is independent of §, we may take the limit § — 0 and arrive at
(L + diag(G.) 2 = &

which is uniquely solved by 770 = (1,1, 1,....) = Lgee-
Since we assume J < 1, we can now investigate the solution 77‘; for non-zero § through perturbation
theory. We write

_ 55
with 59 = 0 and find from —using h - Lgyeer = 77° — the defining equation

m=1g

Greek

B =§h+6v) .V

’ ]léamk'

From this we obtain the estimate

180 @y < NP+ V)0 - IV - 1,

2(Gora) 9,

where we denote by EQ(CNJG,M) the space graph signal space ClGoreel equipped with node weights
{MQ}QEéG7-eek'

We note that both i and V' are positive semi-definite and we thus obtain

>\min(h) < /\Inin(h + 5‘/)
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for the minimal eigenvalues of the respective operators. Hence
[(h+8V) " op < 1R op,

and thus also

HCEH@(@GM) < ”hiluop ’ HV ’ ﬂéGmk 02(Gireet) -0 (13)
=K
Since |[A™op = 1/Amin(h) we may write
V. ]lGreek 2(0
_ le2(@ ) (14

)\min(h)

From 1) we know that for g # * we have 7’]’2 =0.
We now also want to bound Hﬁg Il (G I terms of 6. We will do this by establishing the relationship

2 My =C (15)
Qeémm
and then utilizing our estimate on ||’ | (2(Gone) EStablished above. To prove , we will need the
concept of harmonic extensions:
Definition J.2. Denote by 2(Graim U {x}) the graph signal space CGrain{+}] equipped with the

node weights {fig} .z, (.- Given an arbitrary signal u € 02(Grain L {*}) a harmonic extension

of T to all of £2(G) is a signal u € ¢2(G) satisfying
(Agu)(a) = 0 Yo € Gorer and u(h) =T(h) ¥ h € Gram|_J{*}-

We first note that the concept of harmonic extensions is both well-defined an well-behaved:

Lemma J.3. Fix @ € (2(Gui, U {*}). There exists a unique harmonic extension u € £2(G) of 7.
It is given as the solution to the convex optimization program

min Eg(u) subjectto u(h) = opg forall h e G Latin U{*}

Furthermore if « and v are the harmonic extensions of & and T, then (u + v) is the (unique) harmonic
extension of (7 + 7).

Proof. We write a signal ¢ € (2(G) as 1) = (¢,1) with 1 € £2(GLain U {*}) and 11 € £2(Ggreet)-
We then notice

Y = argminEs(u) subject to (h) = (h) forall h e G Latin U{*}

@agf](w) = 0 VOK € éGreek Cll’ld d)(h) = E(h) for all h € éLatin U{*}
= 3 Way($(0) = 9(y) =0 Yo e Qe and (h) = p(h) for all b€ Gram| J{+}
yed

<(Ag¥)(a) =0 Vo€ G and (h) = P(h) for all h € Graim|_J{+}-

Here, we treated 7, and its complex conjugate as independent variables and used that E(-) is
a real-valued functional for the first equivalence. As harmonic extensions are thus equivalently
characterised as the solutions of convex minimization programs, they are unique.

To prove the last statement, we note that by linearity of the graph Laplacian, (u + v) certainly is a
harmonic extension of (7 + ¥). Since harmonic extensions are unique, it is the only one.

After this preparatory effort, we are now ready to prove (I3):
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Lemma J.4. For any § > 0 the signals {ﬁg} Ui} form a partition of unity of 62(6’6,86;{):

QEéLmin
‘,5
Z ng - 1éGrzek (16)
geéme U{*}
Equivalently we have
> =4
QGéme

As an immediate Corollary we obtain

Corollary J.5. For any ¢ > 0 the signals {1/12}51E Gran U} form a partition of unity of 2(Q):

> =1l (17)

9€Crain U{+}

Proof. Using the "boundary conditions’ in @) it is straightforward to verify that (I6) is equivalent to
. From Lemma we now know that ¢y, originally characterised as the solution of the problem

min Eg(u) subjectto u(h) = opg forall h e G Latin U{*},

is equivalently characterised as the harmonic extension of u(h) = d,,. From the last statement of
N _,6 . . . .
Lemma we know that deGm Ut} Ty 1s the unique harmonic extension of

D1 g =1g .
N 9 T CE L U
9€G Latin U{*}

But this — in turn — is the unique solution of the problem
min Eg(u) subjectto u(h) =1 forall h e G rLatin U{*}
Since we have
Eg(1g) =0,
which is the lowest possible attainable value of Ex(-), and setting u = 1 5 is compatible with the

"boundary condition” u(h) = 1 forall h € éw,i,, (U{*}, we know that is the (unique) harmonic
extension of 15 Uts} By the last statement of LemmalJi?Iwe thus have

Y, =1

gEélwm U{*}

Having established that we may write

—0 =)
2 /'7 g = C* )
ge éLmin

together with the fact that every entry of each ﬁg is non-negative, we now know that

0< i) <1

Furthermore — using our earlier estimate (I3]) — we now easily obtain

Z ﬁg < K-
geéum'n 02 (é(}rgﬂk)

Hence — by positivity of the entries — we also have for each individual g € G Larin that

H Hz2 (GGreet) < K-o.
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For the weights {ug}geg we then find

ﬁggﬂg<ﬁg+5K 2 s

€GGreek

if g # *. We also write ﬁ(écmek) = ZQE@G . lie. If g = x, we have
1+ (1= )i Gareen) < pd < 1 + B Garrect).

Having set the scene, we are now ready to prove Theorem[5.4] Following [Post & Simmer (2017),
instead of checking the conditions of Deﬁnitio and Definition [5.2)it is instead sufficient to check

the following, with .J .J as defined in Section [5.2]to establish Theorem

Lemma J.6. In addition to identification operators .J, J, assume that there exist additional operators
JY:2(G) — 2(G) and J! : £2(G) — 2(G) so that the following set of equations is satisfied with

1

e=0(2)

[TAl< A+ Efl KTfuy = Twl < €|/ (18)
If = TIfl < €V + Ba(f), u—JJul < €q/|ul? + Egu) (19)

|72 f = T < ENNFI2+ Ec(f), [ Ju— T ul < €5/ [ul? + Eg(u) (20)
|Eg(J' fou) — E(f, T'u)| < € - VIfI2 + Ea(f) - y/ul? + Eg(u). Q1)

Then the (normal) operators A and A are (doubly) (-1)- (¢ = 12¢') -close with identification-operator
J.

Here, we always have u € (2 (C:') and f € (2(G))

Proof. This follows immediately after combining Proposition 4.4.12 with Theorem 4.4.15 of |Post
(2012). O

We set J!f = Jf and (J'u)(z) = u(z) and now determine the individual € = €(8) values for which
these equations are satisfied:

Left-hand-side of (I8):
For the left hand side of (18)) we note (using 2ab < a* + b* and the fact that the ), form a partition
of unity):

h,geG

2 DUWE D0k g + 53 5 FOF X Wt

heG geG geG heG

N

= % Z |f(h)|2<wi’]l>€2(é) + % Z |f(g)|2<]l’wg>gz(é)

heG geG

= Iflg) P

geG
= 1% )

Here the second to last inequality follows from the definition of the weights ug. Thus the left hand
side of (I8) holds with
e=0.
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Right-hand-side of (I8):
The right hand side of (I8) holds trivially with

e=0
since we have chosen .J* = .J.
Left-hand-side of (19):
Now let us check the Lh.s. of (T9). We have:
<1,Z) ) 1/} >i2
(f = JJIf)y Z flg L
geG ‘uy

Using the constant K defined in (T4) we have
~ 5~ ~
fig < p < Jig +0K Y Jia
EGGreck

if g # *. We also write ﬁ(écmek) = > [iq. If G = x, we have

AEGGreek

[ + (1 — 5)ﬁ(éG7-eek) < ,uf < ﬁ* + lﬁ(éGT“k)'
We next note 5 s 5 =5
Wz, wy>z2(é) = [iabzy + (o Ty)02(Gorar)

with Wr the vector with entries WT (9) = If/Iv/mg.
Thus for y # x we find

~ N 7"/)2>[2(é)
(F=JINw)l < (1-7% + ) flo 5.
i "

‘We thus find

7 i 3,0,
1f =TT flee < | Y () 43 ) s Wi thew

in 1/ giG y
YFE* 9#Y
<wga ¢f> 2(C7
0 = X fe
gEG :u*
It 2 <¢ga ¢2>2 e
< IS ((-Z)rw) + | B (| e
yeG 'ui‘/ yeG geG My
Y#* y#x \lg#y
<wga ¢f> 2((3
+ ) = Y flg) e
gEG :u*

To bound the first term of the estimate, we note (for y # ) and ¢ small enough:

( — ﬁu) <|1-— ﬁy _ 6Kﬁ(éGreek) < 6Kﬁ(éGreek)
Ng ,D:y + (;Kﬁ(GGreek) 6Kﬁy + ﬁ(GGreek) gegin Hg
Latin
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We also note (for y # *)

1 1
< — < ———
|f(y)] min \/E‘f (W) |/1y min \/ﬁ—ylf (W) |y
9€G Latin 9€G Latin
Thus we find
~ 2 ~ B ~r 5
H Kﬂ(GGreek) KM(GG’reek)
> ((1 - ?) |f(y)|> <8 | = | | D WPy <6 | == £ leo)-
e Hy min - fig |\l yeG min i
Yy#E* 9€G Latin y#x 9€G Latin
To estimate the second term, we estimate
1
<
|f(g)| i min \/EHfHKZ(G)
9€GratinV{*}
to obtain
<¢§7 ¢2>g2(é) 1 <¢3’ ¢2>£2(@)
D flg————= < . — W) |, ———2
geG Hy . V Hg 9eG Fry
g#y 9€G LatinU{*} g#y
5 =5
1 (g Ty e2 (G,
| [ Wlew | X =
9€GratinV{*} g ZZC; Y
1 <ﬁ6’ﬁ6>42 Géree
< . — |1 Wl - | D) L Cemt)
. min Hg geG Fy
9EG LatinU{*} Y

Thus we find (using that {773, 775 12(Giny) 1S @ NON-NEgative number and we have | - 2 < | - 1)

2
<1/)§ ) w3>z2 (@) 1 <’73’ 772>e2 (Géreet)
D2 flo————= | < : =|flee - Y, Y, ——
yeG geG Hy , n Hg yeG geG Hy
YF£* g#y 9€GLatinU{*} Y#E* gFY
1
< ———lfle@ 2 20 0o @
_min nt: ye@ geG
9€GLatinU{*} Yy#F* g#yY
1
S ———lflee: 2 2T @
_min g yeG geG
gEGLatinU{*} YyF*x
1 =5
g . "’% Hszz (G) ' <]16;Gi‘ﬂ’k’ C* >€2(é(ireek)
_min  ig
9€GLatin U{*}
1 )
S . ~3 1le2(@) - Mgl (@ona * 165102 @)
min  [ig

9€G ratinu{*}

K- Né ree
<i A\ (G Greek)

: — | Ifle@
_min g
9€G Latin V{*}

Let us thus turn to the remaining term; corresponding to y = x: We have
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¢*>[2 G <¢fa¢f>gz a w*>g2 G
geG * 22 gEG *
gF*
We first deal with the left summand. We note
é é é ~ =6 )
]. — <w*, w* >€2(é) _ M* B M* B <Ilé(}mek B C* ’ Ilé(}reek B C* >€2(é(}mek)
pd - pd

5~ F5 ;o
oy — Hx — <ﬂé6rgek — G ﬂé(}rﬂek B *>22(éGreek)

/j* + ﬁ(éGreek) - 6Kﬁ(éGreek)
5 ~ ) =)
(/h T <]lécreek’ ]lésreek>f2(écreek)) + (<C* ) G >‘€2(éGmfk) - 2<]1C~?cmk’ G >€2(@Gmk))

N

N

ﬁ* + ﬁ(éGreek) - 5K,D:((~;Greek)

(OF) + [ PGy = XKL DG
fiw + Ji(Greor) — OKT(Cireet)

OF) + 8K + 205, e 180
fiw + Ji(Goreet) — SKFi(Greck)

(OK) + [ B G = 20 g B
fix + P(Greer) — 5K/7(@Greek)

(5K) + 52K? +2 \/ M(GGreek)

//6* + M(GGreek) 6KM(GGreek)

SK) + 62K2 + 24/ (G greer) KO
<( ) A\ F(GGreek)

~ ~
Fis

<

S

Thus, under the assumption § < 1 (implying 62 < J), we have

_ K+ K2 + 20/ (Gt K

Fis

<¢* I ¢* >[2 G)
o

1—

This implies that we have

<'(/)g ’ ’(/)* >£2 (G)
1

s K + K2 4+ 24/ ji(Ggrea) K

= N flez(cy-
n

‘f(*)— > f)

geG

* e

29



Under review as a conference paper at ICLR 2023

For the right-hand-side summand of the estimate in (22)) we note

>€2 G <773777f>¢2 G
Ef NG Fx/2(G) _ Zf(g) 5( Greek)
geG * geG Hox
gF#* gF*
1 5 s
< : — fle @) DT e G
. min I e
9€G LatinV{x} g#Fx
1 5
< - — [ flle2e) RGO )62 (Gonar)
_min - jig 9eG
9€G Latin U {*}
1 5
= ) 3 HfH@Q(G)<]lCN;GWk7 <*>£2(é(7reyk)
min g

9€C LatinU{*}

K- ,U/(GGreek‘)
- 5 HfHﬁ(G)
_min g
g€GrLatinV{*}

Putting it all together, we find for 6 < 1 that

If =TT fleee <8 K2 |flew

with
KA .— KM(GGreek) 19 K- ﬁ(GGT’eek> n K+ K> +2 ﬁ(GGreek)K
e 3 3 .
min ug _min Nt T
QEGLat'Ln g€GLatin V{*}

Thus the left hand side of (I9) holds with
e=K"-6.

Right-hand-side of (19):
Hence let us now check the right hand side of (I9). We note

4 ~
(u—JJu) =u— Z Mwi.

zeG Ha

Let us denote by M the matrix representation

~ wzv 2
M =1d—JJ=1d- ) %sz
zeG ,LLz

We use the triangle inequality to arrive at

H(u— JJu)

2@ < [M° 'UH£2(6;) + | M- MOHop Nulgee,

Using the fact that for g # * we have ﬁg — 0an i =1 Gy We find in the (6 — 0)-limit that

MO — 01 |Gt Owémun|x\égmeku{*}\
01 s (4} ¢ |G M

with
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! ! Ao flo g
MO = = | Hx Ha Hp

1 ﬁ(éGreek) + ﬁ*

acting on £2(Ggeex U {*}) . For any element v € £2(G), let us denote its restriction to G greex U {*}by
Ve gz(GGreek Y {*}) .

We thus find
0 2 0 0
HM ’ @HZQ (C?Gmku{*} = <M *u, M : y>¢2(@owu{*}
. . ﬁz N ﬁj
- Y Y wwe Y [5 _ 1 . [&j . 1
1€GGro o {*} F€GGrear U {*} a,b€C greer 0 {*} IU’(GGreek> + [x M(GGreek) + [iy
a(i)ul(j i N fiafl;
= 2 > alu) ), l&ia - Né”} : lua(;aj _ NéaJN]
1€ G Greek O {*} F€C Greer v {*} a€CGrer U {*} ,U( Greek) + Hx u( Greek) + iy

= ) S a(iul) x -

ieé’amku{*} jeéGreekU{*}

0 T 1 0 i Th s T T
- X Z /jaﬁ*(sia(saj - = NW«IJ’U«MJ -~  ~ “'U’u“u] ~ + ~ ""ulluau] ~
M(GGreek) + Hox M(GGreek) + Hox (M(GGreek) + /’('*)2

ae@cwk u{x}

- N 3w [ﬁi(sij_wl

1€G Groer U {*} JEG Greak L {} ,LL(GGreek) + s

> (~GM~> u(9) — ()P
i, 5€Cmao{*} 1(Gareek) + [ix

To proceed, we prove the following Lemma:

Lemma J.7. Leti,j € G Greek U {x}. Denote by Cépno {*}(i, j) the minimum number of edges for
which w;; > 0 needed to connect ¢ and j by a path. Set

Cx = max  Cg (,7)-
Goreek o {*} i£7€Corar {x} Greek O {}

Furthermore set

Q:= min Wij.
1#JEG Greek Y {*}

We have

1 Ce Uix
[u(i) - u(j)| < 5* (Gm”> Eg(w)

We call C@mku (%) the connectivity constant of the sub-graph ég,eek v {*} and note that it is

well-defined since we assume éGmek U {*} to be connected.
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Proof. Fix i and j. Let {4,¢1,...,9n,j} be the vertices traversed by a path of minimal length
determining C, {*}(i, 7). We then have

1C~ * ]
5% o {x} }( ) Ex(u)

\/ﬁ G

GGreek o {*}

T G(U)-

With the help of this Lemma we then find

s Nl
Greeku{*} /l‘luj
ZCana A g (y) - > S ] B
VQ &) (ﬁ(GGmk) + ﬁ;)

1,€CGrea O {*}

HMO : “Hp(é) <82

5% CéGr(‘ckU{*} ) ﬁ(éGreek) + fix z ( )
=07 : ~(u).
N :

To derive a bound for HM o MO Hop in the second term of the estimate 1} we write

s .0 (B A
M—M(ATD.

Here we denote by

AT 2 (Glraiin) — 2 (Greer  {+})
the adjoint of the operator

A+ (Gt v {#}) — (Cram)-
Clearly | A],p = ||Af|,p so that we have

215 = 8, < 1Bl + 204l + 1D, 29

To bound | B|,;, we note that B is diagonal and we have

o (- )
B = ﬁb(
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so that

To estimate || A|,, we note

We can consider the map

as a composition of maps

[Bllop <

N

N

<40

max [l
La€GrLatin
max flq
LaeG Latin
max fig
La€G Latin
max flq
LaeG Latin
max flq
a€GLatin

1 1 ]
)
1 1
ue ol ]
ua 1o ]
Ma Ma
Ma .Ua
el
K67i(Gopeer) 1
[i2

K- ﬁ(éGreek)

min - fiq
aEGLatin
_5 _5
0 na(g) na,(gﬁ)
0 p(a) o (B)
T i
0 (e) 7B
5 5

A C(Cireer U {*})

i Ez(éLatin)~

AP (GGreek U {*} _> C\Gomv{ A A @\G,m,n\

For the map Id : €2(C~¥Gmk U {x}) — ClGorer{+}] we find 11d|op = (

we find for the map Id : EQ(éLa,in) — |G that I1dop = (

norm of the map A : ClGorav{*} — ClGLil we use that the operator-norm is smaller than the

maximal column-sum times 4/ |G greer U {*}|. Hence for A as a map from C|Gora i} to ClGrainl we

33
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find
T AT
*plo | ——= |+ ma o
op X Greek Y Hlln ‘u, aeé:;k ) T,
9€G Larin a€G Laiin
~ 1 _’6
|GGreek U {*}‘ . — =< | m~ax [C* (Oé)]
Hlln ,LL €GGreek
geGlmm
~ 1
=0-K- |GGreekU{*}|' - —
min u min Tia
9€GC Laiin OéGGGreek
>~ 1
<6 KA\ |Gareec © {*}] - | ——— =
I fhg - IAX He
9EG Latin €G Greek
Here we estimated
. 1 .
() ] )
max a)| < ————|¢ N )
€ Ctreat [C*( )| < min /Jia (S PTR
QEG Greek

In total, we find for the operator-norm of

A P (Gorear  {+}) — (G Luin)-

that
max fig
e €G Latin
”AHop<(5K ‘GGreekU{*H' 9€GLan .
min fi,- max 3
9EG Laiin AEG Greek W {*}

Thus let us now investigate |D|,p. As before. let us denote by u € 2(Goreer U {*}) the
restriction of an element u € £2(G t0 Ggreer U {*}. We have

<wg7 '>[2 C;v cU{x <ww7 >£2 G O
HDHOP = Z — /(ﬁcw { })1/)72* Z L Greek W {* })7/10

zeéLatinU{*} v JI/’ECN;meU{*} r
< Z <’(/};1;7 >62 GG'”"U{*}) 1/}5 Z <d}z’ >£2(GGrukU{ *}) 1/)0

2€C Luiin Mw 2€Ciran :um

<’(/)*’ > U{* <¢*7 > U
+ ez(G(nmA { }) 1)[)* ZQ(GGreLk { }) 1[)*

e I
= Z <¢aﬂ >E2 GGrEekU{ } H <’l/)*’ >E2 G(,Eeku{ }),(/J <77[}*7 >£2(GGrﬂkU{ 1) wOH .
:LLz x 110 *

2€G Latin

We note for the matrix representation of the first term, that (with o, 8 € éGmk U {x}) we have

<’(/}:v’ > 2 v ! i
Z el(tcm {})1/15 _ Z Eﬁg(a)ﬁﬁ(ﬂ)uﬁ

TEG Latin aB TE€G Latin
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Using the "'maximal row sum trick’ complementary to the 'maximal column sum trick’ already used
for A above and recalling the definition of the weights

hed

we find

)
W2 2 (G g (+})
15

[

,(/}5

max /[y
~ TEG Greek V{*} I 5 ~
< |GGreek U {*}l : —\//7 : max Z Z Enz<a)nx(6)uﬁ

min BEG Grex 0 {*} ~ =
2EG Greer U{*} aEGGreek W {*} \TEG Latin

C?max{ }«/ﬁz )
<A /|(”;Gmk U {*}] - M—*N . max — i ()
V Hy Z 1

_min QG Grear U {*} =
YEG Greak o {*} € G Latin

max  /fig
<y |éGreek U {*} - M © max Z ﬁg(a)

_min Hy  aeGorau{x} ~
YEG Greer U {*} e Gtain

C?Inax{ }\/ﬁgC

x~ TEG Greel * o,

</ |G Greek U {*}] - L\/ﬁ» : max Cf(a)
Yy

_nin GG {*}
YEG Greek U{*}

2€G Latin

_max L
~ €G Greel {*} .
< |GGreek Y {*}| : w—é ’ Jnax Hgﬂﬁ(écmk)
min ﬁﬁ €G GreekV {*}

yEéGreekU {x}

max A/ fiz

<A/ |G U {3} MK&

min [
YEG Greek U{*}

< olw
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It remains to bound the second term. We find (using ‘

03

< 9 N :
22(éGreekU{*}) wa Ez(GGn’ekU{*}))

§ - 0 ~
H s W G o)) e W W2 (oo () 40
I - I -

02 (ékaU{*})

1 1 ) 5 s
< ) <1/J*7Q> e Ul % ’@[J*
H (/L§ u? 2 =/ (Gornao {+}) 2= 22(Cgrearu{*})

1 0 8 0 0
#5 [0 et = @ e oy, oy

1 1
3-2)/

s 2
e B L P

1 5 0 0 5 50
0 H (<£’ Wz (Fgratey) ~ Yoo @ﬁ(ému{*})) Yo + W Wiz (Fgenoish) (K - 1/’7)

<1 1‘
VR
5

[l g2 gmtoy)

—+

2 (Goreo{*})
2

,(/JO

02(Gorav{*}) : ”g“h (Gorau{*})

’(/JO

+2

v — 9

(=)

B Camtel) \ B Camte)) el 2 Gy

0-K- ﬁ(éGreek)
(7. + i(Coree) ) i
1

G (5 K ﬁ(éGreek)> A B+ ﬁ(éGreek) gz Olx
M t+ ,U'(GGreek) L2 (GGreek o {*})

X

. (ﬁ* + ﬁ(GGreek)) . “QHEZ(C:‘GM;{U{*})

Thus we find

ﬁ* + ﬁ(éGreek)

In total, using (23)) and (24), we find

—JJ
H(U u) 52((“;)
1 Céawku{*} ’ ﬁ(GGreek) + /7*
<5t Ta)
VaQ
(G max fig
K- /j‘(GGreek) = el
O T e | Hqu(é) +2-0-K- |GGreek v {*}| : - = 3 | HUHﬂ(CNJ)
lzlln Ha min ﬂg . max ,ué
e 9€G Laiin Q€ Greer U {*}
~ 2 1 1
+0- K- M(GGreek> =2 |- HuHeZ(@)

*

,E* + ﬁ(éGreek)
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and may hence set

€ = 5% éGrukU{*}
VQ
~ max fg
K- ﬁ(GGreek) ~ QGCN:Lam
b5 | G Grd) | g 5 i |G U (%] .
rG~nln. Ha min fig - max = [i§
€& Latin 9EG Latin aEGGrﬂekU{*}

o~ 1 1
+6 K- /J/(GGreek) : ~ + 2

*

/]* + /j(éGreek)
Left-hand-side of (20):

The left hand side of is true with € = 0 by definition.

Right-hand-side of (20):

Let us thus check the right hand side of (20):

We have
~ ~ 1
(Tu= Tu)(w) = =y — )
‘We note
7. 71 < 1 s B L, s ’ 5 2
H(JU —J U)HP(G) = E<u7 1/]*> - u(*) My + Z E<¢m7u>52(é) - ’U,({L') Hg- (25)
* xeG
gF*

We first deal with the left hand term of the estimate and note that for z = * we have
Nf < #9 =[x + ﬁ(GGreek)
and in the limit § — O that

1 1
E@fa@gz(@) —u(*) —’m > ulg) | —ulx)

gGéGmkU{*}

u(g) — u(+)]

geécmek v {*}

1

/7* + ﬁ(éGmek)
1

< —

fix + f(Ga

reek)

1 1 Cé u{x}
< ~ |~ 62 | —— B (U)
M + M(GGreek) Z ( \/ﬁ “

gEéGmﬂku{*}

‘éGreek U {*H (CéGreekU{*}> E~

<07 - =
ﬁ* + ﬁ(GGmek) \/ﬁ
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Here we applied Lemma[J.7] Comparing the 6 > 0 and § = 0 terms, we find

1 5 1
EQZ}H U>g2(§) - E@/’By U>g2(@)

<¢f - 1/)97 u>g2(é)‘ +

: )<¢9a u>g2(é)’

_1 11
T nd o pd

1 - 1 - o~
<EHUHP(CA§') . HCpr(écreek) + 'u(z — E . (,U/* + M(GGreek)) HUHZQ(EJ

*

K¢ Ké ~ o
<~7”u”52(€;) R B s : (N* "‘N(GGreek)) Hqu(é
Hox o (M* + ,Uf(GGreek))
2K
—5T”UHZ2(@)~

Thus we have

i@, U0 — u(x)

/ 1 G Cea *
/’L§ <5§ . |GG“’9k UN{*}| ( G(iu/eg{ }> Eé(u)
ﬁ* + ﬁ(GGreek)

2K
+0— Huup(@y

For the remaining term in (25) we note

2

Z ‘:z<'(/)g’ u>g2(@) - u(x)

xEélalin
ﬁ 2
< Z ‘1 — 'u—; . |u(x)|2p,g + Z ‘<ﬁ, H>€2(@cmkU{*})’ \/ Mﬁ;
IEéLa,i,, T QTECN;Larin
Ko
< gy + X D GV HE
* QTEéme
K6 o5
. ~ ~ . § ~
<57 Bl + 12| 1 | Wl
Ko ~ ~ ~ 2
gﬁi : HUHKZ(G) + 5K.U(GGreek) ’ LI;?X \/ru-’ﬂ + 5K,U(GGreek)] H@HF(@)
* Latin

HMHW (@)

K o~ —~ [ rrms 2
< /7 : HUHEQ(CN?) + 5K.U(GGreek) : l‘ / H?X Ba + 5K}UJ(GGreek)
TE€G Latin

Equation (21):

It finally only remains to prove the energy differences of (ZI)) and establish

B (1 fu) = Ba(f, T'w)l < e V2 + Ea(f) -/ Iul? + Eg(w).
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We note that the (unique) operator associated to the energy F¢ via

Ea(g, f) =<9, Acf)e )
is given by

(Aaf)(@) = — 2 Wy (f(2) — [(9)-

T y~cw

Here the notation "y ~¢ x" signifies that nodes x and y are connected within G through edges with
positive edge-weights W, > 0.
Similarly the operator associated to E via

Eé(va u) = (v, A@u>42(@)

is given by

with the equivalence relation ~ premsely signifying that ny > 0.

As before. let us denote by u € E (Gcmek U{}) the restriction of an element u € £> (é to C:'Gmk u{x}.
‘We note

Ea($a, ) = (Pu, Aoy = Y, Way(u(z) — uly))

Yy~agzx

on the smaller graph G. For the graph G we find

ot = 3, Wole) = uts)
+ Z () Y. Way(ula) —u(y)).
€ Greek y~go

Remembering that we have

Jf=Jf =) f@)e and (J'u)(z) = u(z),

zeG

we note

Ba(l fow) = Ea(f, Tw| < | Y F@) [Ba(ew) ~ Ealts, )]

2E€G Larin {*}

1
S| ——|lew- - Y |Ba(uu) - Ec(te,u)
min i,

~ EC:' i *
mEGmeu{*} x meU{ }

Let us first bound the terms corresponding to = # *: We have

6 (Yayu) = Y7 Way(u(@) = uly)) + Wa (u(z) — u(+))
yy;c*z

= D) Waylu(@) — uly)) + W (u(z) — u(x)),
yy;c:*x
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as well as
é wom Z y)) Z Z Wocy
Y~ a€Ggrect Yy~
= Wy (u(z) — u(y))
y~#cr
+ W (u(z > - u(*))

Hence (for x # *)

Eg(e; u) = Eg (¢, u) = Wau (u(z) = u(*)) = W (u(z) — u(+))

For I, we find — using Lemma [J.7] - that

e 1 CCN; AUAE
12| < ( Z Wma>'52 ( G\r/aﬁ{ }> Eé(u)

a€GGreek

and hence

fad 1 CN u{x
%Ixs(z )y w)-éz (G%“) Eg(u).

eG
Thx ;#* CKEG(, ek

(26)
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To bound |7 I,,| we note

Z i (cv) Z Way(”(‘l)*u(y)) = Z i (a Z Y ay\/ oy (
G Greck y~g« €Greck Y~
2 3
= 2 mE@) | X Wa| | X Wialule) —u)P
€G Greck y~go y~go

< Z 772-((1)' Z Wya | -4/ Eg(u).
@€GGrec y~g«

Thus we find — using Cauchy-Schwarz — that

MNHLI<Y Y @) | Y Wea| y/Esw)

zeG zelG e Y~z
el s QEG Greek a

[N

N

> 8@ Y Wa| 4/Ea(w)

AQEG Greek y~g«o

1 = ~
i v Cle@a | L X Wa | y/Ee(®)

a€GGra Y~ G

N

€GGreek

1 BBt
m'K5' D1 Wea| 4/Eg(w)

@ ~ ~
a€GGra Y~ G

N

a€Glorek
1 ~
min +/fiq \ 4 v
A€C Greek AEG Greek

Here we denoted by Ja the degree of the node o. We further note

Yoda= ) D) ay+5 > D, Way

€GGreek €CGreek YEC Lain Q€CGreek YEGGreor U {*}

N

Writing
71
dint = Z Z way
@€G Greer YEG Greak U {*}
for the sum of ’internal” degrees of greek nodes within Greek U {x} at § = 1 and

ewternal Z Z

€ Ggreck YEG Latin

for the ’total connection strength’ between the Greek and Latin sector, we thus find

= K
I | < [A/d} ., V6 + \Vdewternal - 0] ———=— -1/ Ex(u).
Z | ‘ < [ int \f"" t l ] min \/}ﬂ G(u)

e =
TH* €GGreek

It remains to bound the z = * term in (26). To this end we note

EG 1/}*, Z W*y ( ))

Yy~Gg*
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and

Eg(¢y,u) Z Wy (u(x) = u(y))
+ Z Cla) Y Wyalu(e) — u(y)).
A€ Greek Yy~go

For the difference of the energy forms we thus find

Ea(tsu) = Eg(v,u) NZ*WW —u(y))
- Z Way(u(=) —u(y) = 3 (@) Py Wya(u(@) = u(y))
- i*w*y(um—u(y» o G
- Z Wy (u(e) —u(y) = 3 () 2 Wya(u(a) = u(y))
+ i > waya(u(a)—zec(k D 2 Wya (u(e) — u(y)).
Q€GGra Y~ a€Ggra Y&
We have

~ ~

Y Y Waalul@) —u) = D) Wealu(@) —u(x)+ Y Wyalu(a) = u(y))

A€ Grear YT a€Gléreck y~ae
YEG Latin
+ Z Wya(u(e) = u(y).
aEG(,, y~
yGG(* ek
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with the last term vanishing by symmetry. This implies

Eg(¥nu) = Bg(dwu) = 3] (1=(@) Y Wyalu(a) - u(y))
aEéGmk y~ge
nyEji:n a€Ggra v {*}
= > Way(u(x) = u(y))
y~a*
Z W*a (u(ar) — u( Z Z
A€G Greek a€Gora Y78
yeGme
= Z Z Wya —'LL( ))
aEéGmk y~ge

Y7 e \aelGopau{x}
YEG Latin

Y Wayuls) — uly))
y~a*

YEGGreat”™

— D Waalul@) —u) = DY Waylula) - u(y))

aEéGmk aG@Gmk yNNEQ

YEG Latin

- > ) Y Wyalu(a) - u(y))
€GGreet y~ee

+ Z ( Z f/‘V/vyc‘z) (u(*) = u(y))

oy ~
y~a €G Greek U{*}
YEG Latin

- > Z — u(y))-

a€Cgra VG
yEGLLmn

Continuing, we find

Bc(ihs,u) — Eg(te,u) = Y (1— () 2 Wya(u(a) — u(y))

4
M
<
s
=
Q
@
|
I
S

+
> &
@C
MI
=
G
Q\_/
:
o ]
=
ié
s =
L
|
g
S
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This — in turn — we can write as

Ec(thy,u) — Eg(tw,u) =1 + 11

with

2 C* Z VVya 7“( ))7

@€GGreck y~go

and

= ) Z —u(a)).

a€Cgra VG
yElem

For the first term, we find

@
|I| mln - \/7
€ CGreek Ma O‘GGG’”A

\/ dllnt \/7+ V degternal - 6 = E@(u)
min Ho
aeéGmek
For the second term we note
<y, Z Wyalu(*) — u(a)]
a€Gra V™G
yEGme
GGreekU{*}
— Ex(u
I ( - ) xm
e

yEGLa/m

Ca. in
=\/5 : demternal . <C%H> E@ (U)

K PROOF OF THEOREM [5.7]

We prove the following theorem:

Theorem K.1. In the setting of Theorem [5 . 6|denote by T’ (T) adjacency matrices or normalized
graph Laplacians on ¢?(G) (¢2(G)). There are no functions 7,72 : [0,1] — Rxo with 1;(§) — 0
as & — 0 (i = 1,2), families of identification operators J, J° and w € C so that J® and J° are
11 (6)-quasi-unitary with respect to T, T’ and w while the operators T and T remain w-72(d) close.

Proof. We prove these two result through contradiction on a graph with two vertices and one edge

with weight 1/, which we collapse.
First fix T' (1) to be the adjacency matrices

-

W =0.

Ol
N———

= O

and

The eigenvectors and eigenvalues of W are given by {f%, %} and

(L) e ().
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Denote the orthogonal projections onto the corresponding eigenspaces by {P_, P, }. Take the
function g to be defined as

g(A) = — Ty
Then since g(0) = 0 we have
g(W) =0
Furthermore we have
7 7
=[] [ ]
5 5
=P, +P 1) L P 1) 1 P
I I
=Id—-§¢ 1 P 5LP
B S+i o —i
1 1 1
=Jd|1— — P_
d[ %5 ]+[55+i ‘55—1']
21
—1d|1- - ,
IR R =it
We are interested in
~ ~ 1 1
5 76 _ s _ | g5 _ L 5
Hg(W)J Tgw)| Hg(W)J . 'J 5[5+iP++5_Z.P]J )
Assuming
o) = 779w)| = [a(W)°]  <m(o)
we also find
s i\ i ep 62 | _
190, (5) = 1P, (5 )| < o)
Thus also

1 621
7, (55) < m)+ 17, (7).

Taking the limit and using the condition [[.J°|,, < 2, we find that |J°| — 0 as § — 0. Since we
demand

[T = T)lop < m2(5)

with
lim 72(9) = 0,

we also find HjHop — | J* lop — 0. Next we note that we have

1
=i
and demand
I(7d ~ 7 T)Rollp 0.
However
(= F%) Rallop = Toil0d = 7oy = (1= [T op ) = 7 > 0.
jwl jwl ]
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Thus we have our contradiction.

Hence let us now choose T’ (f’) as the normalized graph Laplacians associated to the adja-
cency matrices W (W) from above. We thus have

Z=0

and

The eigenvectors and eigenvalues of 7 are given by {0, 2} and

e (1) i v (1),

Denote the orthogonal projections onto the corresponding eigenspaces by { Py, P»}. Then

P =2P,.
Chose a function g such that g(0) = 0 and without loss of generality assume ¢g(2) = 1. Then
0 |g(2)° - J‘Sg(i’)Hop = [P, - @7
Next we consider the demand
[(1d — J° 7 Roul| < 5 - u]. (28)
Since (g — wld) is bijective, |i is implies
|(1d = 7° 7)ol < ns(8) - [Jwlllo] + |Z] - |o]] = ns(8) - [lw] + 2] - o] (29)
upon writing
u = (g— wld)v.

We also write

We write

and

From (7)), we know that

lim 74(6) = 0,

but we do not yet know the behaviour of f(-),a’, b as § — 0.

% m<5><(5z) (), 0)

With the above notation, we find from (29)) that
( - f ( )a Vg — (
vy — f ( ) Vo — f (

Vg — f( )a Vg — (

> ’ <vb (9) £

_f CLva

|(Zd = J°F)o] =
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Thus, combining this result with (29), we know that
va = F@)a’va = FOD |
vy — f(8)avg — f(8)bPvy '
Thus, since both entries of the above vector need to tend to zero, we need both
f(8)-a® -1 and f(6)-1° -0
as well as
f(6)-a® -0 and f(6)-1° —1

which yields the desired contradiction.

L. PROOF OF THEOREM[3.8]

We first note how the graph Laplacian A¢,, as we have defined it, is consistent with the underlying

positive (in the sense of non-negative eigenvalues) Laplacian

52

» A L = T »
5 062

on the unit circle S*.
To this end, fix 0 < h << 1. Fix a point = € S'. For any suitable function f — by means of Taylor
expansions — we may write
h2
fl@+h) = f@)+h-[0f)(z) + 5 - [Asi f](z) + O(h?)

2

fl@—=h)=f(x)—h-[0gf](x) + % [Agi fl(z) + O(R).
Adding these two terms, we find

2f(z) — f(x+h)— flx—h
[-as i) = ZEZTEED ZTEZD o)
This motivates setting our edgeweights on G to 1/h? with h = 27/ the distance between evenly
spaced nodes on the unit-circle S*.

Remark L.1. It should be noted that this consistency property — while given a heuristic to choose
weights — does not (immediately) imply *convergence’ of Ag,, to —Ag: in the sense needed to e.g.
apply [Levie et al.| (2019a). As our proof of Theorem L] proceeds completely without reference to the
limit-circle, we do not proceed beyond the above heuristic in investigating in what (relevant) sense
Ag, approximates —Agz.

We thus now want to prove the following result:

Theorem L.2. In the large graph setting of Section[5.2]choose all node-weights equal to one and
N to be odd for definiteness. There exists constants K7, Ko = O(1) so that for each N > 1, there

exist identification operators J,.J mapping between ¢2(Gy) and (?(Gn41) so that J and J are
(K1/N)-quasi-unitary with respect to Ag,, Ag,,, and w = (—1). Furthermore, the operators
Agy and Ag, ., are (—1)-(K3/N) close with identification operator .J.

Proof. We first note that the normalized eigenvectors of Gy are given by
1 2nk

¢,i\7(x)=\/—ﬁeiNx0<k<N.

The corresponding eigenvalues are easily found to be
2

N T
N 202
Ao = g s (Nk>
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For definiteness, we have assumed N to be odd, so that (N + 1) is even. We define the identification
operator J : (2(Gy) — ?(Gn41) via

N+L - for K <

¢n¢£@»>={ Koy

P for K <

ol Zolz

on the orthonormal basis {¢£’ }o<k<n and extend it to all of 2 (G) via normality. This implies that
precisely the eigenspace spanned by d)ﬁ (corresponding to the eigenvalue AN ! = (N +1)2/72)
2

2
does not lie in the image of J. We set J to be the adjoint J* of J. Choosing w = 1, we shall now
first check the equations of Definition[5.1] Since .J is isometric, we have

IT£ = 1£] <2|f]
as desired. Since J = J * . we have
17— 7% =o.

Since JJ = I dg2(y)> What remains to be checked is the demand

~ o~ 1
|(d = JI)Rr]op < K - <5
We have
(Td—TPF Ay =1 — =L ™ e L
“Hler T NN T T N2 S (N2 SN

N+1
2

Thus let us now check that the conditions of Definition are fulfilled. We note that with
our identification operator and by symmetry (Al = AY_,), we have

~ 1 1
||JR_1 — R—l‘]HOP = maXx —

N2 . 2 . :
osk<#4 |1+ ~% sin (%k‘) 1+ (N;r21)2 sin2 <(N11)k)

We now need to bound the right hand side uniformly in & as N — co. To this end we write @ := 1/N
(which implies H =1 + a) and = £ (which for our allowed values of k implies 0 < z < ).

With this we have
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(ra)? + sin? (rz) (ma)? + (14 a)? sm2 (Wl‘1+a)
(1 + a)?sin? (mcﬁ) — sin? (7x)
[(7a)? + sin? (72)] - [(7a)? + )2 sin? (7r 1+a>
sin? (Wmﬁ) — sin? (7z) + asin (ﬁmlia) + a?sin (ﬂ'azﬁ)
[(7a)? + sin? (x2)] - [(70)? + (1 + a)?sin? (ma L )]
sin (ﬂxH_—a) - sin ( a+1) + asin? (le_,l_a> + a? sin? (ﬂxl_%a)
[(7a)? + sin? (7z)] - [(7a)? + (1 + a)? sin® (Wxﬁ)]
sin (mcﬁ) - sin (mc%) + asin® (mcﬁ) + a?sin® (mcp%a)
[$n2(wx1+a)]-uway]

sin(re gy ) a+2 .2 1 2 1
— s Tx 7 + sin T, + asin TT1 g

2 1
Sin (7T$71+a)
: a+2 : a
Sin (7'('1‘ +1> Sin (ﬂ'l’ 1+a)
S11 (ﬂ'xm) a - sin (me)

Thus we are done if we can show that the function

sin <7m: ‘”2) sin (Wz—)
F(a, J,‘) _ a+1 ) 1+a
sin (Wxﬁ) a - sin (ﬂxm)
is bounded on the rectangle [0, 1] x [0, 2]. We change variables y = m2/(1 + a) and consider

sm@m+mw.sm@@‘
sin(y) | |a-sin(y)

on [0,1] x [0, 7] instead. Away from y = 0 this is obvious. Close to y = 0 we might Taylor expand
in numerators and denominators respectively and then (formally) divide them both respectively by y
to see that the function F'(a, y) is indeed regular at y = 0 too and hence on the entire compact set
[0,1] x [0, §]. As a continuous function, F" attains its supremum on this set. Denote it by /. Hence
we now know

<2a+a

F(a,y) =

L
N
Thus we have established the desired O(1/N)-decay. O

[JR- ~ Rodloy <[2+K]-a=[2+K]-

M PROOF OF THEOREM

Theorem M.1. For p > 2 we have in the setting of Theorem [3.1|that | ¥%, (f) — UR (k)| rxe <

(Hn:l LanBn> :

assumption that the “final’ identification operator Jy satisfies ||Jn fillx(g,) = | filer@an)| <

|f — h|.z,. In the setting of Theorem (4.3| or and under the additional
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§- K - | filez(cy) for all f; € £2(Gy), we have | (f) — U2 (_Zof)|gxo < (N -DRL + K -
(BRL)) - (BRL)N ™" - |fllz, - 0

Proof. To prove the first claim, we note

IR (f) = () lrson = | D) [N ()il — 112N @)iller (|
i€Kout
M I@n ()i — [@x @)iler (|
7flej(out
S I@n (N~ [@x (@)l
1€Kout

= | @R (f) = R (9) o

where we used the reverse triangle inequality and the fact that || - ||,z < |+ [l 2(@,,) for 2 < p. To
finish the proof we now only need to apply Theorem [3.1}

To prove the second claim we note

198 (F) = OR (Fo )
; @x (il — BN Il |
3 e ~ 5Dl + L i)~ BN S|
2 [l#n (Dbl = 1A BN bl i
; L@ (F)lilesc) — BN Io il |

SK-5-| fne(H)l g, + 12 A0f) = ()l 2,

out

and the claim follows as before.

The proof of the third claim proceed in complete analogy. O

N ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

Scaling Operators: The adjacency matrix fo the given graph is given by

0 16 7 18 19
16 0 6 22 3
A=]17 6 0 1 90|. (30)
18 22 1 0 23
19 3 9 23 0

Collapsing Edges We consider the setting introduced in Sectlon. 5.2|and consider a generic fully
connected graph G with |G\ 8. We consider a splitting into G = Gme U G Greok (J{x} with
|GL[m,,| = 3 and \Gcmek\ = 4. As described in Sectlon | we assume Wab, Wa* = (9( ),Va,b e
GLa,m and Waﬁ ”" and Wa* = <2 such that (wag,wa* = O(1) forall a, 8 € G(;Mk For
completeness and reproduablhty, the full adjacency matrix W can be found in Appendix |N| l We set
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node weight on G to one and — as discussed — construct a graph G with |G| = 4 through ’collapsing
strong edges’.
The adjacency matrix of the larger "un-collapsed’ graph G we consider in Section [7|is given as

follows
4 2 10 4 5 6 7

0

4 0 17 9 8 9 10 11

2 17 0 42 12 13 14 15

0 9 42 0 16/ 7/5 18/5 19/5
4 8 12 16/6 0  6/5 22/§ 3/6
5 9 13 7/6 6/5 0 1/6 90/s
6 10 14 18/ 22/5 1/5§ 0 23/5
7 11 15 19/6 3/5 90/§ 23/5 0O

The exceptional vertex * here carries index "4" ("x = 4"). Node weights are set to unity.

[t

W= (31)

The Realm of Large Graphs: We also plot the difference in characteristic operators as opposed to
their resolvents:

w0t 1Ay = T Ay llop

Operator Differences
5,

o 250 500 750 100‘0 1250 1500 1750 2000
Figure 10: Operator Differences

Their distances does not decay.

Experiments on Molecules: The dataset we consider is the QM7 dataset, introduced in/Blum &
Reymond|(2009); [Rupp et al.|(2012). This dataset contains descriptions of 7165 organic molecules,
each with up to seven heavy atoms, with all non-hydrogen atoms being considered heavy. A molecule
is represented by its Coulomb matrix C“'™°, whose off-diagonal elements

Z,Z;
COClmb _ i4j
7T R - Rl

correspond to the Coulomb-repulsion between atoms ¢ and j, while diagonal elements encode a
polynomial fit of atomic energies to nuclear charge Rupp et al.|(2012):

1
CClmb _ = 2.4
3 2 K

For each atom in any given molecular graph, the individual Cartesian coordinates R; and the atomic
charge Z; are also accessible individually. To each molecule an atomization energy - calculated via
density functional theory - is associated. The objective is to predict this quantity, the performance
metric is mean absolute error. Numerically, atomization energies are negative numbers in the range
—600 to —2200. The associated unit is [kcal/mol].
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O NOTATIONAL CONVENTIONS
We provide a summary of employed notational conventions:

Table 1: Classification Accuracies on Social Network Datasets

Symbol Meaning

G a graph or a vertex set
|G| number of nodes in G
i weight of node ¢

M weight matrix

D) inner product

w adjacency matrix

degree matrix

graph Laplacian

normalized graph Laplacian

generic operator

adjoint of T'

spectrum (i.e. collection of eigenvalues) of T’

an eigenvalue

function g applied to operator 7'

[lop operator norm (i.e. spectral norm)

|7 Frobenius norm

a complex number

complex conjugate of w

a complex number

(w) open ball of radius € around w

b complex number determined by g and indexed by k
open set extending to infinity in C

a Cauchy domain in C

the boundary of D

the resolvent of 7" at w

resolvent profile of T’

z a complex line integral

.d|z| the corresponding real line integral

a non-linearity

a connecting operator

(possibly hidden) feature space associated to a GCN
map associated to a GCN

small numbers

an identification operator (possibly dependent on some €
or d)

Graph consisting of regular nodes, an exceptional node
and a strongly connected sub-graph

GGreek nodes in a strongly connected sub-graph

* exceptional node to which a strongly connected sub-graph
is collapsed

éLati regular nodes in G

Ec() Energy form associated to the (undirected) graph G
h distance between nodes on the circle

[ 1p the p-norm on R4

P a natural number

v graph-level feature map associated to a GCN

Z; atomic charge of atom corresponding to node ¢

x; Cartesian position of atom corresponding to node ¢
Coulomb interaction between atoms ¢ and j

Jzi — 4] Euclidean distance between x; and x;

e > NNKDY
dj*k

TYTSARYEETT
[
-
|
!
v
=
€
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S
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